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Abstract

We study the wave propagation speed problem on metric measure spaces, emphasizing
on self-similar sets that are not post-critically finite. We prove that a sub-Gaussian
lower heat kernel estimate leads to infinite propagation speed, extending a result of
Lee (Infinite propagation speed for wave solutions on some p.c.f. fractals, https://
archive.org/details/arxiv-1111.2938) to include bounded and unbounded generalized
Sierpifiski carpets, some fractal blowups, and certain iterated function systems with
overlaps. We also formulate conditions under which a Gaussian upper heat kernel
estimate leads to finite propagation speed, and apply this result to two classes of
iterated function systems with overlaps, including those defining the classical infinite
Bernoulli convolutions.
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1 Introduction

Strichartz [53] conjectured in 1999 that on certain fractals, such as the Sierpinski
gasket, waves may propagate with infinite speed, due to the difference in time and
Laplacian scalings (see [17]). This prediction shows that fractals could exhibit behav-
iors that differ fundamentally from classical smooth objects. Lee [42] recently proved
that on a class of self-similar sets satisfying the post-critically finite (p.c.f.) condition,
including the Sierpiniski gasket, the conjecture is true. The first objective of this paper
is to extend Lee’s result to fractals that are non-p.c.f., such as generalized Sierpiriski
carpets. There are two main ingredients in Lee’s proof, namely, sub-Gaussian heat
kernel estimates and Kannai’s transform. Using these we generalize Lee’s theorem to
locally compact metric measure spaces.

We refer the reader to Sect. 2 for the definitions of the unit, bounded, finite, and
infinite propagation speed properties, abbreviated (UPS), (BPS), (FPS), and (IPS),
respectively. The relationship between wave propagation speed and heat kernel esti-
mates is well known. Cheeger et al. [15] obtained (UPS) for Laplacians defined on
complete Riemannian manifolds and used it to study heat kernel estimates. Coulhon
and Sikora [16,51] showed that (UPS) is equivalent to the Davies-Gaffney estimate
[(see (5.1)], and obtained heat kernel estimates by assuming (UPS). We remark that
in the literature (UPS) is called the finite speed propagation property. Our definition
of finite propagation speed (FPS) [(see Definition 2.1(c)] is a weaker notion.

Let H be a Hilbert space and A be a non-negative self-adjoint operator on H. The
wave equation is defined as

uy(t) = —Au(t), t >0, (L.1)
u@ =r, u(0)=g.
The heat equation is defined as
v (1) = —Av(t), t >0, (12)
v(0) = f.

It is well known that each of these equations has a unique solution (see Definitions 2.2
and 2.3 for the definition of a solution).

Let (X, d) be a metric space, and u be a Radon measure on (X, d). Let C(X, d)
denote the space of all real-valued continuous functions on X and |u|, denote the
L?-normin L?(X, ) for1 < p < oc.
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Theorem 1.1 (Lee’s theorem for locally compact metric measure spaces.) Let (X, d)
be a locally compact metric space, | be a o-finite Radon measure on (X, d) such
that supp(in) = X. Also, let A be a non-negative self-adjoint operator on L*(X, 1)
and (€, dom &) be the associated closed form. Assume the corresponding heat kernel
p(t, x, y) exists and there exist constants ¢ > 0, ¢y > 0,¢ >0, 8 > 2, anda € R
such that the heat kernel p(t, x, y) satisfies

d(x, y)\B/(B=D
p(t’x’y)iclf"‘/zexr)(—w( ixa/ﬂy)) )

for p-a.e. x,y € Xandallt € (0,¢€). (1.3)

Then the following conclusions hold:

(a) (X,d, u, A) satisfies (IPS).

(b) Let f € dom & be a non-negative and non-zero function. If dom & € C(X, d),
and there exists a constant C := C(f) > 0 such that || cos(t«/Z)fHoo < C for
allt > 0, then for any x € X and any 6 > 0, there exists some ty € (0, §) such
that cos(tox/A) f (x) > 0.

Lower heat kernel estimates (1.3) have been obtained for several classes of fractals,
including a class of p.c.f. fractals (see, e.g., [4]) and Sierpinski carpets (see, e.g., [10]).
In general, the constant « is the spectral dimension and g is the walk dimension. We
remark that for all f € dom &, £(cos(tv/A) f,cos(tv/A) f) < E(f. f) (see (4.2))
and thus Cos(t\/Z)f € dom & for all + > 0. Also, if f € dom A and g = 0, then
cos(t+/A) f is the solution of the wave equation (1.1).

Lee [42] considered Laplacians A defined on p.c.f. fractals X with a regular har-
monic structure. It follows from [32, Chapter 3] that the associated closed form
(£,dom &) is a resistance form with resistance metric RY2, which is compatible
with the original topology (see [32, Chapter 2] for the definition of resistance form).
In particular, dom & € C(X, R'/?) and

lu(x) — u(y)|2 < R(x,y)E(u, u) forallx,y € Xandu € domé&; (1.4)

consequently, d; < 2 (see [37]). Also, functions of finite energy are locally bounded
and so every single point has positive capacity (see [36, Chapter 9] for details). Using
(1.4), we see that || cos(t\/Z)fHoo < C for all + > 0. Hence, the case considered in
[42] satisfies all additional assumptions in Theorem 1.1(b). Also, Theorem 1.1 allows
(X, d) to be unbounded, which is not considered in [42, Theorem 8]. Moreover, if
(X, d) is bounded, the sub-Gaussian heat kernel estimate (1.3) is weaker than the
one in [42, Theorem 8], which corresponds to the case « = 0. Thus, Theorem 1.1
generalizes [42, Theorem 8] and we will see that it can be applied to certain non-p.c.f.
and certain unbounded fractals.

A main motivation of this work is to study Strichartz wave propagation speed
conjecture on fractals defined by iterated function systems (IFS) with overlaps together
with the associated self-similar measures. Let u be a positive finite Borel measure on
R with supp(u) = [a, bl and H L(a, b) be the usual Sobolev space on (a, b). Consider
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the bilinear form & defined as
b
Eu,v) = / u' (x)v'(x)dx forallu,v € dom& := H'(a, b). (1.5)
a

It is well known that (£, dom &) is a Dirichlet form on L2([a, b], 1) (see [23]) and
dom& C C(la, b], d)|); here, and throughout rest of this paper, d|.| denotes the
Euclidean metric.

The first measure we study is the infinite Bernoulli convolution associated with the
golden ratio. Let

V5-1
So(x) =px,  Six)=px+1-p), p= i (1.6)
and let u be the self-similar measure satisfying
1 1 1
M=§M°SO +§MOS] . (1.7)

Clearly, supp(r) = [0, 1]. We also study a family of convolutions of Cantor-type
measures. Let

1 1
So(x) = EX, Si(x) = Zx + P (1.8)

where m > 3 is an integer. Let v, be the self-similar measure defined by the IFS (1.8)
with probability weights pg = p; = 1/2. The m-fold convolution of v,,, denoted p,,,
is the self-similar measure defined by the following IFS with overlaps (see [40,48]):

m—1. .
i, i=0,1,...,m,

1
Si(x) = ;x +

together with probability weights

That is,

m

1 (m _
l/Lm:ZZW(i>H«mOSi L (1.9)

i=0

Note that supp(um,) = [0, m].
Combining Theorem 1.1 with the sub-Gaussian heat kernel estimate obtained
recently by Gu et al. [25], we have

Corollary 1.2 Let u be a positive finite Borel measure on R with supp(u) = [a, b],
and A be the non-negative self-adjoint operator associated with (€, dom £) in (1.5).
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(@) If u is given by (1.6) and (1.7), then ([0, 11, d.|, i, A) satisfies (IPS). Moreover,
if 0 < f € dom & is a non-zero function, then for any x € [0, 1] and any § > 0,
there exists some toy € (0, §) such that cos(to\/Z)f(x) > 0.

(b) If u == py is given by (1.9) and m > 3 is an integer, then ([0, m], d|.|, iy, A)
satisfies (IPS). Moreover, If0 < f € dom & is a non-zero function, then for any x €
[0, m] and any § > O, there exists some to € (0, 8) such that Cos(to\/Z)f(x) > 0.

Theorem 1.1 allows us to prove (IPS) for certain fractal blowups, which are
unbounded. We first describe fractal blowups (see, e.g., [26]). Let ¥ = {1,..., N}
for an integer N > 2 and {Si}f\': , be an IFS on R". For any m > 0 and any word
i =iy -in € ™, weuse |i| = m to denote the length of i, and i is the empty word
if |i| = 0. Denote by

Si = S,'l o-~-OSim.

Definition 1.1 Let N > 2 and K be the self-similar set associated with an IFS {S; }1N= 1
Fix an infinite word @ = ijip --- € £°°. Foreach m > 1, let

K™ .= s!

i1-wim

(K):=S8; "0 085 1(K).

A fractal blowup K is defined as
oo
Koo := U K™, (1.10)
m=1

Note that K, is unbounded and determined by the choice of the infinite word 6.

Example 1.3 Let S;(x) = (x —a;)/3 +a; fori = 1,2,3, where a; = 0, a, = 1/2,
a3 = 1. Then the associated attractor K = [0, 1]. Let K be the associated fractal
blowup given by (1.10) with 8 = 1313 - - -.

We note that Ko = Sf3113m([0, 1]) = R. Let u be the self-similar measure defined
by the IFS in Example 1.3. Kigami [33, Section 5] constructed a regular local Dirichlet
form (£, dom &) on L*(K, ). The wave equation defined by the operator A associated
with (£, dom &) has recently been studied by Andrews et al. [3]. Let us be the
extension of ; on K as defined by Gu and Hu in [26, Section 4]. Beginning with
((f,l , dom Q ), Gu and Hu [26] constructed a regular local conservative Dirichlet form
(€,dom &) on L2(K o, o).

