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Abstract
Norm equivalences between a function and its Hankel transform are studied both in
the context of weighted Lebesgue spaces with power weights, and in Lorentz spaces.
Boas-type results involving real-valued general monotone functions are obtained. Cor-
responding results for the Fourier transform are also given.

Keywords Boas conjecture · Hankel transform · General monotonicity · Weighted
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1 Introduction

Given a 2π -periodic function f with Fourier series

f (x) ∼ a0
2

+
∞∑

n=1

an cos nx + bn sin nx,

a classical problem is to study relations between the integrability of f and the summa-
bility of its Fourier coefficients {an}, {bn}. One of the most celebrated results in this
direction is the Hardy–Littlewood theorem [20], which states that for 1 < q < ∞
there exist a constant Cq such that
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C−1
q

(∫ 2π

0
| f (x)|q dx

)1/q

≤
(

|a0|q +
∞∑

n=1

nq−2(|an|q + |bn|q)
)1/q

≤ Cq

( ∫ 2π

0
| f (x)|q dx

)1/q

. (1.1)

This representation of Lq norms of functions via the weighted �q norms of their
Fourier coefficients is useful for applications in other problems (cf. [18,30,33] and the
references therein). Thus, two interesting problems are to study what kind of weights
may be incorporated in (1.1) and what generalizations of monotone sequences may
be considered in such a way that relation (1.1) still holds. It is worth mentioning that
such a relation with Lorentz norms instead of Lebesgue norms has also been object of
study, although we omit such results for the sake of simplicity.

Extensions of the equivalence (1.1) have been given for more general weights in
[34], and the monotonicity condition was replaced by general monotonicity in [12,
13,40,42], among several other works. It is worth to mention that a general monotone
sequence need not be nonnegative (although it is a typical assumption in this kind
of problem, in order to show the left-hand side inequality of (1.1)). Thus, one may
wonder if (1.1) also holds when the nonnegativity assumption is replaced by a milder
one. The answer is positive if we consider {an} and {bn} to be real-valued and to satisfy
the general monotonicity condition

2n∑

k=n

|ck − ck+1| ≤ C
λn∑

k=n/λ

|ck |
k

, ck = ak, bk, (1.2)

for all n, where C, λ > 1 are absolute constants. More precisely, in [12], the authors
proved that for real-valued sequences {an} and {bn} satisfying (1.2), the equivalence

(
|a0|q +

∞∑

n=1

nq/p′−1(|an|q + |bn|q)
)1/q

�
( ∫ 2π

0
xq/p−1| f (x)|q dx

)1/q

, 1 < p < ∞, 1 ≤ q ≤ ∞,

holds, with the usual modification for q = ∞. Here and in what follows the symbol
� is defined as follows: if A ≤ CB, where C is independent of essential quantities of
A and B, we write A � B. Likewise, A � B will denote A ≥ CB, and if A � B and
A � B simultaneously, we write A � B.

A converse equivalence for Lorentz norms was also obtained in [12], i.e.,

(
(a∗

0)
q +

∞∑

n=1

nq/p′−1((a∗
n)

q + (b∗
n)

q)

)1/q

�
(∫ 2π

0
xq/p−1 f ∗(x)q dx

)1/q

, 1 < p < ∞, 1 ≤ q ≤ ∞,
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where f ∗ denotes the decreasing rearrangement of f (defined below), and {a∗
n} and

{b∗
n} are the decreasing rearrangements of {an} and {bn} respectively, or in other words,

the sequences {|an|} and {|bn|} rearranged in decreasing order.
Before discussing the analogous inequalities to those presented above for Fourier

transforms instead of Fourier series, let us introduce the basic notions we will use.
All functions considered in this paper will be defined on an interval of R (mostly on
R+ := (0,∞)) and Lebesgue measurable. Non-weight functions are also assumed to
be locally integrable on their interval of definition.

For 0 < q ≤ ∞ and a weight w : R+ → R+, the weighted Lebesgue space
Lq(w) is defined as the set of all complex-valued measurable functions f for which
the functional

‖ f ‖Lq (w) :=

⎧
⎪⎨

⎪⎩

( ∫ ∞
0 w(x)| f (x)|q dx

)1/q

, if 0 < q < ∞,

supx∈(0,∞) w(x)| f (x)|, if q = ∞,

is finite. A particular example of weighted Lebesgue space that plays a significant role
in this paper is the space Lq(w) with w(x) = xq/p−1 and 0 < p ≤ ∞ (where in
the case p = ∞ we take the convention 1/p ≡ 0 and in the case q = ∞, we set
w(x) = x1/p). Following Sagher [34], such a space will be denoted by Lq

t(p,q), and

obviously Lq
t(q,q) = Lq . We may also refer to Lebesgue spaces for functions defined

onR; in this case the integration is obviously performed onR, and if the corresponding
functional is finite we write that f ∈ Lq

R
(w).

We also define the Lorentz spaces L p,q , introduced in [27] (see also [2]). To this
end, recall that for a function f defined on an interval (a, b) ⊂ R, the distribution
function of f (with respect to the Lebesgue measure) is

d f (s) = |{x ∈ (a, b) : | f (x)| > s}|, s ≥ 0,

where |E | denotes the Lebesgue measure of a set E . The decreasing rearrangement of
f is then defined as

f ∗(x) = inf{s > 0 : d f (s) ≤ x}, x ≥ 0.

TheLorentz space L p,q , with 0 < p, q ≤ ∞, is the set of all complex-valued functions
f defined on (0,∞) for which the functional

‖ f ‖L p,q :=

⎧
⎪⎨

⎪⎩

( ∫ ∞
0

(
x1/p f ∗(x)

)q dx
x

)1/q

, if 0 < p, q < ∞,

supx∈(0,∞) x
1/p f ∗(x), if 0 < p ≤ ∞ and q = ∞,

is finite. We will denote the corresponding Lorentz space of functions defined on
R as L p,q

R
. It is well known that for any 0 < p ≤ ∞, L p,p = L p, and for any

0 < q < r ≤ ∞, L p,q is a subspace of L p,r [19], or in other words, there exists a
constant Cp,q,r such that for every f ∈ L p,q ,
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‖ f ‖L p,r ≤ Cp,q,r‖ f ‖L p,q .

Note that if we restrict ourselves to considering only decreasing functions, the spaces
Lq
t(p,q) and L p,q coincide. Another useful expression for the Lorentz norm is [19]

‖ f ‖L p,q =

⎧
⎪⎨

⎪⎩
p1/q

( ∫ ∞
0

(
sd f (s)1/p

)q ds
s

)1/q

, if 0 < p, q < ∞,

sups∈(0,∞) sd f (s)1/p, if q = ∞.

(1.3)

As one may expect, the equivalence (1.1) has its analog in the case of Fourier
transforms, whose one-dimensional version reads as

( ∫

R

|x |q−2| f̂ (x)|q dx
)1/q

�
( ∫

R

| f (x)|q dx
)1/q

, 1 < q < ∞, (1.4)

for any even function f nonincreasing on (0,∞) (cf. [41, Ch. IV]). What is more,
Boas conjectured [3] that a similar relation to (1.4) with weights should be satis-
fied for sine and cosine transforms. More precisely, the conjecture is as follows. Let
G(x) = ∫ ∞

0 g(t)ϕ(xt) dt , where ϕ(s) is either sin s or cos s. If g is nonnegative and
nonincreasing and −1/q ′ < γ < 1/q, then

xγ+1−2/qG(x) ∈ Lq if and only if t−γ g(t) ∈ Lq , 1 < q < ∞.

An extended version of this conjecture was proved by Sagher in [34], where he
also considered Lorentz spaces L p,q in place of the Lebesgue spaces Lq . Recent
developments on general monotone functions (whose definition is analogous to (1.2),
cf. Sect. 3) gave rise to further generalizations of Boas conjecture, see [23,39,40]. In
particular, the Boas problem was studied for the one-dimensional Fourier transform
[24] (see also [25]), the multidimensional Fourier transform of radial functions [16],
and for Hankel transforms [8]. In these works the involved functions were assumed to
be nonnegative.

A complex-valued function defined on R+ and locally of bounded variation f is
said to be general monotone ( f ∈ GM) [23] if there exist constants C > 0 and λ > 1
(depending on f ) such that

∫ 2x

x
|d f (t)| ≤ C

∫ λx

x/λ

| f (t)|
t

dt, for all x > 0. (1.5)

Our main goal is to prove a version of Boas conjecture for Hankel transforms of
general monotone functions with the assumption g ≥ 0 replaced by g real-valued,
from which all previous results, such as Hardy–Littlewood theorem, can be derived.
We also give corresponding integrability theorems on Lorentz spaces. We emphasize
that results in this direction were obtained very recently for Fourier series in the paper
[12].
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For α ≥ −1/2, the Hankel transform of a function f ∈ L1(0,∞) (see [41, Ch.
VIII] and [38, Ch. IV]) is defined as

Hα f (y) =
∫ ∞

0
f (x)

√
xy Jα(xy) dx, y ∈ R+, (1.6)

where Jα denotes the Bessel function of order α (cf. Sect. 2.1). It is well known that
Hankel transforms describe the Fourier transforms of radial functions defined on R

n .
More precisely, if f ∈ L1(Rn) and f (x) = f0(|x |), its Fourier transform is also
radial, and moreover

|y| n−1
2 f̂ (y) = |y| n−1

2

∫

Rn
f (x)ei(x,y) dx = cnHn

2−1
[
s
n−1
2 f0(s)

]
(|y|), (1.7)

see [38, Ch. IV, Theorem 3.3]. Furthermore, since the Fourier transform in one dimen-
sion can be written as a sum of two Hankel transforms (see Sect. 2.1 below), obtaining
Boas-type results for Hankel transforms allows to derive the corresponding theorems
for the Fourier transform.

In what follows we consider the Hankel transform of f to be the pointwise limit

Hα f (y) = lim
M→0
N→∞

∫ N

M
f (x)

√
xy Jα(xy) dx . (1.8)

Our main results read as follows.

Theorem 1.1 Let f ∈ GM be real-valued. For 1 ≤ q ≤ ∞ and
1

α + 3/2
< p < ∞,

one has

‖x1/p′−1/q Hα f ‖Lq � ‖x1/p−1/q f ‖Lq ,

or in other words, f ∈ Lq
t(p,q) if and only if Hα f ∈ Lq

t(p′,q)
.

Theorem 1.2 Let f ∈ GM be real-valued. For 1 < p < ∞ and 1 ≤ q ≤ ∞, one has

‖Hα f ‖L p′,q � ‖ f ‖L p,q ,

or in other words, f ∈ L p,q if and only if Hα f ∈ L p′,q .

Theorem 1.1 was proved for nonnegative f and 1 < q < ∞ in [8] (see also [16]
for the case of Fourier transforms of radial functions, and the earlier [24,25] for the
sine and cosine transforms).

It is worth mentioning that the inequality � in Theorem 1.1 is a particular case of
the well-known Pitt’s inequality (see, e.g., [1,7,17,31,32]). Such kind of inequalities
are often studied excluding the cases q = 1,∞.

With Theorem 1.1 in hand, we can easily derive the promised integrability results
for the Fourier transform in one dimension, and also for Fourier transforms of radial
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functions in several dimensions. The corresponding Boas theorem for the Fourier
transform in one dimension reads as follows (a version of this result was proved for
nonnegative GM functions in [5]).

Corollary 1.3 Let f be a function defined on R and such that the even and odd parts
of f ,

fe(x) = f (x) + f (−x)

2
, fo(x) = f (x) − f (−x)

2
,

are real-valued GM functions (when restricted to (0,∞)). Then, for 1 < p, q < ∞,
v(x) = |x |q/p−1, and w(x) = |x |q/p′−1,

f ∈ Lq
R
(v) ⇔ f̂ ∈ Lq

R
(w) ⇔ f ∈ L p,q

R
⇔ f̂ ∈ L p′,q

R
.

In higher dimensions, identity (1.7) allows to characterize power weights for which
Pitt’s inequality (on R

n) for radial GM functions holds.

Corollary 1.4 Let f be a real-valued radial function defined on R
n, i.e., f (x) =

f0(|x |), and such that f0 ∈ GM. Then

∫

Rn
|x |−βq | f̂ (x)|q dx �

∫

Rn
|x |γ q | f (x)|q dx �

∫

R+
tn−1+γ q | f0(t)|q dt,

if and only if γ = β + n − 2n

q
and

n

q
− n + 1

2
< β <

n

q
.

Finally, we also give a generalization of Hardy–Littlewood theorem for the Fourier
transform of real-valued radial functions [41, Ch. IV], which immediately follows
from Corollary 1.4 with the appropriate choice of β and γ .

Corollary 1.5 Let f (x) = f0(|x |) be a real-valued radial function defined on Rn, and
such that f0 ∈ GM. Then

∫

Rn
| f̂ (x)|q dx �

∫

Rn
|x |n(q−2)| f (x)|q dx

if and only if
2n

n + 1
< q < ∞, and

∫

Rn
|x |n(q−2)| f̂ (x)|q dx �

∫

Rn
| f (x)|q dx

if and only if 1 < q <
2n

n − 1
.

The paper is structured in the followingway. In Sect. 2 we introduce the preparatory
material concerning Hankel transforms, which includes their definition in the distribu-
tional sense. Section 3 is devoted to the discussion of general monotone functions. In
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particular, we prove Theorem 3.3, which relates weighted norm inequalities between
a general monotone function and its maximal averaging operator, a central tool to
carry out this work. Section 4 is devoted to find sufficient conditions on a function f
so that its Hankel transform Hα f is well defined as an improper integral (where we
also assume f is general monotone), and as a distribution. Finally, in Sect. 5, we put
everything together in order to prove our main results, namely Theorems 1.1 and 1.2.
The mentioned results for the Fourier transforms (Corollaries 1.3 and 1.4) are also
proved.

2 Preliminary Concepts

2.1 Bessel Functions

For α ≥ −1/2, the Bessel function of order α, Jα , is defined as

Jα(x) =
∞∑

k=1

(−1)k

k!	(k + α + 1)

( x
2

)α+2k
, x > 0,

and the series converges absolutely and uniformly on every compact interval. Let us
now mention some useful properties of Jα , which can be found in [15], together with
alternative definitions and several additional properties. First of all, we have the upper
estimate

|Jα(x)| ≤
{
Cαxα, if x ≤ 1,

Cαx−1/2, if x > 1,
(2.1)

or equivalently, |Jα(x)| ≤ Cα min{xα, x−1/2}. For α = ±1/2, one has

J−1/2(x) =
√

2

π

cos x√
x

, J1/2(x) =
√

2

π

sin x√
x

, (2.2)

so that the cosine and sine transforms of f are equal (up to a constant) to H−1/2 f and
H1/2 f , respectively.

For α > −1/2, let us denote by

K α
y (x) =

∫ x

0
t1/2 Jα(t y) dt,

so that

d

dx
K α

y (x) = x1/2 Jα(xy). (2.3)
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Such a function is well defined, since Jα is continuous and t Jα(t y) vanishes as t → 0.

For α = −1/2, it follows from (2.2) that K−1/2
y (x) =

√
2

π

sin xy

y3/2
satisfies (2.3).

It is shown in [10] (see also [8]) that

|K α
y (x)| � y−3/2, x, y > 0. (2.4)

This estimate is particularly useful when integrating by parts.

2.2 Distributional Hankel Transforms

Under the assumption f ∈ L1(0,∞), the integral in (1.6) is absolutely and uniformly
convergent on R+, and if Hα f ∈ L1(0,∞), the inversion formula

f (x) =
∫ ∞

0
Hα f (y)

√
xy Jα(xy) dy (2.5)

holds. Furthermore, if f and G are in L1(0,∞), and F and g denote the direct and
inverse Hankel transforms of order α of f and G, respectively, Parseval’s formula

∫ ∞

0
f (x)g(x) dx =

∫ ∞

0
F(x)G(x) dx (2.6)

holds.
However, such integrability conditions for the above theory to work are rather

restrictive. We can define the Hankel transform of functions from wider spaces in
the distributional sense, analogously as done for the Fourier transform [19], based on
Parseval’s formula (2.6). We follow the theory of Zemanian. In [43], he constructed,
for any α ≥ −1/2, topological linear spacesHα of test functions defined on (0,∞) for
which the Hankel transform Hα is an automorphism. We now briefly present the basic
elements of this theory that will be useful for our purpose. Before proceeding further,
we refer to [22,26,29], where the reader may also find a distributional approach to the
Fourier transform of radial functions.

Definition 2.1 A complex-valued function ϕ ∈ C∞(0,∞) belongs to Hα if for any
nonnegative integers m, n,

γ α
m,n(ϕ) = sup

x∈(0,∞)

|xm(x−1D)n(x−α−1/2ϕ(x))| < ∞, (2.7)

where D = d/dx .

The spaceHα is linear over C, and its topology is the one given by the seminorms
(2.7). In [43], the author also proved the following.

Lemma 2.2 Let α ≥ −1/2. Then the Hankel transform Hα is an isomorphism from
Hα onto itself.



3318 Journal of Fourier Analysis and Applications (2019) 25:3310–3341

For a fixed α ≥ −1/2, the space Hα in the theory of the Hankel transform (of
order α) plays an analogous role as the Schwartz spaceS in the theory of the Fourier
transform. For a more exhaustive treatment of the spaces Hα , see Sect. 2 of [43].

Let us denote R+ := (0,∞). By DR+ we denote the space of smooth functions
supported on R+, with the topology that makes its dual D′

R+ the space of Schwartz
distributions on R+ (cf. [36, Ch. III] for further details). Under these definitions, it
turns out that

Lemma 2.3 The space DR+ is a subspace of Hα for any α ≥ −1/2.

It should also be mentioned that the space DR+ is not dense inHα .
The analogue to the space of tempered Schwartz distributions S ′ is defined as

follows. We denote by H′
α the dual space of Hα , which is a linear space. By 〈T , ϕ〉,

we denote the complex number that T ∈ H′
α assigns to ϕ ∈ Hα .

The spacesH′
α are equipped with the weak topology generated by the seminorms

ηϕ(T ) := |〈T , ϕ〉|, ϕ ∈ Hα arbitrary.

Moreover, for any T ∈ H′
α , there exist r ∈ N ∪ {0} and C > 0 such that for every

ϕ ∈ Hα ,

|〈T , ϕ〉| ≤ C max
0≤m≤r
0≤n≤r

γ α
m,n(ϕ),

which is proved in an analogous way as its counterpart for tempered distributions [44].
Let us now define the Hankel transform of a distribution T ∈ Hα . It is defined

similarly as the Fourier transform of a tempered Schwartz distribution, that is, via
Parseval’s theorem (2.6).

Definition 2.4 The Hankel transform of order α ≥ −1/2 of T ∈ H′
α , HαT , is defined

by the relation

〈T , Hαϕ〉 = 〈HαT , ϕ〉, ϕ ∈ Hα. (2.8)

Relation (2.8) determines a functional HαT onHα , and it can also be used to define
the inverse transform H−1

α .

Theorem 2.5 Let α ≥ −1/2. Then the Hankel transform Hα is an isomorphism from
H′

α onto itself.

The ordinaryHankel transform defined for functions f ∈ L1(0,∞) is then a special
case of the distributional Hankel transform (2.8).

We emphasize that all the results presented in this section can be found with more
detail in Sects. 2–5 of [43].

3 General Monotone Functions

The concept of general monotonicity (already defined in (1.5)) was first introduced by
Tikhonov for sequences in [39,40] (see also [23] for a comprehensive survey on GM
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functions and sequences). Note that without loss of generality, if f ∈ GM , we may
take a different GM constant λ′ = 2ν > λ with ν ∈ N in place of λ. For convenience,
we will use this property repeatedly.

We now list some properties of GM functions that will be useful later.

Lemma 3.1 [23] Let f ∈ GM.

(i) The function xγ f (x) is general monotone for any γ ∈ R.

(ii) For any t > 0 and any u ∈ [t, 2t], | f (u)| �
∫ λt

t/λ

| f (x)|
x

dx.

(iii) For any t > 0 and any γ ∈ R,
∫ ∞

t
xγ |d f (x)| �

∫ ∞

t/λ
xγ−1| f (x)| dx.

(iv) Let ε > 0. If f ∈ L1(0, ε), then x f (x) → 0 as x → 0. If f ∈ L1(ε,∞), then
x f (x) → 0 as x → ∞.

Remark 3.2 It is shown in [9] that if instead of f ∈ L1(ε,∞), the function f is real-
valued and

∫ ∞
ε

f (t) dt converges in the improper sense, then x f (x) → 0 as x → ∞.

The following result due to Booton [4] relates the Lorentz and weighted Lebesgue
norms of GM functions. It was originally stated in more generality, but we present a
simplified version that is enough for our purpose.

Theorem A Let f ∈ GM. For 1 < p < ∞ and 1 ≤ q ≤ ∞, or p = q = ∞, one has

‖ f ‖Lq
t(p,q)

� ‖ f ‖L p,q .

Define, for g, ϕ : R+ → C,

g(t) = 〈ϕt , g〉 =
∫ ∞

0
ϕt (u)g(u) du, (3.1)

where ϕt (u) = t−1ϕ(u/t). We also denote

Mg(t) = sup
x≥t

|g(x)|. (3.2)

Note that if ϕ = χ(0,1), then Mg(t) = sup
x≥t

∣∣∣∣
1

x

∫ x

0
g(u) du

∣∣∣∣. We now aim to prove a

norm inequality for a weighted averaging operator applied to GM functions, which is
the key result of our approach. The statement is as follows.

Theorem 3.3 Let 0 < q ≤ ∞. Let g ∈ GM be real valued, vanishing at infinity, and

such that xr g(x) → 0 as x → 0 for some r > 0. Define ε = 1

C426rν+8ν+16 , assume

ϕ : R+ → [0, 1] is supported on the interval (0, 1 + ε/2), and that ϕ(x) ≡ 1 for
x ∈ (0, 1). Letw : R+ → R+ be aweight satisfyingw(s) � w(t) for all s, t ∈ [x, 2x]
and x > 0. Then

‖g‖Lq (w) � ‖Mg‖Lq (w).
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In order to prove Theorem 3.3 we need some auxiliary results. From now on, we
assume without loss of generality that the GM constant λ (see (1.5)) equals 2ν for
some ν ∈ N. Let us define, for any function g ∈ GM and any n ∈ Z,

An := sup
2n≤t≤2n+1

|g(t)|,

Bn := sup
2n−2ν≤t≤2n+2ν

|g(t)|.

Given r > 0, for n ∈ Z, we say that n is a good number if Bn ≤ 22rν An . The
rest of integer numbers consists of bad numbers. Recall that the constant ν comes
from the GM condition. The parameter r will be arbitrarily chosen at each point
according to our convenience. In contrast with [9,14], here we consider a slightly
different definition of good numbers by incorporating the parameter r > 0 (in the
cited papers r = 2 is fixed). The reason to do this is that every power function xρ

(which is a GM function for any ρ) will have an infinite amount of good numbers if
r is chosen appropriately according to ρ. We give two examples illustrating this fact.
On the one hand, if g(x) = x−2, since

An = 1

22n
, Bn = 1

22n−4ν ,

then Bn = 24ν An , and all natural numbers n (associated to g) are good (with r = 2).
On the other hand, if g(x) = x−3, since

An = 1

23n
, Bn = 1

23n−6ν ,

then Bn = 26ν An , thus all natural numbers n are good if r = 3, and bad if r = 2.

Lemma 3.4 Let g be a GM function. For any good number n, there holds

|En| :=
∣∣∣∣

{
x ∈ [2n−ν, 2n+ν] : |g(x)| >

An

C22ν+3

}∣∣∣∣ ≥ 2n

C22rν+ν+3 , (3.3)

where C and ν are the constants from the GM condition.

Proof The proof just consists on rewriting that of [9] in the context of functions, with
the difference that in the mentioned work the parameter r = 2 is fixed (see also [14],
where this idea was originally carried out for sequences). Assume (3.3) does not hold
for n ∈ Z. Let us define Dn := [2n−ν, 2n+ν]\En . Then, since n is good,

∫ 2n+ν

2n−ν

|g(x)|
x

dx =
∫

Dn

|g(x)|
x

dx +
∫

En

|g(x)|
x

dx

≤ 2n+ν An

C2n−ν22ν+3 + 2n Bn

C2n−ν22rν+ν+3 = An

8C
+ Bn

C22rν+3 ≤ An

4C
.
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The GM condition implies that for any x ∈ [2n, 2n+1],

|g(x)| ≥ An −
∫ 2n+1

2n
|dg(t)| ≥ An − C

∫ 2n+ν

2n−ν

|g(t)|
t

dt ≥ An − An

4
>

An

2
,

which contradicts our assumption.

Note that in particular, Lemma 3.4 implies that if n is a good number, then An > 0.
Before stating the next lemma, let us introduce the following notation:

E+
n := {x ∈ En : g(x) > 0}, E−

n := {x ∈ En : g(x) ≤ 0}.

Lemma 3.5 Let g be a real-valued GM function. For any good number n there is an
interval (�n,mn) ⊂ [2n−ν, 2n+ν] such that at least one of the following holds:

1. for any x ∈ (�n,mn), there holds g(x) ≥ 0 and

|E+
n ∩ (�n,mn)| ≥ 2n

C324rν+5ν+12
;

2. for any x ∈ (�n,mn), there holds g(x) ≤ 0 and

|E−
n ∩ (�n,mn)| ≥ 2n

C324rν+5ν+12
,

where C and ν are the constants from the GM condition and r is the parameter from
the definition of good numbers.

Proof On the first place, by Lemma 3.4, either |E+
n | ≥ 2n

C22rν+ν+4 or |E−
n | ≥

2n

C22rν+ν+4 . We assume the former, and prove that item 1. holds.

Let us construct a system of disjoint intervals {I j = [s j , t j ]}pnj=1 in
[
2n−ν, 2n+ν +

ε2n
]
(where ε < 1 will be conveniently chosen later) as follows: Let s1 = inf E+

n ,
and

τ1 = inf{x ∈ [s1, 2n+ν] : g(x) ≤ 0}.

If such τ1 does not exist, then we simply let t1 = 2n+ν and the conclusion follows
with (�n,mn) = (s1, t1). Contrarily, we define

t1 = τ1 + ε2n .

Once we have the first interval I1 = [s1, t1], if |E+
n \I1| > 0, we let s2 = inf E+

n \I1,
and define τ2 similarly as above, thus obtaining a new interval I2 = [s2, t2]. We
continue this process until our collection of intervals is such that

|E+
n \(I1 ∪ I2 ∪ · · · ∪ Ipn )| = 0.
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By construction, for any 1 ≤ j ≤ pn − 1, we can find y j ∈ [s j , τ j ] such that
y j ∈ E+

n , and z j ∈ [τ j , t j ] such that g(z j ) ≤ 0. Thus,

∫

I j
|dg(t)| =

∫ t j

s j
|dg(t)| ≥ g(y j ) − g(z j ) ≥ g(y j ) >

An

C22ν+3 .

Hence,

∫ 2n+ν

2n−ν

|dg(t)| ≥
pn−1∑

j=1

∫

I j
|dg(t)| ≥ (pn − 1)

An

C22ν+3 .

On the other hand, the GM property and the fact that n is good imply that

∫ 2n+ν

2n−ν

|dg(t)| ≤ C2ν
∫ 2n+2ν

2n−2ν

|g(x)|
x

dx ≤ C2νBn

∫ 2n+2ν

2n−2ν

1

x
dx

= C2νBn log 2
4ν ≤ C22rν8ν2An log 2 ≤ C22rν+2ν+3An .

We can deduce from the above estimates that

pn ≤ C222rν+4ν+6 + 1 ≤ C222rν+4ν+7.

By the pigeonhole principle (or Dirichlet’s box principle), there is an integer j such
that

|E+
n ∩ I j | ≥ 2n

C324rν+5ν+11
.

Given this j , we set ε = 1

C324rν+5ν+12
and (�n,mn) = (s j , t j − ε2n) = (s j , τ j ) ⊂

[2n−ν, 2n+ν], and the result follows.

Concerning bad numbers, we have the following result.

Lemma 3.6 Let g ∈ GM be vanishing at infinity and such that xr0g(x) → 0 as x → 0
for some 0 ≤ r0 ≤ r . Then, for every bad number m ∈ Z there exists either a finite
sequence

m = γ0 > γ1 > · · · > γs := γm,s, (3.4)

or

m = γ0 < γ1 < · · · < γs := γm,s, (3.5)

such that γ0, γ1, . . . , γs−1 are bad, γs is good, and the inequalities

Aγ j < 2−2rν Aγ j+1 , |γ j − γ j+1| ≤ 2ν,
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hold for every 0 ≤ j ≤ s − 1. In particular, there are infinitely many good numbers
associated to g.

Proof Let m ∈ Z be a bad number. Then Am < 2−2rνBm , and we can find γ ∈ Z

satisfying Bm = Aγ and |m − γ | ≤ 2ν. Let

γ1 = min{γ ∈ [m − 2ν,m + 2ν) ∩ Z : Aγ = Bm}.

We now have two possibilities, either γ1 < m, or γ1 > m. Assume first γ1 < m.
Then either γ1 is a good number, or there exists γ satisfying |γ1 − γ | ≤ 2ν for which
Bγ1 = Aγ . Note that in this case γ < γ1, otherwise we arrive at a contradiction. Set

γ2 = min{γ ∈ [γ1 − 2ν, γ1) ∩ Z : Aγ = Bγ1}.

Continuing this procedure, we can prove that we eventually find a good number γs ,
so that the sequence

m = γ0 > γ1 > · · · > γs

is such that γ0, . . . , γs−1 are bad numbers, and γ j − γ j+1 ≤ 2ν for 0 ≤ j ≤ s − 1.
Indeed, if we could not find such a γs , then there would exist an infinite sequence of
bad numbers

γ0 > γ1 > · · · > γs > γs+1 > · · · ,

so that γ j−1 − γ j ≤ 2ν and

0 < 2−2rν Aγ1 < 2−4rν Aγ2 < · · · < 2−2r jν Aγ j , (3.6)

for all j ≥ 1. Now, note that

r0γ j ≥ r0γ0 − 2r0 jν.

Combining this with (3.6), we obtain, since 0 ≤ r0 ≤ r ,

2r0γ j Aγ j > 2r0γ0−2r0 jν+2rν( j−1)Aγ1 = 2r0γ0−2rν Aγ12
2 jν(r−r0) ≥ 2rγ0−2rν Aγ1 > 0.

Letting j → ∞, we find that xr0g(x) �→ 0 as x → 0, which contradicts our hypothe-
ses. This concludes the part of the proof corresponding to the case γ1 < m. Let
us now assume γ1 > m. Then either γ1 is good, or there exists γ > γ1 such that
γ − γ1 ≤ 2ν − 1, and Aγ1 < 2−2rνBγ1 = 2−2rν Aγ (the case γ < γ1 is not possible,
as it leads to a contradiction). We now define

γ2 = max{γ ∈ (γ1, γ1 + 2ν) ∩ Z : Aγ = Bγ1},
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and similarly as above, we can continue this procedure and obtain a finite sequence

m = γ0 < γ1 < · · · < γs, (3.7)

where the numbers γ0, . . . , γs−1 are bad, γs is good, and moreover,

γ j+1 − γ j ≤ 2ν − 1, Aγ j < 2−2rν Aγ j+1 ,

for all 0 ≤ j ≤ s − 1. If we could not find the finite sequence from (3.7), then there
would exist an infinite sequence of bad numbers

γ0 < γ1 < · · · < γs < γs+1 < · · · ,

and we would obtain

Aγs2
> 22r(s2−s1)ν Aγs1

, s1, s2 ≥ 0,

thus contradicting the hypothesis that g vanishes at infinity.

Note that in the proof Lemma 3.6, for any bad numberm, the number γm,s obtained
in (3.4) or (3.5) is uniquely determined. The natural number s will be called the length
of the bad number m. We also define the sets

Q1
n := {m ∈ Z : m is a bad number and (3.4) holds with γm,s = n},

Q2
n := {m ∈ Z : m is a bad number and (3.5) holds with γm,s = n},

and note that Q j
n1 ∩ Qk

n2 = ∅ for every n1, n2 ∈ Z and j, k = 1, 2. Moreover, if we
denote by G the set of good numbers, one has

Z = G ∪
( ⋃

n∈G
Q1

n

)
∪

( ⋃

n∈G
Q2

n

)
,

where all the unions are disjoint.

Remark 3.7 For any good number n and any s ∈ N, each of the sets Q j
n , j = 1, 2,

contain at most (2ν)s bad numbers of length s. Let us discuss the case j = 1 (the case
j = 2 is analogous). Indeed, if m ∈ Q1

n is a bad number such that the construction
(3.6) yields γm,1 = n, then necessarily m ∈ [n − 2ν, n) ∩ Z, so that there are at most
2ν bad numbers of length 1 in Q1

n . If m is a bad number such that the construction
(3.6) yields γm,2 = n, we should count all possible choices of γ1, γ2 satisfying

m > γ1 > γ2 = γm,2. (3.8)

Weknow that there are atmost 2ν possible choices ofγ1, and thatγ2 ∈ [γ1−2ν, γ1)∩Z,
so that there are at most (2ν)2 possible choices γ1, γ2 satisfying (3.8). Continuing the
argument inductively proves our claim.



Journal of Fourier Analysis and Applications (2019) 25:3310–3341 3325

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3 We first prove that for any good number n, the inequality
Mg(2n−ν) � An holds. Indeed, let (�n,mn) ⊂ [2n−ν, 2n+ν] be the interval obtained
from Lemma 3.5. Then

Mg(2
n−ν) = sup

x≥2n−ν

∣∣∣∣
1

x

∫ x

0
g(u) du + 1

x

∫ x(1+ε)

x
ϕ
(u
x

)
g(u) du

∣∣∣∣

≥ 1

2

∣∣∣∣
1

mn

∫ �n

0
g(u) du + 1

mn

∫ �n(1+ε)

�n

ϕ
( u

�n

)
g(u) du

∣∣∣∣

+ 1

2

∣∣∣∣
1

mn

∫ mn

0
g(u) du + 1

mn

∫ mn(1+ε)

mn

ϕ
( u

mn

)
g(u) du

∣∣∣∣

≥ 1

2mn

∣∣∣∣
∫ mn

�n

g(u) du +
∫ mn(1+ε)

mn

ϕ
( u

mn

)
g(u) du

−
∫ �n(1+ε)

�n

ϕ
( u

�n

)
g(u) du

∣∣∣∣

≥ 1

2mn

∣∣∣∣
∫ mn

�n

g(u) du

∣∣∣∣ − 1

2mn

( ∫ �n(1+ε)

�n

|g(u)| du

+
∫ mn(1+ε)

mn

|g(u)| du
)

≥ 1

2mn

∣∣∣∣
∫ mn

�n

g(u) du

∣∣∣∣ − ε

2
Bn ≥ 1

2mn

∣∣∣∣
∫ mn

�n

g(u) du

∣∣∣∣ − 22rν−1εAn .

By Lemma 3.5, we have

1

2mn

∣∣∣∣
∫ mn

�n

g(u) du

∣∣∣∣ >
An

C424rν+8ν+16 ,

and thus, by the choice of ε, we obtain

Mg(2
n−ν) >

An

C424rν+8ν+16 − 22rν−1εAn = An

C424rν+8ν+17 , (3.9)

valid for any good number n. Let us now consider two subcases, namely 0 < q < ∞
and q = ∞. Let G ⊂ Z denote the set of good numbers associated to g and W (x) =
supt∈[x,2x] w(t). Then, for the case 0 < q < ∞,

‖g‖qLq (w) =
∫ ∞

0
w(t)|g(t)|q dt =

∑

n∈Z

∫ 2n+1

2n
w(t)|g(t)|q dt

�
∑

n∈Z
W (2n)Aq

n =
∑

n∈G
W (2n)Aq

n +
∑

n∈G

∑

m∈Q1
n∪Q2

n

W (2n)Aq
n =: S1 + S2.
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On the one hand, by (3.9)

S1 �
∑

n∈G
W (2n)Mg(2

n−ν)q � ‖Mg‖qLq (w),

where the last inequality follows from the fact that Mg is nonincreasing. On the
other hand, in order to estimate S2, let us first observe that there exists B > 0 such
that for every k,m ∈ N,

W (2m) ≤ B · W (2m±1) ≤ · · · ≤ BkW (2m±k).

Now, for any bad number m ∈ Q1
n of length s, it follows from the inequalities m ≤

n + 2νs and Am < 2−2rsν An (cf. Lemma 3.6) that

W (2m)Aq
m < W (2m)Aq

n2
−2rsνq ≤ B2νs2−2rsνqW (2n)Aq

n = 22νs(log2 B−rq)W (2n)Aq
n ,

and similarly, for any bad numberm ∈ Q2
n , it follows from the inequalities n ≤ m+2νs

and Am < 2−2rsν An that

W (2m)Aq
m < 22νs(log2 B−rq)W (2n)Aq

n .

From now on, we now assume without loss of generality that r > q−1 log2 B. By
Remark 3.7

S2 =
∑

n∈G

∑

m∈Q1
n∪Q2

n

W (2m)Aq
m < 2

∑

n∈G
W (2n)Aq

n

∞∑

s=1

(2ν)s22νs(log2 B−rq)

�
∑

n∈G
W (2n)Aq

n � ‖Mg‖qLq (w),

which concludes the proof of the case 0 < q < ∞. For the case q = ∞, the proof is
similar. First of all, note that

sup
n∈Z
n∈G

W (2n)An � sup
n∈Z
n∈G

W (2n)Mg(2
n−ν) � ‖Mg‖L∞(w).

Further, for any bad number m ∈ Q1
n of length s, it follows from the inequalities

m ≤ n + 2νs and Am < 2−2rsν An that

W (2m)Am < W (2m)An2
−2rsνq ≤ 22νs(log2 B−rq)W (2n)An � ‖Mg‖L∞(w).

Finally, if m ∈ Q2
n has length s, it follows from the inequalities n ≤ m + 2sν and

Am < 2−2rsν An that

W (2m)Am < 22νs(log2 B−rq)W (2n)An ≤ ‖Mg‖L∞(w).
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Joining the above estimates we get ‖g‖L∞(w) � ‖Mg‖L∞(w).

4 Well-Definiteness of H˛f in Function Spaces

In this section we show that the Hankel transform Hα f is well defined both as the
pointwise limit (1.8) (provided that f is GM) and also as an element ofH′

α , whenever
f is from a suitable function space. Both facts put together imply that the inversion
formula (2.5) holds almost everywhere for general monotone functions from such a
space, in virtue of Theorem 2.5.

4.1 Pointwise Convergence of H˛f

The goal is to show that the limit (1.8) exists for all y ∈ R+ whenever f is from
certain function spaces; in other words, Hα f is well defined as an improper integral.

Lemma 4.1 Let f ∈ GM and 1 ≤ q ≤ ∞.

1. If f ∈ Lq
t(p,q) with

1

α + 3/2
< p < ∞, or

2. if f ∈ L p,q with 1 < p < ∞,

then the limit

lim
M→0
N→∞

∫ N

M
f (x)

√
xy Jα(xy) dx

exists for all y ∈ R+.

Proof. We show that for f ∈ Lq
t(p,q) with p, q as in the hypotheses and given y ∈ R+,

lim
M→0

∫ M

0
| f (x)√xy Jα(xy)| dx = 0, lim

N1,N2→∞

∫ N2

N1

f (x)
√
xy Jα(xy) dx = 0.

The result for f ∈ L p,q will follow just by Theorem A. Since Jα(z) � zα for all
z > 0, by Hölder’s inequality, if 1 < q < ∞,

∫ M

0
| f (x)√xy Jα(xy)| dx

� yα+1/2
∫ M

0
| f (x)|xα+1/2 dx

� ‖ f ‖Lq
t(p,q)

(∫ M

0
x (α+1/2−1/p+1/q)q ′

dx

)1/q ′

→ 0 as M → 0,
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for any
1

α + 3/2
< p < ∞. If q = 1, we have

yα+1/2
∫ M

0
| f (x)|xα+1/2 dx � Mα+3/2−1/p‖ f ‖L1

t(p,1)
→ 0 as M → 0,

and if q = ∞,

yα+1/2
∫ M

0
| f (x)|xα+1/2 dx � ‖ f ‖L∞

t(p,∞)

∫ M

0
xα+1/2−1/p dx → 0 as M → 0,

with all the estimates valid for any
1

α + 3/2
< p < ∞.

Integrating by parts and using (2.4), we get

∣∣∣∣
∫ N2

N1

f (x)
√
xy Jα(xy) dx

∣∣∣∣ ≤ √
y
(| f (N2)K

α
y (N2)| + | f (N1)K

α
y (N1)|

)

+ √
y
∫ N2

N1

|K α
y (x)d f (x)|

� | f (N1)| + | f (N2)| +
∫ N2

N1

|d f (x)|.

By Lemma 3.1, for 1 ≤ q < ∞, xq/p f (x) → 0 as x → ∞, and so does f (x) (in the
case q = ∞, f trivially vanishes at infinity). Therefore,

| f (N1)| + | f (N2)| +
∫ N2

N1

|d f (x)| �
∫ ∞

N1

|d f (x)| �
∫ ∞

N1/λ

| f (x)|
x

dx,

and by Hölder’s inequality, for 1 < q < ∞,

∫ ∞

N1/λ

| f (x)|
x

dx � ‖ f ‖Lq
t(p,q)

( ∫ ∞

N1

x−1−q ′/pdx

)1/q ′

→ 0 as N1 → ∞.

For q = 1, it is clear that

∫ ∞

N1/λ

| f (x)|
x

dx � N−1/p
1 ‖ f ‖L1

t(p,1)
→ 0 as N1 → ∞,

and finally, for q = ∞,

∫ ∞

N1/λ

| f (x)|
x

dx � ‖ f ‖L∞
t(p,∞)

∫ ∞

N1/λ

1

x1+1/p dx → 0 as N1 → ∞.
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4.2 Weighted Lebesgue Spaces Lq(w)

We first give sufficient conditions on the weight w so that Hα f ∈ H′
α whenever

f ∈ Lq(w).

Proposition 4.2 Let f ∈ Lq(w), where 1 ≤ q ≤ ∞ and w : R+ → R+ is a weight
function satisfying

(i) sup
x∈(0,1)

xα+1/2w(x)−1 + sup
x∈(1,∞)

xγ w(x)−1 < ∞ for some γ > −1, if q = 1;

(ii)
∫ 1

0
x (α+1/2)q ′

w(x)−q ′/q dx +
∫ ∞

1
xγ q ′

w(x)−q ′/q dx < ∞ for some γ > −1,

if 1 < q < ∞;

(iii)
∫ 1

0
xα+1/2w(x)−1 dx +

∫ ∞

1
xγ w(x)−1 dx < ∞ for some γ > −1, if q = ∞.

Then the functional

Hα f : Hα → C

ϕ �→ 〈Hα f , ϕ〉 = 〈 f , Hαϕ〉, (4.1)

is continuous.

Proof Let ϕ ∈ Hα . By Hölder’s inequality, we have

|〈Hα f , ϕ〉| ≤
∫ ∞

0
| f (x)Hαϕ(x)| dx ≤

{
‖ f ‖Lq (w)‖w−1/q Hαϕ‖Lq′ , if 1 ≤ q < ∞,

‖ f ‖L∞(w)‖w−1Hαϕ‖L1 , if q = ∞.

In order to estimate the weighted Lq ′
norm of Hαϕ, we first obtain pointwise estimates

for such a function. On the first place, for x ≤ 1 one has |Hαϕ(x)| ≤ Cα,ϕxα+1/2.
Indeed, since |Jα(z)| � zα for z < 1 and |Jα(z)| � z−1/2 for z ≥ 1, we have

|Hαϕ(x)| � xα+1/2
∫ 1/x

0
tα+1/2|ϕ(t)| dt + x1/2

∣∣∣∣
∫ ∞

1/x
t1/2ϕ(t)Jα(xt) dt

∣∣∣∣

� xα+1/2
∫ ∞

0
tα+1/2|ϕ(t)| dt + xα+1/2

∫ ∞

1/x
tα+1/2|ϕ(t)| dt

� xα+1/2
∫ ∞

0
tα+1/2|ϕ(t)| dt

= xα+1/2
( ∫ 1

0
tα+1/2|ϕ(t)| dt +

∫ ∞

1

1

t2
tα+5/2|ϕ(t)| dt

)

� xα+1/2
(

sup
t∈R+

|ϕ(t)| + sup
t∈R+

tα+5/2|ϕ(t)|
)

.
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Secondly, for x ≥ 1 and any γ > −1 there holds |Hαϕ(x)| ≤ C ′
α,ϕx

γ . Indeed,
integration by parts together with (2.4) yield

|Hαϕ(x)| � xα+1/2
∫ 1/x

0
tα+1/2|ϕ(t)| dt + x1/2

∣∣∣∣
∫ ∞

1/x
t1/2ϕ(t)Jα(xt) dt

∣∣∣∣

≤ xγ

∫ 1/x

0
tγ |ϕ(t)| dt + x1/2|K α

x (1/x)ϕ(1/x)| + x1/2
∫ ∞

1/x
|K α

x (t)ϕ′(t)| dt

� xγ sup
t∈R+

|ϕ(t)| + x−1 sup
t∈R+

|ϕ(t)| + x−1
∫ ∞

1/x
|ϕ′(t)| dt

� xγ sup
t∈R+

|ϕ(t)| + xγ

∫ 1

1/x
|ϕ′(t)| dt + xγ

∫ ∞

1

1

t2
t2|ϕ′(t)| dt

� xγ

(
sup
t∈R+

|ϕ(t)| + sup
t∈R+

|ϕ′(t)| + sup
t∈R+

|t2ϕ′(t)|
)

.

Assume first that 1 < q < ∞. Then

‖w−1/q Hαϕ‖Lq′

�
(∫ 1

0
w(x)−q ′/q |Hαϕ(x)|q ′

dx

)1/q ′

+
( ∫ ∞

1
w(x)−q ′/q |Hαϕ(x)|q ′

dx

)1/q ′

�
( ∫ 1

0
x (α+1/2)q ′

w(x)−q ′/q dx

)1/q ′(
sup
t∈R+

|ϕ(t)| + sup
t∈R+

tα+5/2|ϕ(t)|
)

+
( ∫ ∞

1
xγ q ′

w(x)−q ′/q dx

)1/q ′(
sup
t∈R+

|ϕ(t)| + sup
t∈R+

|ϕ′(t)| + sup
t∈R+

|t2ϕ′(t)|
)

.

Note that the suprema involving ϕ and ϕ′ need not be functionals from the collection of
seminorms (2.7), but they can be trivially estimated from above by linear combinations
of those.

For the case q = ∞, similar calculations yield Hα f ∈ H′
α . Finally, if q = 1,

‖w−1Hαϕ‖L∞ ≤ sup
x∈(0,1)

w(x)−1|Hαϕ(x)| + sup
x∈(1,∞)

w(x)−1|Hαϕ(x)|

�
(

sup
x∈(0,1)

xα+1/2w(x)−1
)(

sup
t∈R+

|ϕ(t)| + sup
t∈R+

tα+5/2|ϕ(t)|
)

+
(

sup
x∈(1,∞)

xγ w(x)−1
)(

sup
t∈R+

|ϕ(t)| + sup
t∈R+

|ϕ′(t)| + sup
t∈R+

|t2ϕ′(t)|
)

,

which completes the proof.

Proposition 4.2 allows to easily derive sufficient conditions on the parameters p, q,
so that f ∈ Lq

t(p,q) induces a continuous operator Hα f ∈ H′
α .



Journal of Fourier Analysis and Applications (2019) 25:3310–3341 3331

Corollary 4.3 Let 1 ≤ q ≤ ∞ and 0 < p ≤ ∞. Let f ∈ Lq
t(p,q). Then, Hα f ∈ H′

α ,
provided that

(i)
1

α + 3/2
≤ p < ∞, if q = 1;

(ii)
1

α + 3/2
< p < ∞, if 1 < q ≤ ∞.

Proof It is a direct consequence of Proposition 4.2 with different choices of w: for
q = 1, we use w(x) = x−1/p′

, for 1 < q < ∞ we use w(x) = xq/p−1, and finally,
for q = ∞ we use w(x) = x1/p.

4.3 Lorentz Spaces Lp,q

We now show that if f is a function from a certain Lorentz space it also induces
continuous operator Hα f ∈ H′

α . First, let us introduce the following notation. For
1 ≤ p, q ≤ ∞, we say that an integral operator T is of type (p, q) if T : L p → Lq

is bounded. Here we need Calderón’s rearrangement inequality [6] (see also [21]).

Theorem 4.4 Let T be a sublinear operator of types (1,∞) and (a, a′), for some
1 < a < ∞. Then

(Tϕ)∗(y) �
∫ 1/y

0
ϕ∗(x) dx + 1

ya′

∫ ∞

1/y

ϕ∗(x)
xa′ dx

Remark 4.5 The Hankel transform (1.6) is of types (1,∞) and (2, 2) for every α ≥
−1/2, see [7,28].

Proposition 4.6 Let f ∈ L p,q , with 1 < p < ∞ and 1 ≤ q ≤ ∞. Then the functional
Hα f defined by (4.1) is continuous.

Proof Let ϕ ∈ Hα . By Hölder’s inequality on Lorentz spaces (cf. [2, Ch. IV, Theorem
4.7]) and the fact that ‖g‖L p,r � ‖g‖L p,s for any s ≤ r (see [19, Ch. I]), we have

|〈Hα f , ϕ〉| ≤
∫ ∞

0
| f (x)Hαϕ(x)| dx ≤ ‖ f ