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Abstract
We show the counter-intuitive fact that some weighted isoperimetric problems on
the half-space R

N+ , for which half-balls centered at the origin are stable, have no
solutions. A particular case is the measure dμ = xα

N dx , with α ∈ (−1, 0). Some
results on stability and nonexistence for weighted isoperimetric problems on R

N are
also obtained.

Keywords Isoperimetric inequality · Wirtinger inequality · Eigenvalue problem
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1 Introduction

A manifold with density is a manifold endowed with a positive function, the den-
sity, which weights both the volume and the perimeter. This mathematical subject
is attracting an increasing attention from the mathematical community. The related
bibliography is very wide and, in this short note, it is impossible to give an exhaustive
account of it. Hence we remind the interested reader to [19] and [21] and the references
therein. One natural issue in this setting consists of finding families of densities for
which one can determine the explicit form of the isoperimetric set, see for instance
[5–10,12,17,23].
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The problem becomes more challenging when perimeter and volume carry two
different weights. One important example is when the manifold is RN , (N ≥ 2), and
the two weight functions are powers of the distance from the origin, see [1], and the
references cited therein. The theorem proved in [1] states that all spheres about the
origin are isoperimetric for a certain range of the powers. One canmodify this problem
by inserting a further homogeneous perturbation term, namely xα

N , both in the volume
and in the perimeter, see [2] and [3]:

Minimize
∫

∂�∩RN+
|x |k xα

N HN−1(dx) (P)

among all smooth sets � ⊂ R
N+ satisfying

∫
�

|x |�xα
N dx = 1

where RN+ := {x ∈ R
N : xN > 0} and k, �, α ∈ R.

Adapting somenewmethods introduced in [1], in [2] and [3] the authors find, for any
given positive number α, a range of parameters k and � for which the isoperimetric sets
are intersections of balls centered at the origin, denoted in the sequel by BR , withRN+ .

In the present paper we discuss again problem (P), but for α ∈ (−1, 0). It turns out
that for a certain range of the parameters k and �, the problem has no solution despite
the fact that half-balls BR ∩R

N+ are stable. By this, we mean that the first variation of
the weighted perimeter vanishes while the second variation is nonnegative under every
smooth perturbation of ∂BR ∩ R

N+ which preserves the measure constraint contained
in problem (P) (for a precise definition of stability see Sect. 4).

Our main result is the following

Theorem 1.1 Assume that α ∈ (−1, 0), and that the conditions

k + N + α − 1 <
√

(N − 1)(N + α − 1), (1.1)

N (k + N + α − 1) < (� + N + α)(N − 1), (1.2)

� + 1 ≤ k + N + α − 1

k + N + α − 1
(1.3)

are satisfied. Then the isoperimetric problem (P) has no solution, nevertheless half-
balls BR ∩ R

N+ are stable.

Note that the conditions (1.1), (1.2) and (1.3) are satisfied in themodel case k = � = 0.
The delicate part in the proof of Theorem 1.1 relies on finding the best constant,

μα
1 (SN−1+ ), in a weighted Poincaré-Wirtinger inequality on the half-sphere SN−1+ :=

S
N−1 ∩ R

N+ .
In Sect. 2 we prove a compact imbedding property for some weighted spaces for

functions defined on the upper half-sphere. To this aim we use stereographic coordi-
nates, since, in this coordinate system, the metric is just the conformal factor times
the identity. This allows us to use an already known compact imbedding result for
weighted spaces in RN−1.

In Sect. 3 we first note that μα
1 (SN−1+ ) represents the first nontrivial Neumann

eigenvalue of some self-adjoint compact operator on the half-sphere. In view of the
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imbedding result this implies that μα
1 (SN−1+ ) appears as a minimum of an appropriate

Rayleigh quotient. Then we write the operator in spherical coordinates and, using sep-
aration of variables and comparing the eigenvalues of two Sturm-Liouville problems,
we show that the exact value ofμα

1 (SN−1+ ) is N+α−1. This implies the stability of half-
spheres in view of Theorem 4.1 in [2], which holds true irrespectively of the sign of α.

In order to prove that the problem has no solution, we show in Sect. 4 that the
“isoperimetric ratio” (see (4.8)) for a unit ball centered at (0, . . . , 0, t) tends to zero
when t goes to infinity. This completes the proof of Theorem 1.1.

