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Abstract
We study the wave propagation speed problem onmetricmeasure spaces, emphasizing
on self-similar sets that are not post-critically finite. We prove that a sub-Gaussian
lower heat kernel estimate leads to infinite propagation speed, extending a result of
Lee (Infinite propagation speed for wave solutions on some p.c.f. fractals, https://
archive.org/details/arxiv-1111.2938) to include bounded and unbounded generalized
Sierpiński carpets, some fractal blowups, and certain iterated function systems with
overlaps. We also formulate conditions under which a Gaussian upper heat kernel
estimate leads to finite propagation speed, and apply this result to two classes of
iterated function systems with overlaps, including those defining the classical infinite
Bernoulli convolutions.
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1 Introduction

Strichartz [53] conjectured in 1999 that on certain fractals, such as the Sierpiński
gasket, waves may propagate with infinite speed, due to the difference in time and
Laplacian scalings (see [17]). This prediction shows that fractals could exhibit behav-
iors that differ fundamentally from classical smooth objects. Lee [42] recently proved
that on a class of self-similar sets satisfying the post-critically finite (p.c.f.) condition,
including the Sierpiński gasket, the conjecture is true. The first objective of this paper
is to extend Lee’s result to fractals that are non-p.c.f., such as generalized Sierpiński
carpets. There are two main ingredients in Lee’s proof, namely, sub-Gaussian heat
kernel estimates and Kannai’s transform. Using these we generalize Lee’s theorem to
locally compact metric measure spaces.

We refer the reader to Sect. 2 for the definitions of the unit, bounded, finite, and
infinite propagation speed properties, abbreviated (UPS), (BPS), (FPS), and (IPS),
respectively. The relationship between wave propagation speed and heat kernel esti-
mates is well known. Cheeger et al. [15] obtained (UPS) for Laplacians defined on
complete Riemannian manifolds and used it to study heat kernel estimates. Coulhon
and Sikora [16,51] showed that (UPS) is equivalent to the Davies-Gaffney estimate
[(see (5.1)], and obtained heat kernel estimates by assuming (UPS). We remark that
in the literature (UPS) is called the finite speed propagation property. Our definition
of finite propagation speed (FPS) [(see Definition 2.1(c)] is a weaker notion.

Let H be a Hilbert space and A be a non-negative self-adjoint operator on H. The
wave equation is defined as

{
utt (t) = −Au(t), t ≥ 0,

u(0) = f , ut (0) = g.
(1.1)

The heat equation is defined as

{
vt (t) = −Av(t), t ≥ 0,

v(0) = f .
(1.2)

It is well known that each of these equations has a unique solution (see Definitions 2.2
and 2.3 for the definition of a solution).

Let (X , d) be a metric space, and μ be a Radon measure on (X , d). Let C(X , d)

denote the space of all real-valued continuous functions on X and ‖u‖p denote the
L p-norm in L p(X , μ) for 1 ≤ p ≤ ∞.
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Theorem 1.1 (Lee’s theorem for locally compact metric measure spaces.) Let (X , d)

be a locally compact metric space, μ be a σ -finite Radon measure on (X , d) such
that supp(μ) = X. Also, let A be a non-negative self-adjoint operator on L2(X , μ)

and (E , dom E) be the associated closed form. Assume the corresponding heat kernel
p(t, x, y) exists and there exist constants c1 > 0, c2 > 0, ε > 0, β > 2, and α ∈ R

such that the heat kernel p(t, x, y) satisfies

p(t, x, y) ≥ c1t
−α/2 exp

(
− c2

(d(x, y)

t1/β

)β/(β−1))
for μ-a.e. x, y ∈ X and all t ∈ (0, ε). (1.3)

Then the following conclusions hold:

(a) (X , d, μ, A) satisfies (IPS).
(b) Let f ∈ dom E be a non-negative and non-zero function. If dom E ⊆ C(X , d),

and there exists a constant C := C( f ) > 0 such that ‖ cos(t√A) f ‖∞ ≤ C for
all t > 0, then for any x ∈ X and any δ > 0, there exists some t0 ∈ (0, δ) such
that cos(t0

√
A) f (x) > 0.

Lower heat kernel estimates (1.3) have been obtained for several classes of fractals,
including a class of p.c.f. fractals (see, e.g., [4]) and Sierpiński carpets (see, e.g., [10]).
In general, the constant α is the spectral dimension and β is the walk dimension. We
remark that for all f ∈ dom E , E(

cos(t
√
A) f , cos(t

√
A) f

) ≤ E( f , f ) (see (4.2))
and thus cos(t

√
A) f ∈ dom E for all t > 0. Also, if f ∈ dom A and g = 0, then

cos(t
√
A) f is the solution of the wave equation (1.1).

Lee [42] considered Laplacians A defined on p.c.f. fractals X with a regular har-
monic structure. It follows from [32, Chapter 3] that the associated closed form
(E, dom E) is a resistance form with resistance metric R1/2, which is compatible
with the original topology (see [32, Chapter 2] for the definition of resistance form).
In particular, dom E ⊆ C(X , R1/2) and

|u(x) − u(y)|2 ≤ R(x, y)E(u, u) for all x, y ∈ X and u ∈ dom E; (1.4)

consequently, ds < 2 (see [37]). Also, functions of finite energy are locally bounded
and so every single point has positive capacity (see [36, Chapter 9] for details). Using
(1.4), we see that ‖ cos(t√A) f ‖∞ ≤ C for all t > 0. Hence, the case considered in
[42] satisfies all additional assumptions in Theorem 1.1(b). Also, Theorem 1.1 allows
(X , d) to be unbounded, which is not considered in [42, Theorem 8]. Moreover, if
(X , d) is bounded, the sub-Gaussian heat kernel estimate (1.3) is weaker than the
one in [42, Theorem 8], which corresponds to the case α = 0. Thus, Theorem 1.1
generalizes [42, Theorem 8] and we will see that it can be applied to certain non-p.c.f.
and certain unbounded fractals.

A main motivation of this work is to study Strichartz wave propagation speed
conjecture on fractals defined by iterated function systems (IFS)with overlaps together
with the associated self-similar measures. Let μ be a positive finite Borel measure on
Rwith supp(μ) = [a, b] and H1(a, b) be the usual Sobolev space on (a, b). Consider
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the bilinear form E defined as

E(u, v) =
∫ b

a
u′(x)v′(x) dx for all u, v ∈ dom E := H1(a, b). (1.5)

It is well known that (E, dom E) is a Dirichlet form on L2([a, b], μ) (see [23]) and
dom E ⊆ C([a, b], d|·|); here, and throughout rest of this paper, d|·| denotes the
Euclidean metric.

The first measure we study is the infinite Bernoulli convolution associated with the
golden ratio. Let

S0(x) = ρx, S1(x) = ρx + (1 − ρ), ρ =
√
5 − 1

2
, (1.6)

and let μ be the self-similar measure satisfying

μ = 1

2
μ ◦ S−1

0 + 1

2
μ ◦ S−1

1 . (1.7)

Clearly, supp(μ) = [0, 1]. We also study a family of convolutions of Cantor-type
measures. Let

S0(x) = 1

m
x, S1(x) = 1

m
x + m − 1

m
, (1.8)

wherem ≥ 3 is an integer. Let νm be the self-similar measure defined by the IFS (1.8)
with probability weights p0 = p1 = 1/2. Them-fold convolution of νm , denoted μm ,
is the self-similar measure defined by the following IFS with overlaps (see [40,48]):

Si (x) = 1

m
x + m − 1

m
i, i = 0, 1, . . . ,m,

together with probability weights

wi := 1

2m

(
m

i

)
, i = 0, 1, . . . ,m.

That is,

μm =
m∑
i=0

1

2m

(
m

i

)
μm ◦ S−1

i . (1.9)

Note that supp(μm) = [0,m].
Combining Theorem 1.1 with the sub-Gaussian heat kernel estimate obtained

recently by Gu et al. [25], we have

Corollary 1.2 Let μ be a positive finite Borel measure on R with supp(μ) = [a, b],
and A be the non-negative self-adjoint operator associated with (E, dom E) in (1.5).
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(a) If μ is given by (1.6) and (1.7), then ([0, 1], d|·|, μ, A) satisfies (IPS). Moreover,
if 0 ≤ f ∈ dom E is a non-zero function, then for any x ∈ [0, 1] and any δ > 0,
there exists some t0 ∈ (0, δ) such that cos(t0

√
A) f (x) > 0.

(b) If μ := μm is given by (1.9) and m ≥ 3 is an integer, then ([0,m], d|·|, μm, A)

satisfies (IPS).Moreover, If 0 ≤ f ∈ dom E is a non-zero function, then for any x ∈
[0,m] and any δ > 0, there exists some t0 ∈ (0, δ) such that cos(t0

√
A) f (x) > 0.

Theorem 1.1 allows us to prove (IPS) for certain fractal blowups, which are
unbounded. We first describe fractal blowups (see, e.g., [26]). Let 	 = {1, . . . , N }
for an integer N ≥ 2 and {Si }Ni=1 be an IFS on R

n . For any m ≥ 0 and any word
i = i1 · · · im ∈ 	m , we use |i | = m to denote the length of i , and i is the empty word
if |i | = 0. Denote by

Si := Si1 ◦ · · · ◦ Sim .

Definition 1.1 Let N ≥ 2 and K be the self-similar set associated with an IFS {Si }Ni=1.
Fix an infinite word θ = i1i2 · · · ∈ 	∞. For each m ≥ 1, let

Km := S−1
i1···im (K ) := S−1

i1
◦ · · · ◦ S−1

im
(K ).

A fractal blowup K∞ is defined as

K∞ :=
∞⋃

m=1

Km . (1.10)

Note that K∞ is unbounded and determined by the choice of the infinite word θ .

Example 1.3 Let Si (x) = (x − ai )/3 + ai for i = 1, 2, 3, where a1 = 0, a2 = 1/2,
a3 = 1. Then the associated attractor K = [0, 1]. Let K∞ be the associated fractal
blowup given by (1.10) with θ = 1313 · · ·.

We note that K∞ = S−1
1313···([0, 1]) = R. Let μ be the self-similar measure defined

by the IFS in Example 1.3. Kigami [33, Section 5] constructed a regular local Dirichlet
form (E, dom E) on L2(K , μ). Thewave equation defined by the operator A associated
with (E, dom E) has recently been studied by Andrews et al. [3]. Let μ∞ be the
extension of μ on K∞ as defined by Gu and Hu in [26, Section 4]. Beginning with
(E, dom E), Gu and Hu [26] constructed a regular local conservative Dirichlet form
(Ẽ, dom Ẽ) on L2(K∞, μ∞).

Corollary 1.4 Let K∞ be defined as in Example 1.3, μ be the self-similar measure
defined by the IFS in Example 1.3 together with the probability vector {pi }3i=1, and
μ∞ be defined as in [26, Section 4]. Let Ã be the non-negative self-adjoint opera-
tors associated with the Dirichlet form (Ẽ, dom Ẽ) in [26]. If p1 = p3 �= p2, then
(K∞, d|·|, μ∞, Ã) satisfies (IPS).

Theorem 1.1 also allows us to prove that waves propagate with infinite speed on
generalized Sierpiński carpets, which are not p.c.f. self-similar sets. The definitions of
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these carpets, aswell as the correspondingLaplacians, are given in Sect. 4. Generalized
Sierpiński carpets inRn have been studied in [6–8,10,11]. It is known that the spectral
dimension ds and the Hausdorff dimension d f satisfy ds ≤ d f < n and thus ds < 2
in R2. Generalized Sierpiński carpets with n ≥ 3 and ds < 2 can be found in [10,39].

Corollary 1.5 Let F denote a generalized Sierpiński carpet, and F̃ denote the corre-
sponding unbounded Sierpiński carpet. Let A and Ã be the Laplacians on F and F̃
respectively, as given in [9,10] or [39]. Then the following results hold.

(a) A and Ã satisfy (IPS).
(b) Let (E, dom E) be the regular Dirichlet form on L2(F, μ) associated with A, and

f ∈ dom E be a non-negative and non-zero function, where μ is given in Sect. 4.
If ds < 2, then for any x ∈ F and any δ > 0, there exists t0 ∈ (0, δ) such that(
cos(t0

√
A) f

)
(x) > 0.

We do not know whether Corollary 1.5(b) holds for F̃ and Ã. In this case, we are
not able to verify inequality (4.7), sinceμ(F̃) = +∞; as a result it is not clear whether
the condition ‖ cos(t√A) f ‖∞ ≤ C in Theorem 1.1(b) holds.

For a class of p.c.f. fractals, including the Sierpiński gasket, Strichartz [54, The-
orem 6.1] obtained two-sided sub-Gaussian heat kernel estimates for the product of
these p.c.f. fractals, which are not p.c.f. Theorem 1.1 can be applied to these products.

In view of Lee’s theorem, as well as its more general forms above, it is natural to
ask whether a Gaussian upper heat kernel estimate will imply finite propagation speed.
The second objective of this paper is to prove that, under suitable conditions, this is
true.

Let (X , d, μ) be a metric measure space and A be a non-negative self-adjoint
operator on L2(X , μ). It is well known that if there exists a constant c > 0 such that

p(t, x, y) ≤ c exp
(

− d(x, y)2

4t

)
for all x, y ∈ X and all t > 0, (1.11)

then the Davies–Gaffney estimate [(see (5.1)] holds. Thus, the Gaussian upper heat
kernel estimate (1.11) implies (UPS). There is also an analogue of this for (BPS) (see
Corollary 5.2). In order to prove our main result on finite propagation speed, we will
first weaken the assumptions of these results and establish (BPS) (see Theorem 5.6),
and then use strict locality to obtain (FPS) (see Theorem 1.6).

We aremainly interested in Laplacians defined bymeasures on a bounded subsets of
R
n . Let � ⊆ R

n be a bounded open subset ofRn , μ be a positive finite Borel measure
onRn with supp(μ) ⊆ � andμ(�) > 0. It is known thatμ defines a Dirichlet Laplace
operator �μ, if the following Poincaré inequality (or spectral gap inequality) for a
measure (MPI) holds: There exists a constant C > 0 such that for all u ∈ C∞

c (�),

∫
�

|u|2 dμ ≤ C
∫

�

|∇u|2 dx (1.12)

(see, e.g., [28,44,46]). Here C∞
c (�) denotes the space of all C∞ functions on � with

compact support. We write V ⊂⊂ � if V is compactly contained in �, i.e., V ⊂ �

and V is compact. We call an open connected subset of Rn a domain.
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In the following theorem, ρ stands for the intrinsic metric (see Definition 6.1).

Theorem 1.6 Let � ⊆ R
n be a bounded domain. Assume that μ is equivalent to

Lebesgue measure on � with density dμ/dx = f ∈ L∞(�,μ) and let −�μ be
the Dirichlet Laplacian with respect to μ. Also, assume that for every V ⊂⊂ �,
there exists some constant ε(V ) such that f ≥ ε(V ) > 0 Lebesgue a.e. on V . Then
(�, ρ, μ,−�μ) satisfies (BPS) and (�, d|·|, μ,−�μ) satisfies (FPS).

Hereweoutline themain ideas of the proof ofTheorem1.6. First, the assumptions on
f allow us to prove that under (MPI), the intrinsic metric ρ is topologically equivalent
to d|·| and hence the Dirichlet form in question is strictly local (see Definition 6.2).
They also lead to the completeness property, the volume doubling property, and the
strong Poincaré inequality (see Definition 6.3). Second, we invoke a theorem of Sturm
[56] and establish a desired upper heat-kernel estimate with respect to the intrinsic
metric, which leads to (BPS). Finally, we use strict locality to obtain (FPS)with respect
to the Euclidean metric.

In Sect. 7, we apply Theorem 1.6 to two classes of self-similar measures on R. Let
μ be a self-similar measure defined by an IFS {Si }Ni=0 onR. It is known that if supp(μ)

is not a singleton, then μ satisfies (MPI) (see, e.g., [28]).
The first family of measures we study is defined by the following IFS on R:

Si (x) = 1

2
x + i

2
, i = 0, 1, . . . , N , (1.13)

where N ≥ 3. The second family consists of the well-known infinite Bernoulli con-
volutions, which are defined by the following class of IFSs on R:

S0(x) = r x, S1(x) = r x + 1 − r , 0 < r < 1. (1.14)

Theorem 1.7 (a) Letμ be the self-similar measure defined by the IFS {Si }Ni=0 in (1.13)
and probability weights p0 = · · · = pN = 1/(N +1). If N ≥ 3 is odd, then −�μ

satisfies (FPS).
(b) Let μ be the self-similar measure defined by the IFS {S0, S1} in (1.14) and proba-

bility weights p0 = p1 = 1/2. Assume μ is absolutely continuous with respect to
Lebesgue measure and r ∈ (2/3, 1). Then −�μ satisfies (FPS).

The rest of this paper is organized as follows. Section 2 summarizes some notation,
definitions and results that will be needed throughout the paper. Section 3 is devoted to
the proof of Theorem 1.1. In Sect. 4, we apply Theorem 1.1 to generalized Sierpiński
carpets and unbounded Sierpiński carpets and prove Corollary 1.5. Section 5 studies
(BPS) and (FPS) in generalmetricmeasure spaces. In Sect. 6,we proveTheorem1.6. In
Sect. 7, we provide examples of finite propagation speed, including infinite Bernoulli
convolutions, and prove Theorem 1.7. Finally, we state some open questions and
comments in Sect. 8.
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2 Preliminaries

In this section, we summarize some notation, definitions, and preliminary results that
will be used throughout this paper. Let (X , d) be a metric space. Let d(U1,U2) :=
inf{d(x, y) : x ∈ U1, y ∈ U2} denote the distance between U1,U2 ⊆ X , and write
d(x,U ) := d({x},U ). Bd(x, r) := {y ∈ X : d(x, y) < r} denote an open ball with
radius r and center x . In particular, if d = d|·|, then we write B(x, r) := Bd(x, r).

Let Ln (and dx) be Lebesgue measure on R
n . Let � ⊆ R

n , n ≥ 1, be a bounded
open subset, and let diam(U ) := sup{|x − y| : x, y ∈ U } denote the diameter of
U ⊆ �. Let H1(�) be the Sobolev space with inner product

〈u, v〉H1(�) :=
∫

�

uv dx +
∫

�

∇u∇v dx,

and let H1
0 (�) denote the completion of C∞

c (�) in the H1(�) norm.
For the definitions of closed quadratic form, Dirichlet form, Markov property, as

well as the strongly local, and regular properties of Dirichlet forms, we refer the reader
to Fukushima et al. [23]. We also refer the reader to Yosida [59] for the definitions of
semigroup and ultracontractivity.

2.1 Heat Kernel

Let X be a Hausdorff topological space. A positive Borel measure μ on X is called
a Radon measure if it is (1) inner regular, i.e., for each measurable set A, μ(A) =
sup{μ(K ) : K ⊆ A, K is compact} and (2) locally finite, i.e., each point in X has a
neighborhood U such that μ(U ) < ∞.

Let (X , μ) be a measure space with a Radon measure μ, A be a non-negative self-
adjoint operator on L2(X , μ), and {Tt }t>0 be the associated semigroup on L2(X , μ),
i.e., Tt = e−t A. A non-negative measurable function p(t, x, y) on (0,∞) × X × X is
called the heat kernel of the semigroup {Tt }t>0 (or of the operator A) if p(t, x, y) is
the integral kernel of the operator Tt , i.e., for any t > 0 and any f ∈ L2(X , μ),

(Tt f )(x) =
∫
X
p(t, x, y) f (y) dμ(y) for μ-a.e. x ∈ X .

Heat kernel may not exist in general. However, it is known to exist in many spaces
such as Euclidean spaces, certain Riemannianmanifolds, and certain classes of fractals
(see, for instance, [18] for a sufficient condition). If it exists then it is unique (up to a
set of measure zero).

2.2 Wave Propagation Speed

Let (X , d, μ) be a metric measure space, i.e., μ is a Borel measure with respect to
the topology defined by the metric d. For any measurable subset U ⊆ X , we denote
L2(U , μ|U ) simply by L2(U , μ).
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Definition 2.1 Let (X , d, μ) be a metric measure space and A be a non-negative
self-adjoint operator on L2(X , μ). Regarding solutions of the corresponding wave
equation, we say (X , d, μ, A) (or simply A) has the

(a) unit propagation speed property (UPS) if there exists some 0 < s ≤ 1 such that

(
cos(t

√
A) f1, f2

)
μ

= 0

for all t ∈ (0, r/s), all open subsets Ui ⊆ X with r := d(U1,U2) > 0, and all
fi ∈ L2(Ui , μ), i = 1, 2, (cf. [51]);

(b) bounded propagation speed property (BPS) if there exists some s > 0 such that

(
cos(t

√
A) f1, f2

)
μ

= 0

for all t ∈ (0, r/s), all open subsets Ui ⊆ X with r := d(U1,U2) > 0, and all
fi ∈ L2(Ui , μ), i = 1, 2;

(c) finite propagation speed property (FPS) if for any open subsetsUi ⊆ X (i = 1, 2)
with r := d(U1,U2) > 0, there exists some s > 0 (may depend on U1,U2) such
that

(
cos(t

√
A) f1, f2

)
μ

= 0

for all 0 < t < r/s and all fi ∈ L2(Ui , μ);
(d) infinite propagation speed property (IPS) if there exist open subsets Ui ⊆ X

(i = 1, 2) with d(U1,U2) > 0 such that for any s > 0, there exist some t ∈ (0, s)
and fi ∈ L2(Ui , μ) satisfying

(
cos(t

√
A) f1, f2

)
μ

�= 0.

Asmentioned in the introduction, our definition of (UPS) is equivalent to the defini-
tion of finite speed propagation property in the literature (see, e.g., [16]). From (BPS)
one obtains (UPS) by a simple change of the metric d, and vice versa. It follows from
Definition 2.1 that (UPS) implies (BPS), which in turn implies (FPS). (BPS) implies
that wave propagation speed is less than s. (FPS) and (IPS) are negations of each other.

We say that two metric spaces (X , d1) and (X , d2) are strongly equivalent if there
exist two positive constants c1 and c2 such that c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y)
for all x, y ∈ X . The following theorem compares wave propagation speeds in two
different metrics; part (b) will be needed in the proof of Theorem 1.6.

Proposition 2.1 Let (X , di , μ), i = 1, 2, be two metric measure spaces and let A be
a non-negative self-adjoint operator on L2(X , μ).

(a) If d1 and d2 are strongly equivalent and (X , d1, μ, A) satisfies (BPS), then so does
(X , d2, μ, A).

(b) Assume that d1 is topologically equivalent to d2, and for all open subsets U1,U2 ⊆
X, d2(U1,U2) > 0 implies d1(U1,U2) > 0. If (X , d1, μ, A) satisfies (FPS), then
(X , d2, μ, A) satisfies (FPS).
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Proof The proof of (a) is straightforward; we only prove (b). let Ui ⊆ X(i = 1, 2)
be two open subsets on the metric space (X , d2) with d2(U1,U2) > 0. Since d1 is
topologically equivalent to d2, U1 and U2 are two open subsets on the metric space
(X , d1). Let C := C(U1,U2) = d1(U1,U2)/d2(U1,U2). By assumption, there exists
some constant s > 0, which may depend onUi , such that (cos(t

√
A) f1, f2)μ = 0 for

all 0 < t < d1(U1,U2)/s and all fi ∈ L2(Ui , μ). It follows that (cos(t
√
A) f1, f2)μ =

0 for all 0 < t < Cd2(U1,U2)/s and all fi ∈ L2(Ui , μ).Hence, (X , d2, μ, A) satisfies
(FPS). ��

Finally, we remark that the condition “d2(U1,U2) > 0 implies d1(U1,U2) > 0” in
Proposition 2.1(b) need not hold in general. To see this, let X = (0, 1) and define

d1(x, y) := min
{|x − y|, 1 − |x − y|} and d2(x, y) := |x − y| for x, y ∈ X .

Then d1 and d2 are topologically equivalent. However, with U1 = (0, 1/4) and U2 =
(3/4, 1), one has d2(U1,U2) = 1/2 but d1(U1,U2) = 0.

2.3 Wave and Heat Equations on Hilbert Spaces

LetH be a (real or complex) Hilbert space with inner product (·, ·) and norm ‖ · ‖, A
be a non-negative self-adjoint operator on H with domain dom A, and (E, dom E) be
the associated closed quadratic form onH. Let A = ∫ ∞

0 λ dEλ be the unique spectral
representation of A. Then

dom E =
{
u ∈ H :

∫ ∞

0
λ d(Eλu, v) < ∞ for any v ∈ H

}
(2.1)

and

dom A =
{
u ∈ H :

∫ ∞

0
λ2 d(Eλu, v) < ∞ for any v ∈ H

}
. (2.2)

Definition 2.2 A function u : R → H is called a solution of (1.1) if its second-order
strong derivative with respect to t exists, u(t) ∈ dom A for any t ∈ R, and equation
(1.1) is satisfied.

The existence and uniqueness of solution of the abstract wave equation (1.1) is well
known (see, e.g., [50]).

Theorem 2.2 LetH be a complex Hilbert space and A be a non-negative self-adjoint
operator on H with domain dom A. Then for any f ∈ dom A and g ∈ dom

√
A, the

initial value problem

utt (t) = −Au(t), u(0) = f , ut (0) = g,
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has a unique solution u : [0,∞) → H given by

u(t) =
∫ ∞

0
cos(t

√
λ) dEλ f +

∫ ∞

0

sin(t
√

λ)√
λ

dEλg,

where {Eλ}λ∈R is the spectral family associated with A.

Definition 2.3 A function v : [0,∞) → H is called a solution of (1.2) if v(t) is
strongly continuous at t = 0, v(t) is differentiable on (0,∞), v(t) ∈ dom A for any
t > 0 and satisfies equation (1.2).

Let {Tt }t>0 be the strongly continuous semigroup associated with A. By the defini-
tion of semigroup (see, e.g., [23]), Tt is contractive for all t > 0. It is well known that
for any f ∈ H, there exists a unique solution v : [0,∞) → H of the heat equation
(1.2), given by v(t) = Tt f (see, e.g., [32]).

The following relation between the wave equation (1.1) and the heat equation
(1.2) is known as the Kannai transform [31]. We include a proof in the Appendix for
completeness.

Lemma 2.3 Let H be a separable Hilbert space and let A be a non-negative self-
adjoint operator on H. Then for any f ∈ H, the function v(t) defined by

v(t) :=

⎧⎪⎨
⎪⎩

f , t = 0,

1√
π t

∫ ∞

0
exp

(
− s2

4t

)
cos(s

√
A) f ds, t ∈ (0,∞),

(2.3)

is the solution of the heat equation (1.2) with initial data f .

In the rest of this section, we remark on the case when A has compact resolvent,
even though the results are not needed in the paper. Let (ϕn)n≥1 be an orthonormal
basis of H consisting of the eigenfunctions of A such that Aϕn = λnϕn for n ≥ 1,
0 ≤ λ1 ≤ · · · ≤ λn ≤ λn+1 ≤ · · · , and limn→∞ λn = ∞. The domains dom E and
dom A can be expressed by using eigenfunctions and eigenvalues as

dom E =
{ ∞∑
n=1

αnϕn :
∞∑
n=1

α2
nλn < ∞

}

and

dom A =
{ ∞∑
n=1

αnϕn :
∞∑
n=1

α2
nλ

2
n < ∞

}

(cf. (2.1) and (2.2)). Moreover, for u = ∑∞
n=1 αnϕn ∈ dom A, Au = ∑∞

n=1 αnλnϕn .
In the wave equation (1.1), let

f =
∞∑
n=1

αnϕn and g =
∞∑
n=1

βnϕn . (2.4)
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Let

u(t) :=
∞∑
n=1

αn cos(t
√

λn)ϕn +
∞∑
n=1

βn
sin(t

√
λn)√

λn
ϕn,

G(t) := −
∞∑
n=1

αn

√
λn sin(t

√
λn)ϕn +

∞∑
n=1

βn cos(t
√

λn)ϕn,

K (t) := −
∞∑
n=1

αnλn cos(t
√

λn)ϕn −
∞∑
n=1

βn

√
λn sin(t

√
λn)ϕn . (2.5)

Using Theorem 2.2, one can prove that for any f ∈ dom A and g ∈ dom
√
A,

u(t) defined in (2.5) is the unique solution of the wave equation (1.1). Moreover,
ut = G(t) ∈ dom

√
A and utt = K (t) ∈ H for any t ∈ R.

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. Some key ideas of Lee [42] are used.

Proof of Theorem 1.1 Let U be a bounded open subset of X , and f ∈ L2(X , μ) be
non-negative on X and non-zero onU . Let v(x, t) be the solution of the heat equation
(1.2) with initial data f . Using (1.3), we have for μ-a.e. x ∈ U and t ∈ (0, ε),

v(x, t) =
∫
X
p(t, x, y) f (y) dμ(y)

≥ c1

∫
X
t−α/2 exp

(
− c2

(d(x, y)

t1/β

)β/(β−1))
f (y) dμ(y)

≥ c1

∫
U
t−α/2 exp

(
− c2

(d(x, y)

t1/β

)β/(β−1))
f (y) dμ(y)

≥ c1‖ f ‖L1(U ,μ)t
−α/2 exp

(
− C

tγ

)
,

(3.1)

where C := c2 sup{d(x, y)β/(β−1) : x, y ∈ U } < ∞ and γ := 1/(β − 1).
(a) Suppose, on the contrary, that A satisfies (FPS). Let V1, V2 be two bounded

open subsets of X such that d(V1, V2) > 0 and μ(V2) < +∞, and f ∈ L2(V1, μ) be
a non-negative and non-zero function, extended by zero to X . Then there exists some
constant δ > 0 such that

(
cos(t

√
A) f , g

)
μ

= 0 for all 0 < t < δ and all g ∈ L2(V2, μ).

It follows that cos(t
√
A) f (x) = 0 for μ-a.e. x ∈ V2 and all t ∈ (0, δ). Since f ≥ 0,

v(x, t) = (Tt f )(x) ≥ 0 for all t > 0. By Lemma 2.3, for all t ≥ 0,
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∫
V2

|v(x, t)| dμ =
∫
V2

v(x, t) dμ = 1√
π t

∫
V2

∫ ∞

0
exp

(
− s2

4t

)
cos(s

√
A) f ds dμ

= 1√
π t

∫
V2

∫ ∞

δ

exp
(

− s2

4t

)
cos(s

√
A) f ds dμ

= 1√
π t

∫ ∞

δ

exp
(

− s2

4t

) ∫
V2

cos(s
√
A) f dμ ds

≤ 1√
π t

∫ ∞

δ

exp
(

− s2

4t

)∥∥ cos(s√A) f
∥∥
2

√
μ(V2) ds

≤
√

μ(V2)√
π t

‖ f ‖2
∫ ∞

δ

exp
(

− s2

4t

)
ds

≤ C1√
π t

∫ ∞

δ

exp
(

− s2

4t

)
ds, (3.2)

where C1 is a positive constant. Letting ω = (s − δ)/
√
4t in (3.2), we see that∫

V2
|v(x, t)| dμ ≤ 2C1√

π

∫ ∞

0
exp

(
−( δ√

4t
+ ω

)2)
dω

= 2C1√
π

exp
(
−δ2

4t

) ∫ ∞

0
exp

(
−ω2 − δ√

t
ω

)
dω

= 2C1√
π

exp
(
−δ2

4t

)(√
t

C2
+ O

(
t3/2

))
as t → 0+, (3.3)

where C2 is a positive constant. On the other hand, applying (3.1) with U = V1 ∪ V2
and using the fact that f = 0 on V2, we have∫
V2

|v(x, t)| dμ ≥ c1μ(V2)‖ f ‖L1(V1,μ)t
−α/2 exp

(
− C

tγ

)
for all t ∈ (0, ε), (3.4)

whereC := c2 sup{d(x, y)β/(β−1) : x, y ∈ V1∪V2} < ∞. Combining (3.3) and (3.4)
yields

c1μ(V2)‖ f ‖L1(V1,μ)t
−α/2 exp

(
− C

tγ

)
≤ 2C1√

π
exp

(
−δ2

4t

)(√
t

C2
+ O

(
t3/2

))
.

As ‖ f ‖L1(V1,μ) > 0, we get

t−α/2 exp
(
t−γ

( − C + δ2

4t1−γ

)) ≤ C3

(√
t

C2
+ O

(
t3/2

))
, (3.5)

where C3 is a positive constant. Letting t → 0+, the left side tends to ∞, while the
right side tends to 0, a contradiction. Hence, A satisfies (IPS).

(b) We now assume, in addition, that f ∈ dom E . Fix any x ∈ U . Suppose, on the
contrary, that there exists a constant δ > 0 such that

(cos(t
√
A) f )(x) ≤ 0 for all 0 < t < δ. (3.6)
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It follows from Lemma 2.3 and the assumption ‖ cos(t√A) f ‖∞ ≤ C for all t > 0
that

v(x, t) = 1√
π t

∫ ∞

0
exp

(
− s2

4t

)
(cos(s

√
A) f )(x) ds

≤ 1√
π t

∫ ∞

δ

exp
(

− s2

4t

)
|(cos(s√A) f )(x)| ds

≤ C√
π t

∫ ∞

δ

exp
(

− s2

4t

)
ds for all t ≥ 0. (3.7)

Letting ω = (s − δ)/
√
4t in (3.7), we obtain, as in the proof of (a), that

v(x, t) ≤ 2C√
π
exp

(
−δ2

4t

)(√
t

C4
+ O

(
t3/2

))
as t → 0+, (3.8)

where C4 is a positive constant. Combining (3.1) and (3.8) yields

c1‖ f ‖L1(U ,μ)t
−α/2 exp

(
− C

tγ

)
≤ 2C√

π
exp

(
−δ2

4t

)(√
t

C4
+ O

(
t3/2

))
,

which implies an analogue of (3.5) and a contradiction. SinceU is arbitrary, the proof
is complete. ��

4 Fractals with Infinite Propagation Speed

4.1 Iterated Function Systems with Overlaps

Proof of Corollary 1.2 (a) Gu et al. [25, Theorem 1.2] obtained the following lower
heat kernel estimate: there exist positive constants c1, c2 such that

p(t, x, y) ≥ c1
V (x, t1/β)

exp

(
−c2

(
d∗(x, y)
t1/β

)β/(β−1)
)

, (4.1)

for all t ∈ (0, 1) and x, y ∈ [0, 1], where β > 2, d∗ is a metric on [0, 1] (see [25,
Section 3]), and V (x, t1/β) := μ(Bd∗(x, t

1/β)). Notice that V (x, t1/β) ≤ μ([0, 1]) =
1 for all t ∈ (0, 1). Thus the lower heat kernel estimate (1.3) holds with ε = 1 and
α = 0. It follows fromTheorem 1.1(a) that ([0, 1], d∗, μ, A) satisfies (IPS).Moreover,
according to [25, Lemma 3.8],

|x − y|μ([x, y]) � d∗(x, y)β,



Journal of Fourier Analysis and Applications (2020) 26 :31 Page 15 of 38 31

This implies that d∗ is topologically equivalent to d|·| and that for any open subsets
U1,U2 ⊆ [0, 1], d∗(U1,U2) > 0 if and only if d|·|(U1,U2) > 0. Hence, Proposi-
tion 2.1(b) implies that ([0, 1], d|·|, μ, A) has (IPS).

Let f ∈ dom E be a non-negative and non-zero function. Let {Eλ}λ∈R be the
spectral family associated with A. Since

E(
cos(t

√
A) f , cos(t

√
A) f

) =
∫ ∞

0
λ cos2(t

√
λ) d(Eλ f , f )

≤
∫ ∞

0
λ d(Eλ f , f ) = E( f , f ), (4.2)

cos(t
√
A) f ∈ dom E . Note that |u(x)−u(y)| ≤ |x−y|1/2√E(u, u) for all u ∈ dom E .

It follows that dom E ⊆ C([0, 1], d|·|), and hence there exists a constantC := C( f ) >

0 such that ‖ cos(t√A) f ‖∞ ≤ C for all t > 0. Hence, the assertion in (a) follows
from Theorem 1.1(b).

(b) The following lower heat kernel estimate is obtained in [25, Theorem 1.3]:

p(t, x, y) ≥ c1
V (x, t1/β)

exp

(
−c2

(
d∗(x, y)
t1/β

)β/(β−1)
)

,

for all t ∈ (0, 1) and x, y ∈ [0,m], where β > 2, d∗ is a metric on [0,m] defined in
[25, Section 4], and V (x, t1/β) := μm(Bd∗(x, t

1/β)). The rest of proof is similar to
that of part (a). ��

4.2 Fractal Blowups

In this subsection, we will apply our results on infinite propagation speed to a time
changed Brownian motion on R, which is constructed by blowing up a given self-
similar set (see [26]).

Proof of Corollary 1.4 Gu and Hu [26] obtained the lower estimates of the heat kernel:

p(t, x, y) ≥ c1
V (x, t1/β)

exp

(
−c2

(
d∗(x, y)
t1/β

)β/(β−1)
)

, (4.3)

for all t > 0 and x, y ∈ K∞, where β > 2, d∗ is a metric on K∞ defined as in [26,
Section 4], and V (x, t1/β) := μ(Bd∗(x, t

1/β)). Let ε be a positive constant such that
V (x, ε1/β) ≤ 1 for all x ∈ K∞. Then (1.3) holds. Moreover, by [26, Chapter 4], we
have d∗ is topologically equivalent to d|·| and for any open subsets U1,U2 ⊆ K∞,
d∗(U1,U2) > 0 if and only if d|·|(U1,U2) > 0. Similar to the proof ofCorollary 1.2(a),
the assertion follows from Theorem 1.1(a) and Proposition 2.1(b). ��
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4.3 Generalized Sierpiński Carpets

In this subsection, we illustrate Theorem 1.1 by using both the classes of bounded
and unbounded generalized Sierpiński carpets. The following definition is given in
[5,10,12].

Let n ≥ 2, F0 = [0, 1]n , and let lF ∈ N with lF ≥ 3 being fixed. For k ∈ Z, letQk

be the collection of closed cubes with side length l−k
F and with vertices at l−k

F Z
n . For

E ⊆ R
n , let ∂E and E◦ be the boundary and interior of E respectively, and let

Qk(E) := {Q ∈ Qk : Q◦ ∩ E �= ∅}. (4.4)

For Q ∈ Qk , let �Q be the orientation preserving affine map (i.e., similitude with no
rotation part) which maps F0 onto Q. Define a decreasing sequence {Fk} of closed
subsets of F0. Let mF be an integer satisfying 1 ≤ mF ≤ lnF , and F1 be the union of
mF distinct elements of Q1(F0). We impose the following conditions on F1.

(H1) (Symmetry) F1 is preserved by all the isometries of the unit cube F0.
(H2) (Connectedness) F◦

1 is connected.
(H3) (Non-diagonality) Let m ≥ 1 and B ⊆ F0 be a cube of side length 2l

−m
F , which

is the union of 2n distinct elements of Qm . Then if int(F1 ∩ B) is non-empty, it
is connected.

(H4) (Border included) F1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · =
xn = 0}.

One may think of F1 as being derived from F0 by removing the interiors of lnF −mF

cubes in Q1(F0). Iterating this, we obtain a sequence {Fk}, where Fk is the union of
mk

F cubes in Qk(F0). Formally, we define

Fk+1 =
⋃

Q∈Qk (Fk)

�Q(F1) =
⋃

Q∈Q1(F1)

�Q(Fk), k ≥ 1. (4.5)

We call the set F := ⋂∞
k=0 Fk a generalized Sierpiński carpet (GSC).

Example 4.1 (Sierpiński carpet, [35]) Let p1 = 0, p2 = 1/2, p3 = 1, p4 = 1 +√−1/2, p5 = 1 + √−1, p6 = 1/2 + √−1, p7 = √−1 and p8 = √−1/2. Define
Si : C → C as Si (z) = (z − pi )/3 + pi for i ∈ {1, . . . , 8}. Then there exists a
unique nonempty compact subset F , which satisfies F = ⋃8

i=1 Si (F). F is called the
standard Sierpiński carpet.

The standard Sierpiński carpet in the above Example is a GSC with n = 2, lF = 3,
mF = 8 and with F1 being obtained from F0 by removing the middle cube.

We also consider a related set, which has a large-scale structure similar to the
small-scale structure of F . Set Fk := F0 for k < 0 and for i ∈ Z, let

F̃i =
∞⋃
r=0

lr Fi+r ,
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and F̃ = ⋂∞
i=0 F̃i , is called anunboundedgeneralizedSierpiński carpet. Letμk(dx) =

mk
F1Fk dx and μ be the weak limit of the μk . Then μ is a constant multiple of the

logmF/ log lF -dimensional Hausdorff measure on F̃ .
For n = 2, Barlow and Bass [6] constructed a Brownian motion on the standard

Sierpiński carpet, i.e., a strong Markov process with state space F that has continu-
ous paths and is invariant under an appropriate class of transformations. They later
extended the strong Markov process to unbounded Sierpiński carpets F̃ and obtained
upper and lower bounds for the transition densities p(t, x, y) on F̃ (see [9]). Subse-
quently, Kusuoka and Zhou [39] gave a different construction of a continuous strong
Markovprocess on the standardSierpiński carpet,which also has the invariance proper-
ties of the Brownianmotion constructed in [6]. In [10], the results of [6,9] are extended
to GSC and unbounded Sierpiński carpets embedded in R

n for n ≥ 3. Furthermore,
the following sub-Gaussian heat kernel estimates are obtained:

c̃1 · t−ds/2 exp

(
−c̃2

( |x − y|dw

t

)1/(dw−1))

≤ p(t, x, y)

≤ c̃3 · t−ds/2 exp

(
−c̃4

( |x − y|dw

t

)1/(dw−1)
) (4.6)

for any t > 0 and any x, y ∈ F̃ , where dw := 2d f /ds > 2 (see [10]). Barlow et al.
[12] showed that, up to scalar multiples of the time parameter, there exists only one
such Brownian motion on a generalized Sierpiński carpet. Since the Laplacian is the
infinitesimal generator of the semigroup associated with the process, the Laplacian on
GSC is uniquely defined.

Let A be the Laplacian in L2(F, μ) associatedwith the process Xt constructed in [9,
10] or [39] with domain dom A. Write X̃t for the extension of Xt to the corresponding
unbounded Sierpiński carpet F̃ , and let ( Ã, dom Ã) be the associated Laplacian of X̃t

in L2(F̃, μ).

Proof of Corollary 1.5 (a) By virtue of (4.6), we can see that inequality (1.3) holds with
ε = 1, α = ds and β = dw > 2. It follows from Theorem 1.1 (a) that A and Ã satisfy
(IPS).

(b) Let {Tt }t>0 be the semigroup associated with (E, dom E). Since the Nash
inequality holds, i.e., there exists some constant c1 > 0 such that

‖u‖2+4/ds
2 ≤ c1E(u, u)‖u‖4/ds1 , u ∈ dom E,

(see [10, Theorem 7.1]), we conclude that {Tt }t>0 is ultracontractive and there exists
c > 0 such that ‖Tt‖1→∞ ≤ ct−ds/2 for any t ∈ (0, 1]. Moreover, it follows from
μ(F) < ∞ and the assumption ds ∈ (0, 2) that there exists M > 0 such that

‖u‖2∞ ≤ M(E(u, u) + ‖u‖2L2(F,μ)
) for any u ∈ dom E, (4.7)
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and that dom E ⊆ C(F, d|·|) (see [35, Theorem A.6]). Let f ∈ dom E be a non-
negative and non-zero function. As in (4.2), E(

cos(t
√
A) f , cos(t

√
A) f

) ≤ E( f , f ),

cos(t
√
A) f ∈ dom E and

E(
cos(t

√
A) f , cos(t

√
A) f

) + ‖ cos(t√A) f ‖2L2(F,μ)
≤ E( f , f ) + ‖ f ‖2L2(F,μ)

,

which, together with (4.7), yields ‖ cos(t√A) f ‖∞ ≤ M(E( f , f ) + ‖ f ‖2
L2(F,μ)

) :=
C < ∞ for all t > 0. Hence, Theorem 1.1(b) now implies that for any x ∈ F , and
any δ > 0, there is t0 ∈ (0, δ) such that

(
cos(t0

√
A) f

)
(x) > 0. ��

5 Finite Propagation Speed

In this section, we let (X , d, μ) be a metric measure space, A be a non-negative self-
adjoint operator on L2(X , μ), and Tt = exp(−t A), t > 0, be the associated semigroup
on L2(X , μ).

Definition 5.1 Let (X , d, μ) be a metric measure space and A be a non-negative self-
adjoint operator on L2(X , μ). We say that (X , d, μ, A) (or simply A) satisfies the
Davies-Gaffney estimate if

∣∣(Tt f1, f2)μ
∣∣ ≤ ‖ f1‖2‖ f2‖2 exp

( − r2/(4t)
)

(5.1)

for t > 0, open subsets Ui ⊆ X and fi ∈ L2(Ui , μ), i = 1, 2, where r :=
d(U1,U2) > 0.

It is well known that the Davies–Gaffney estimate holds for essentially all self-
adjoint elliptic second-order differential operators (see [16,19,51]). The following
theorem shows that the Davies-Gaffney estimate is equivalent to (UPS).

Theorem 5.1 [16, Theorem 3.4] Assume that (X , d, μ) is a metric measure space and
A is a non-negative self-adjoint operator on L2(X , μ). Then (UPS) and the Davies-
Gaffney estimate (5.1) are equivalent.

The following remark is a direct consequence of Theorem 5.1.

Remark 5.2 Assume the hypotheses of Theorem5.1. Then (X , d, μ, A) satisfies (BPS)
with maximum propagation speed s if and only if (X , (1/s)d, μ, A) satisfies the
Davies-Gaffney estimate (5.1).

An analogous relation holds for (FPS), as shown in the following theorem. It can
be proved by modifying that of [16, Theorem 3.4]; we omit the details.

Theorem 5.3 Assume the hypotheses of Theorem5.1. Then (X , d, μ, A) satisfies (FPS)
if and only if for any open subsets Ui ⊆ X, i = 1, 2, there exists a constant c > 0,
which may depend on U1,U2, such that

∣∣(Tt f1, f2)μ
∣∣ ≤ ‖ f1‖2‖ f2‖2 exp

( − r2/(ct)
)

(5.2)
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for t > 0 and fi ∈ L2(Ui , μ), where r := d(U1,U2) > 0.

We now study the relationship between upper heat kernel estimate and wave prop-
agation speed. For any complex number z ∈ C, we denote the real part of z by �(z).
Let C+ := {z ∈ C : �(z) > 0} denote the right half of the complex plane. Define
Tz f := exp(−zA) f for any f ∈ L2(X , μ) and z ∈ C+. We note that

‖Tz f ‖2 ≤ ‖ f ‖2 for all f ∈ L2(X , μ) and all z ∈ C+. (5.3)

In fact, if {Eλ}λ∈R is the spectral family associated with A, then for any z ∈ C+ and
any f ∈ L2(X , μ),

‖Tz f ‖22 =
∥∥∥ ∫ ∞

0
exp(−zλ) dEλ f

∥∥∥2
2

=
∫ ∞

0

∣∣ exp(−zλ)
∣∣2 d‖Eλ f ‖22

=
∫ ∞

0
exp

( − �(z)λ
)2

d‖Eλ f ‖22 = ∥∥T�(z) f
∥∥2
2 ≤ ‖ f ‖22,

where the last inequality is because the semigroup {Tt }t>0 is contractive.
The following lemma is a slight modification of a similar one in [16]; the proof is

the same.

Lemma 5.4 [16, Proposition 2.2] Let u be an analytic function on C+. Assume that
there exist positive numbers c1, γ and a positive number c2 = c2(γ ) (which may
depend on γ ) such that

|u(z)| ≤ c1 for all z ∈ C+, and |u(t)| ≤ c2 exp(−γ /t) for all t > 0.

Then

|u(z)| ≤ c1 exp
( − �(γ /z)

)
for all z ∈ C+.

In the following lemma we modify a result in [16] by allowing the constant c to
depend on fi , in order to suit our purpose. We include a proof for completeness.

Lemma 5.5 [16, Lemma 3.1] Let (X , d, μ) be a separable metric measure space.
Assume that for any fi ∈ L2(X , μ), supp( fi ) ⊆ Bd(xi , ri ), i = 1, 2, and
r := d(Bd(x1, r1), Bd(x2, r2)) > 0, there exists a constant c := c( f1, f2, Bd(x1, r1),
Bd(x2, r2)) > 0 such that

∣∣(Tt f1, f2)μ
∣∣ ≤ c‖ f1‖2‖ f2‖2 exp

( − r2/(4t)
)

for t > 0. (5.4)

Then the Davies-Gaffney estimate (5.1) holds.

Proof Let fi ∈ L2(X , μ), supp( fi ) ⊆ Bd(xi , ri ), i = 1, 2, and r := d(Bd(x1, r1),
Bd(x2, r2)) > 0. Combining (5.3), (5.4) and Lemma 5.4, we have

∣∣u(z)
∣∣ := ∣∣(Tz f1, f2)μ

∣∣ ≤ ‖ f1‖2‖ f2‖2 exp
( − r2�(1/(4z)

)
for z ∈ C+.
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In particular,

∣∣(Tt f1, f2)μ
∣∣ ≤ ‖ f1‖2‖ f2‖2 exp

( − r2/(4t)
)

for t > 0. (5.5)

Now let U1,U2 be arbitrary open subsets of X such that r := d(U1,U2) > 0. Let
f := ∑k

i=1 fi , where for all 1 ≤ i ≤ k, fi ∈ L2(Bd(xi , ri ), μ), Bd(xi , ri ) ⊂ U1, and
fi1 fi2 = 0 in L2(X , μ) for all 1 ≤ i1 < i2 ≤ k. Notice that ‖ f ‖22 = ∑k

i=1 ‖ fi‖22.
Similarly, let g := ∑�

j=1 g j , where g j ∈ L2(Bd(y j , s j ), μ), Bd(y j , s j ) ⊂ U2 for all

1 ≤ j ≤ �, and g j1g j2 = 0 in L2(X , μ) for all 1 ≤ j1 < j2 ≤ �. It is obvious that
d(Bd(xi , ri ), Bd(y j , s j )) ≥ d(U1,U2) = r . Thus (5.5) implies that for t > 0,

∣∣(Tt f , g)μ

∣∣ ≤
k∑

i=1

�∑
j=1

∣∣(Tt fi , g j
)
μ

∣∣ ≤
k∑

i=1

�∑
j=1

‖ fi‖2‖g j‖2 exp
(

− r2

4t

)

=
( k∑

i=1

‖ fi‖2
)( �∑

j=1

‖g j‖2
)
exp

(
− r2

4t

)

≤ √
k�‖ f ‖2‖g‖2 exp

(
− r2

4t

)
.

Combining this with (5.3) and Lemma 5.4 gives

∣∣(Tt f , g)μ∣∣ ≤ ‖ f ‖2‖g‖2 exp
( − r2/(4t)

)
for t > 0.

To finish the proof of the lemma, it suffices to note that, since (X , d) is a separable
metric space, the space of all possible finite linear combinations of functions h of
the form supp(h) ⊂ Bd(x, r) and Bd(x, r) ⊆ U is dense in L2(U , μ). Moreover, if
h := ∑m

i=1 hi and hi ∈ L2(Bd(xi , ri ), μ) for all 1 ≤ i ≤ m, then there exist functions
h̃i ∈ L2(Bd(xi , ri ), μ) such that h := ∑m

i=1 h̃i and h̃i1 h̃i2 = 0 in L2(X , μ) for all
1 ≤ i1 < i2 ≤ k. ��
Theorem 5.6 Let (X , d) be a locally compact separable metric space, μ be a Radon
measure on (X , d), A be a non-negative self-adjoint operator on L2(X , μ), and
(E, dom E) be the closed quadratic form on L2(X , μ) associated with A. Assume
that the heat kernel p(t, x, y) of (E, dom E) exists and that there exist positive con-
stants c1, c2, γ such that for any Y ⊂⊂ X, there exist positive constants c̃1 :=
c̃1(c1,Y ), c̃2 := c̃2(c2,Y ) and δ := δ(Y ) > 0 satisfying

p(t, x, y) ≤ c̃1 exp
(

− d(x, y)2

c1t

)
for all t > δ and x, y ∈ Y , (5.6)

and

p(t, x, y) ≤ c̃2t
−γ exp

(
− d(x, y)2

c2t

)
for 0 < t ≤ δ and x, y ∈ Y . (5.7)
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Then (X , d, μ, A) satisfies (BPS).

Proof Let {Tt }t>0 be the semigroup on L2(X , μ) associatedwith A. Let fi ∈ L2(X , μ)

with supp( fi ) ⊆ Bd(xi , ri ), i = 1, 2, and with r := d(Bd(x1, r1), Bd(x2, r2)) > 0.
For any x ∈ supp( f1) and y ∈ supp( f2), d(x, y)2 ≥ r2 and thus for t > 0 and
i = 1, 2,

exp
(

− d(x, y)2

ci t

)
≤ exp

(
− r2

ci t

)
. (5.8)

Choose a subset Y ⊂⊂ X such that supp( f1) ∪ supp( f2) ⊂ Y . Then

(
Tt f1, f2

)
μ

=
∫
X
(Tt f1)(y) f2(y) dμ(y) =

∫
X×X

p(t, y, x) f1(x) f2(y) dμ(x)dμ(y)

=
∫
supp( f1)×supp( f2)

p(t, x, y) f1(x) f2(y) dμ(x)dμ(y), (5.9)

where the symmetry of p(t, x, y) is used in the last equality. Together with (5.6) and
(5.8), this implies, for t > δ,

|(Tt f1, f2)μ| ≤ c̃1

∫
supp f1×supp f2

exp
(

− r2

c1t

)∣∣ f1(x) f2(y)∣∣ dμ(x)dμ(y)

≤ c̃1
(
μ(supp( f1))μ(supp( f2))

)1/2‖ f1‖2‖ f2‖2 exp
(

− r2

c1t

)
.

(5.10)

Similarly, for 0 < t ≤ δ, combining (5.7), (5.8), and (5.9) yields

|(Tt f1, f2)μ| ≤ c̃2t
−γ

∫
supp f1×supp f2

exp
(

− r2

c2t

)∣∣ f1(x) f2(y)∣∣ dμ(y)dμ(x)

≤ c̃2
(
μ(supp( f1))μ(supp( f2))

)1/2‖ f1‖2‖ f2‖2t−γ exp
(

− r2

c2t

)
.

(5.11)

Since limt→0+ t−γ exp(−c/t) = 0 for any constant c > 0, there exists some constant
c̃3 := c̃3(c2, r , γ, δ) > 0 such that for 0 < t ≤ δ,

t−γ exp
(

− r2

c2t

)
≤ c̃3 exp

(
− r2

(c2 + 1)t

)
.

Together with (5.11), this implies that for 0 < t ≤ δ,

|(Tt f1, f2)μ| ≤ c̃2c̃3
(
μ(supp( f1))μ(supp( f2))

)1/2‖ f1‖2‖ f2‖2 exp
(

− r2

(c2 + 1)t

)
.

(5.12)
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It follows from (5.10) and (5.12) that there exist constants c3 := c3(c1, c2) > 0
(independent on Y ) and c̃4 := c̃4(̃c1, c̃2, c̃3) > 0 such that

∣∣(Tt f1, f2)μ
∣∣ ≤ c̃4‖ f1‖2‖ f2‖2 exp

(
− r2

c3t

)
for t > 0. (5.13)

Thus, using Lemma 5.5, we see that (X , (2/
√
c3)d, μ, A) satisfies the Davies-Gaffney

estimate. Hence, the assertion now follows by using Remark 5.2. ��

6 Proof of Theorem 1.6

Let � ⊆ R
n , n ≥ 1, be a bounded open subset, and μ be a positive finite Borel

measure on R
n with supp(μ) ⊆ � and μ(�) > 0. For convenience, we summarize

the definition of the Dirichlet Laplacian with respect to a measure μ; details can be
found in [28]. We further suppose μ satisfies (MPI) (see (1.12)), which implies that
each equivalence class u ∈ H1

0 (�) contains a unique (in L2(�,μ) sense) member û
that belongs to L2(�,μ) and satisfies both conditions below:

(1) there exists a sequence {un} in C∞
c (�) such that un → û in H1

0 (�) and un → û
in L2(�,μ);

(2) û satisfies inequality (1.12).

