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Abstract
We study the interrelation between the limit L p(�)-Sobolev regularity s p of (classes
of) functions on bounded Lipschitz domains � ⊆ R

d , d ≥ 2, and the limit regularity
α p within the corresponding adaptivity scale of Besov spaces Bα

τ,τ (�), where 1/τ =
α/d + 1/p and α > 0 (p > 1 fixed). The former determines the convergence rate of
uniform numerical methods, whereas the latter corresponds to the convergence rate
of best N -term approximation. We show how additional information on the Besov or
Triebel–Lizorkin regularity may be used to deduce upper bounds for α p in terms of s p
simply by means of classical embeddings and the extension of complex interpolation
to suitable classes of quasi-Banach spaces due to Kalton et al. (in: De Carli and
Milman (ed) Interpolation theory and applications, American Mathematical Society,
Providence, 2007). The results are applied to the Poisson equation, to the p-Poisson
problem, and to the inhomogeneous stationary Stokes problem. In particular, we show
that already established results on the Besov regularity for the Poisson equation are
sharp.

Keywords Non-linear approximation · Adaptive methods · Besov space ·
Triebel–Lizorkin space · Regularity of solutions · Poisson equation

Mathematics Subject Classification 35B35 · 35J92 · 41A25 · 46E35 · 65M99

1 Introduction

The convergence rate of approximation methods strongly depends on the regularity of
the target function. In particular, the convergence rate of the best N -termapproximation
for a function f : � → RonaboundedLipschitz domain� ⊆ R

d ,d ∈ N, is intimately
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related to its regularity in the scale of Besov spaces

Bα
τ,τ (�),

1

τ
= α

d
+ 1

p
, α > 0, (∗)

whereas the convergence of an approximation method based on uniform refinements
depends on the regularity in the scale Ws

p(�), s > 0, of Sobolev spaces; here,
1 < p < ∞ is fixed and the approximation error is measured in L p(�). Roughly
speaking, if (and only if) the Besov regularity of the target function in the scale (∗) is
strictly higher than its correspondingSobolev regularity, a higher convergence ratemay
be achieved by switching from uniform refinement strategies to more sophisticated
adaptive wavelet or finite element schemes. We refer to [6,13,18] and to the references
therein for details and sufficient assumptions for such statements. Definitions of the
relevant function spaces are provided in the Appendix A.

The Sobolev regularity of solutions to elliptic partial differential equations on non-
smooth domains may be very limited, even if the forcing terms are infinitely smooth.
Upper bounds for

s p := s p(S(�)) := sup
{
s > 0 S(�) ⊆ Ws

p(�)
}
, (1)

where S(�) ⊆ L p(�) is a suitably chosen set of solutions to various instances of
elliptic equations, can be found, for instance, in Refs. [4,17,19,23,27,30]. To mention
an example, there exist bounded C1 domains � ⊆ R

d such that if we define S(�)

to be the set of all solutions to the Poisson equation with zero Dirichlet boundary
conditions and right hand sides f ∈ C∞(�), then s p(S(�)) = 1+ 1/p, see Sect. 3.1
for details. Similar results for (stochastic) evolution equations can be found, e.g., in
Refs. [20,25]. At the same time, we know that the solution to most of the equations in
the aforementioned references may have higher regularity α > s p in the scale (∗), see,
e.g., [3,5,7,8,10–12,15,16,21]. For instance, in the example above, it is known that

S(�) ⊆ Bα
τ,τ (�),

1

τ
= α

d
+ 1

p
, for all 0 < α <

(
1 + 1

p

)
d

d − 1
,

see Ref. [7]. The higher Besov regularity justifies the development of adaptive numer-
ical methods for (stochastic) partial differential equations. However, to the best of our
knowledge, no upper bound at all for the regularity in the scale (∗), i.e., for

α p := α p(S(�)) := sup
{
α > 0 S(�) ⊆ Bα

τ,τ (�),
1

τ
= α

d
+ 1

p

}
(2)

can be found in the literature; here, sup∅ := −∞. Thus, in many settings, we do know
that there is the possibility to outperform uniform methods by adaptive refinement
strategies but we do not know how high the convergence rate of these methods can
maximally get. Note that the cases s p = ∞, resp. α p = ∞, are explicitly allowed and
indeed occur already in the most basic examples; see, e.g., Remark 3.3.
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In this paper we study the interrelation between the limit regularity indices s p and
α p. In Sect. 2weprove an abstract result showing for arbitrary sets S(�) ⊆ L p(�)how
additional information about the Besov or Triebel–Lizorkin regularity of all u ∈ S(�)

can be used to deduce upper bounds forα p in terms of s p simply bymeans of the exten-
sion of complex interpolation to suitable classes of quasi-Banach spaces from [24] and
classical embeddings. We apply this result in Sect. 3 to the Poisson equation, the p-
Poisson problem, and the inhomogeneous stationary Stokes equation. In particular,
we show that under fairly natural assumptions, already established positive results on
the Besov regularity of the solution to the Poisson equation in the scale (∗) are actu-
ally sharp. Before we start, we introduce some notation and comment on so-called
DeVore–Triebel diagrams, which we will use in order to visualize results.

Notation Throughout this manuscript, � denotes a bounded Lipschitz domain in
R
d for some d ∈ N. For 0 < p < ∞, by L p(�) we denote the space of

all (equivalence classes of) Lebesgue-measurable, scalar-valued functions satisfy-
ing ‖u L p(�)‖p := ∫

�
|u(x)|p dx < ∞, while L∞(�) is the space of all

(equivalence classes of) Lebesgue-measurable, Lebesgue-almost everywhere bounded
scalar-valued functions on�.Moreover, Bs

p,q(�) and Fs
p,q(�) stand for the Besov and

Triebel–Lizorkin spaces, respectively, with smoothness parameter s ∈ R, integrability
parameter p ∈ (0,∞] (with p < ∞ for Triebel–Lizorkin spaces) and microscopic
parameter q ∈ (0,∞]. The corresponding spaces Bs

p,q(∂�) and Fs
p,q(∂�) on the

boundary ∂� of the domain � are defined as in Ref. [28]. For 1 < p < ∞, byWs
p(�)

we denote the L p(�)-Sobolev space of order s ∈ R. For two quasi-normed spaces
X and Y , we write X ↪→ Y if X is continuously and linearly embedded in Y and
[X ,Y ]θ stands for the complex interpolation space of the pair (X ,Y ) with parameter
θ ∈ (0, 1). Precise definitions and relevant interpolation and embedding properties of
Besov, Triebel–Lizorkin, and Sobolev spaces are collected in Appendix A.

Throughout, the letter C is used to denote a finite positive constant that may differ
from one appearance to another, even in the same chain of inequalities. Moreover, we
adopt the usual conventions 1/∞ := 0 and 1/0 := ∞.

DeVore–Triebel diagrams We are going to use so-called DeVore–Triebel diagrams
in order to visualize results. In those (1/p, s)-diagrams, we identify every point
(1/p, s) ∈ [0,∞) × R with the Besov space Bs

p,p(�). Many embedding and inter-
polation results for Besov spaces can then be visualized in a very convenient way
(see Fig. 1):

• Besov spaces formscales of (generalized) complex interpolation spaces, seePropo-
sition A.4. As a consequence, if f ∈ Bsi

pi ,pi (�) for i = 0, 1, then f ∈ Bs̃
p̃, p̃(�) for

all (1/ p̃, s̃) on the line segment between (1/p0, s0) and (1/p1, s1); see (i) in Fig. 1.
• If f ∈ Bs

p,p(�) for some 0 < p < ∞ and s ∈ R, then, by PropositionA.3(iv), f is
contained in all the Besov spaces represented by the points (1/ p̃, s̃) ∈ [0,∞)×R

with s̃ < s − d max
{
1/p− 1/ p̃, 0

}
; see the shaded area (ii) in Fig. 1. Moreover,

by Proposition A.3(v), it is contained in all Besov spaces represented by the points
(1/ p̃, s̃) ∈ (0, 1/p) × R with s̃ = s − d

(
1/p − 1/ p̃

)
; see (iii) in Fig. 1.



10 Page 4 of 24 Journal of Fourier Analysis and Applications (2020) 26 :10

Fig. 1 Visualization of Besov
spaces on bounded Lipschitz
domains � ⊆ R

d in a
DeVore–Triebel diagram

(ii)

r

1
1
pz

z

(iv)
(iii)

1
p

s
Bs

p,p(Ω)
(v)

Bs1
p1,p1

(Ω)

Bs0
p0,p0

(Ω)

(i)

• If f ∈ Az
pz ,qz (�) for some A ∈ {B, F}, z ∈ R and 0 < pz, qz ≤ ∞ (with finite

pz if A = F), then, by Proposition A.3(iv), f is contained in all Besov spaces
represented by the ray {(1/pz, s̃) s̃ < z}; see (iv) in Fig. 1.

Moreover, in such a diagram, for 1 < p < ∞, the scale (∗) is represented by the
so-called L p(�)-Sobolev embedding line

{(
1

τ
, α

)
∈ (0,∞)2

1

τ
= α

d
+ 1

p

}
, (3)

see (v) in Fig. 1.

2 Main Result

In this section we analyze how additional information about the Besov or Triebel–
Lizorkin regularity may be used in order to derive upper bounds for α p in terms of
s p simply by means of complex interpolation and classical embedding theorems; here
and in the sequel, s p and α p are defined as in Sect. 1, see (1) and (2), respectively. We
prove the following main result.

Theorem 2.1 For d ∈ N let � ⊆ R
d be a bounded Lipschitz domain. Moreover, let

1 < p < ∞ and let S(�) ⊆ L p(�) be such that 0 < s p = s p(S(�)) ≤ ∞. Assume
that for some z ∈ R and some p < pz ≤ ∞, S(�) ⊆ Bs

pz ,pz (�) for all s < z. Then

z ≤ s p ≤ α p. (4)

If additionally

z > μ := μ(pz, p, s p, d) := s p − d

(
1

p
− 1

pz

)
,
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then

α p ≤ s p + s p · s p − z

z − μ
= s p · s p − μ

z − μ
. (5)

Before we give a proof of this theorem, let us make some remarks. We start with a
sufficient condition for the additional regularity assumption.

Remark 2.2 Let 0 < pz < ∞ and z ∈ R. Then, by classical embedding theorems for
Besov and Triebel–Lizorkin spaces, as collected in Proposition A.3, the assertion

S(�) ⊆ Az
pz ,qz (�) for some A ∈ {B, F} and 0 < qz ≤ ∞,

is sufficient for
S(�) ⊆ Bs

pz ,pz (�) for all s < z.

Moreover, so is

S(�) ⊆ As
pz ,qz (�) for some A ∈ {B, F}, 0 < qz ≤ ∞, and all s < z.

If A = B, then these implications also hold for pz = ∞.

Remark 2.3 In principle, S(�) could be any subset of some Besov/Triebel–Lizorkin
space. But even if we restrict ourselves to solution sets for operator equations, there
are several different interpretations: on the one hand, we may think of one particular
problem given by a fixed operator L acting on functions defined on a fixed domain
� with fixed right-hand side and fixed initial/boundary conditions if necessary. Then
S(�) only contains solutions for this particular situation and we probably even have
#S(�) = 1 such that s p and α p describe smoothness properties of one particular
function. On the other hand, we may also think of solution sets for classes of problems
such as, e.g.,

(i) a fixed equation (like the Poisson equation �u = f with zero Dirichlet boundary
condition u|∂� = 0) on a fixed domain � (e.g., the standard L-shape domain
in d = 2) with variable right-hand side from a certain class of functions (e.g.,
arbitrary f ∈ L2(�)), or

(ii) a class of operator equations (e.g., all linear, second order PDEs with smooth
coefficients) on a fixed domain � with, say, smooth right-hand sides,

and so forth. Since in this case S(�) collects all functions which solve at least one
admissible problem instance, here s p and α p describe lower bounds for the regularity
of solutions to the hardest possible problem in the respective class. For example,
u∗ ≡ 0 solves the problem described in (i) for f ≡ 0. Hence, u∗ ∈ S(�) and
u∗ ∈ ⋂

s>0 W
s
2 (�), but s2 = 5/3 < ∞, see also Remark 3.3 below.

We could even go one step further and consider classes of problems like

(iii) a fixed equation considered on a class of domains (e.g., all bounded C1 domains)
with certain restrictions on the right-hand side and/or on initial/boundary condi-
tions.
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However, then the notation would get more complicated such that in the sequel we
restrict ourselves to the cases mentioned above.

Remark 2.4 Throughout this remark, we assume that we are in the setting of Theo-
rem 2.1.

(i) Note that, due to standard embeddings of Besov and Triebel–Lizorkin spaces (as
provided in Proposition A.3 in the Appendix A), for A ∈ {B, F} and 0 < q ≤ ∞
we have

s p = s p(S(�)) = s p,q,A(S(�)) := sup
{
s > 0 S(�) ⊆ As

p,q(�)
}
.

That is, the limit regularity index s p,q,A does not depend on the microscopic
parameter q, nor on the type of the spaces A (Besov vs. Triebel–Lizorkin).
Moreover, it coincides with s p defined in (1). In particular,

s p = s p,p,B(�) = sup
{
s > 0 S(�) ⊆ Bs

p,p(�)
}

(6)

and also

s p = s p,∞,B(S(�)) = sup
{
s > 0 S(�) ⊆ Bs

p,∞(�)
}
,

where the latter quantity is defined by means of the slightly larger Besov
spaces Bs

p,∞(�) which coincide with the approximation spaces As/d∞ (L p(�))

w.r.t. non-adaptive algorithms based on uniform refinement, see, e.g., [13] for
details.

(ii) Due to the generalization of Sobolev’s embedding theorem to Besov spaces (as
presented in Proposition A.3(v)), a space Bα

τ,τ (�) from the adaptivity scale (∗)
is embedded into every other space Bα0

τ0,τ0(�), 1/τ0 = α0/d + 1/p, from the
same scale with 0 ≤ α0 < α. However, as a consequence of the sharpness of
Sobolev embeddings, the space Bα

τ,τ (�) is not embedded in As
p,q(�) for any

A ∈ {B, F}, 0 < q ≤ ∞, and s > 0, as this combined with Proposition A.3(iv)
would contradict the ‘only if’ part of Proposition A.3(v).
Therefore, it is not possible to obtain a non-trivial upper bound for α p in terms
of s p without further assumptions on S(�).

(iii) In Fig. 2 we use a DeVore–Triebel diagram to visualize our upper bound (5)
for α p and the corresponding proof idea, given that s p < ∞. The bound
s p · (s p − μ)/(z − μ) in (5) is precisely the ordinate of the intersection
point of the (dashed) line through (1/pz, z) and (1/p, s p) with the L p(�)-
Sobolev embedding line (3). Therefore, by elementary geometry, for every
α > s p · (s p − μ)/(z − μ), there exists z̃ < z, such that the (solid) line through
(1/pz, z̃) and (α/d + 1/p, α) contains a point (1/p, s) for some s > s p. Since
S(�) ⊆ Bz̃

pz ,pz (�) for all z̃ < z, the claim S(�) ⊆ Bα
τ,τ (�) for such an α would

thus contradict the maximality of s p, see also (6).
(iv) The proof idea above obviously fails if z ≤ μ(pz, p, s p, d), i.e., if the point

(1/pz, z) is below or exactly on the Sobolev embedding line
{
(1/ p̃, s̃) s̃ =

s p − d (1/p − 1/ p̃)
}
through (1/p, s p). In this case the line through (1/pz, z)
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Fig. 2 Visualization of statement
and proof of Assertion (5)
from Theorem 2.1 in a
DeVore–Triebel diagram

r

1
�1

pz
1
p

z

αp

α

1
τ

=
α

d
+

1
p

sp

sp · sp − μ

z − μ

μ(·, p, sp, d)

z̃

and (1/p, s p) does not intersect with the corresponding L p(�)-Sobolev embed-
ding line (3).
Actually, it is clear that we cannot even expect to obtain a non-trivial bound on
α p if we only know that S(�) ⊆ Bs

pz ,pz (�) for all s < z ≤ μ(pz, p, s p, d),
since this is already implied by Sobolev’s embedding theorem (see Proposi-
tion A.3(iv)). Thus, assuming this does not add any additional information about
S(�) and we cannot expect to be able to establish a non-trivial bound on α p,
see also (ii) above. In the limiting case, i.e., if z = μ, then assuming that
S(�) ⊆ Az

pz ,qz (�) for some A ∈ {B, F} and 0 < qz ≤ ∞ as in Remark 2.2
may or may not constitute an additional assumption on S(�). However, also in
this case it is not possible to establish a non-trivial bound for α p. Counterexam-
ples can easily be constructed in terms of standard representatives of Besov and
Triebel–Lizorkin spaces; see, in particular, [29, Lemma 2.3.1.1].

(v) The proof technique described in (iii) above may also be used in order to derive,
for instance,

• the lower bound

s̃ p := α p · z + d (1/p − 1/pz)

α p + d (1/p − 1/pz)

for s p, provided we are given α p > 0 and S(�) ⊆ Az
pz ,qz (�) for some

A ∈ {B, F}, pz > p, 0 < qz ≤ ∞, and z ∈ R, or
• an upper bound for s p̂ for some p̂ > p, given s p, as well as S(�) ⊆ Az

pz ,qz (�)

for some A ∈ {B, F}, z > s p, and pz < p.

In Sect. 3.1, we are going to use the latter in order to determine s p, 1 < p < ∞,
for the Poisson equation with smooth right-hand sides and zero Dirichlet bound-
ary conditions on a bounded C1 domain constructed by Jerison and Kenig [23].

(vi) Further assumptions of the type S(�) ⊆ Az̃
p̃z ,̃qz

(�) for some A ∈ {B, F}, as
well as 1 < p < pz < p̃z ≤ ∞ (with finite p̃z if A = F), 0 < q̃z ≤ ∞,
and z̃ ∈ R lead to an improvement of the upper bound for α p by means of the
proof technique described in (iii) only if the point (1/ p̃z, z̃) lies strictly above
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the line through the two points (1/pz, z) and (1/p, s p) in the DeVore–Triebel
diagram. Moreover, by complex interpolation it becomes obvious that the set of
parameters

{(
1

	
, s

)
∈ [0,∞)2 S(�) ⊆ Bs

	,	(�)

}

is necessarily convex and that each (1/	, s	) with 0 < 	 ≤ ∞ belongs to its
boundary.

(vii) For 1 < p < ∞, the regularity of a function in the scale (∗) is intimately related
to the convergence rate of the best N -term approximation, if the error ismeasured
in L p(�). However, if the error is to be measured in the norm of some other
Sobolev space Wr

p(�) with r > 0 (describing, for instance, the energy space),
then the scale changes to

Bα
τ,τ (�),

1

τ
= α − r

d
+ 1

p
, α > r .

Since this is just a shift of the L p(�)-Sobolev embedding line, our analysis
carries over to this case mutatis mutandis. For the ease of presentation we omit
the details. Moreover, we can replace the underlying Lipschitz domain � by a
(patchwise smooth) manifold; cf. [9,12,34].

We close this section with a detailed proof of Theorem 2.1.

Proof of Theorem 2.1 Relation (4) follows by contradiction due to the fact that for all
0 < p1 < p0 < ∞ and s1 < s0 there holds Bs0

p0,p0(�) ↪→ Bs1
p1,p1(�), see Propo-

sition A.3(iv). This embedding also implies that α p = ∞ if s p = ∞. Thus, we
are left with proving (5) for s p < ∞. Again we argue by contradiction. Assume
S(�) ⊆ Bα

τ,τ (�), 1/τ = α/d + 1/p, for some α > s p · (s p − μ)/(z − μ).
Since S(�) ⊆ Bz̃

pz ,pz (�) for all z̃ < z, we also know that S(�) ⊆ Bs̃
p̃, p̃(�) with

s̃ = (1 − θ) z̃ + θ α and 1/ p̃ = (1 − θ)/pz + θ/τ for all θ ∈ (0, 1), see Proposi-
tion A.4. In particular, if we choose

θ = θ0 := 1/p − 1/pz
1/τ − 1/pz

= 1/p − 1/pz
α/d + 1/p − 1/pz

= s p − μ

α + s p − μ
∈ (0, 1),

we obtain S(�) ⊆ Bs̃
p,p(�) for all s̃ = (1 − θ0) z̃ + θ0 α with z̃ < z. Since α >

s p · (s p − μ)/(z − μ), we have

(1 − θ0) z + θ0 α = α (z + s p − μ)

α + s p − μ
= z + s p − μ

1 + (s p − μ)/α
>

z + s p − μ

(z + s p − μ)/s p
= s p.

Therefore, there exists z̃ < z, such that s := (1 − θ0) z̃ + θ0 α > s p, which means
that S(�) ⊆ Bs

p,p(�) for some s > s p. But this contradicts the maximality of s p. �
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3 Examples

In this section we apply Theorem 2.1 to three sample problems: the Poisson equation,
the p-Poisson problem, and the inhomogeneous stationary Stokes equation.

3.1 The Poisson Equation

Let us consider the Poisson equation with zero Dirichlet boundary conditions

�u = f on �,

u = 0 on ∂�,

}

(7)

on a bounded Lipschitz domain � ⊆ R
d , d ≥ 2. Points where the boundary ∂� of

the underlying domain � is not smooth are known to have negative effects on the
regularity of the solution u to (7). While on smooth domains we have the usual shift

f ∈ Ws−2
p (�) �⇒ u ∈ Ws

p(�),

this mechanism fails if we allow the boundary of � to be merely C1. In this case, for
instance, f ∈ W−1/2

2 (�) does not necessarily imply u ∈ W 3/2
2 (�). This problem has

been intensively studied in [23] by Jerison and Kenig; see also [17,26]. Therein one
may find a precise description of the range of parameters (1/p, s) that allow for shift
theorems for Eq. (7) in Bessel potential spaces and in Besov spaces. The sharpness of
this range is underpinned by several counterexamples, see, in particular, [23, Sect. 6].
Motivated by these results and by the relevance of the regularity in Sobolev spaces
and in the scales (∗) of Besov spaces in (non-)linear approximation theory, Dahlke
and DeVore [7] analyzed the regularity of the Poisson equation in Besov spaces with
integrability parameter less than one. Put together, the positive results from [23] and
[7] guarantee the following: If we are only interested in the consequences of the lack
of boundary smoothness and therefore assume that f ∈ C∞(�), then the solution
u ∈ W 1

2,0(�) to the corresponding Eq. (7) is contained in every Besov space Br
q,q(�)

represented by a point (1/q, r) within the shaded area in the DeVore–Triebel diagram
in Fig. 3. Using the terminology from the previous sections, we set

S(�) := {
u ∈ W 1

2,0(�) �u ∈ C∞(�)
}
. (8)

Then

S(�) ⊆ Br
q,q(�) for all 0 < r < 1 + 1

q
and 0 <

1

q
<

d + 1

d − 1

such that, in particular,

s p(S(�)) ≥ 1 + 1

p
and α p(S(�)) ≥

(
1 + 1

p

)
d

d − 1
(9)
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Fig. 3 Visualization of the
Besov regularity of the Poisson
equation with smooth right-hand
side on bounded C1 domains in a
DeVore–Triebel diagram

r

1
�

1
�

�→ d

(
1
�

− 1
)

1

d+1
d−1

1
�

�→ d

(
1
�

− 1
p

)
1
�

�→ 1 +
1
�

1
p

(
1 +

1
p

)
d

d − 1
= αp

1 +
1
p
= sp

1

2

for every 1 < p < ∞. The following theorem asserts the existence of bounded C1
domains on which these lower bounds for s p and α p become also upper bounds.

Theorem 3.1 For d ≥ 2, there exists a bounded C1 domain � ⊆ R
d such that if S(�)

is defined as in (8), then for arbitrary 1 < p < ∞ there holds

s p(S(�)) = 1 + 1

p
and α p(S(�)) =

(
1 + 1

p

)
d

d − 1
.

Our proof of Theorem 3.1 below is based on a counterexample by Jerison andKenig
of a C1 domain� ⊆ R

d , d ≥ 2, forwhich there exists a function f ∈ C∞(�), such that
the second derivatives of the solution u ∈ W 1

2,0(�) to the corresponding equation (7)

are not contained in L1(�), thus u /∈ W 2
1 (�). We refer to [23, Theorem 1.2(b)] for

the statement and to [23, Sect. 6] for the corresponding counterexample. For such a
solution to (7) we prove the following.

Lemma 3.2 Let d ≥ 2. Moreover, let � ⊆ R
d be a C1 domain for which there exists a

function f ∈ C∞(�) such that the unique solution u ∈ W 1
2,0(�) to the corresponding

Poisson equation (7) satisfies u /∈ W 2
1 (�). Then the following statements hold.

(i) u /∈ B2
1,1(�).

(ii) If 1 < p < ∞ and s > 1 + 1

p
, then u /∈ Bs

p,p(�).

(iii) u ∈ F1+1/p
p,2 (�) for all 2 ≤ p < ∞.

(iv) Let 1 < p < ∞ and let 0 < τ, α < ∞ be such that
1

τ
= α

d
+ 1

p
. Moreover,

assume that

α > α̃p :=
(
1 + 1

p

)
d

d − 1
or α = α̃p and τ < 1.

Then u /∈ Bα
τ,τ (�).
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Proof We prove the four statements successively.

(i). The assertion u ∈ B2
1,1(�) would contradict our assumption that u /∈ W 2

1 (�)

since B2
1,1(�) ↪→ W 2

1 (�), which follows, e.g., from [31, Theorem 2.3.8(i) &
Proposition 2.5.7(i)].

(ii). Suppose that u ∈ Bs
p,p(�) for some 1 < p < ∞ and s > 1 + 1/p. W.l.o.g.

we may also assume that s < 2. From [7, Theorem 4.1] we can deduce that
u ∈ Br

q,q(�) with 1/q = 1 + ε and r = 2 + ε (2 − s)/(1 − 1/p) for all
0 < ε < 2/(d − 1). Then by Proposition A.4 we have

u ∈ [
Bs
p,p(�), Br

q,q(�)
]
θ

= B2
1,1(�) for θ = 1 − 1/p

1 − 1/p + ε
∈ (0, 1).

However, this contradicts (i).
(iii). We prove this assertion with an argument used in [4, point 4. on page 2167]:

Let us extend f to the whole of R
d such that the extension (also denoted by f )

is at least smooth enough to be contained in F−1+1/p+ε
p,2 (Rd) for some ε > 0.

Then the equation �v = f on R
d has a unique solution v ∈ F1+1/p+ε

p,2 (Rd) and

v|∂� ∈ B1+ε
p,p (∂�) ↪→ F1

p,2(∂�). Therefore, ũ := v − u is a harmonic function

on � with trace ũ|∂� ∈ F1
p,2(∂�). From [23, Theorem 5.15(b)] it thus follows

that ũ ∈ F1+1/p
p,2 (�) and hence also u = ũ − v ∈ F1+1/p

p,2 (�).
(iv). We first consider the case α > α̃p. Theorems 1.1 and 1.3 of [23] together with

part (ii) imply that s p := s p({u}) = 1 + 1/p for all 1 < p < ∞. Now fix
1 < p < pz < ∞. Then, we may apply Theorem 2.1 with z := s pz = 1+ 1/pz
and

μ = s p − d

(
1

p
− 1

pz

)
= 1 + 1

p
− d

(
1

p
− 1

pz

)

= 1 + 1

pz
− (d − 1)

(
1

p
− 1

pz

)
< 1 + 1

pz
,

to obtain

α p({u}) ≤ s p · s p − μ

s pz − μ
=
(
1 + 1

p

)
d

d − 1
= α̃p

which obviously proves (iv) if α > α̃p.