Our paper concludes with a few remarks on stability and nonexistence for some
weighted isoperimetric problems on R

N in Sect. 5.

2 Notation and preliminary results

Throughout this paper the following notation will be in force:

R
N+ =

{
x = (x1, ..., xN ) ∈ R

N : xN > 0
}

, |x | :=
√√√√ N∑

i=1

x2i , N ≥ 2,

H = {x = (x1, . . . , xN ) : xN = 0},
BR(x0) :=

{
x ∈ R

N : |x − x0| < R
}

, (x0 ∈ R
N , R > 0),

BR := BR(0), B+
R := BR ∩ R

N+ ,

S
N−1 = ∂B1, S

N−1+ := S
N−1 ∩ R

N+ ,

B1 :=
⎧⎨
⎩y = (y1, . . . yN−1) ∈ R

N−1 : |y| :=
√√√√N−1∑

i=1

y2i < 1

⎫⎬
⎭ .

The stereographic projection

S
N−1+ � ζ �−→ y = S(ζ ) ∈ B1

from the south pole PS = (0, .., 0,−1) and its inverse are given by

yi = ζi

1 + ζN
for 1 ≤ i ≤ N − 1,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζi = 2yi
|y|2 + 1

for 1 ≤ i ≤ N − 1

ζN = 1 − |y|2
|y|2 + 1

for i = N

respectively. As well known, in this coordinate system, see e.g. [13] p. 444, the metric
on SN−1 is
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gi j (y) =
(

2

|y|2 + 1

)2

δi j .

Hence dσ , the volume element on S
N−1, is given by

dσ =
√
det gi j (y) dy =

(
2

|y|2 + 1

)N−1

dy.

For any function u : SN−1+ → R we define û : B1 → R by

û(y) := u(ζ ), (y = S(ζ ), ζ ∈ S
N−1+ ).

Note that, if u is a smooth function, then

|∇Su(ζ )| =
√
gi j û yi (x)û y j (y) = |∇û(y)| · 2

|y|2 + 1
, (ζ ∈ S

N−1+ ).

For α ∈ (−1,+∞), we consider the measure dσα , defined on S
N−1+ , given by dσ

times ζ α
N . In stereographic coordinates, such a measure takes the following form

dσα =
(
1 − |y|2
|y|2 + 1

)α

·
(

2

|y|2 + 1

)N−1

dy.

Define the weighted Sobolev space W 1,2
(
S
N−1+ ; dσα

)
as the closure of C∞(SN−1+ )

under the norm

‖u‖2
W 1,2

(
S
N−1+ ; dσα

) := ‖u‖2
L2
(
S
N−1+ ; dσα

) + ‖∇Su‖2
L2
(
S
N−1+ ; dσα

) .

Theorem 2.1 The space W 1,2
(
S
N−1+ ; dσα

)
is compactly embedded in

L2
(
S
N−1+ ; dσα

)
.

Proof As already noticed the stereographic projection from the south pole of SN−1+ is
justB1.Let us first write theweighted norm of a function in stereographic coordinates.

‖∇Su‖2
L2
(
S
N−1+ ; dσα

) =
∑
i, j

∫
B1

[
gi j

∂ û

∂ yi

∂ û

∂ y j

](
2

|y|2 + 1

)N−1
(
1 − |y|2
|y|2 + 1

)α

dy

=
∫
B1

[(
2

|y|2 + 1

)−2 ∣∣∇û
∣∣2
](

2

|y|2 + 1

)N−1
(
1 − |y|2
|y|2 + 1

)α

dy

=
∫
B1

∣∣∇û
∣∣2 2N−3 (|y| + 1)α(|y|2 + 1

)N−3+α
· (1 − |y|)α dy
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and

‖u‖2
L2
(
S
N−1+ dσα

) =
∫
B1

û2
2N−1 (|y| + 1)α(|y|2 + 1

)N−1+α
· (1 − |y|)α dy.

Note that there exists C ∈ (0, 1) such that for any y ∈ B1 there holds

C ≤ 2N−3 (|y| + 1)α(|y|2 + 1
)N−3+α

≤ 1

C
(2.1)

and

C ≤ 2N−1
(

1

|y|2 + 1

)N−1+α

(|y| + 1)α ≤ 1

C
. (2.2)

Now consider a bounded sequence {un}n∈N of functions in W 1,2
(
S
N−1+ ; dσα

)
, that

is,

‖un‖W 1,2
(
S
N−1+ ; dσα

) ≤ C ∀n ∈ N. (2.3)

Writing

d(y) = dist (y, ∂B1) = 1 − |y|,

and using (2.1) and (2.2) one immediately realizes that (2.3) is equivalent to

∫
B1

∣∣∇ûn
∣∣2 d(y)α dy +

∫
B1

û2n d(y)α dy ≤ C .

Now using Theorem 8.8 in [14] we deduce that, up to a not relabelled subsequence,

we have that there exists a function u ∈ W 1,2
(
S
N−1+ ; dσα

)
such that

∫
B1

∣∣ûn − û
∣∣2 d(y)α dy → 0

and therefore

un → u strongly in L2
(
S
N−1+ ; dσα

)
.

��
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Theorem 2.2 The following Weighted Poincaré inequality holds true

∥∥∥∥∥∥u − 1

σα

(
S
N−1+

)
∫
S
N−1+

u dσα

∥∥∥∥∥∥
L2
(
S
N−1+ ; dσα

)
≤ C ‖∇Su‖

L2
(
S
N−1+ ; dσα

) , (2.4)

where C ∈ (0,+∞) is a constant which does not depend on u.

Proof One can obtain the proof repeating the arguments of the classical one for the
unweighted case (see, e.g., [16], Th. 8.11, page 218). We include it for reader’s con-
venience. Assume, arguing by contradiction, that there exists a sequence {uk}k∈N ⊂
W 1,2

(
S
N−1+ ; dσα

)
such that

∥∥∥∥∥∥uk − 1

σα

(
S
N−1+

)
∫
S
N−1+

uk dσα

∥∥∥∥∥∥
L2
(
S
N−1+ ; dσα

)
≥ k ‖∇Suk‖L2

(
S
N−1+ ; dσα

)

Consider now the normalized sequence

vk :=
uk − 1

σα

(
S
N−1+

)
∫
S
N−1+

uk dσα

∥∥∥∥∥∥uk − 1

σα

(
S
N−1+

)
∫
S
N−1+

uk dσα

∥∥∥∥∥∥
L2
(
S
N−1+ ; dσα

)

∀k ∈ N.

Clearly

∫
S
N−1+

vk dσα = 0 , ‖vk‖L2
(
S
N−1+ ; dσα

) = 1 and ‖∇Svk‖L2
(
S
N−1+ ; dσα

) ≤ 1

k
(2.5)

for any k ∈ N.

Thanks to Theorem 2.1 we have that there exists a function v ∈ W 1,2
(
S
N−1+ ; dσα

)
such that, up to a subsequence,

vk → v strongly in L2
(
S
N−1+ ; dσα

)
.

Finally from (2.5) we deduce that

∫
S
N−1+

v dσα = 0, ‖v‖
L2
(
S
N−1+ ; dσα

) = 1, and ∇Sv = 0 a.e. on S
N−1+ ,

which is impossible. ��
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Remark 2.1 Note the aim of the next Section is to find the best constant in (2.4).

Using Theorem 2.1 and Theorem 2.2 we immediately deduce the following

Theorem 2.3 Let

Vα :=
{
u ∈ W 1,2

(
S
N−1+ ; dσα

)
:
∫
S
N−1+

u dσα = 0

}
.

Every sequence {un}n∈N ⊂ Vα such that

‖∇Sun‖L2
(
S
N−1+ ; dσα

) ≤ C ∀n ∈ N

for some C ∈ (0,+∞), admits a subsequence, still denoted by un, such that

‖un − u‖
L2
(
S
N−1+ ; dσα

) → 0 for some u ∈ Vα. (2.6)

3 An optimal weightedWirtinger inequality

The spherical coordinates on S
N−1+ are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζN = cos θ1
ζN−1 = sin θ1 cos θ2
ζN−2 = sin θ1 sin θ2 cos θ3

.

.

ζ2 = sin θ1 sin θ2 · ... · sin θN−2 cos θN−1
ζ1 = sin θ1 sin θ2 · ... · sin θN−2 sin θN−1

where

θ1 ∈
(
0,

π

2

)
; θ2, ..., θN−2 (0, π) ; θN−1 ∈ (0, 2π) .

Let �Sm be the classical Laplace Beltrami operator on Sm . We consider the following
differential operator

�α
SN−1u := 1

sinN−2 θ1

∂

∂θ1

(
sinN−2 θ1 cos

α θ1
∂u

∂θ1

)
+ cosα θ1

sin2 θ1
�SN−2u.

Note that

�0
SN−1u = �SN−1u.



15 Page 8 of 19 Journal of Fourier Analysis and Applications (2020) 26 :15

Finally wewill denote byμα
1 (SN−1+ ) the first non-trivial eigenvalue of the following

problem

⎧⎪⎪⎨
⎪⎪⎩

−�α
SN−1u = μ cosα θ1u on SN−1+

∫
S
N−1+

udσα = 0.
(3.1)

Note that, byTheorem 2.3,μα
1 (SN−1+ )has the followingvariational characterization

μα
1 (SN−1+ ) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
S
N−1+

|∇Su|2 dσα

∫
S
N−1+

u2 dσα

, with u ∈ W 1,2

(
S
N−1+ ; dσα

)
\ {0} :

∫
S
N−1+

u dσα = 0

}
.

Indeed, the differential operator appearing in (3.1) is self-adjoint and compact.

Theorem 3.1 The following holds true:

μα
1 (SN−1+ ) = N + α − 1.

Proof We start by using standard separation of variables. Hence let

ψ = g (θ1) f (θ2, ..., θN−1) : SN−1+ → R

be an eigenfunction of problem (3.1) corresponding to an eigenvalue μ. A straightfor-
ward computation yields

−1

g

1

sinN−2 θ1 cosα θ1

d

dθ1

(
sinN−2 θ1 cos

α θ1
dg

dθ1

)
+ 1

g

1

sin2 θ1

�SN−2 f

f
= μ.

Since, see [11] and [22],

�SN−2 f

f
= Constant ⇔ �SN−2 f

f
= k (k + N − 3) , with k ∈ N ∪ {0} ,

we have

− 1

sinN−2 θ1 cosα θ1

d

dθ1

(
sinN−2 θ1 cos

α θ1
d

dθ1
g

)
+ k (k + N − 3)

sin2 θ1
g = gμ.

(3.2)

Let us denote with {μk}k∈N0
the sequence of eigenvalues of the Sturm-Liouville prob-

lem (3.2).
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We claim that

μ0 > (N − 1)(1 − α). (3.3)

Clearly the first “radial” eigenfunction, g0(θ1), of (3.1) corresponds to k = 0. Since
g0(θ1) has exactly two nodal domains there exists θ̂ ∈ (0, π

2

)
such that

g0(θ1) = 0 if and only if θ = θ̂ .

Therefore

μ0 = λ1(θ̂),

where λ1
(
θ̃
)
is the first eigenvalue of the following Dirichlet problem

⎧⎪⎨
⎪⎩

−�α
SN−1v = λ cosα θ1v on S

N−1+ ∩ {0 < θ1 < θ̃
}

v = 0 on ∂
[
S
N−1+ ∩ {0 < θ1 < θ̃

}]
.

(3.4)

Since, as well known, the Dirichlet eigenvalues are monotone with respect to the
inclusion of sets, we have

λ1
(
θ̂
)

> λ1

(π

2

)
.

Let us conclude the proof of the claim by showing that

λ1

(π

2

)
= (N − 1)(1 − α).

A straightforward computation shows that

ψ0(θ1) := cos1−α θ1

is an eigenfunction of problem (3.4) with θ̃ = π
2 , corresponding to the eigenvalue

(N − 1)(1 − α). Indeed we have

− 1

sinN−2 θ1 cosα θ1

d

dθ1

(
sinN−2 θ1 cos

α θ1
d

dθ1
g

)
+ k (k + N − 3)

sin2 θ1
g

∣∣∣∣
k=0, g=cos1−α θ1

= 1 − α

sinN−2 θ1 cosα θ1

d

dθ1

(
sinN−1 θ1

)
= (1 − α) (N − 1) cos1−α θ1.