We call û the L2(�,μ)-representative of u. Define amapping ι : H1
0 (�) → L2(�,μ)

by

ι(u) = û.

ι is a bounded linear operator, but not necessarily injective. Consider the subspaceN
of H1

0 (�) defined as

N := {
u ∈ H1

0 (�) : ‖ι(u)‖2 = 0
}
.

Now let N⊥ be the orthogonal complement of N in H1
0 (�). Then ι : N⊥ →

L2(�,μ) is injective. Unless explicitly stated otherwise, wewill denote the L2(�,μ)-
representative û simply by u and identify ι(N⊥) with N⊥.

Consider a non-negative bilinear form E(·, ·) on L2(�,μ) given by

E(u, v) :=
∫

�

∇u · ∇v dx (6.1)

with domain dom E = N⊥. (MPI) implies that (E, dom E) is a closed quadratic form
on L2(�,μ). Hence there exists a unique non-negative self-adjoint operator A on
L2(�,μ) such that

E(u, v) = (
A1/2u, A1/2v

)
and dom E = dom (A1/2).
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We write �μ = −A, and call it the (Dirichlet) Laplacian with respect to μ.
As can be seen above, it is often difficult to describe dom E precisely. However, if

μ is equivalent to Lebesgue measure on �, we have the following result; the proof is
omitted.

Proposition 6.1 Use the notation above, and assume that μ satisfies (MPI). Assume μ

is equivalent to Lebesguemeasure on�. Then dom E = H1
0 (�).Moreover, (E, dom E)

is a regular, strongly local Dirichlet form on L2(�,μ) with C∞
c (�) being a core.

We remark that if n = 1 and � = (a, b), it suffices to assume in Proposition 6.1
that supp(μ) = [a, b] (see [14]).

Hereafter, assume that μ satisfies (MPI) and μ is equivalent to Lebesgue measure
on �, and let (E, dom E) be defined as in (6.1). Then μ(∂�) = 0 and so L2(�,μ)

can be identified with L2(�,μ). It follows from Proposition 6.1 that (E, dom E) is a
regular, strongly local Dirichlet form on L2(�,μ) with domain dom E = H1

0 (�). We
denote by ν � μ if ν is absolutely continuous with respect to μ.

Definition 6.1 Use the notation and hypotheses in the above paragraph. A pseudo
metric ρ on � is defined by

ρ(x, y) = sup
{
u(x) − u(y) : u ∈ C1(�), |∇u|2dx � μ with density

≤ 1 μ-a.e. on �
}
, (6.2)

called the intrinsic (or Carathéodory) metric.

Note that |∇u|2dx is called the energy measure. The intrinsic metric is a general-
ization of the classical notion

ρ(x, y) = sup
{
u(x) − u(y) : u ∈ C1, |∇u| ≤ 1

};
those induced by strongly local regular Dirichlet forms were studied by Biroli, Mosco,
Sturm, and others (see [13,18,21,27,29,45,56,57] and the references therein).

Definition 6.2 [1,2] A strongly local Dirichlet form (E, dom E) on L2(�,μ) is said
to be strictly local if it is regular and if ρ (defined by (6.2)) is a metric on � whose
topology coincides with the original one.

We remark that the property “strictly local” is also called strongly regular (see,
e.g., [56]). Following [56], we state and discuss several properties of the associated
Dirichlet form (E, dom E) on U .

Definition 6.3 Assume (E, dom E) is a strictly local Dirichlet form on L2(�,μ). Fix
an arbitrary subset U ⊂ �.

(1) Completeness property (C): For any ball Bρ(x, 2r) ⊂ U , the closed ball
Bρ(x, r) is complete (or, equivalently, compact) on themetric space (�, ρ), where
Bρ(x, r) := {y ∈ � : ρ(x, y) ≤ r}.
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(2) Doubling property (VD): There exists a constant N := N (U ) such that for all balls
Bρ(x, 2r) ⊂ U ,

μ
(
Bρ(x, 2r)

) ≤ Nμ
(
Bρ(x, r)

)
. (6.3)

(3) Strong Poincaré inequality (SPI): There exists a constant CP := CP (U ) such that
for all balls Bρ(x, r) ⊆ U and all u ∈ dom E ,

∫
Bρ(x,r)

|u − uBρ(x,r),μ|2 dμ ≤ CP · r2
∫
Bρ(x,r)

|∇u|2 dx, (6.4)

where uBρ(x,r),μ := ∫
Bρ(x,r) u dμ/μ(Bρ(x, r)).

Theorem 6.2 [56, Theorem4.1]Let X be a locally compact separableHausdorff space
and μ be a Radon measure with supp(μ) = X. Assume (E, dom E) is a strictly local
Dirichlet form on L2(X , μ). Assume (C), (VD), and (SPI) are simultaneously satisfied
on the open set Y ⊂ X. Then for every ε > 0, there exists a constant C > 0, depending
only on ε, N = N (Y ) and cP = cP (Y ) (in (6.3) and (6.4) respectively), such that the
following estimate holds for all x, y ∈ Y and t > 0:

p(t, x, y) ≤ Cμ
(
Bρ(x,

√
τ)

)−1/2
μ

(
Bρ(y,

√
τ)

)−1/2 exp
(

− ρ(x, y)2

(4 + ε)t

)
,

where τ = inf{t, R2} with R := inf{ρ(x, X \Y ), ρ(y, X \Y )} (R := +∞ if X = Y ).

In fact, Theorem 6.2 is a special case of Theorem 4.1 in [56] with Et ≡ E , κ = 1
and p(t, y, s, x) = p(t − s, y, x). The following lemma is needed in the proof of
Theorem 1.6.

Lemma 6.3 Assume the hypotheses of Theorem 1.6, and let (E, dom E) be defined as
in (6.1). Then

(a) ρ is a metric on � and is topologically equivalent to d|·|.
(b) for any V ⊂⊂ �, there exists c(V ) > 0 such that

c(V )|x − y| ≤ ρ(x, y) for any x, y ∈ V . (6.5)

(c) for any open subsets U , V ⊆ �, ρ(U , V ) = 0 if and only if d|·|(U , V ) = 0.

Proof We first note that μ satisfies (MPI). We use the method in [57, Theorem 4.1].
(a)Assume u ∈ C1(�)with (|∇u|2dx)/dμ = |∇u|2/ f ≤ 1 on�. Thus for x ∈ �,

∣∣∇u(x)
∣∣2 ≤ ‖ f ‖∞. (6.6)

If n = 1, thenρ(x, y) ≤ ‖ f ‖1/2∞ |x−y| for all x, y ∈ �. For n ≥ 2,we use an argument
in [57]. We fix arbitrary x, y ∈ �. Without loss of generality, let x = (0, . . . , 0) and
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y = (R, 0, . . . , 0). Let Cε = [0, R] × B ′(0, ε) = {w = (r , w′) ∈ R
n : 0 ≤ r ≤

R, |w′| < ε}. Since u is continuous, by Lebesgue’s density theorem,

u(x) − u(y) = lim
ε→0+

1

Ln−1(B ′(0, ε))

∫
B′(0,ε)

(
u(0, w′) − u(R, w′)

)
dw′.

By using a similar argument as that in [57, Theorem 4.1], we get

u(x) − u(y) = − lim
ε→0+

1

Ln−1(B ′(0, ε))

∫
Cε

∂

∂x1
u(w) dw. (6.7)

Combining (6.7) and (6.6) yields

∣∣u(x) − u(y)
∣∣ ≤ lim

ε→0

1

Ln−1(B ′(0, ε))

∫
Cε

∣∣∣ ∂

∂x1
u(w)

∣∣∣ dw

≤ lim
ε→0

1

Ln−1(B ′(0, ε))

∫
Cε

‖ f ‖1/2∞ dw = ‖ f ‖1/2∞ R = ‖ f ‖1/2∞ |x − y|.

In other words, for all those x, y ∈ � that can be connected by a straight line in �,
we have |u(x) − u(y)| ≤ ‖ f ‖1/2∞ |x − y| and hence

ρ(x, y) ≤ ‖ f ‖1/2∞ |x − y|. (6.8)

On the other hand, let {xn} ⊆ �. Assume that ρ(xn, x) → 0 as n → ∞. Since
(�, d|·|) is compact, there exist a subsequence {xnk }k ⊆ {xn} and x∗ ∈ � such that
|xnk − x∗| → 0 as k → ∞. It follows from (6.8) that x∗ = x . This implies that
|xn − x | → 0 as n → ∞. Combining this with (6.8) proves that ρ is a metric and is
topologically equivalent to the Euclidean metric.

(b) Fix any w = (w1, . . . , wn) ∈ R
n and define a map gw : � → R by

gw(x) := w · x =
n∑

i=1

wi xi .

Then gw ∈ C∞(�) with ∇gw = w. Fix any open subset V ⊂⊂ �. Let U be an open
subset such that V ⊂⊂ U ⊂⊂ �. Then there exists some hw ∈ C∞

c (�) such that

hw = gw on V , |∇hw| ≤ c(U , V , w) =: c on U , and hw = 0 on � \U .

Define v(x) := (
√

ε(U )/c)hw(x) for x ∈ �, where ε(U ) is the constant in
Theorem 1.6. Then |∇v(x)|2 = ε(U )

∣∣∇hw

∣∣2/c2 ≤ ε(U ) ≤ f (x) on U , and
|∇v(x)|2 = 0 ≤ f (x) on � \U . Hence |∇v|2dx � μ. Fix any distinct y, y′ ∈ V and
choose w = (y − y′)/|y − y′|. Then

v(y) − v(y′) =
√

ε(U )

c

(
gw(y) − gw(y′)

) =
√

ε(U )

c
|y − y′|.
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By the definition of ρ, (
√

ε(U )/c)|y − y′| ≤ ρ(y, y′). Since y, y′ are arbitrary, the
desired inequality holds.

(c) Fix any two open subsets U , V ⊆ �. Assume ρ(U , V ) > 0. It follows from
(6.8) that d|·|(U , V ) > 0. On the other hand, if d|·|(U , V ) > 0, then d|·|(U , V ) > 0. In
particular,U∩V = ∅. By compactness,ρ(U , V ) > 0 and consequentlyρ(U , V ) > 0,
which completes the proof. ��
Proof of Theorem 1.6 We note that supp(μ) = �. Proposition 6.1 and Lemma 6.3
imply (E, dom E) is a strictly local Dirichlet form on L2(�,μ) with domain dom E =
H1
0 (�).
Fix any V ⊂⊂ �. Since ρ is topologically equivalent to d|·|, Bρ(x, r) is closed

in (�, d|·|) for any ball Bρ(x, 2r) ⊂ V . Thus Bρ(x, r) is compact in (�, d|·|) and
hence Bρ(x, r) is compact in (�, ρ). Therefore, Property (C) holds on V . Lemma 6.3
implies that there exists c1 := c1(V ) > 0 such that for any x, y ∈ V ,

c1|x − y| ≤ ρ(x, y) ≤ ‖ f ‖1/2∞ |x − y|.

It follows that B(x, r/‖ f ‖1/2∞ ) ⊆ Bρ(x, r) ⊆ B(x, r/c1) for any ball Bρ(x, r) ⊆ V ,
and thus there exist positive constants c2 and c3 := c3(V ) such that

c2r
n = Ln(B(x, r/‖ f ‖1/2∞ )) ≤ Ln(Bρ(x, r)) ≤ Ln(B(x, r/c1)) = c3r

n .