The fact that u /∈ B
α̃p
τ,τ (�), 1/τ = α̃p/d + 1/p, if τ < 1 follows from parts (i)

and (iii) by another complex interpolation argument: Since u ∈ F3/2
2,2 (�) =

B3/2
2,2 (�) and the points (1/2, 3/2), (1, 2), and (̃αp/d + 1/p, α̃p) lie on the

same line of slope 1 through (0, 1) in a DeVore–Triebel diagram, the statement

u ∈ B
α̃p
τ,τ (�) would contradict (i). �


Proof of Theorem 3.1 Due to Jerison and Kenig [23, Theorem 1.2(b)], there exist � ⊆
R
d and f ∈ C∞(�), such that the assumptions of Lemma 3.2 are satisfied. Therefore,

the assertion follows from Lemma 3.2 and (9). �
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We conclude this subsection with some further remarks.

Remark 3.3 It is worth mentioning that the bounds in Theorem 3.1 are due to worst-
case scenarios regarding the behaviour of C1 boundaries. However, for large classes of
domains, which are not even necessarily of class C1, the regularity indices s p(S(�))

and α p(S(�)) with S(�) as defined in (8) may be higher, at least for certain 1 <

p < ∞. For instance, if � ⊆ R
2 is a polygonal domain with maximal interior angle

κ0 ∈ (π, 2π), then Grisvard [19,20] shows that

s p(S(�)) = 2

p
+ π

κ0
, 1 < p < ∞, (10)

which is strictly greater than 1 + 1/p whenever p < κ0/(κ0 − π). Moreover, it is
known from [5] that

α2(S(�)) = ∞.

Note that this does not contradict Theorem 2.1 since (10) implies that for any fixed 1 <

p < ∞ and all pz > p, there is no z > μ(pz, p, s p, 2) such that S(�) ⊆ Bs
pz ,pz (�)

for all s < z.

Remark 3.4 In [4] Costabel constructs bounded C1 domains � ⊆ R
d of arbitrary

dimension d ≥ 2, for which there exists f ∈ C∞(�) such that the solution u to the
corresponding Poisson equation (7) is contained inW 3/2

2 (�), but not inW 1+1/p+ε
p (�)

for any 1 ≤ p < ∞ and any ε > 0; see, in particular, Theorem 1.2 and Remark 1.3
therein. Lemma 3.2 above shows that the counterexample provided by Jerison and
Kenig in [23, Sect. 6] as a proof of Theorem 1.2(b) therein has these properties, too.

3.2 The p-Poisson Problem

Our second example is the p-Poisson problem for some fixed 1 < p < ∞. For d ≥ 2,
let again � ⊆ R

d denote a bounded Lipschitz domain. Given f ∈ W−1
p′ (�) with

1/p + 1/p′ = 1, we seek the unique weak solution u ∈ W 1
p,0(�) to

�pu = f on �,

u = 0 on ∂�,

}

(11)

where �pu := div(|∇u|p−2
2 ∇u) denotes the p-Laplace operator.

For this problem various local and global regularity results are known; we refer,
e.g., to [1,8,14,22,30] and the references therein. Our subsequent analysis relies on
the following result.

Proposition 3.5 (Ebmeyer [14, Theorem2.4])For d ≥ 2 let� ⊆ R
d denote a bounded

polyhedral Lipschitz domain. Moreover, let 1 < p ≤ 2 and f ∈ L p′(�). Then the
unique weak solution to (11) satisfies

u ∈ Ws
pz (�) for all s <

3

2
and pz := pz(d, p) := p

1 − (2 − p)/(2d)
. (12)
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Although, to the best of our knowledge, even in this restricted setting the exact
value of s p is unknown, we can apply our main Theorem 2.1 in order to deduce the
following statement:

Theorem 3.6 For d ≥ 2 let � ⊆ R
d denote some bounded polyhedral Lipschitz

domain. Given 1 < p < 2 let S(�) denote the set of solutions to the p-Poisson
problem (11) with right-hand sides f ∈ L p′(�). Then for the regularity indices s p
and α p as defined in (1) and (2), respectively, one of the following cases applies:

(1). 3/2 ≤ s p < 1 + 1/p and

s p ≤ α p ≤ s p
1 + 1/p − 3/2

1 + 1/p − s p
.

(2). 1 + 1/p ≤ s p ≤ α p.

Proof For 1 < p < 2 the parameter pz in (12) is strictly larger than p. Using that
Ws

pz (�) = Bs
pz ,pz (�) for 0 < s /∈ N, we thus can apply Theorem 2.1 with this pz and

z := 3/2. This yields that in any case there holds

3

2
≤ s p ≤ α p.

Moreover, μ = μ(pz, p, s p, d) = s p − 1/p+ 1/2 is strictly less than z = 3/2 if, and
only if, s p < 1 + 1/p. In this case, also Formula (5) in Theorem 2.1 applies which
proves the upper bound on α p in case 1.). Hence, the proof is complete. �


Let us add some remarks also for this example.

Remark 3.7 There exist statements similar to Proposition 3.5 also for p ≥ 2; see, e.g.,
Ebmeyer [14] for details. However, in this case the analogue of (12) does not provide
additional information; cf. Remark 2.4(iv). That is, using Theorem 2.1 not much can
be said except that α p(S(�)) ≥ s p(S(�)) might be unbounded. Anyway, again this
agrees well with results due to Dahlke [5], who showed that for p = d = 2 and smooth
right-hand sides we indeed have α2(S(�)) = ∞ > s2(S(�)); see also Remark 3.3
above.

Remark 3.8 Theorem 3.6 shows that on polyhedral Lipschitz domains the maximal
L p(�)-Sobolev smoothness s p is at least 3/2. In [30, Theorem 2’] Savaré proved
that this remains true on general Lipschitz domains under the weaker condition that
f ∈ W−1/2

p′ (�). Moreover, in [30, Remark 4.3] he even claims optimality. However,
if we stick to the stronger assumptions that� is polyhedral Lipschitz and f ∈ L p′(�),
we may use positive Besov regularity results w.r.t. the scale (∗) in order to conclude
a better lower bound. Indeed, combining Proposition 3.5 with Remark 2.4(v) shows
that

s p ≥ s̃ p ≥ α · z + d (1/p − 1/pz)

α + d (1/p − 1/pz)
=
(
1 + 1

p

)
α

α + 1/p − 1/2
=: ŝ p(α)

for all α ≤ α p.
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Note that this lower bound is strictly monotonically increasing in α, where

3

2
= ŝ p(3/2) < ŝ p(α) < 1 + 1

p
, α >

3

2
.

Results of Dahlke et al. [8, Theorem 4.20] imply that on bounded polygonal domains
� ⊆ R

2,

S(�) :=
{
u ∈ W 1

p,0(�) �pu ∈ L∞(�)
}

⊆ Bα
τ,τ (�),

1

τ
= α

2
+ 1

p
,

for all 0 < α < 2, (13)

such that in this case

s p(S(�)) ≥ 2
1 + 1/p

1 + 1/p + 1/2
, 1 < p ≤ 2.

Furthermore, recent results indicate that we may replace L∞(�) by L p′(�) in (13).

3.3 The Inhomogeneous Stationary Stokes Problem

Our third and final example is the inhomogeneous stationary Stokes system

−�u + ∇π = f in �,

div(u) = g in �,

u|∂�
= h on ∂�,

⎫
⎪⎬

⎪⎭
(14)

where� ⊆ R
d is again a bounded Lipschitz domain (d ≥ 2) and f , g, and h are given

functions (or distributions) on � and ∂�, respectively, such that the compatibility
condition

∫

∂�

h(y) · η(y) dy =
∫

�

g(x) dx (15)

is satisfied; here, η denotes the outward unit normal vector to ∂�.
For this problem,Mitrea andWright [28] showed that a suitablymodified regularity

shift holds in a range of parametersRd,ε ⊆ R×(0,∞] similar to the one established by
Jerison and Kenig [23] for the classical Poisson problem; see [28, p. 178] for a precise
definition of Rd,ε. Without going into details, this range depends on a “roughness
parameter” ε = ε(�) ∈ (0, 1] which measures the Lipschitz nature of �. However,
for sufficiently smooth domains, e.g., when ∂� ∈ C1, we may take ε = 1.

Proposition 3.9 (Mitrea and Wright [28, Theorem 1.5/10.15]) For d ≥ 2 let � ⊆ R
d

be a bounded Lipschitz domain. Moreover, let A ∈ {B, F}, as well as (d − 1)/d <
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p ≤ ∞, 0 < q ≤ ∞, and (d − 1)max{1/p − 1, 0} < s < 1 with (s, p) ∈ Rd,ε(�),
where max{p, q} < ∞ if A = F. Then for

f ∈ As+1/p−2
p,q (�)d , g ∈ As+1/p−1

p,q (�), and h ∈
{
Bs
p,q(∂�)d if A = B,

Fs
p,p(∂�)d if A = F,

there exists a solution (u, π) ∈ As+1/p
p,q (�)d × As+1/p−1

p,q (�) to the inhomogeneous
stationary Stokes system (14), (15). Moreover, it is unique modulo the addition of
locally constant functions in � to the pressure π .

This statement can be used to conclude the subsequent regularity assertion which
provides all necessary information for the application of Theorem 2.1 to the Stokes
problem.

Lemma 3.10 For d ≥ 2 let � ⊆ R
d denote a bounded Lipschitz domain with

roughness parameter ε(�) ∈ (0, 1]. Further, let 0 < s < 1, as well as σ :=
min j∈{1,2,3} σ j ≥ 0 and

f ∈ Hs−3/2+σ1(�)d , g ∈ Hs−1/2+σ2(�), and h ∈ Hs+σ3(∂�)d .

Then solutions (u, π) to (14), (15) exist and satisfy (u, π) ∈ Hs+1/p
p (�)d ×

Hs+1/p−1
p (�) for all p ∈ [2,∞) with

1

2
− min

{
ε(�)

2
,

σ

d − 1

}
≤ 1

p
≤ 1

2
. (16)

Proof Due to simple embeddings we may w.l.o.g. assume that 0 ≤ σ ≤ (d − 1)/2;
see Proposition A.3(iv). Further let s ∈ R and p ∈ [2,∞). Then, according to Defi-
nition A.2 and Proposition A.3, there holds

Hs−3/2+σ1(�) ↪→ Fs−3/2+σ
2,2 (�) ↪→ Fs1

p,2(�) ↪→ Fs+1/p−2
p,2 (�)

provided that

s1 := s + 1

p
− 2 + σ + (d − 1)

(
1

p
− 1

2

)
≥ s + 1

p
− 2.

Note that this inequality is satisfied if p is chosen such that

1

2
− σ

d − 1
≤ 1

p
. (17)

Moreover, similar calculations show that the same condition (17) implies the embed-
dings Hs−1/2+σ2(�) ↪→ Fs+1/p−1

p,2 (�) and Hs+σ3(∂�) ↪→ Fs
p,p(∂�). Hence, our
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assumptions on the data give

f ∈ Fs+1/p−2
p,2 (�)d , g ∈ Fs+1/p−1

p,2 (�), and h ∈ Fs
p,p(∂�)d

with 0 < s < 1 and each p ∈ [2,∞) with (17). Furthermore, it can be checked easily
that (s, p) ∈ Rd,ε(�) whenever 0 < s < 1 and p ∈ [2,∞) with

1

2
− ε(�)

2
≤ 1

p
.

Thus, the claim follows from Proposition 3.9 applied for A := F , q := 2, as well as
0 < s < 1 and p ∈ [2,∞) restricted by (16), and Definition A.2. �

Theorem 3.11 For d ≥ 2 let � ⊆ R

d denote a bounded Lipschitz domain with
roughness parameter ε = ε(�) ∈ (0, 1]. Let Su(�) and Sπ (�) denote the sets of
solutions (u, π) to the inhomogeneous stationary Stokes problem (14), (15) with

f ∈ H−1/2+σ1(�)d , g ∈ H1/2+σ2(�), and h ∈ H1+σ3(∂�)d ,

where
σ := min

j∈{1,2,3} σ j > 0.

Moreover, let m := min {(d − 1) ε/2, σ }. Then for the regularity indices s2 :=
s2(Su(�)) and α2 := α2(Su(�)) of (each component of) the velocity u one of the
following cases applies:

(1). 3/2 ≤ s2 < 3/2 + m and

s2 ≤ α2 ≤ s2 · d

d − 1
· m

3/2 + m − s2
.

(2). 3/2 + m ≤ s2 ≤ α2.

For the regularity of the pressure π an analogous statement holds with 3/2 replaced
by 1/2.

Proof Let us only consider the assertions on Su(�); the results for Sπ (�) can be
derived in exactly the same way. Due to Proposition A.3(iv) and Lemma 3.10 applied
for p = 2 we know that

Su(�) ⊆ Hs+1/2(�)d = Fs+1/2
2,2 (�)d for all s < 1.

Therefore, by Remark 2.4(i) we have 3/2 ≤ s2 ≤ α2.
Since m > 0, it remains to show that if s2 < 3/2+m, then the stated upper bound

on α2 holds true. To this end, let us define

δ := min

{
1,

1

2

(
3

2
+ m − s2

)}
.
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Then 3/2 ≤ s2 < 3/2 + m particularly implies that 0 < δ < m ≤ (d − 1)/2. For
each arbitrarily fixed δ ∈ (0, δ) we can now choose pz = pz(δ) ∈ (2,∞) with

(d − 1)

(
1

2
− 1

pz

)
= m − δ.

Then the definition of m implies that

0 <
1

2
− 1

pz
< min

{
ε(�)

2
,

σ

d − 1

}

and hence pz satisfies (16). Thus, Lemma 3.10 ensures that Su(�) ⊆ Hs
pz (�) =

Fs
pz ,2

(�) for all s < z := 1 + 1/pz . According to Remark 2.2, this allows to apply
Theorem 2.1, where

μ = s2 − d

(
1

2
− 1

pz

)
= z + s2 − 3

2
− m + δ < z − 1

2

(
3

2
+ m − s2

)
< z.

Therefore, the bound (5) applies which shows that

α2 ≤ s2 · s2 − μ

z − μ
= s2 · d (1/2 − 1/pz)

3/2 + m − δ − s2
= s2 · d

d − 1
· m − δ

3/2 + m − δ − s2
.

Since the latter inequality holds for arbitrary small δ > 0, this completes the proof.
�


Let us conclude also this section with some final remarks:

Remark 3.12 Assume for simplicity that σ = σ1 is chosen small enough such that
m = σ . Then case 2.) in Theorem 3.11 can be interpreted as a shift H−1/2+σ � f �→
u ∈ H3/2+σ of full order (two) within the Sobolev scale. However, as we have seen
in Sect. 3.1, already for the classical Poisson problem this shift might fail even on C1
domains. Although we do not know about an explicit example, it is very likely that
the same is true for the Stokes problem. Then case 1.) applies and we have a non-
trivial upper bound α2 ≤ b on the Besov smoothness w.r.t. the scale (∗) with p = 2.
Moreover note that this b = b(s2) is monotonically increasing in s2, where

3

2

d

d − 1
= b(3/2) ≤ b(s2) < b(3/2 + m) = ∞, s2 ∈ [3/2, 3/2 + m).

Recently Eckhardt et al. [16, Theorem 3.3] addressed the question of Besov reg-
ularity for dimensions d ≥ 3 under the additional conditions that the boundary of �

is connected and g = 0. Rewritten in our notation they were able to show that for
σ1 = 1/2 and σ3 = 0 we have for d ≥ 4

α2(Su(�)) ≥ 3

2

d

d − 1
and α2(Sπ (�)) ≥ 1

2

d

d − 1
.
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A Appendix: Basics from Function Space Theory

In this supplementary sectionwe collect themain definitions and assertions concerning
function spaces on domains which are needed throughout the paper. Here ‘domain’
always means ‘non-empty, connected, open set’. Special attention is paid to bounded
Lipschitz domains � ⊆ R

d , d ∈ N, as defined, e.g., in Triebel [32, Sect. 1.11.4].

A.1 Besov and Triebel–Lizorkin Spaces

In accordance with Triebel [31] we use the Fourier analytic approach towards Besov
and Triebel–Lizorkin spaces on R

d and define the corresponding spaces on domains
by restriction.

Let d ∈ N. By S(Rd) we denote the Schwartz space of all complex-valued rapidly
decreasing C∞ functions on R

d and S ′(Rd) denotes its dual space of tempered distri-
butions.Moreover, for domains� ⊆ R

d we letD(�) := C∞
0 (�) denote the collection

of all complex-valued C∞ functions in R
d with compact support in � and denote by

D′(�) its dual space of distributions on �. As usual, we say two functionals f and g
equal each other in S ′(Rd) or D′(�) if

f (ϕ) = g(ϕ) for all ϕ from S(Rd) or D(�), respectively.

For g ∈ S ′(Rd) we denote by g|� the restriction of g to � which means that

g|� ∈ D′(�) and (g|�)(ϕ) := g(ϕ) for all ϕ ∈ D(�).

Note that this is meaningful since D(�) ⊆ D(Rd) ⊆ S(Rd).
In addition, let F and F−1 denote the (extension of the) Fourier transform, respec-

tively its inverse, on S ′(Rd). Fix an arbitrary φ0 ∈ S(Rd) such that

φ0(x) = 1 if |x |2 ≤ 1 and φ0(x) = 0 if |x |2 ≥ 3

2
.

Then the collection � := (φk)k∈N0 , with

φk(x) := φ0(2
−k x) − φ0(2

−k+1x), x ∈ R
d , k ∈ N,

defines a smooth dyadic resolution of unity and we have

f =
∞∑

k=0

F−1[φk F f ] (convergence in S ′(Rd))
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for all f ∈ S ′(Rd). Due to the celebrated Paley-Wiener-Schwartz-Theorem, the build-
ing blocks F−1[φk F f ], k ∈ N0, are actually entire analytic functions; see, for
instance, Triebel [31, Sect. 1.2.1]. As usual, for 0 < q < ∞, �q(N0) is the space
of q-summable scalar-valued sequences over N0 (bounded sequences, if q = ∞).

Definition A.1 For d ∈ N choose � as above and let � � R
d denote an arbitrary

domain. Moreover, let s ∈ R and 0 < p, q ≤ ∞.

(i) The set Bs
p,q(R

d) :=
{
f ∈ S ′(Rd)

∥∥∥ f Bs
p,q(R

d)

∥∥∥ < ∞
}
, quasi-normed by

∥∥∥ f Bs
p,q(R

d)

∥∥∥ :=
∥∥∥∥
(
2ks

∥∥∥F−1[φk F f ](·) L p(R
d)

∥∥∥
)

k∈N0
�q(N0)

∥∥∥∥ ,

is called Besov space.

(ii) If p < ∞, then the set Fs
p,q(R

d) :=
{
f ∈ S ′(Rd)

∥∥∥ f Fs
p,q(R

d)

∥∥∥ < ∞
}
,

quasi-normed by

∥∥∥ f Fs
p,q(R

d)

∥∥∥ :=
∥∥∥∥

∥∥∥∥
(
2ks

∣∣∣F−1[φk F f ](·)
∣∣∣
)

k∈N0
�q(N0)

∥∥∥∥ L p(R
d)

∥∥∥∥ ,

is called Triebel–Lizorkin space.
(iii) If A ∈ {B, F} with p < ∞ for A = F , then the set

As
p,q(�) :=

{
f ∈ D′(�) there exists g ∈ As

p,q(R
d) with g|� = f in D′(�)

}
,

quasi-normed by

∥∥∥ f As
p,q(�)

∥∥∥ := inf
g∈As

p,q (Rd )

g|�= f inD′(�)

∥∥∥g As
p,q(R

d)

∥∥∥ ,

is called Besov resp. Triebel–Lizorkin space on �.

Standard proofs show that the spaces introduced above are quasi-Banach spaces
(Banach iff min{p, q} ≥ 1 and Hilbert iff p = q = 2) and that different � provide
equivalent quasi-norms, see, e.g., Triebel [31, Sect. 2.3.2]. Furthermore, these scales of
spaces cover a variety of classical function spaces—such as, e.g., Lebesgue, Sobolev(-
Slobodeckij), Bessel potential, Lipschitz, Hölder(-Zygmund), or Hardy spaces—as
special cases. Besides our Fourier analytic definition, there is a big variety of other
descriptions of these spaceswhich are equivalent at least for large ranges of parameters.
To give an example, we note that at least for

s > σp := d max

{
1

p
− 1, 0

}

the spaces As
p,q(R

d) (and also As
p,q(�) for bounded Lipschitz domains � ⊆ R

d )
exclusively contain regular distributions, i.e., functions, which makes it possible to
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characterize them as subspaces of some Lebesgue space by means of iterated differ-
ences. For details we refer to Triebel [32, Sect. 1.11.9].

A.2 Sobolev Spaces

We follow the usual approach and define the following Sobolev-type spaces based on
Besov and Triebel–Lizorkin spaces.

Definition A.2 For d ∈ N let � ⊆ R
d denote a bounded Lipschitz domain. Then we

set

Wm
p (�) := Fm

p,2(�), m ∈ N0, 1 < p < ∞, (Sobolev)

Ws
p(�) := Fs

p,p(�) = Bs
p,p(�), 0<s /∈ N, 1≤ p < ∞, (Sobolev−Slobodeckij)

Ws
p(�) :=

[
W−s

p′,0(�)
]′

, s < 0, 1 < p < ∞,

Hs
p(�) := Fs

p,2(�), s ∈ R, 1 < p < ∞, (Bessel potential)

Hs(�) := Hs
2 (�) = Fs

2,2(�) = Bs
2,2(�), s ∈ R, (Sobolev−Hilbert)

where for 1 < p < ∞ the index p′ is given by 1/p+ 1/p′ = 1 and Ws
p,0(�) denotes

the closure of C∞
0 (�) w.r.t. the norm

∥∥∥· Ws
p(�)

∥∥∥ if s > 0.

It is worth noting that these definitions are equivalent with the common definitions
of Sobolev(-Slobodeckij) and Bessel potential spaces: For s = m ∈ N0 we have

Wm
p (�) =

{
f ∈ L p(�)

∣∣∣∣
∥∥∥ f Wm

p (�)

∥∥∥ :=
[ ∑

|α|1≤m

∥∥Dα f L p(�)
∥∥p

]1/p
< ∞

}
,

see Triebel [32, Theorem 1.122], while Ws
p(�) = Bs

p,p(�) for 0 < s /∈ N coin-
cides with the definition of Sobolev-Slobodeckij spaces as real interpolation space of
L p(�) with Wm

p (�) for some m ∈ N with m > s and suitable parameters; see, e.g.,
DeVore [13, Sect. 4.6].

A.3 Embeddings

The scales of Besov and Triebel–Lizorkin spaces As
p,q(�) on bounded Lipschitz

domains satisfy various embeddings. Let us mention a few of them:

Proposition A.3 For d ∈ N let � ⊆ R
d denote a bounded Lipschitz domain. Further

assume s, s0, s1 ∈ R and let 0 < p, p0, p1, q, q0, q1 ≤ ∞.

(i) Assume additionally that p < ∞. Then

Bs
p,q0(�) ↪→ Fs

p,q(�) ↪→ Bs
p,q1(�).

holds if, and only if, we have q0 ≤ min{p, q} ≤ max{p, q} ≤ q1.
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(ii) If additionally p0 < p1 < ∞ and s0 − d/p0 = s1 − d/p1, then

Fs0
p0,q0(�) ↪→ Fs1

p1,q1(�).

(iii) If additionally A ∈ {B, F} (and p < ∞ if A = F), as well as q0 ≤ q1, then

As
p,q0(�) ↪→ As

p,q1(�).

(iv) If additionally X ,Y ∈ {B, F} and

s0 − s1 > d max

{
1

p0
− 1

p1
, 0

}
,

then

Xs0
p0,q0(�) ↪→ Y s1

p1,q1(�)

(with finite integrability parameter for F-spaces).
(v) Assume additionally that p0 < p < p1 and

s0 − d

p0
= s − d

p
= s1 − d

p1
.

Then
Bs0
p0,q0(�) ↪→ Fs

p,q(�) ↪→ Bs1
p1,q1(�)

holds if, and only if, we have q0 ≤ p ≤ q1.

Proof For (i), (ii), and (v) see, e.g., Triebel [32, p. 60] and the references therein. For
(iii) and (iv) additionally consult Triebel [31, Proposition 2 in Sect. 2.3.2], as well as
[33, Theorem 4.33 and Remark 4.34]. �


Note that Proposition A.3(iv) particularly implies that for A ∈ {B, F} we have

As0
p0,q(�) ↪→ Ws1

p1(�) if s0 > s1 ≥ 0, as well as 1 < p1 ≤ p0 ≤ ∞,

and 0 < q ≤ ∞

with p0 < ∞ if A = F , since Ws1
p (�) can be identified with Fs1

p,2(�) (if s1 ∈ N) or

Fs1
p,p(�) (if 0 < s1 /∈ N).

A.4 Complex Interpolation

For some open set � let X(�) and Y (�) denote quasi-normed spaces of complex-
valued functions or distributions on �. Then, under certain conditions, the (extended)
complex interpolation method is applicable and yields further quasi-normed spaces
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of functions on �. Besides other useful properties these spaces, usually denoted by
[X(�),Y (�)]θ , θ ∈ (0, 1), satisfy

X(�) ∩ Y (�) ↪→ [X(�),Y (�)]θ ↪→ X(�) + Y (�).

Thus, in particular, any set S(�) ⊂ X(�)∩Y (�) is also contained in [X(�),Y (�)]θ
for all θ ∈ (0, 1). For details we refer to Bergh and Löfström [2] and Kalton et al. [24].

It turns out that the scales of Besov and Triebel–Lizorkin spaces As
p,q(�) on

bounded Lipschitz domains behave well w.r.t. this method:

Proposition A.4 (Kalton et al. [24, Theorem 9.4]) For d ∈ N let � ⊆ R
d denote a

bounded Lipschitz domain and assume θ ∈ (0, 1). Moreover, let A ∈ {B, F}, as well
as s, s0, s1 ∈ R, and 0 < p, p0, p1, q, q0, q1 ≤ ∞ (with p0, p1 < ∞ for A = F),
and min{q0, q1} < ∞. Then

s = (1 − θ) s0 + θ s1,
1

p
= 1 − θ

p0
+ θ

p1
, and

1

q
= 1 − θ

q0
+ θ

q1

implies

[
As0
p0,q0(�), As1

p1,q1(�)
]

θ
= As

p,q(�)

in the sense of equivalent quasi-norms.
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