Sinceψ0(θ1) does not change sign on S
N−1+ ∩{0 < θ1 < π

2

}
, it must be an eigenfunc-

tion corresponding to λ1
(

π
2

)
, and the claim follows.

Now let us turn our attention to the case k = 1, which corresponds to the first “angular”
eigenfunction. That is an eigenfunction ϕ of problem (3.1) in the form
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ϕ = g1(θ1) f (θ2, ..., θN−1)

where

g1(θ1) > 0 ∀θ ∈
(
0,

π

2

)
.

Note that, since any eigenvalue of the problem (3.2) is simple, the function g1(θ1) is
unique, up to a multiplicative constant.
We claim that

g1(θ1) = sin θ1.

Indeed we have

− 1

sinN−2 θ1 cosα θ1

d

dθ1

(
sinN−2 θ1 cos

α θ1
dg1
dθ1

)
+ N − 2

sin2 θ1
g1

= − 1

sinN−2 θ1 cosα θ1

(
(N − 2) sinN−3 θ1 cos

α+2 θ1

− (α + 1) sinN−1 θ1 cos
α θ1

)
+ N − 2

sin θ1

= − (N − 2)
cos2 θ1

sin θ1
+ (α + 1) sin θ1 + N − 2

sin θ1
= (N + α − 1) sin θ1 = (N + α − 1) g1(θ1).

The claim is proved.
Gathering the above estimates, taking into account that α ∈ (−1, 0), we have

μ0 = λ1(θ̂) > λ1

(π

2

)
= (N − 1)(1 − α) = −Nα + N + α − 1 > N + α − 1 = μ1.

��
Remark 3.1 By equality (4.11) of [2], we have just proven that, the second variation of
the perimeter w.r.t. volume-preserving smooth perturbations at the half ball is nonneg-
ative for α ∈ (−1,+∞). Note that in [7], see Proposition 2.1, the case of nonnegative
α is addressed.

4 An isoperimetric problem in the half space and a curious example

In this section we consider an isoperimetric problem that we have studied in [2], but
we will change the range of one of the parameters in it.
Let k, � and α be real numbers satisfying

α > −1, (4.1)

� + N + α > 0, (4.2)
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k + N + α > 0. (4.3)

We define a measure μ�,α on RN+ by

dμ�,α(x) = |x |�xα
N dx . (4.4)

If M ⊂ R
N+ is a measurable set with finite μ�,α-measure, then we define M�, the

μ�,α-symmetrization of M , as

M� := B+
R , (4.5)

where R is given by

μ�,α

(
B+
R

) = μ�,α (M) =
∫
M
dμ�,α(x). (4.6)

Following [21], the μk,α–perimeter relative to R
N+ of a measurable set M of locally

finite perimeter - henceforth simply called the relative μk,α–perimeter - is given by

Pμk,α (M,RN+) :=
∫

∂M∩RN+
xα
N |x |k HN−1(dx). (4.7)

Here and throughout, ∂M and HN−1 will denote the essential boundary of M and
(N − 1)-dimensional Hausdorff-measure, respectively.

We will call a set � ⊂ R
N+ a Cn-set, (n ∈ N), if for every x0 ∈ ∂� ∩ R

N+ , there
is a number r > 0 such that Br (x0) ∩ � has exactly one connected component and
Br (x0) ∩ ∂� is the graph of a Cn-function on an open set in R

N−1.
We consider a one-parameter family {ϕt }t of Cn-variations

R
N+ × (−ε, ε) � (x, t) �−→ ϕ(x, t) ≡ ϕt (x) ∈ R

N+ ,

with ϕ(x, 0) = x , for any x ∈ R
N+ . The measure and perimeter functions of the

variation are m(t) := μ�,α(ϕt (�)) and p(t) := Pμk,α (ϕt (�)), respectively. We say
that the variation {ϕt }t of � is measure-preserving if m(t) is constant for any small
t . We say that a C1-set � is stationary if p′(0) = 0 for any measure-preserving C1-
variation. Finally, we call a C2-set � stable if it is stationary and p′′(0) ≥ 0 for any
measure-preserving C2-variation of �.

If M is any measurable subset of RN+ , with 0 < μ�,α(M) < +∞, we set

Rk,�,N ,α(M) := Pμk,α (M,RN+)(
μ�,α(M)

)(k+N+α−1)/(�+N+α)
. (4.8)

Finally, we define

Crad
k,�,N ,α := Rk,�,N ,α(B+

1 ). (4.9)
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We study the following isoperimetric problem:
Find the constant Ck,�,N ,α ∈ [0,+∞), such that

Ck,�,N ,α := inf{Rk,�,N ,α(M) : M is a measurable set with locally finite perimeter

and 0 < μ�,α(M) < +∞}. (4.10)

Moreover, we are interested in conditions on k, � and α such that

Rk,�,N ,α(M) ≥ Rk,�,N ,α(M�) (4.11)

holds for all measurable sets M ⊂ R
N+ with 0 < μ�,α(M) < +∞ and locally finite

perimeter.
Let us begin with some immediate observations.
The conditions (4.1), (4.3) and (4.2) have been made to ensure that the integrals (4.6)
and (4.7) converge. The cases α = 0 and α > 0 were analysed in the articles [1] and
[2], respectively. Here we are only interested in the case

α ∈ (−1, 0),

that is, our weight functions are singular on the hyperplane {xN = 0}.
The functional Rk,�,N ,α has the following homogeneity properties,

Rk,�,N ,α(M) = Rk,�,N ,α(tM), (4.12)

where t > 0, M is a measurable set with 0 < μ�,α(M) < +∞ and tM := {tζ : ζ ∈
M}, and there holds

Crad
k,�,N ,α = Rk,�,N ,α(B+

1 ). (4.13)

Hence we have that

Ck,�,N ,α ≤ Crad
k,�,N ,α, (4.14)

and (4.11) holds if and only if

Ck,�,N ,α = Crad
k,�,N ,α. (4.15)

We have the following

Lemma 4.1 Let α ∈ (−1, 0). Then a necessary condition for the existence of minimiz-
ers of problem (P) is

kN ≥ �(N − 1) − α. (4.16)
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Proof In the following we write for any two continuous functions f , g : (0,+∞) →
(0,+∞),

f � g ⇐⇒ c1 f (t) ≤ g(t) ≤ c2g(t) ∀t ∈ [1,+∞),

for some constants 0 < c1 < c2.
Assume that (4.16) does not hold. Let �(t) := B1(0, . . . , 0, t), (t > 1). Then we
have

Rk,�,N ,α(�(t)) � tα+k−(k+N+α−1)(α+�)/(�+N+α).

Since K N < �(N − 1) − α, it follows that

lim
t→∞Rk,�,N ,α(�(t)) = 0,

that is, problem (P) has no minimizer. ��
Remark 4.1 (a) Observe that (4.16) is equivalent to

N (k + N + α − 1) ≥ (N − 1)(� + N + α). (4.17)

Note also that (4.16) is not satisfied if

k = � = 0,

that is, problem (P) has no minimizer in this case.
(b) Using trial domains

�(t) = B1(t, 0, . . . , 0),

and proceeding similarly as in the above proof, leads to another necessary condition
for existence of minimizers of (P), namely:

k(N + α) ≥ �(N + α − 1). (4.18)

This necessary condition has been obtained in the case α ≥ 0 in [2], Lemma 4.1.
Note that in our case, α ∈ (−1, 0), it holds true, too. However, if α ∈ (−1, 0),
then (4.16) is more restrictive than (4.18).

Lemma 4.2 A necessary condition for radiality of the minimizers of problem (P) is

� + 1 ≤ k + N + α − 1

k + N + α − 1
. (4.19)

Moreover, if (4.19) is satisfied, then half-balls B+
R , (R > 0), are stable for problem

(P).
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Proof This property has been obtained for the case α ≥ 0 in [2], Theorem 4.1. The
proof essentially depends on the fact that the first eigenvalue of the problem (3.1),
μα
1 (SN−1+ ) is equal to N + α − 1. As we have proven above in Theorem 3.1, that

property still holds for α ∈ (−1, 0). Hence the proof of [2] carries over to our case. ��
Now we are the position to prove our main result.