Corollary 1.4 Let Ko be defined as in Example 1.3, v be the self-similar measure
defined by the IFS in Example 1.3 together with the probability vector { pi}?zl, and
Hoo be defined as in [26, Section 4]. LetNZ be the non-negative self-adjoint opera-
tors associated with the Dirichlet form (£,dom ) in [26]. If p1 = p3 # p2, then
(Koo, d|.|, thoos A) satisfies (IPS).

Theorem 1.1 also allows us to prove that waves propagate with infinite speed on
generalized Sierpiniski carpets, which are not p.c.f. self-similar sets. The definitions of
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these carpets, as well as the corresponding Laplacians, are given in Sect. 4. Generalized
Sierpiniski carpets in R” have been studied in [6-8,10,11]. It is known that the spectral
dimension d and the Hausdorff dimension d satisfy dy < dy < n and thus d; < 2
in R?. Generalized Sierpiniski carpets with n > 3 and d; < 2 can be found in [10,39].

Corollary 1.5 Let F denote a generalized Sierpiriski carpet, and F denote the corre-
sponding unbounded Sierpiriski carpet. Let A and A be the Laplacians on F and F
respectively, as given in [9,10] or [39]. Then the following results hold.

(a) A and A satisfy (IPS).

(b) Let (£, dom &) be the regular Dirichlet form on L2(F, W) associated with A, and
f € dom & be a non-negative and non-zero function, where | is given in Sect. 4.
Ifdg < 2, then for any x € F and any § > 0, there exists to € (0, §) such that
(Cos(toﬂ)f)(x) > 0.

We do not know whether Corollary 1.5(b) holds for F and A. In this case, we are
not able to verify inequality (4.7), since u(ﬁ ) = 400; as aresultitis not clear whether
the condition || cos(1+/A) flsc < C in Theorem 1.1(b) holds.

For a class of p.c.f. fractals, including the Sierpiniski gasket, Strichartz [54, The-
orem 6.1] obtained two-sided sub-Gaussian heat kernel estimates for the product of
these p.c.f. fractals, which are not p.c.f. Theorem 1.1 can be applied to these products.

In view of Lee’s theorem, as well as its more general forms above, it is natural to
ask whether a Gaussian upper heat kernel estimate will imply finite propagation speed.
The second objective of this paper is to prove that, under suitable conditions, this is
true.

Let (X, d, n) be a metric measure space and A be a non-negative self-adjoint
operator on L2(X, ). It is well known that if there exists a constant ¢ > 0 such that

d(x,y)?

o ) forallx,y € X andallz > 0, (1.11)

p(t,x,y) < cexp ( -
then the Davies—Gaffney estimate [(see (5.1)] holds. Thus, the Gaussian upper heat
kernel estimate (1.11) implies (UPS). There is also an analogue of this for (BPS) (see
Corollary 5.2). In order to prove our main result on finite propagation speed, we will
first weaken the assumptions of these results and establish (BPS) (see Theorem 5.6),
and then use strict locality to obtain (FPS) (see Theorem 1.6).

We are mainly interested in Laplacians defined by measures on a bounded subsets of
R". Let 2 C R” be a bounded open subset of R", 1« be a positive finite Borel measure
on R" with supp(u) € Qand () > 0. Itis known that ; defines a Dirichlet Laplace
operator A, if the following Poincaré inequality (or spectral gap inequality) for a
measure (MPI) holds: There exists a constant C > 0 such that for all u € C2°(Q),

/|u|2du§C/ [Vu|*dx (1.12)
Q Q

(see, e.g., [28,44,46]). Here C2°(£2) denotes the space of all C* functions on E with
compact support. We write V' CC €2 if V is compactly contained in €2, i.e., V C €2

and V is compact. We call an open connected subset of R” a domain.
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In the following theorem, p stands for the intrinsic metric (see Definition 6.1).

Theorem 1.6 Let @ C R" be a bounded domain. Assume that | is equivalent to
Lebesgue measure on Q2 with density du/dx = f € L*®(Q, u) and let —Ay be
the Dirichlet Laplacian with respect to . Also, assume that for every V. CC €,
there exists some constant (V') such that f > ¢(V) > 0 Lebesgue a.e. on V. Then
(R, p, t, —A,,) satisfies (BPS) and (2, dy., i, —A,,) satisfies (FPS).

Here we outline the main ideas of the proof of Theorem 1.6. First, the assumptions on
f allow us to prove that under (MPI), the intrinsic metric p is topologically equivalent
to d}.| and hence the Dirichlet form in question is strictly local (see Definition 6.2).
They also lead to the completeness property, the volume doubling property, and the
strong Poincaré inequality (see Definition 6.3). Second, we invoke a theorem of Sturm
[56] and establish a desired upper heat-kernel estimate with respect to the intrinsic
metric, which leads to (BPS). Finally, we use strict locality to obtain (FPS) with respect
to the Euclidean metric.

In Sect. 7, we apply Theorem 1.6 to two classes of self-similar measures on R. Let
1 be a self-similar measure defined by an IFS {S; }lN: o onR. Itis known that if supp(u)
is not a singleton, then w satisfies (MP]) (see, e.g., [28]).

The first family of measures we study is defined by the following IFS on R:

L
Si(x)=5x+%, i=0.1,....N, (1.13)

where N > 3. The second family consists of the well-known infinite Bernoulli con-
volutions, which are defined by the following class of IFSs on R:

So(x) =rx, Six)=rx+1-—r, O0<r<l. (1.14)

Theorem 1.7 (a) Let y be the self-similar measure defined by the IFS {S; }zN:O in(1.13)
and probability weights pg = --- = py = 1/(N+1). If N > 3 is odd, then — A,
satisfies (FPS).

(b) Let 14 be the self-similar measure defined by the IFS {So, S1} in (1.14) and proba-
bility weights po = p1 = 1/2. Assume u is absolutely continuous with respect to

Lebesgue measure and r € (2/3, 1). Then — A, satisfies (FPS).

The rest of this paper is organized as follows. Section 2 summarizes some notation,
definitions and results that will be needed throughout the paper. Section 3 is devoted to
the proof of Theorem 1.1. In Sect. 4, we apply Theorem 1.1 to generalized Sierpifiski
carpets and unbounded Sierpiriski carpets and prove Corollary 1.5. Section 5 studies
(BPS) and (FPS) in general metric measure spaces. In Sect. 6, we prove Theorem 1.6. In
Sect. 7, we provide examples of finite propagation speed, including infinite Bernoulli
convolutions, and prove Theorem 1.7. Finally, we state some open questions and
comments in Sect. 8.
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2 Preliminaries

In this section, we summarize some notation, definitions, and preliminary results that
will be used throughout this paper. Let (X, d) be a metric space. Let d(Uj, Uz) :=
inf{d(x,y) : x € Uy, y € Uy} denote the distance between Uy, Uy C X, and write
dx,U) :=d({x},U). Bg(x,r) :={y € X : d(x,y) < r} denote an open ball with
radius r and center x. In particular, if d = d|.|, then we write B(x, r) := By(x, ).

Let £" (and dx) be Lebesgue measure on R”. Let @ € R”, n > 1, be a bounded
open subset, and let diam(U) := sup{|x — y| : x,y € U} denote the diameter of
U C Q. Let H'() be the Sobolev space with inner product

(M,U)HI(Q) :=/ uvdx—i—/ VuVuvdx,
Q Q

and let H& (€2) denote the completion of C2°(S2) in the H 1(€) norm.

For the definitions of closed quadratic form, Dirichlet form, Markov property, as
well as the strongly local, and regular properties of Dirichlet forms, we refer the reader
to Fukushima et al. [23]. We also refer the reader to Yosida [59] for the definitions of
semigroup and ultracontractivity.

2.1 Heat Kernel

Let X be a Hausdorff topological space. A positive Borel measure p on X is called
a Radon measure if it is (1) inner regular, i.e., for each measurable set A, u(A) =
sup{uu(K) : K € A, K is compact} and (2) locally finite, i.e., each point in X has a
neighborhood U such that u(U) < oo.

Let (X, 1) be a measure space with a Radon measure i, A be a non-negative self-
adjoint operator on L3(X, w), and {T;};~¢ be the associated semigroup on L3(X, ),
ie, Ty =e ™ A non-negative measurable function p(¢, x, y) on (0, 00) x X x X is
called the heat kernel of the semigroup {7;};~0 (or of the operator A) if p(¢, x, y) is
the integral kernel of the operator 7}, i.e., forany > 0 and any f € L?(X, u),

(T, f)(x) =fxp(t,x,y)f(y)du(y) for p-ae. x € X.

Heat kernel may not exist in general. However, it is known to exist in many spaces
such as Euclidean spaces, certain Riemannian manifolds, and certain classes of fractals
(see, for instance, [18] for a sufficient condition). If it exists then it is unique (up to a
set of measure zero).

2.2 Wave Propagation Speed

Let (X, d, i) be a metric measure space, i.e., i is a Borel measure with respect to
the topology defined by the metric d. For any measurable subset U C X, we denote
L*(U, ply) simply by L*(U, ).
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Definition 2.1 Let (X, d, ) be a metric measure space and A be a non-negative
self-adjoint operator on L*(X, u). Regarding solutions of the corresponding wave
equation, we say (X, d, u, A) (or simply A) has the

(a) unit propagation speed property (UPS) if there exists some 0 < s < 1 such that
(cos(tv/A) fi, fz)u =0

for all t € (0, r/s), all open subsets U; € X with r := d(Uy, U) > 0, and all
fi € LA(Uj, ), i = 1,2, (cF. [51]);
(b) bounded propagation speed property (BPS) if there exists some s > 0 such that

(cos(tv/A) fi, fz)ﬂ =0

for all + € (0, r/s), all open subsets U; € X with r := d(Uy, U) > 0, and all
fie Ui, w),i=1,2;

(c) finite propagation speed property (FPS) if for any open subsets U; € X (i = 1, 2)
with r := d(U1, Uz) > 0, there exists some s > 0 (may depend on U, U,) such
that

(costVA) fi, f2), =0

forall0 <t < r/sandall f; € L2(U;, n);

(d) infinite propagation speed property (IPS) if there exist open subsets U; C X
(i =1,2) withd (U, Us) > 0 such that for any s > 0, there exist some ¢t € (0, s)
and f; € L*>(U;, ju) satisfying

(costVA) fi, f2), #0.

As mentioned in the introduction, our definition of (UPS) is equivalent to the defini-
tion of finite speed propagation property in the literature (see, e.g., [16]). From (BPS)
one obtains (UPS) by a simple change of the metric d, and vice versa. It follows from
Definition 2.1 that (UPS) implies (BPS), which in turn implies (FPS). (BPS) implies
that wave propagation speed is less than s. (FPS) and (IPS) are negations of each other.

We say that two metric spaces (X, d1) and (X, dp) are strongly equivalent if there
exist two positive constants ¢y and ¢, such that ¢1d;(x, y) < da(x,y) < c2di(x, y)
for all x, y € X. The following theorem compares wave propagation speeds in two
different metrics; part (b) will be needed in the proof of Theorem 1.6.

Proposition 2.1 Ler (X, d;, ), i = 1, 2, be two metric measure spaces and let A be
a non-negative self-adjoint operator on L*(X, j1).

(a) Ifdy and d> are strongly equivalent and (X, dy, |1, A) satisfies (BPS), then so does
(X, da, 1, A).

(b) Assume that d, is topologically equivalent to dy, and for all open subsets Uy, Uy C
X, dr(U1, Up) > 0 implies d\ (U1, Up) > 0. If (X, d1, u, A) satisfies (FPS), then
(X, d>, i, A) satisfies (FPS).
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Proof The proof of (a) is straightforward; we only prove (b). let U; € X(i = 1,2)
be two open subsets on the metric space (X, dy) with d>(Uy, U) > 0. Since d; is
topologically equivalent to d», U1 and U, are two open subsets on the metric space
(X,dy).Let C := C(Uy, Up) = dy (U, Up)/d>(Uy, Us). By assumption, there exists
some constant s > 0, which may depend on Uj;, such that (cos(t«/Z) fi, f2)p = 0for
all0 <t < di(Uy,Uy)/sandall f; € L2(U,~, w). It follows that (cos(t«/Z)ﬁ, =
Oforall0 <t < Cda(Uy, Up)/sandall f; € L2(U;, u).Hence, (X, da, j1, A) satisfies
(FPS). O

Finally, we remark that the condition “d>(U;, U>) > 0 implies d; (U1, Uz) > 0” in
Proposition 2.1(b) need not hold in general. To see this, let X = (0, 1) and define

di(x,y) :=min{|x—y|,1—|x—y|} and dy(x,y):=|x —y| forx,yeX.

Then d; and d; are topologically equivalent. However, with Uy = (0, 1/4) and U; =
(3/4, 1), one has d» (U1, Up) = 1/2 but dy (U1, Uy) = 0.

2.3 Wave and Heat Equations on Hilbert Spaces
Let H be a (real or complex) Hilbert space with inner product (-, -) and norm || - ||, A
be a non-negative self-adjoint operator on H with domain dom A, and (£, dom &) be

the associated closed quadratic form on H. Let A = fooo A dE) be the unique spectral
representation of A. Then

o
dom & = {MEHI/ Ad(E,\u,v)<oof0ranyveH} 2.1
0
and
o0
dom A = [ueH:/ Azd(Eku,v) <ooforanyveH}. 2.2)
0

Definition 2.2 A function u : R — H is called a solution of (1.1) if its second-order
strong derivative with respect to ¢ exists, u(t) € dom A for any ¢ € R, and equation
(1.1) is satisfied.

The existence and uniqueness of solution of the abstract wave equation (1.1) is well
known (see, e.g., [50]).

Theorem 2.2 Let 'H be a complex Hilbert space and A be a non-negative self-adjoint

operator on H with domain dom A. Then for any f € dom A and g € dom VA, the
initial value problem

ur(t) = —Au(t), u() =rf, u/0)=g,
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has a unique solution u : [0, c0) — H given by

 gin(r4/A)
N

where {E; })cr is the spectral family associated with A.

u(t) = /00 cos(tv/A) dE; f + dEg,
0 0

Definition 2.3 A function v : [0, 00) — H is called a solution of (1.2) if v(¢) is
strongly continuous at t = 0, v(¢) is differentiable on (0, 00), v(f) € dom A for any
t > 0 and satisfies equation (1.2).

Let {T;};~0 be the strongly continuous semigroup associated with A. By the defini-
tion of semigroup (see, e.g., [23]), T is contractive for all # > 0. It is well known that
for any f € H, there exists a unique solution v : [0, c0) — H of the heat equation
(1.2), given by v(t) = T; f (see, e.g., [32]).

The following relation between the wave equation (1.1) and the heat equation
(1.2) is known as the Kannai transform [31]. We include a proof in the Appendix for
completeness.

Lemma 2.3 Let 'H be a separable Hilbert space and let A be a non-negative self-
adjoint operator on 'H. Then for any f € H, the function v(t) defined by

f, t =0,

o0 2 2.3
\/%/0 exp(—i—t) cos(sx/Z)fds, t € (0, 00), 3)

v(t) =

is the solution of the heat equation (1.2) with initial data f.

In the rest of this section, we remark on the case when A has compact resolvent,
even though the results are not needed in the paper. Let (¢,),>1 be an orthonormal
basis of H consisting of the eigenfunctions of A such that Ag, = A,p, forn > 1,
0<A < <Ay < Apg1 < -+, and limy,_, o0 A, = 00. The domains dom £ and
dom A can be expressed by using eigenfunctions and eigenvalues as

o0 o
dom € = [Zanwn : Zaﬁ)\n < oo}
n=1 n=l1

and

o0 o0
dom A = {Zanq)n : Zaﬁkﬁ < oo}
n=1 n=1

(cf. (2.1) and (2.2)). Moreover, foru = Y v | app, € dom A, Au =Y 02| aphn@n.
In the wave equation (1.1), let

o0 o
f=Y gy and g= Bugy. 2.4)
n=1 n=1
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Let

VA
G(t) === any/dnsin(ty/An) g + Y Bucos(ty/An)gn.
n=l1 n=1

u(t) = Zan cos(t/)Tn)¢n + Z'an%’
n=1

n=1

K(t) == anhncos(ty/An)gn — Y Bu/Ansin(tyA)gn. (2.5
n=1 n=1

Using Theorem 2.2, one can prove that for any / € dom A and g € dom+/A,
u(t) defined in (2.5) is the unique solution of the wave equation (1.1). Moreover,
u; =G(t) edom~/Aandu;, = K(1) € H forany r € R.

3 Proof of Theorem 1.1
We prove Theorem 1.1 in this section. Some key ideas of Lee [42] are used.
Proof of Theorem 1.1 Let U be a bounded open subset of X, and f € L2(X , L) be

non-negative on X and non-zero on U. Let v(x, t) be the solution of the heat equation
(1.2) with initial data f. Using (1.3), we have for pu-a.e. x € U and ¢ € (0, €),

v(x, 1) =/Xp(t,x,y)f(y)du(y)
d(x, y)\B/(B-1
sa [ e (—a(T) ) ro duw)

_ d(x, y)\B/(B=1
«/2 —o (Y
zel/ut eXp( Cz( /P ) )f(y)du(y)

- C
> ctllfllpiw ot~ exp ( B 17)’

3.

where C := co sup{d(x, y)#/B=D . x, ye U} <occand y :=1/(B — 1).

(a) Suppose, on the contrary, that A satisfies (FPS). Let Vi, V, be two bounded
open subsets of X such that d(V1, V2) > 0 and (V) < +o00,and f € L2(V1 , L) be
a non-negative and non-zero function, extended by zero to X. Then there exists some
constant § > 0 such that

(cos(t«/Z)f, g)ﬂ =0 forall0 <t <dandallg e L2(V2, Ww.

It follows that cos(tﬂ)f(x) = 0 for u-a.e. x € Vo and all r € (0, §). Since f > 0,
v(x,t) = (T; f)(x) > O forall # > 0. By Lemma 2.3, for all # > 0,
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/Vzlv(x,t)\duzfvzv(x,z)du: %/V? /Ooexp< 7>cos(sf)fdsdu

«/7/\/2/ —2 cos(sf)fdsdu

2
- 5)/ cos(s«/X)fd/Lds
V2

1 [eS) 52
< \/? i exp(— E)H COS(S\/X)f”zV n(Va)ds

w(V2) *° 52
< 7%”]“”2/6 exp (-3 )ds

C © 52
< \/? S exp(— E) dS, (3.2)

)

where C| is a positive constant. Letting v = (s — §)/ V4t in (3.2), we see that

2C o0
lvx, O] dp < =2

Vv ’ =~ VT b P <_(«/i4_t - w)z) do
= % exp (—i—j) /OOO exp (—a)2 — %w) dw

:%exp( i2)<g;+0(t3/2)) ast — 07, (3.3)

where C» is a positive constant. On the other hand, applying (3.1) with U = V; U V,
and using the fact that f = 0 on V;, we have

C
e, Dl = eVl F Ly ot~ exp (—t—y) forall £ € (0. ¢). (3.4)
1%

where C := ¢, sup{d(x, y)ﬂ/(ﬂ_l) 1x,y € ViUW,} < oo. Combining (3.3) and (3.4)
yields

Cc 2C 82 i
AWl ot~ exP( tV) = Tn]exp (_E)(E/_; + 003/2))'

AS ||f||L1(V1,/,L) > 0, we get

w _ 82 Vi
Pexp (17 (= C+ 7)) = C3<C—2 +0(77), (3.5)

where Cj is a positive constant. Letting ¢+ — 07, the left side tends to co, while the
right side tends to 0, a contradiction. Hence, A satisfies (IPS).

(b) We now assume, in addition, that f € dom £. Fix any x € U. Suppose, on the
contrary, that there exists a constant § > 0 such that

(cos(tx/Z)f)(x) <0 forall0 <t <§. 3.6)
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It follows from Lemma 2.3 and the assumption || cos(1/A) flloo < C forallt > 0
that

1 > 52
v(x,t) = ﬁ/o exp ( — Z)(cos(sﬂ)f)(x) ds

1 © S
== exp (= - ) cos(sv/A) (o)l ds
C © 52
< ? : exp ( — Z> ds forallr > 0. 3.7

Letting w = (s — 8)/\/4_t in (3.7), we obtain, as in the proof of (a), that

2¢ 8%\ (V1 3/2 +
v = e <_E><c_4 +0(7)  ast— ot (3.8)

where C4 is a positive constant. Combining (3.1) and (3.8) yields

el it~ exp (- E) = %exp (%)(g +0(2).

which implies an analogue of (3.5) and a contradiction. Since U is arbitrary, the proof
is complete. O
4 Fractals with Infinite Propagation Speed

4.1 Iterated Function Systems with Overlaps

Proof of Corollary 1.2 (a) Gu et al. [25, Theorem 1.2] obtained the following lower
heat kernel estimate: there exist positive constants ¢y, ¢» such that

c du(x, ) B/(B—1)
P(t,xvy)ZmeXp<_02< tl/ﬁ ) 5 (41)

forallt € (0,1) and x,y € [0, 1], where 8 > 2, d, is a metric on [0, 1] (see [25,
Section 3]), and V (x, t'/#) := ju(Bgy, (x, t'/#)). Notice that V (x, t'/#) < ([0, 1]) =
1 for all + € (0, 1). Thus the lower heat kernel estimate (1.3) holds with ¢ = 1 and
o = 0.Itfollows from Theorem 1.1(a) that ([0, 1], d, i, A) satisfies (IPS). Moreover,
according to [25, Lemma 3.8],

Ix — ylp(x, y]) = dilx, y)P,
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This implies that d, is topologically equivalent to d|.; and that for any open subsets
Uy, Uy C [0, 1], de(Uy, Up) > 0 if and only if d).(Uy, U2) > 0. Hence, Proposi-
tion 2.1(b) implies that ([0, 1], d}.|, u, A) has (IPS).

Let f € dom& be a non-negative and non-zero function. Let {E)},cr be the
spectral family associated with A. Since

S(cos(l«/Z)f,cos(t«/Z)f) = [oo)»cosz(t«/x)d(E,\f, 1)
0

- [0 MEf. f)=EF ) (42)

cos(t+/A) f € dom &. Note that |u(x) —u(y)| < |x—y|"/2/E(u, u) forallu € dom &.
It follows thatdom £ € C([0, 1], d|.|), and hence there exists a constant C := C(f) >
0 such that || cos(t«/Z)fHoo < C for all + > 0. Hence, the assertion in (a) follows
from Theorem 1.1(b).

(b) The following lower heat kernel estimate is obtained in [25, Theorem 1.3]:

c due, y) \ PPV
pt,x,y) > meXp <—02 <t17 ,

forallt € (0, 1) and x, y € [0, m], where 8 > 2, d, is a metric on [0, m] defined in
[25, Section 4], and V (x, 1By = Um (Bg, (x, tl/ﬁ)). The rest of proof is similar to
that of part (a). O

4.2 Fractal Blowups

In this subsection, we will apply our results on infinite propagation speed to a time
changed Brownian motion on R, which is constructed by blowing up a given self-
similar set (see [26]).

Proof of Corollary 1.4 Gu and Hu [26] obtained the lower estimates of the heat kernel:

c du(x, ) B/(B—1)
p([’ X, y) Z m eXp <_CZ <[17) 5 (43)

forallt > 0 and x, y € Ko, Where 8 > 2, d, is a metric on K, defined as in [26,
Section 4], and V (x, t'/#) := w(Bg, (x, t'/8)). Lete be a positive constant such that
Vix, el/ﬁ) < 1forall x € K. Then (1.3) holds. Moreover, by [26, Chapter 4], we
have d, is topologically equivalent to d|.| and for any open subsets Uy, Uy C Ko,
dy(Uy, U) > Oifandonlyifd|.|(U;, Uz) > 0. Similar to the proof of Corollary 1.2(a),
the assertion follows from Theorem 1.1(a) and Proposition 2.1(b). m|
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4.3 Generalized Sierpinski Carpets

In this subsection, we illustrate Theorem 1.1 by using both the classes of bounded
and unbounded generalized Sierpiriski carpets. The following definition is given in
[5,10,12].

Letn > 2, Fp = [0, 1], and let [r € N with [ > 3 being fixed. For k € Z, let O
be the collection of closed cubes with side length / ;k and with vertices at [ ;kZ”. For
E C R" let 0F and E° be the boundary and interior of E respectively, and let

Qu(E) :={Q € Q: Q°NE #0}. (4.4)

For O € O, let W be the orientation preserving affine map (i.e., similitude with no
rotation part) which maps Fp onto Q. Define a decreasing sequence {Fy} of closed
subsets of Fy. Let m be an integer satisfying | < mp < l%, and F be the union of
m  distinct elements of Q;(Fp). We impose the following conditions on Fj.

(H1) (Symmetry) F is preserved by all the isometries of the unit cube Fj.

(H2) (Connectedness) Fy is connected.

(H3) (Non-diagonality) Letm > 1 and B C F be a cube of side length 2/.™, which
is the union of 2" distinct elements of Q,,. Then if int(F; N B) is non-empty, it
is connected.

(H4) (Border included) F) contains the line segment {x : 0 < x; < l,xp = - =
x, = 0}.

One may think of F as being derived from Fy by removing the interiors of [, —m g
cubes in Q; (Fp). Iterating this, we obtain a sequence {Fy}, where Fj is the union of
m]; cubes in Qy (Fp). Formally, we define

Fa= |J Yotrn= |J W), k=1 (4.5)
0eQx(Fr) 0eQi(F))

We call the set F := (o, Fx a generalized Sierpiriski carpet (GSC).

Example 4.1 (Sierpinski carpet, [35]) Let py = 0, pp = 1/2, p3 = 1, ps = 1 +
\/—_1/2, ps =1 + /1, Pe = 1/2—}—\/—_1, p1 = ~/—1 and ps = \/—_1/2. Define
Si : C — Cas Si(z) = (z— pi)/3+ pi fori € {1,...,8}. Then there exists a
unique nonempty compact subset F', which satisfies F = U?:l Si(F). F is called the
standard Sierpiniski carpet.

The standard Sierpinski carpet in the above Example is a GSC withn = 2, [p = 3,
mp = 8 and with F] being obtained from Fy by removing the middle cube.

We also consider a related set, which has a large-scale structure similar to the
small-scale structure of F. Set Fj := Fy for k < 0 and fori € Z, let

o0
E = U lrE+ra
r=0
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and F = Nico F,,is called an unbounded generalized Sierpiniski carpet. Let ux (dx) =
m’}l Fdx and p be the weak limit of the . Then p is a constant multiple of the
log m r/ log [ p-dimensional Hausdorff measure on F.

For n = 2, Barlow and Bass [6] constructed a Brownian motion on the standard
Sierpiriski carpet, i.e., a strong Markov process with state space F that has continu-
ous paths and is invariant under an appropriate class of transformations. They later
extended the strong Markov process to unbounded Sierpinski carpets F and obtained
upper and lower bounds for the transition densities p(¢, x, y) on F (see [9]). Subse-
quently, Kusuoka and Zhou [39] gave a different construction of a continuous strong
Markov process on the standard Sierpiriski carpet, which also has the invariance proper-
ties of the Brownian motion constructed in [6]. In [10], the results of [6,9] are extended
to GSC and unbounded Sierpifiski carpets embedded in R” for n > 3. Furthermore,
the following sub-Gaussian heat kernel estimates are obtained:

dyy 1/(dy—1)
~ ~ x J— w
cl - t_‘l-‘/2 exp (—cz <—| ty| ) )

< p,x,y) (4.6)

d 1/(dw—1)
~  _ ~ X — v
<c3-t ds/2 exp (—04 (—' ty| ) )

for any + > 0 and any x, y € F, where dy, := 2dy/d; > 2 (see [10]). Barlow et al.
[12] showed that, up to scalar multiples of the time parameter, there exists only one
such Brownian motion on a generalized Sierpiniski carpet. Since the Laplacian is the
infinitesimal generator of the semigroup associated with the process, the Laplacian on
GSC is uniquely defined.

Let A be the Laplacian in L? (F, ) associated with the process X; constructed in [9,
10] or [39] with domain dom A. Write X ; for the extension of X, to the corresponding
unbounded Sierpiniski carpet F,and let (A, dom A) be the associated Laplacian of X,
in Lz(f , ).

Proof of Corollary 1.5 (a) By virtue of (4.6), we can see that inequality (1.3) holds with
€e=1,a =dsand B = d,, > 2. It follows from Theorem 1.1 (a) that A and A satisfy
(IPS).

(b) Let {T;};~0 be the semigroup associated with (£, dom &). Since the Nash
inequality holds, i.e., there exists some constant ¢; > 0 such that

244 4
lul3™% < 1€, wlul{’®,  uedomé,

(see [10, Theorem 7.1]), we conclude that {T}},~¢ is ultracontractive and there exists
¢ > 0 such that |70 < ct~%/2 for any ¢t € (0, 1]. Moreover, it follows from
w(F) < oo and the assumption ds € (0, 2) that there exists M > 0 such that

lullde < ME@,u) + llull? for any u € dom &, 4.7

Z(F,M))
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and that dom & € C(F,d|.) (see [35, Theorem A.6]). Let f € dom & be a non-
negative and non-zero function. Asin (4.2), 5( cos(t«/Z)f, cos(t+/A) f) <&, ),
cos(t\/Z)f € dom & and

2 2
E(cos(tV/A) f, costv/A) f) + 1 cos@VA) 117 oy < EC ) F 1 120

which, together with (4.7), yields || cos.(t«/Z)fHOO <MES, )+ ”f”iZ(F M)) =
C < oo for all + > 0. Hence, Theorem 1.1(b) now implies that for any x € F, and
any 6 > 0, there is 79 € (0, &) such that (cos(to\/Z)f)(x) > 0. O

5 Finite Propagation Speed

In this section, we let (X, d, i) be a metric measure space, A be a non-negative self-
adjoint operator on L2(X, i), and T; = exp(—tA),t > 0, be the associated semigroup
on L2(X, ).

Definition 5.1 Let (X, d, 1) be a metric measure space and A be a non-negative self-
adjoint operator on L%(X, w). We say that (X, d, i, A) (or simply A) satisfies the
Davies-Gaffney estimate if

(T3 f1, f2u] < A2 Allaexp (= r2/(40) (5.1)

for t > 0, open subsets U; € X and f; € LZ(Ui,u),i = 1,2, where r =
d(Uy, Up) > 0.

It is well known that the Davies—Gaffney estimate holds for essentially all self-
adjoint elliptic second-order differential operators (see [16,19,51]). The following
theorem shows that the Davies-Gaffney estimate is equivalent to (UPS).

Theorem 5.1 [16, Theorem 3.4] Assume that (X, d, () is a metric measure space and
A is a non-negative self-adjoint operator on L*>(X, ). Then (UPS) and the Davies-
Gaffney estimate (5.1) are equivalent.

The following remark is a direct consequence of Theorem 5.1.

Remark 5.2 Assume the hypotheses of Theorem 5.1. Then (X, d, u, A) satisfies (BPS)
with maximum propagation speed s if and only if (X, (1/s)d, u, A) satisfies the
Davies-Gaffney estimate (5.1).

An analogous relation holds for (FPS), as shown in the following theorem. It can
be proved by modifying that of [16, Theorem 3.4]; we omit the details.

Theorem 5.3 Assume the hypotheses of Theorem 5.1. Then (X, d, i, A) satisfies (FPS)
if and only if for any open subsets U; € X, i = 1,2, there exists a constant ¢ > 0,
which may depend on Uy, Uy, such that

(T f1. Pl < AN f2llz exp (= r2/(et)) (5.2)

Birkhauser



Journal of Fourier Analysis and Applications (2020) 26:31 Page 190f38 31

fort > 0and f; € LZ(U,-, w), where r := d(Uy, Uy) > 0.

We now study the relationship between upper heat kernel estimate and wave prop-
agation speed. For any complex number z € C, we denote the real part of z by N (z).
Let C4 := {z € C : R(z) > 0} denote the right half of the complex plane. Define
T, f :=exp(—zA) f forany f € L*>(X, u) and z € C. We note that

IT.flla < I fll» forall £ e L*(X, ) andall z € Cs. (5.3)

In fact, if {E; })cr is the spectral family associated with A, then for any z € C and
any f € L2(X. ),

i = | [ exvzmazis] = [ e di 13
=f0 exp (— R@A) dIESf13 = |Tae £]5 < 1113,

where the last inequality is because the semigroup {7}};~0 is contractive.
The following lemma is a slight modification of a similar one in [16]; the proof is
the same.

Lemma 5.4 [16, Proposition 2.2] Let u be an analytic function on C,. Assume that
there exist positive numbers c1,y and a positive number ¢y = ca(y) (which may
depend on y ) such that

lu(z)| <cy forall z € Cy, and |u(t)| < corexp(—y/t) forallt > 0.
Then
lu(z)| < crexp(—N(y/z2)) forall z € Cy.

In the following lemma we modify a result in [16] by allowing the constant ¢ to
depend on f;, in order to suit our purpose. We include a proof for completeness.

Lemma5.5 [16, Lemma 3.1] Let (X,d, ) be a separa_ble metric measure space.
Assume that for any f; € LZ(X,[,L), supp(fi) € By(xi,r), i = 1,2, and

r:=d(Bg(x1,r1), Ba(x2,12)) > 0, there exists a constant ¢ = c(f1, f», Ba(x1, 1),
By(x2,1r2)) > 0 such that

(T fr fu] < cllfillzll fallaexp (= r2/(40) fort > 0. (5.4)
Then the Davies-Gaffney estimate (5.1) holds.

Proof Let f; € L>(X, 1), supp(f;) € Ba(xi,r;),i = 1,2, and r := d(By(x1,71),
Bi(x2,1r2)) > 0. Combining (5.3), (5.4) and Lemma 5.4, we have

lu@)| = [(T: fi. fu] < I fill2ll fallzexp (= r?9(1/(42)) forz € Cy.
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In particular,

I(T: f1, P)u] < ILfill2ll follzexp (—r2/(40))  fort > 0. (5.5

Now let Uy, U, be arbitrary open subsets of X such that » := d (U, U) > 0. Let
f = Zle fi,where forall 1 <i <k, f; € L>(By(x;,ri), u), Ba(xi, r;) C Uy, and
fifio = 0in L2(X, ) forall 1 < i < is < k. Notice that || f[3 = Y5, /13
Similarly, let g := Zf-:] gj» where g; € Lz(Bd(yj, $j), m), Ba(yj,sj) C Uy forall
l1<j<¢andgjgj =0in L*(X,p) forall 1 < j; < j» < £. It is obvious that
d(Bg(xi,ri), Ba(yj,s;)) = d(Uy, Up) =r. Thus (5.5) implies that for t > 0,

k¢ k 2

(Tif.8),| <3 (Tfigy), | < ZZ Iillalglaexp (= )

i=1 j=1 i=1 j=1

_ (i ||f,-||2)(i lgjllz) exp (— ;—j)

2

.
< Vel fl2ligllzexp (= 7).

Combining this with (5.3) and Lemma 5.4 gives

(T £ @)u| < Ifl2llglaexp (= /@) fort > 0.

To finish the proof of the lemma, it suffices to note that, since (X, d) is a separable
metric space, the space of all possible finite linear combinations of functions & of
the form supp(h) C Ed(x r) and By(x,r) € U is dense in L2(U, ). Moreover, if
h = Z —1hiandh; € L?(By(xi, ri), p) for all 1 <i < m, then there exist functions
hi € L*(By(xi,ri), p) such that b := Y7 h; and h; hi, = 0 in L2(X, w) for all
1 <ij<ip<k. 0

Theorem 5.6 Let (X, d) be a locally compact separable metric space, i be a Radon
measure on (X,d), A be a non-negative self-adjoint operator on L*(X, i), and
(£,dom &) be the closed quadratic form on LZ(X, ) associated with A. Assume
that the heat kernel p(t, x,y) of (£, dom &) exists and that there exist positive con-
stants c1, c2, y such that for any Y CC X, there exist positive constants ¢ =
¢1(c1,Y), 0 :=0Co(c2,Y) and 8 := §(Y) > O satisfying

d(x, y)?

; ) forall t >8andx,y €Y, (5.6)
Cl

Pl x,y) < Trexp (-

and

d(x, y)?

; ) for 0 <t <8§andx,yeY. (5.7
e

p(t,x,y) < ¢ Vexp ( -
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Then (X, d, v, A) satisfies (BPS).

Proof Let{Tt}DORe the semigroup on LZ(X, w) associated with A. Let f; € LZ(X, 73
with supp(fi) € Bg(xj,ri), i = 1,2, and with r := d(By(x1, 1), Bg(x2,r3)) > 0.
For any x € supp(fi) and y € supp(f2), d(x,y)> > r? and thus for r > 0 and
i=12,

exp(— d(x—y)2) < exp(— ﬁ) (5.8)

cit cit

Choose a subset Y CC X such that supp(f1) U supp(f2) C Y. Then

(T f1. f2),, =/X(Tzf1)(y)fz(y)du(y)=/ pt,y, x) f1(x) 2(0) dp(x)du(y)

XxX

/ p(t,x,y) f1(x) 2(0) du(x)d(y), (5.9)
supp(f1) xsupp(f2)

where the symmetry of p(z, x, y) is used in the last equality. Together with (5.6) and
(5.8), this implies, for > &,

2

(T ol <3 [ exp (= )| A0 0| drdn)
supp f1 Xsupp 2 cit

2

N 1/2 r
<7y (M(SUPP(fl))M(SuPP(fZ))) Il f1li2ll 2112 exp ( - —)~
cit

(5.10)

Similarly, for 0 < ¢ < §, combining (5.7), (5.8), and (5.9) yields

2
(T f ol =T [ exp (= 2 A1 ) dr)dp)
Supp f1 xsupp f2 et
~ 1/2 72
< & (u(supp(/i)Gupp(£)) Ikl falor ™ exp (= ).
5.11)

Since lim,_, ¢+ ¢~ exp(—c/t) = 0 for any constant ¢ > 0, there exists some constant
¢3:=¢3(cp, r,v,8) > Osuchthat for0 <t <6,

2 2
_ r ~ r
t Vexp(— —) §C3exp<— —)
et (c2+ Dt
Together with (5.11), this implies that for 0 < ¢t < 8,

2

(cr + 1);)‘
(5.12)

— 1/2
((T; fi. f2)l = & (risuppCi)m(supp(£2)  Ifill2ll fllz exp (
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It follows from (5.10) and (5.12) that there exist constants c3 := c3(cy,c2) > 0
(independent on Y) and ¢4 := ¢4(¢}, ¢2, ¢3) > 0 such that

2
~ r
(T fi, oul <@ filll faloexp (= =) fort > 0. (5.13)

Thus, using Lemma 5.5, we see that (X, (2/,/c3)d, u, A) satisfies the Davies-Gaffney
estimate. Hence, the assertion now follows by using Remark 5.2. O

6 Proof of Theorem 1.6

Let Q € R", n > 1, be a bounded open subset, and u be a positive finite Borel
measure on R"” with supp(u) € Q and 1(2) > 0. For convenience, we summarize
the definition of the Dirichlet Laplacian with respect to a measure p; details can be
found in [28]. We further suppose u satisfies (MPI) (see (1.12)), which implies that
each equivalence class u € HO1 () contains a unique (in L2(2, u1) sense) member 7
that belongs to L%(Q, ) and satisfies both conditions below:

(1) there exists a sequence {u,} in CZ°(2) such that u, — # in HO1 () and u,, — 0
in L*(Q, w);

(2) u satisfies inequality (1.12).

We call i the L?(S2, pu)-representative of u. Define a mapping ¢ : Hj () — L*(Q, )

by

t(n) = .

¢ is a bounded linear operator, but not necessarily injective. Consider the subspace A/
of H} () defined as

N = {u € Hy(Q) : lt@)]2 = 0}.
Now let Nt be the orthogonal complement of A in H](S2). Then ¢ : Nt —
L? (€2, ) isinjective. Unless explicitly stated otherwise, we will denote the L? (2, w-

representative 7 simply by u and identify ((N1) with Nt
Consider a non-negative bilinear form (-, -) on L2(Q2, 1) given by

E,v) = / Vu-Vvdx 6.1)
Q

with domain dom & = N, (MPI) implies that (£, dom &) is a closed quadratic form
on L%(, ). Hence there exists a unique non-negative self-adjoint operator A on
L?($2, i) such that

E,v) = (A"?u, AY*v) and dom & = dom (A'/?).
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We write A, = —A, and call it the (Dirichlet) Laplacian with respect to L.

As can be seen above, it is often difﬁcilt to describe dom & precisely. However, if
W is equivalent to Lebesgue measure on €2, we have the following result; the proof is
omitted.

Proposition 6.1 Use the notation above, and assume that . satisfies (MPI). Assume p
is equivalent to Lebesgue measure on Q2. Thendom £ = H(} (). Moreover, (£, dom £)
is a regular, strongly local Dirichlet form on L*(2, ) with C2°(R2) being a core.

We remark that if n = 1 and Q = (a, b), it suffices to assume in Proposition 6.1
that supp(un) = [a, b] (see [14]).

Hereafter, assume that p satisfies (MPI) and u is equivalent to Lebesgue measure
on £, and let (£, dom &) be defined as in (6.1). Then u«(32) = 0 and so L?(£2, p)
can be identified with L2(2, p). It follows from Proposition 6.1 that (£, dom ) is a
regular, strongly local Dirichlet form on L%(Q, p) with domain dom £ = HO1 (€2). We
denote by v < w if v is absolutely continuous with respect to (.

Definition 6.1 Use the notation and hypotheses in the above paragraph. A pseudo
metric p on €2 is defined by

p(x,y) =sup {u(x) —u(y):ue C'(Q), |Vu>dx < p with density
<1 p-ae. onQ}, (6.2)

called the intrinsic (or Carathéodory) metric.

Note that |Vu|?dx is called the energy measure. The intrinsic metric is a general-
ization of the classical notion

p(x,y) =sup{u(x) —u(y):ueC', |Vul <1};

those induced by strongly local regular Dirichlet forms were studied by Biroli, Mosco,
Sturm, and others (see [13,18,21,27,29,45,56,57] and the references therein).

Definition 6.2 [1,2] A strongly local Dirichlet form (£, dom £) on L2(Q, u_) is said
to be strictly local if it is regular and if p (defined by (6.2)) is a metric on €2 whose
topology coincides with the original one.

We remark that the property “strictly local” is also called strongly regular (see,
e.g., [56]). Following [56], we state and discuss several properties of the associated
Dirichlet form (£, dom &) on U.

Definition 6.3 Assume (é dom &) is a strictly local Dirichlet form on L2($2, ). Fix
an arbitrary subset U C Q.

(1) Completeness property (C): For any ball B,(x,2r) C U, the _closed ball
E olx,r)is compleie (or, equivalently, compact) on the metric space (£2, p), where
B,(x,r):={yeQ:px,y) <r}.
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(2) Doubling property (VD): There exists a constant N := N (U) such that for all balls
B,(x,2r) C U,

w(By(x,2r)) < Nu(B,(x,r)). (6.3)

(3) Strong Poincaré inequality (SPI): There exists a constant Cp := Cp(U) such that
for all balls B,(x,r) € U and all u € dom &,

| weumenaldescer? [ wuPdx 6
B, (x,r) B, (x,r)

where up, (x.r) ;== pr(x’r) udp/uw(B,(x,r)).

Theorem 6.2 [56, Theorem 4.1] Let X be a locally compact separable Hausdorff space
and | be a Radon measure with supp(u) = X. Assume (£, dom &) is a strictly local
Dirichlet form on L*(X, ). Assume (C), (VD), and (SPI) are simultaneously satisfied
ontheopensetY C X. Thenforeverye > 0, there exists a constant C > 0, depending
onlyone, N=N(Y)andcp = cp(Y) (in (6.3) and (6.4) respectively), such that the
following estimate holds forall x,y € Y andt > 0:

2
5. = Byt VD) By, /D) enp (2,
where T = inf{t, R?} with R := inf{p(x, X\ Y), p(y, X\ Y)} (R := +0 if X = Y).

In fact, Theorem 6.2 is a special case of Theorem 4.1 in [56] with & =&,k = 1
and p(t,y,s,x) = p(t — s, y,x). The following lemma is needed in the proof of
Theorem 1.6.

Lemma 6.3 Assume the hypotheses of Theorem 1.6, and let (£, dom E) be defined as
in (6.1). Then

(@) p is a metric on Q and is topologically equivalent to dy..
(b) forany V CC , there exists c(V) > 0 such that

cV)x =yl <px,y) foranyx,yeV. (6.5)

(c) for any open subsets U,V € Q, p(U, V) = 0 if and only ifd. (U, V)=0.

Proof We first note that_ wu satisfies (MPI). We use the method in [5_7 , Theorem 4.1L
(a) Assume u € C!(Q) with (|Vu|>dx)/du = |Vu|>/f < 1on Q. Thusforx € Q,

IVu@))? < 11 flloo (6.6)

Ifn = 1,thenp(x, y) < ||f||(1x/32|x—y|forallx, y € Q.Forn > 2, we use an argument

in [57]. We fix arbitrary x, y € Q. Without loss of generality, let x = (0, ..., 0) and

Birkhauser



Journal of Fourier Analysis and Applications (2020) 26:31 Page 250f38 31

y = (R,0,...,0).Let Cc = [0,R] x B'(0,¢) ={w=(r,w) e R" : 0 <r <
R, |w'| < €}. Since u is continuous, by Lebesgue’s density theorem,

1

S B 0,6 Sy, “O W) TR WD) du

u(x) —u(y) =
By using a similar argument as that in [57, Theorem 4.1], we get

1 0
—u(w)dw. 6.7)

ulx) —u(y) = 0+m Ce dx1

Combining (6.7) and (6.6) yields

|u(x) —uy)| < u(w)(dw

00 - ‘(B (0, e))/ )8)61
I f1loo

. 12 4 125 1/2
<lim ———— = = —y|.
< lim U_I(B,(O’ E))/ — 1 FIL2R = 111 —
In other words, for all those x, y € 2 that can be connected by a straight line in €2,
we have |u(x) — u(y)| < || fIIX*|x — y| and hence

p(x,y) < £ 1x = yl. (6.8)

On the other hand, let {x,} € Q. Assume that p(xy,x) = 0asn — oo. Since
(K, d).) is compact, there exist a subsequence {x,, }x < {x,} and x* € Q such that
|xy, —x*| — 0 as k — oo. It follows from (6.8) that x* = x. This implies that
|xp, — x| — 0 as n — oo. Combining this with (6.8) proves that p is a metric and is
topologically equivalent to the Euclidean metric.

(b) Fix any w = (wq, ..., w,) € R” and define amap g, : 2 — R by

n
gwx) i=w-x = Zwixi.

i=1

Then g, € C>(Q) with Vgyw = w. Fix any open subset V CC Q. Le_t U be an open
subset such that V. CC U CC Q. Then there exists some £, € C2°(£2) such that

hw =gw onV, |Vh,| <cU,V,w)=:¢c onU, and h, =00nQ\U.

Define v(x) = (Ve(U)/c)hy(x) for x € K, where ¢(U) is the constant in
Theorem 1.6. Then |Vv(x)|?> = S(U)|Vhw|2/c2 < eU) < f(x) on U, and

[Vu(x)|?> =0 < f(x)onQ\ U.Hence |Vv|?>dx < . Fix any distinct y, y’ € V and
choose w = (y — y')/ly — y'|. Then

Je)
c

(gw(») — guw(¥)) = |y

Je(lU
v(y) —v(y) = 80( N
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By the definition of p, (v/e(U)/c)|y — y'| < p(y,y’). Since y, y’ are arbitrary, the
desired inequality holds.

(c) Fix any two open subsets U, V C Q. Assume p(U, V) > 0. It follows from
(6.8) that d| ‘(U V) > 0. On the other hand, 1fd| [(U,V) > 0,thend, |(U V)>0.In
particular, UNV = . By compactness, p(U, V) > 0and consequently p(U, V) > 0,
which completes the proof. O

Proof of Theorem 1.6 We note that supp(i1) = . Proposition 6.1 and Lemma 6.3
imply (£, dom &) is a strictly local Dirichlet form on L?($2, 1) with domain dom £ =
H(Q).

Fix any V' CC 2. Since p is topologically equivalent to d|.|, _p (x,r) is closed
in (R, d‘ |) for any ball B, (x, 2r) C V. Thus B o(x, 1) is compact in (S, d).) and
hence B, (x, r) is compact in (2, p). Therefore, Property (C)holds on V. Lemma 6.3
implies that there exists ¢; := c¢;(V) > 0 such that forany x, y € V,

1/2
cilx =yl < plx, y) < IFI7 1 =yl
172

It follows that B(x, /|| fllec ) € By(x,7) € B(x,r/cy) for any ball B,(x,r) C V,
and thus there exist positive constants ¢, and ¢3 := ¢3(V) such that

cor™ = LB (x, r/ | FIIND) < £7(By(x, 1) < L(B(x, r/c1)) = car”.
Hence,

c2e(V)r" < e(V)L*(By(x, 1)) < n(Bp(x, 1))
S N flloe £ (Bp(x, 7)) < c3ll flloor™,  (6.9)

which implies that there exists N := N (V) > 0 such that for all balls B, (x,2r) C V,
u(Bp(x,2r)) < Nu(By(x,r)). Thus (VD) holds on V. Property (SPI) follow_s from
the following inequality (see [29, Theorem 2.1]) and the assumption f € L°(2, u):

f (u—ug,,<x,r>)2dy5c1r2f \Vul* dy
B, (x,r) B,(x,r)

for all u € COO(Ep(x, r)), where ug,(xr) = pr(X’r) udy/L"(B,(x,r)). Hence,
Theorem 6.2 implies that the heat kernel p(¢, x, y) of (£, dom &) exists; moreover,
for every € > 0, there exists a constant ¢4 := c4(€, V) such that the following estimate
holds forall x,y € V and ¢ > O:

p(t,x,y) < can(Bp(x, o))~ w(Bp(y, o))

2
(- G s)

(6.10)

where 7y := inf{r, R?} with R := inf{p(x, 2\ V), p(y, 2\ V)} (R := 400 if
Q = V). Itis easy to see that B,(x, \/tv) € V and B,(y, /tv) € V. Using (6.9),
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there exists ¢5 := ¢5(V) such that
—1/2 —-1/2 —n/2
(B, 7)) 7 (B (v, o)) P < sty
Together with (6.10), this implies there exists cg := cg(€, V) > 0 such that

P, y)?
@+ ey

—n/2

p(t,x,y) < ceTy exp( ) forall x,y € Vandall¢ > 0.

Choose a set U such that V. CcC U CcC 2. We observe that there exists ¢7 =
c7(€, V) > 0 such that

p(x,y)?
4+ et

pt,x,y) < C7rl;"/zexp(— ) forall x, y € U and all > 0.
Let§ := pz(V,ﬁ\U) >0.Thenty =tforO <t <dandx,y € V; 1y > § for

t>dandx,y € V. Thusforx,y e Vand0 <t <,

_ (x, »)?
t,x, < ¢t n/2 (_'0— ,
p(t, x,y) < c7 exp (4+6)t>

while for x,y € V andr > §,

—n/2

2
p(t,x,y) <78 _ P, Y) )

P ( G+ or
By Theorem 5.6 and Proposition 2.1, (2, p, u, —A,,) has (BPS) and thus (2, d|.|, 1,
—A,) has (FPS). O

7 Self-similar Measures with Overlaps

In this section, we apply Theorem 1.6 to self-similar measures on R. Let u be the
self-similar measure defined by the IFS of contractive similitudes of the form

Si(x) = pix +bj, i=0,1,....N, (7.1)

and probability vector { pi}lN: o» Where for each i, 0 < p; < I and b; € R. Let
K be the associated attractor (or self-similar set). Assume p is absolutely con-
tinuous with respect to Lebesgue measure with density du/dx =: f(x). Thus u
is equivalent to Lebesgue measure on K (see, e.g., Peres et al. [49]). Moreover,
f(x) =limy_o n(B(x,r))/(2r) for Lebesgue a.e. x € R. Hence,

N
fo=> p—ff 0S8 '(x)  for Lebesgue a.e. x € R. (7.2)

izo Pi
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It follows that f = du/dx if and only if f satisfies (7.2) and fK fdx =1.

7.1 A Family of Scaling Functions

In this subsection, we consider the self-similar measure u defined by the IFS {Si}{": 0
in (1.13) and probability weights pg = --- = py = 1/(N + 1). It is known (see, e.g.,
[41,47]) that if N is odd, then u is absolutely continuous with respect to Lebesgue
measure with density f € L?(R).

Define fby
~ xloeV+D=1 " v 10, 1],
fx) = !O, x € (—00.0). (7.3)
and
N N
Foo) = ( ) Z Fx—i) forallx e R. (7.4)

The @llowing proposition shows that the definitions in (7.3) and (7.4) are compatible
and f is well defined.

Proposition 7.1 Let u be the self similar measure defined by the IFS {S; }N o in(1.13)
and probability weights pg = --- = py = 1/(N + 1). Assume N > 3 is an odd
integer, and let  := du/dx be the density of . Then

(a) fis well defined and f = cf(x), where ¢! = fON fdx.
(b) f is continuous, bounded on R, and positive on (0, N).

Proof (a) We first notice that for x € (—oo, 1], f(x) defined by (7.3) satisfies (7.4).
In fact,

f(x)—O—N—“f( )-

f~(x —1i) foranyx € (—o0,0)

M=

and for any x € [0, 1],

N
- B N 41 /x\logy(N+1)—1 N~|—1~ ~
Foo = st AL NGS5z,

Next, we show that forx € (1, +00), the value f(x) isuniquely defined. Forx € (1, 2],
we have x/2 € (0, 1] and x — i € (—oo, 1] forany i = 1,..., N. Combining (7.3)
and (7.4), we see for x € (1, 2], f(x) is uniquely defined as

N
Ty = N + 1 ~< ) Z — i) = ylon VD=1 _ (o _ pyloga(VHD—1
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By induction, for any x € (1, +00), the value f (x) is uniquely defined, proving that
f is well defined. To complete the proof of (a), notice that by (7.4),

N
fx) = Z (2x — i) (7.5)
i=0

for any x € R, i.e., f(x) satisfies (7.2). Thus f = cf(x), where ¢! := fON fdx.

(b) By (a), it suffices to show that f is continuous, bounded on R, and positive on
(0, N). Clearly, f is continuous on (—oo, 1). Next, assume that f is continuous on
some interval of the form [0, ¢] with ¢ > 1/2. Since x/2,x — i e~(—oo, q] for all
x €lg,qg+1/2]landi =1,..., N, (7.4) implies the continuity of f on [g, g + 1/2].
By induction, f is continuous on R. Since f is symmetric about x = N /2, f(x) =0
for all x € (—o0, 0] U [N, 4+00). It follows that f is bounded on R. As f = (1/c) f,
we also conclude that f (x) > Oforall x € R.

Finally, to show that f is positive on (0, N), we first observe from definition that
f(x) > 0 for all x € (0, 1]. Since f is symmetric about x = N/2, f(x) > 0 for
allx € [N —1,N). For x € (1 N —1),letje{0,1,...,N} suchthat2x—] €
0,1]U [N — 1, N). Since f(x) 0 for all x € R, (7 5) implies that f(x) >
2/(N+1) f (2x — j) > 0, which completes the proof. O

When N = 3, we can derive an explicit formula for the density f (Fig. 1).

Corollary 7.2 For the case N = 3 in Proposition 7.1, the density of | is

x/2, 0<x<l,
1/2, 1 <x <2,
fx) =
—x)/2, 2<x <3,
0, otherwise.

Proof By Proposition 7.1 and the symmetry of f about x = 3/2, f is defined by
fx)=2f(x/2) — Z?:l f(x —1) forany x € R and

X, x €0, 1],
f)y=1{3-x, xe[2,3]
0, x € (—00,0) U (3, 00).

Forany x € (1,2), f(x) =2f(x/2) — f(x — 1) — f(x —2) — f(x —3) = 1. Thus
¢ = 2, which completes the proof. O
7.2 Infinite Bernoulli Convolutions

In this subsection we study the infinite Bernoulli convolutions p defined by the IFS in
(1.14). It is known that for 0 < r < 1/2, u is a Cantor-type measure with Hausdorff
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Fig. 1 Density of the measure p 0.6
in Corollary 7.2

0.5
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00 05 10 15 20 25 3.0

dimensionIn2/Inr.Ifr = 1/2, v is the restriction of Lebesgue measure on [0, 1]. We
are mainly interested in the case 1/2 < r < 1. Erdés [20] proved that if 7! is a Pisot
number, then p is singular. On the other hand, Wintner [58] proved that u is absolutely
continuous for r = 27V/% for k > 1, and Garsia [24] found a family of algebraic
integers with the corresponding u being absolutely continuous. Solomyak [52] proved
that for Lebesgue a.e. r € (1/2,1), u is absolutely continuous; in particular, for
Lebesgue a.e. 7 € (1/+/2, 1), 1 has bounded density. Feng and Wang [22] constructed
a family of non-Pisot type Bernoulli convolutions such that their density functions, if
exist, are not in L2. Mauldin and Simon [43] proved that Bernoulli convolutions are
either singular or equivalent to Lebesgue measure. It follows that absolutely continuous
Bernoulli convolutions are equivalent to Lebesgue measure.
For2/3 <r < 1, define fby the following dilation equation:

= x~log 2=l 10,77 — 1],
Sx) = {0, ¥ € (—00.0). (7.6)
and
f)=2rfrx)— fx+1—-r"Y, xeR (1.7)

Note that the condition 2/3 < r < 1 implies that
1—r<r71—1§1/2§2—r71<r and 1—r§r2<2—r7].(7.8)

The following proposition shows that the definitions in (7.6) and (7.7) are compatible,
and f is well defined. We remark that Jordan et al. [30] showed that for Lebesgue a.e.
r € (1/4/2, 1), the density is continuous on R and positive on (0, 1). Proposition 7.3
below enlarges the interval on which absolutely continuous measures are known to
have positive density on (0,1); moreover, it gives an explicit expression for the density
on part of the domain.

Proposition 7.3 Let i be a self-similar measure defined by an IFS in the family (1.14),
together with probability weights po = p1 = 1/2. Assume r € [2/3,1) and p is
absolutely continuous with respect to Lebesgue measure with density f. Let f be
defined as in (7.6) and (7.7). Then
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(a) fis well defined, and f(x) = cf(x), where c™! = fON fdx;
(b) f is continuous and bounded on R, and is positive on (0, 1).

Proof (a) The proof of part (a) is similar to that of Proposition 7.1(a); we omit the
details.

(b) By definition, f is continuous on (—oo, r~! — 1). Assume that f is continuous
on (—o0, rg], where 0 < rg < 1. Since

ror T l—r T g =rr Tt =D+ U —r ) =o- DT = 1) <0,
we have ror =1 + 1 — r~! < . Thus, for any x € [ry, ror~1],

rx €[ror,r0l € (0,r0] and x +1—rtelro+1—r"tror t+1-r71
g (_Oo9r0]'

(7.7) implies that f is continuous on [rg, ror ~']. By induction, f is continuous on R.
Since fis symmetric about x = 1/2, f(x) =0forall x € (—o0,0]U[1, +00). It
follows that f is bounded on R. ~

To show the positivity of f on (0, 1), we first notice that by definition, f(x) > 0
for any x € (0,r~! — 1]. Since f is symmetric about x = 1/2, f(x) > 0 for all
xe[2—r11).Fixx e ¢! —1,2 —r~1). (7.8) implies that there exists some
m € N such that »"x € [2 — r~!, 1). Rewrite (7.7) as

Fo = e +en  Foe x4 1-rh,

and using the fact that fis non-negative on R, we have f(x) > Q2r)y™" f r7mx) >0,
which completes the proof. O

Forr =27k € [2/3,1), k = 2,3, ..., u is absolutely continuous with respect
to Lebesgue measure [58]. In [55], a numerical method is described to compute the
density of  with r = 1/+/2. Here we give explicit formulas for f when r = 1/+/2
and r = 1/+/2 (see Fig. 2).

Example 7.4 For the case r = 1/+/2 in Proposition 7.3,

(3/2+2)x, 0<x<+2-1,
£ = 1+1/4/2, V2-l=<x=<2-V2,
-G/ 2ZHDE -, 2-V2<x <1,
0, otherwise.

Proof By Proposition 7.3 and symmetry, fis defined by
Fo) =V2f/v2) = flx+ 1= V2);
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Fig.2 Density of the Bernoulli convolution with r = 1/¥/2,n =2, 3

moreover,

X, x €[0,v/2—1],
f)=11—x, xe2—+2.1],
0, x € (—00,0) U (1, +00).

Hence for any x € (\/E— 1,2 — ﬁ),
F) =vV2f@/VD) = Fx+1-v2) = vV2(x/vV2) = (x +1=V2) =2 - L.

Thus ¢ = (fol fabc)_1 = 3/+/2 + 2, which gives the formula for f. O

To state the next example, we introduce the following abbreviations: Let
a;:r_l7 o :=ai_1(a—1), i=1,2,3,4.

Example 7.5 For the case r = 1/~/2 in Proposition 7.3, f = ¢ f where f is given by

x2, 0<x <o,
2(a — Dx — (a — 13, o] < x <oy,
—x2+2(@® - Dx—(a—D*@a*+1), ar <x <a3,
~ —2x242x — (a+ D% — 1)?, a3 <x<1—a3,
For=1"7 ; (7.9)
—x"+22 —a)x, l—a3<x<1-—an,
—2(@—1x—(a—1)(a—-3), l—ap<x<l1-—ai,
(1—x)2, l—a; <x<1,
0, otherwise.

and ¢! = fol fdx.
Proof By Proposition 7.3 and symmetry, f (x) is defined by
f) =2a""f(x/a) — f(x +1—a); (7.10)
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moreover,
x2, x € [0, 1],
f)=10-x02% xel[l—ayl],
0, x € (—00,0) U (1, +00).

For x € [a1, a2), x/a,x + 1 —a € [0, «1] and thus by (7.10),
Fx)=2(a—-x—(a— 1>

Similarly, for 2 < i < 3 and x € [¢j, @j+1), we notice that x/a € [o;—1, «;) and
x +1—a € [0, o] and thus (7.10) implies

oo - [P 2@ - i@ 2@ 4 ), x el a),
S22 — @+ D2 -1 x € [o3. ag).

Since 1/2~< oy <~1 — a3, forany x € [a4, 1 —3), 1 —x € (23, 1 — 4] C [@3, 24)
and thus f(x) = f(1 —x) = —2x*> +2x — (a + 1)*(a — 1)>. Hence, (7.9) holds, by
using the symmetry of f. O

It is known (see [30]) that for r € (1/2, 5-1 /2), there exist infinitely many
x € (0, 1) such that lim,_, g+ w(B(x, r))/(2r) = 0. If the corresponding measure is
absolutely continuous with a continuous density, the following remark finds an explicit
family of zeros of the density.

Remark 7.6 Let u be a self-similar measure defined by an IFS in (1.14) together with
probability weights pop = p; = 1/2. Assume that p is absolutely continuous with
respect to Lebesgue measure with continuous density f and r € (1/2, 5-1) /2).
Then f(r"™/(r +1)) =0form > 0.

Proof Forallx € [0, 1], f(x) = 2r) " fr~ ')+ @2r) ' fGr~'x+1—r""). Since
STy =r x4+ 1—=r"! <0forx €[0,1—r], f(x) = @2r)~' £(r~'x) and thus

fx)=2rf(rx) forallx €[0,r ' —1]. (7.11)
The inequality
r+D—-¢"'=D=02+r—=D/Gr@r+1)) <0, re/2,5-1)/2),

implies 1/(1+r) € [0, r~1—1]. Since f is symmetric about x = 1/2, (7.11) implies
that

f(l/(l +r)) = 2rf(r/(1 +r)) = 2rf(1 —r/( +r)) = 2rf(1/(1 +r)).
It follows that f(1/(1 +r)) = 0 and hence f(+™ /(1 +r)) = 0 form > 0. O
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Fig.3 Numerical approximations to the densities of some infinite Bernoulli convolutions with contraction
ratio r

Figure 3 shows numerical approximations to the densities f for two numbers r
in the interval (1/2, («/5 — 1)/2) and two in the interval ((«/5 —1)/2,2/3). The
numbers s1 and s, are the solutions in (1, 2) of the equations 3 —x2—2=0and
x3 —2x% +2x —2 = O respectively; the corresponding measures are shown by Garsia
[24] to be absolutely continuous. It is unknown whether the measures in (a) and (c) are
absolutely continuous or singular. According to Proposition 7.3, the density function
in (d) is positive on (0, 1), while according to [30] (see also Remark 7.6), the one in
(b) has countably infinitely many zeros in (0, 1).

Proof of Theorem 1.7 Again, (MPI) holds since u is supported on R.

(a) Since N is odd, u is equivalent to Lebesgue measure on [0, N]. By Proposi-
tion 7.1, f is continuous and bounded on [0, N] and f(x) > 0 on (0, N). Theorem
1.6 now implies — A, satisfies (FPS).

(b) Similar to that of (a). Use Proposition 7.3 instead. O

8 Comments and Open Questions

It is of interest to determine wave propagation speed for other rationally ramified
fractals (see, [35, Definition 1.5.10]) and other non-p.c.f. fractals such as the diamond
fractal (see [38]). The condition rationally ramified is by definition weaker than the
condition finitely ramified. A finitely ramified fractal can be disconnected by removing
a finite number of points. For example, the Sierpinski carpet is rationally ramified, but
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not finitely ramified, and the Sierpinski gasket is not only rationally ramified fractal,
but also finitely ramified.

We do not know whether the condition f > (V) > 0 in Theorem 1.6 can be
improved. In view of Propositions 7.3 and 7.6, it is of interest to know whether the
density function of those absolutely continuous infinite Bernoulli convolutions with
re((Ws5- 1)/2,2/3) has a zero in (0, 1), and whether (FPS) or (IPS) holds.

Our result on finite propagation speed can also be applied to the Sierpifiski gasket
equipped with the Kusuoka measure and the so-called harmonic geodesic metric, as
two-sided Gaussian heat kernel estimates have been obtained by Kigami [34].
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Appendix: Proof of Lemma 2.3

Proofof Lemma 2.3 Since T, f := exp(—tA) f is the unique solution of the heat equa-
tion (1.2) with initial data f € H, it suffices to show that v(¢t) = T; f. For any t > 0
and f € H,

2

L/ / exp (—s—> COS(S\/X) dsdE, f =/ exp(—At) dE, f
4t 0

Jrt Jo Jo (A1)
=exp(—tA) f =T f,

where {E) },.cr is the spectral family associated with A. By using a result concerning
Bochner’s integral (see, e.g., [59, Section V.5, Corollary 2]) and Fubini’s Theorem,
we obtain, forany t > 0 and w € 'H,

00 2
(v@®), w) = «/% /0 exp ( - %)(cos(sﬂ)f, w)ds (Bochner)
1 oo S2 oo
= ﬁ/o exp(— 5)/0 cos(s«/X)d(Ekf, w)ds
1 00 o] SZ o
= \/? /0 /o exp ( — E> COS(S\/X) dsd(E, f,w) (Fubini)
00 00 2
= (\/% A /0 exp(— %) cos(s\/z) dsdE, f, w)
= (T f w), (by (A.1))
which completes the proof. O
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