CORRECTION

Correction to: A Short Proof of Commutator Estimates

Piero D'Ancona¹

Received: 28 June 2019 / Published online: 5 February 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Correction to: J Fourier Anal Appl (2019) 25:1134–1146 https://doi.org/10.1007/s00041-018-9612-8

The Paley–Littlewood square function g_{λ}^* is *not* bounded on L^p spaces if $p \leq 1$, as wrongly stated in the paper (see Theorem 2.5). A weaker estimate holds though, namely, g_{λ}^* is bounded from the H^p real Hardy space to the usual L^p space if $p \leq 1$. This is proved in references [17, 24]. Thus it is necessary to make two changes in the paper:

- (1) In Theorem 1.1, after formula (1.5) add the sentence: where the L^{p_j} norms at the right must be replaced by Hardy space norms H^{p_j} if $p_j \le 1$.
- (2) In Theorem 2.5, at the end of statement (i), add the sentence: where the L^p norm at the right must be replaced by a Hardy space H^p norm if $p \le 1$.

For completeness, here are the correct statements of Theorems 1.1 and 2.5.

Theorem 1.1 Let $n \ge 1$. Assume s, s_1, s_2 and r, p_1, p_2 satisfy

$$s = s_1 + s_2 \in (0, 2), \quad s_j \in (0, 1), \qquad \frac{1}{r} = \frac{1}{p_1} + \frac{1}{p_2}, \quad \frac{2n}{n + 2s_j} < p_j < \infty.$$

Then for all $u, v \in \mathscr{S}(\mathbb{R}^n)$ we have

$$\|D^{s}(uv) - uD^{s}v - vD^{s}u\|_{L^{r}} \lesssim \|D^{s_{1}}u\|_{L^{p_{1}}}\|D^{s_{2}}v\|_{L^{p_{2}}}$$
(1.1)

where the L^{p_j} norms at the right must be replaced by Hardy space norms H^{p_j} if $p_j \leq 1$.

Communicated by Fulvio Ricci.

Piero D'Ancona dancona@mat.uniroma1.it

The original article can be found online at https://doi.org/10.1007/s00041-018-9612-8.

¹ Dipartimento di Matematica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Rome, Italy

Moreover, if we define

$$q_j = p_j \left(\frac{1}{2} + \frac{s_j}{n}\right) \quad \text{if } n \ge 2, \qquad q_j = \min\left\{p_j, \, p_j \left(\frac{1}{2} + s_j\right)\right\} \quad \text{if } n = 1,$$

and we assume in addition $p_1, p_2 > 1$ when n = 1, then for any weights $w_j \in A_{q_j}$ we have

$$\|D^{s}(uv) - uD^{s}v - vD^{s}u\|_{L^{r}(w_{1}^{r/p_{1}}w_{2}^{r/p_{2}}dx)} \lesssim \|D^{s_{1}}u\|_{L^{p_{1}}(w_{1}dx)}\|D^{s_{2}}v\|_{L^{p_{2}}(w_{2}dx)}.$$
(1.2)

Theorem 2.5 Let $n \ge 1$, $\lambda > 1$. For any $u \in \mathscr{S}(\mathbb{R}^n)$, $g_{\lambda}^*(u)$ satisfies the following estimates, with constants independent of u:

- (i) ||g^{*}_λ(u)||_{L^p} ≤ ||u||_{L^p} for λ > max{1, ²/_p} and 0 p</sup> norm at the right must be replaced by a Hardy space H^p norm if p ≤ 1.
 (ii) ||g^{*}_λ||_{L^p(wdx)} ≤ ||u||_{L^p(wdx)} for λ > max{1, ²/_p}, 1 min{p, ^p/₂</sub>.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.