Proof of Theorem 1.1: Non-existence follows fromLemma 4.1, while the fact that half-
balls are stable for problem (P) follows from Lemma 4.2—see also [2], Theorem 4.1
and Theorem 5.2 for the special case N = 2, k = � = 0. ��
Remark 4.2 Observe that for each α ∈ (−1, 0), the set of pairs (k, �) satisfying the
conditions (1.2) and (4.19) is non-empty in view of (1.1). In particular, it contains the
point (0, 0).

We conclude with a result that has been obtained for the cases α = 0 and α > 0 in
the papers [1] and [2], respectively.

Theorem 4.1 Let k ≥ �+1 and α ∈ (−1, 0). Then (4.15) holds. Moreover, if k > �+1
and

Rk,�,N ,α(M) = Crad
k,�,N ,α for some measurable set M ⊂ R

N+ with 0 < μ�,α(M) < +∞,

(4.20)

then M = B+
R for some R > 0.

For the proof we need a property that has been known for the cases α ≥ 0, see [2],
Lemma 4.1. The proof carries over to our situation without changes.

Lemma 4.3 Let k, � and α be as above and �′ ∈ (−N − α, �). Further, assume
that Ck,�,N ,α = Crad

k,�,N ,α . Then we also have Ck,�′,N ,α = Crad
k,�′,N ,α

. Moreover, if

Rk,�′,N ,α(M) = Crad
k,�′,N ,α

for some measurable set M ⊂ R
N+ , with 0 < μ�′,α(M) <

+∞, then M = B+
R for some R > 0.

Proof of Theorem 4.1: We proceed similarly as in [2], proof of Theorem 4.1. The idea
is to use Gauss’ Divergence Theorem. We split into two cases.
1. Assume that k = � + 1, and let � a C1-set. Define the domain

�̃ := � ∪ (H ∩ ∂�) ∪ {x = (x1, . . . ,−xN ) : x ∈ �}.

Then we have in view of the assumptions (4.1), (4.3) and (4.2),

2
∫

∂�∩RN+
|x |�xα

N (x · ν)HN−1(dx) =
∫

∂�̃

|x |�xα
N (x · ν)HN−1(dx),

(ν : exterior unit normal ), (4.21)

2
∫

�

|x |�xα
N dx =

∫
�̃

|x |�xα
N dx . (4.22)
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Furthermore, Gauss’ Divergence Theorem yields

∫
�̃

|x |�xα
N dx = 1

� + N + α

∫
�̃

div
(
|x |�xα

N x
)
dx

=
∫

∂�̃

|x |�xα
N (x · ν)HN−1(dx)

≤
∫

∂�̃

|x |�+1xα
NHN−1(dx), (4.23)

with equality for �̃ = BR . Using this, (4.21), and (4.22), we obtain (4.15) for C1-sets
when k = �+ 1, and then by approximation also for sets with locally finite perimeter.
2. Let k > �+1. Then, using Lemma 4.3 and the result for k = �+1, we again obtain
(4.15), and (4.20) can hold only if M = B+

R . ��

5 Some remarks on isoperimetric problems onR
N

Ideas as they were used in the last section are useful in other situations as well. In
this section we are interested in criteria for nonexistence and nonradiality of solutions
to some weighted isoperimetric problems on R

N . More results to these and related
questions can be found in the papers [12,15,20,21] and in [18].
Let f , g be two positive functions on RN with g locally integrable and f lower semi-
continuous. For any measurable set M ⊂ R

N we define its weighted measure and
perimeter by

|M |g :=
∫
M
g(x) dx, and (5.1)

Pf (M) :=
∫

∂M
f (x)HN−1(dx). (5.2)

ThenCn-sets, stationary and stable sets are defined analogously as in Sect. 4, replacing
R

N+ , Pμk,α (M) and μ�,α(M) by RN , Pf (M) and |M |g , respectively.
We consider the isoperimetric problem

Find inf
{
Pf (M) : M has locally f ini te perimeter and|M |g = d

}
, (d > 0).

(5.3)

Let us first assume that f and g are equal and radial, that is, there is a function
h : [0,+∞) → (0,∞) such that

f (x) = g(x) = h(|x |) ∀x ∈ R
N . (5.4)

It has been known for some time—see for instance [4], Corollary 3.11—that if h ∈
C2(0,+∞), and if log h is convex (equivalently, if h is log-convex) then balls centered
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at the origin are stable for the isoperimetric problem (5.3). Recently G. Chambers, see
[10] proved the beautiful Log-convex Theorem:
If f = g, f ∈ C1 and h is log-convex, then balls centered at the origin solve problem
(5.3).
Note that the smoothness assumption for f at zero in the theorem forces h to be
non-decreasing.
Wewill show below that the situation is different when h is log-convex, but decreasing
on some interval.

Lemma 5.1 Assume that f satisfies (5.4), where r �→ h(r) is log-convex and strictly
decreasing for r ∈ (0, R0), for some R0 > 0. Then there exists a number d0 > 0,
which depends only on R0, such that for any d ∈ (0, d0], balls centered at the origin
with measure d are not isoperimetric for problem (5.3).

Proof For any d > 0 choose positive numbers R(d), ρ(d), such that

|BR(d)| f = |Bρ(d)(y(d))| f = d,

where y(d) = (R0 − ρ(d), 0, . . . , 0). (5.5)

If d is small enough—say d ∈ (0, d0]—then we have that

R(d) ≤ R0 − 2ρ(d) and (5.6)

[h(R0 − 2d)]N < h(R(d)) [h(R0)]
N−1 . (5.7)

From (5.5) we find, using the monotonicity of h,

ωNh(R(d))(R(d))N > ωNh(R0)(ρ(d))N ,

that is,

ρ(d) <

(
h(R(d))

h(R0)

)1/N

R(d). (5.8)

Hence the monotonicity of h, (5.6) (5.7) and (5.8) yield

Pf (Bρ(d)(y(d)) < NωNh(R0 − 2ρ(d))(ρ(d))N−1

< NωNh(R0 − 2ρ(d)) ·
(
h(R(d))

h(R0)

)(N−1)/N

· (R(d))N−1

< NωNh(R(d))(R(d))N−1

< Pf (BR(d)). (5.9)

This proves the Lemma. ��
We conclude this section with a non-existence result.
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Theorem 5.1 Assume that f and g satisfy

f (x) ≤ c1|x |−α and (5.10)

g(x) ≥ c2|x |−β for |x | ≥ R1, (5.11)

where α, β, R1, c1 and c2 are positive numbers and

β ≤ N and α >
N − 1

N
· β. (5.12)

Then the isoperimetric problem (5.3) has no solution.

Proof Fix d > 0, and set z(t) := (t, 0, . . . , 0) for every t > 0. Choose R(t) > 0 such
that

|BR(t)(z(t))|g = d. (5.13)

In view of (5.11) this implies that

lim
t→+∞(t − R(t)) = +∞. (5.14)

When t is large enough—say t ≥ t0—assumption (5.11) and (5.14) yield

|BR(t)(z(t))|g =
∫
BR(t)(z(t))

g(x) dx = t N
∫
BR(t)/t (z(1))

g(t y) dy

≥ c2t
N−β

∫
BR(t)/t (z(1))

|y|−β dy. (5.15)

Now from (5.15) we obtain the following alternative:

If β < N , then lim
t→+∞

R(t)

t
= 0, and (5.16)

if β = N , then
R(t)

t
≤ 1 − δ for t ≥ t0, for some δ ∈ (0, 1). (5.17)

Further, from (5.13) we have

d ≥ ωN (R(t))Nc2(t + R(t))−β. (5.18)

Using this, (5.16), (5.17), (5.12) and again (5.10), leads to

Pf (BR(t)(z(t))) =
∫

∂BR(t)(z(t))
f (x)HN−1(dx)

≤ c1(t − R(t))−αNωN (R(t))N−1
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≤ c1(t − R(t))−αNωN

(
d(t + R(t))β

c2ωN

)(N−1)/N

−→ 0 as t → +∞. (5.19)

The theorem is proved. ��
Remark 5.1 The case that f (x) = |x |−α , g(x) = |x |−β , (x ∈ R

N ), with β < N ,
was treated in [1], Lemma 4.1. See also [12], Proposition 7.3 for the special case
f (x) = g(x) = |x |−β .
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