Hence,

c2ε(V )rn ≤ ε(V )Ln(Bρ(x, r)) ≤ μ(Bρ(x, r))

≤ ‖ f ‖∞Ln(Bρ(x, r)) ≤ c3‖ f ‖∞rn, (6.9)

which implies that there exists N := N (V ) > 0 such that for all balls Bρ(x, 2r) ⊂ V ,
μ(Bρ(x, 2r)) ≤ Nμ(Bρ(x, r)). Thus (VD) holds on V . Property (SPI) follows from
the following inequality (see [29, Theorem 2.1]) and the assumption f ∈ L∞(�,μ):∫

Bρ(x,r)
(u − uBρ(x,r))

2 dy ≤ c1r
2
∫
Bρ(x,r)

|∇u|2 dy

for all u ∈ C∞(Bρ(x, r)), where uBρ(x,r) := ∫
Bρ(x,r) u dy/Ln(Bρ(x, r)). Hence,

Theorem 6.2 implies that the heat kernel p(t, x, y) of (E, dom E) exists; moreover,
for every ε > 0, there exists a constant c4 := c4(ε, V ) such that the following estimate
holds for all x, y ∈ V and t > 0:

p(t, x, y) ≤ c4μ
(
Bρ(x,

√
τV )

)−1/2 · μ
(
Bρ(y,

√
τV )

)−1/2

· exp
(

− ρ(x, y)2

(4 + ε)t

)
, (6.10)

where τV := inf{t, R2} with R := inf{ρ(x,� \ V ), ρ(y,� \ V )} (R := +∞ if
� = V ). It is easy to see that Bρ(x,

√
τV ) ⊆ V and Bρ(y,

√
τV ) ⊆ V . Using (6.9),
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there exists c5 := c5(V ) such that

μ
(
Bρ(x,

√
τV )

)−1/2 · μ
(
Bρ(y,

√
τV )

)−1/2 ≤ c5τ
−n/2
V .

Together with (6.10), this implies there exists c6 := c6(ε, V ) > 0 such that

p(t, x, y) ≤ c6τ
−n/2
V exp

(
− ρ(x, y)2

(4 + ε)t

)
for all x, y ∈ V and all t > 0.

Choose a set U such that V ⊂⊂ U ⊂⊂ �. We observe that there exists c7 :=
c7(ε, V ) > 0 such that

p(t, x, y) ≤ c7τ
−n/2
U exp

(
− ρ(x, y)2

(4 + ε)t

)
for all x, y ∈ U and all t > 0.

Let δ := ρ2(V ,� \ U ) > 0. Then τU = t for 0 < t ≤ δ and x, y ∈ V ; τU ≥ δ for
t > δ and x, y ∈ V . Thus for x, y ∈ V and 0 < t ≤ δ,

p(t, x, y) ≤ c7t
−n/2 exp

(
− ρ(x, y)2

(4 + ε)t

)
,

while for x, y ∈ V and t > δ,

p(t, x, y) ≤ c7δ
−n/2 exp

(
− ρ(x, y)2

(4 + ε)t

)
.

By Theorem 5.6 and Proposition 2.1, (�, ρ, μ,−�μ) has (BPS) and thus (�, d|·|, μ,

−�μ) has (FPS). ��

7 Self-similar Measures with Overlaps

In this section, we apply Theorem 1.6 to self-similar measures on R. Let μ be the
self-similar measure defined by the IFS of contractive similitudes of the form

Si (x) = ρi x + bi , i = 0, 1, . . . , N , (7.1)

and probability vector {pi }Ni=0, where for each i , 0 < ρi < 1 and bi ∈ R. Let
K be the associated attractor (or self-similar set). Assume μ is absolutely con-
tinuous with respect to Lebesgue measure with density dμ/dx =: f (x). Thus μ

is equivalent to Lebesgue measure on K (see, e.g., Peres et al. [49]). Moreover,
f (x) = limr→0 μ(B(x, r))/(2r) for Lebesgue a.e. x ∈ R. Hence,

f (x) =
N∑
i=0

pi
ρi

f ◦ S−1
i (x) for Lebesgue a.e. x ∈ R. (7.2)
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It follows that f = dμ/dx if and only if f satisfies (7.2) and
∫
K f dx = 1.

7.1 A Family of Scaling Functions

In this subsection, we consider the self-similar measure μ defined by the IFS {Si }Ni=0
in (1.13) and probability weights p0 = · · · = pN = 1/(N + 1). It is known (see, e.g.,
[41,47]) that if N is odd, then μ is absolutely continuous with respect to Lebesgue
measure with density f ∈ L2(R).

Define f̃ by

f̃ (x) :=
{
x log2(N+1)−1, x ∈ [0, 1],
0, x ∈ (−∞, 0),

(7.3)

and

f̃ (x) = N + 1

2
f̃
( x
2

)
−

N∑
i=1

f̃ (x − i) for all x ∈ R. (7.4)

The following proposition shows that the definitions in (7.3) and (7.4) are compatible
and f̃ is well defined.

Proposition 7.1 Let μ be the self-similar measure defined by the IFS {Si }Ni=0 in (1.13)
and probability weights p0 = · · · = pN = 1/(N + 1). Assume N ≥ 3 is an odd
integer, and let f := dμ/dx be the density of μ. Then

(a) f̃ is well defined and f = c f̃ (x), where c−1 := ∫ N
0 f̃ dx.

(b) f is continuous, bounded on R, and positive on (0, N ).

Proof (a) We first notice that for x ∈ (−∞, 1], f̃ (x) defined by (7.3) satisfies (7.4).
In fact,

f̃ (x) = 0 = N + 1

2
f̃
( x
2

)
−

N∑
i=1

f̃ (x − i) for any x ∈ (−∞, 0)

and for any x ∈ [0, 1],

f̃ (x) = x log2(N+1)−1 = N + 1

2

( x
2

)log2(N+1)−1 = N + 1

2
f̃
( x
2

)
−

N∑
i=1

f̃ (x − i).

Next,we show that for x ∈ (1,+∞), the value f̃ (x) is uniquely defined. For x ∈ (1, 2],
we have x/2 ∈ (0, 1] and x − i ∈ (−∞, 1] for any i = 1, . . . , N . Combining (7.3)
and (7.4), we see for x ∈ (1, 2], f̃ (x) is uniquely defined as

f̃ (x) = N + 1

2
f̃
( x
2

)
−

N∑
i=1

f̃ (x − i) = x log2(N+1)−1 − (x − 1)log2(N+1)−1.
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By induction, for any x ∈ (1,+∞), the value f̃ (x) is uniquely defined, proving that
f̃ is well defined. To complete the proof of (a), notice that by (7.4),

f̃ (x) = 2

N + 1

N∑
i=0

f̃ (2x − i) (7.5)

for any x ∈ R, i.e., f̃ (x) satisfies (7.2). Thus f = c f̃ (x), where c−1 := ∫ N
0 f̃ dx .

(b) By (a), it suffices to show that f̃ is continuous, bounded on R, and positive on
(0, N ). Clearly, f̃ is continuous on (−∞, 1). Next, assume that f̃ is continuous on
some interval of the form [0, q] with q ≥ 1/2. Since x/2, x − i ∈ (−∞, q] for all
x ∈ [q, q + 1/2] and i = 1, . . . , N , (7.4) implies the continuity of f̃ on [q, q + 1/2].
By induction, f̃ is continuous on R. Since f̃ is symmetric about x = N/2, f̃ (x) = 0
for all x ∈ (−∞, 0] ∪ [N ,+∞). It follows that f̃ is bounded on R. As f̃ = (1/c) f ,
we also conclude that f̃ (x) ≥ 0 for all x ∈ R.

Finally, to show that f̃ is positive on (0, N ), we first observe from definition that
f̃ (x) > 0 for all x ∈ (0, 1]. Since f̃ is symmetric about x = N/2, f̃ (x) > 0 for
all x ∈ [N − 1, N ). For x ∈ (1, N − 1), let j ∈ {0, 1, . . . , N } such that 2x − j ∈
(0, 1] ∪ [N − 1, N ). Since f̃ (x) ≥ 0 for all x ∈ R, (7.5) implies that f̃ (x) ≥
2/(N + 1) f̃ (2x − j) > 0, which completes the proof. ��

When N = 3, we can derive an explicit formula for the density f (Fig. 1).

Corollary 7.2 For the case N = 3 in Proposition 7.1, the density of μ is

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x/2, 0 ≤ x < 1,

1/2, 1 ≤ x ≤ 2,

(3 − x)/2, 2 < x ≤ 3,

0, otherwise.

Proof By Proposition 7.1 and the symmetry of f̃ about x = 3/2, f̃ is defined by
f̃ (x) = 2 f̃ (x/2) − ∑3

i=1 f̃ (x − i) for any x ∈ R and

f̃ (x) =

⎧⎪⎨
⎪⎩
x, x ∈ [0, 1],
3 − x, x ∈ [2, 3],
0, x ∈ (−∞, 0) ∪ (3,∞).

For any x ∈ (1, 2), f̃ (x) = 2 f̃ (x/2) − f̃ (x − 1) − f̃ (x − 2) − f̃ (x − 3) = 1. Thus
c = 2, which completes the proof. ��

7.2 Infinite Bernoulli Convolutions

In this subsection we study the infinite Bernoulli convolutions μ defined by the IFS in
(1.14). It is known that for 0 < r < 1/2, μ is a Cantor-type measure with Hausdorff
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Fig. 1 Density of the measure μ

in Corollary 7.2
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dimension ln 2/ ln r . If r = 1/2,μ is the restriction of Lebesguemeasure on [0, 1]. We
are mainly interested in the case 1/2 < r < 1. Erdős [20] proved that if r−1 is a Pisot
number, thenμ is singular. On the other hand,Wintner [58] proved thatμ is absolutely
continuous for r = 2−1/k , for k ≥ 1, and Garsia [24] found a family of algebraic
integers with the correspondingμ being absolutely continuous. Solomyak [52] proved
that for Lebesgue a.e. r ∈ (1/2, 1), μ is absolutely continuous; in particular, for
Lebesgue a.e. r ∈ (1/

√
2, 1),μ has bounded density. Feng andWang [22] constructed

a family of non-Pisot type Bernoulli convolutions such that their density functions, if
exist, are not in L2. Mauldin and Simon [43] proved that Bernoulli convolutions are
either singular or equivalent toLebesguemeasure. It follows that absolutely continuous
Bernoulli convolutions are equivalent to Lebesgue measure.

For 2/3 ≤ r < 1, define f̃ by the following dilation equation:

f̃ (x) =
{
x− logr 2−1, x ∈ [0, r−1 − 1],
0, x ∈ (−∞, 0),

(7.6)

and

f̃ (x) = 2r f̃ (r x) − f̃ (x + 1 − r−1), x ∈ R. (7.7)

Note that the condition 2/3 ≤ r < 1 implies that

1 − r < r−1 − 1 ≤ 1/2 ≤ 2 − r−1 < r and 1 − r ≤ r2 < 2 − r−1. (7.8)

The following proposition shows that the definitions in (7.6) and (7.7) are compatible,
and f̃ is well defined. We remark that Jordan et al. [30] showed that for Lebesgue a.e.
r ∈ (1/

√
2, 1), the density is continuous on R and positive on (0, 1). Proposition 7.3

below enlarges the interval on which absolutely continuous measures are known to
have positive density on (0,1); moreover, it gives an explicit expression for the density
on part of the domain.

Proposition 7.3 Letμ be a self-similar measure defined by an IFS in the family (1.14),
together with probability weights p0 = p1 = 1/2. Assume r ∈ [2/3, 1) and μ is
absolutely continuous with respect to Lebesgue measure with density f . Let f̃ be
defined as in (7.6) and (7.7). Then
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(a) f̃ is well defined, and f (x) = c f̃ (x), where c−1 := ∫ N
0 f̃ dx;

(b) f is continuous and bounded on R, and is positive on (0, 1).

Proof (a) The proof of part (a) is similar to that of Proposition 7.1(a); we omit the
details.

(b) By definition, f̃ is continuous on (−∞, r−1 − 1). Assume that f̃ is continuous
on (−∞, r0], where 0 < r0 < 1. Since

r0r
−1 + 1 − r−1 − r0 = r0(r

−1 − 1) + (1 − r−1) = (r0 − 1)(r−1 − 1) < 0,

we have r0r−1 + 1 − r−1 < r0. Thus, for any x ∈ [r0, r0r−1],

r x ∈ [r0r , r0] ⊂ (0, r0] and x + 1 − r−1 ∈ [r0 + 1 − r−1, r0r
−1 + 1 − r−1]

⊆ (−∞, r0].

(7.7) implies that f̃ is continuous on [r0, r0r−1]. By induction, f̃ is continuous on R.
Since f̃ is symmetric about x = 1/2, f̃ (x) = 0 for all x ∈ (−∞, 0] ∪ [1,+∞). It
follows that f̃ is bounded on R.

To show the positivity of f̃ on (0, 1), we first notice that by definition, f̃ (x) > 0
for any x ∈ (0, r−1 − 1]. Since f̃ is symmetric about x = 1/2, f̃ (x) > 0 for all
x ∈ [2 − r−1, 1). Fix x ∈ (r−1 − 1, 2 − r−1). (7.8) implies that there exists some
m ∈ N such that r−mx ∈ [2 − r−1, 1). Rewrite (7.7) as

f̃ (x) = (2r)−1 f̃ (r−1x) + (2r)−1 f̃ (r−1x + 1 − r−1),

and using the fact that f̃ is non-negative onR, we have f̃ (x) ≥ (2r)−m f̃ (r−mx) > 0,
which completes the proof. ��

For r = 2−1/k ∈ [2/3, 1), k = 2, 3, . . . , μ is absolutely continuous with respect
to Lebesgue measure [58]. In [55], a numerical method is described to compute the
density of μ with r = 1/

√
2. Here we give explicit formulas for f when r = 1/

√
2

and r = 1/ 3
√
2 (see Fig. 2).

Example 7.4 For the case r = 1/
√
2 in Proposition 7.3,

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3/
√
2 + 2)x, 0 ≤ x <

√
2 − 1,

1 + 1/
√
2,

√
2 − 1 ≤ x ≤ 2 − √

2,

−(3/
√
2 + 2)(x − 1), 2 − √

2 < x ≤ 1,

0, otherwise.

Proof By Proposition 7.3 and symmetry, f̃ is defined by

f̃ (x) = √
2 f̃ (x/

√
2) − f̃ (x + 1 − √

2);
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Fig. 2 Density of the Bernoulli convolution with r = 1/ n√2, n = 2, 3

moreover,

f̃ (x) =

⎧⎪⎨
⎪⎩
x, x ∈ [0,√2 − 1],
1 − x, x ∈ [2 − √

2, 1],
0, x ∈ (−∞, 0) ∪ (1,+∞).

Hence for any x ∈ (
√
2 − 1, 2 − √

2),

f̃ (x) = √
2 f̃ (x/

√
2) − f̃ (x + 1 − √

2) = √
2(x/

√
2) − (x + 1 − √

2) = √
2 − 1.

Thus c = (
∫ 1
0 f̃ dx)−1 = 3/

√
2 + 2, which gives the formula for f . ��

To state the next example, we introduce the following abbreviations: Let

a := r−1, αi := ai−1(a − 1), i = 1, 2, 3, 4.

Example 7.5 For the case r = 1/ 3
√
2 in Proposition 7.3, f = c f̃ , where f̃ is given by

f̃ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2, 0 ≤ x < α1,

2(a − 1)x − (a − 1)2, α1 ≤ x < α2,

−x2 + 2(a2 − 1)x−(a − 1)2(a2 + 1), α2 ≤ x < α3,

−2x2 + 2x − (a + 1)2(a − 1)2, α3 ≤ x < 1 − α3,

−x2 + 2(2 − a2)x, 1 − α3 ≤ x < 1 − α2,

−2(a − 1)x − (a − 1)(a − 3), 1 − α2 ≤ x < 1 − α1,

(1 − x)2, 1 − α1 ≤ x ≤ 1,

0, otherwise.

(7.9)

and c−1 = ∫ 1
0 f̃ dx .

Proof By Proposition 7.3 and symmetry, f̃ (x) is defined by

f̃ (x) = 2a−1 f̃ (x/a) − f̃ (x + 1 − a); (7.10)
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moreover,

f̃ (x) =

⎧⎪⎨
⎪⎩
x2, x ∈ [0, α1],
(1 − x)2, x ∈ [1 − α1, 1],
0, x ∈ (−∞, 0) ∪ (1,+∞).

For x ∈ [α1, α2), x/a, x + 1 − a ∈ [0, α1] and thus by (7.10),

f̃ (x) = 2(a − 1)x − (a − 1)2.

Similarly, for 2 ≤ i ≤ 3 and x ∈ [αi , αi+1), we notice that x/a ∈ [αi−1, αi ) and
x + 1 − a ∈ [0, α1] and thus (7.10) implies

f̃ (x) =
{

−x2 + 2(a2 − 1)x−(a − 1)2(a2 + 1), x ∈ [α2, α3),

−2x2 + 2x − (a + 1)2(a − 1)2, x ∈ [α3, α4).

Since 1/2 < α4 < 1− α3, for any x ∈ [α4, 1− α3), 1− x ∈ (α3, 1− α4] ⊆ [α3, α4)

and thus f̃ (x) = f̃ (1− x) = −2x2 + 2x − (a + 1)2(a − 1)2. Hence, (7.9) holds, by
using the symmetry of f̃ . ��

It is known (see [30]) that for r ∈ (1/2, (
√
5 − 1)/2), there exist infinitely many

x ∈ (0, 1) such that limr→0+ μ(B(x, r))/(2r) = 0. If the corresponding measure is
absolutely continuouswith a continuous density, the following remark finds an explicit
family of zeros of the density.

Remark 7.6 Let μ be a self-similar measure defined by an IFS in (1.14) together with
probability weights p0 = p1 = 1/2. Assume that μ is absolutely continuous with
respect to Lebesgue measure with continuous density f and r ∈ (1/2, (

√
5 − 1)/2).

Then f (rm/(r + 1)) = 0 for m ≥ 0.

Proof For all x ∈ [0, 1], f (x) = (2r)−1 f (r−1x) + (2r)−1 f (r−1x + 1− r−1). Since
S−1
2 (x) = r−1x + 1 − r−1 ≤ 0 for x ∈ [0, 1 − r ], f (x) = (2r)−1 f (r−1x) and thus

f (x) = 2r f (r x) for all x ∈ [0, r−1 − 1]. (7.11)

The inequality

1/(r + 1) − (r−1 − 1) = (r2 + r − 1)/(r(r + 1)) < 0, r ∈ (1/2, (
√
5 − 1)/2),

implies 1/(1+ r) ∈ [0, r−1 − 1]. Since f is symmetric about x = 1/2, (7.11) implies
that

f
(
1/(1 + r)

) = 2r f
(
r/(1 + r)

) = 2r f
(
1 − r/(1 + r)

) = 2r f
(
1/(1 + r)

)
.

It follows that f (1/(1 + r)) = 0 and hence f (rm/(1 + r)) = 0 for m ≥ 0. ��
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Fig. 3 Numerical approximations to the densities of some infinite Bernoulli convolutions with contraction
ratio r

Figure 3 shows numerical approximations to the densities f for two numbers r
in the interval (1/2, (

√
5 − 1)/2) and two in the interval ((

√
5 − 1)/2, 2/3). The

numbers s1 and s2 are the solutions in (1, 2) of the equations x3 − x2 − 2 = 0 and
x3 −2x2 +2x −2 = 0 respectively; the corresponding measures are shown by Garsia
[24] to be absolutely continuous. It is unknown whether the measures in (a) and (c) are
absolutely continuous or singular. According to Proposition 7.3, the density function
in (d) is positive on (0, 1), while according to [30] (see also Remark 7.6), the one in
(b) has countably infinitely many zeros in (0, 1).

Proof of Theorem 1.7 Again, (MPI) holds since μ is supported on R.
(a) Since N is odd, μ is equivalent to Lebesgue measure on [0, N ]. By Proposi-

tion 7.1, f is continuous and bounded on [0, N ] and f (x) > 0 on (0, N ). Theorem
1.6 now implies −�μ satisfies (FPS).

(b) Similar to that of (a). Use Proposition 7.3 instead. ��

8 Comments and Open Questions

It is of interest to determine wave propagation speed for other rationally ramified
fractals (see, [35, Definition 1.5.10]) and other non-p.c.f. fractals such as the diamond
fractal (see [38]). The condition rationally ramified is by definition weaker than the
condition finitely ramified. A finitely ramified fractal can be disconnected by removing
a finite number of points. For example, the Sierpinski carpet is rationally ramified, but
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not finitely ramified, and the Sierpinski gasket is not only rationally ramified fractal,
but also finitely ramified.

We do not know whether the condition f ≥ ε(V ) > 0 in Theorem 1.6 can be
improved. In view of Propositions 7.3 and 7.6, it is of interest to know whether the
density function of those absolutely continuous infinite Bernoulli convolutions with
r ∈ ((

√
5 − 1)/2, 2/3) has a zero in (0, 1), and whether (FPS) or (IPS) holds.

Our result on finite propagation speed can also be applied to the Sierpiński gasket
equipped with the Kusuoka measure and the so-called harmonic geodesic metric, as
two-sided Gaussian heat kernel estimates have been obtained by Kigami [34].
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Appendix: Proof of Lemma 2.3

Proof of Lemma 2.3 Since Tt f := exp(−t A) f is the unique solution of the heat equa-
tion (1.2) with initial data f ∈ H, it suffices to show that v(t) = Tt f . For any t > 0
and f ∈ H,

1√
π t

∫ ∞

0

∫ ∞

0
exp

(
− s2

4t

)
cos(s

√
λ) ds dEλ f =

∫ ∞

0
exp(−λt) dEλ f

= exp(−t A) f = Tt f ,

(A.1)

where {Eλ}λ∈R is the spectral family associated with A. By using a result concerning
Bochner’s integral (see, e.g., [59, Section V.5, Corollary 2]) and Fubini’s Theorem,
we obtain, for any t > 0 and w ∈ H,

(
v(t), w

) = 1√
π t

∫ ∞

0
exp

(
− s2

4t

)(
cos(s

√
A) f , w

)
ds (Bochner)

= 1√
π t

∫ ∞

0
exp

(
− s2

4t

) ∫ ∞

0
cos(s

√
λ) d(Eλ f , w) ds

= 1√
π t

∫ ∞

0

∫ ∞

0
exp

(
− s2

4t

)
cos(s

√
λ) ds d(Eλ f , w) (Fubini)

=
( 1√

π t

∫ ∞

0

∫ ∞

0
exp

(
− s2

4t

)
cos(s

√
λ) ds dEλ f , w

)
= (

Tt f , w
)
, (by (A.1))

which completes the proof. ��
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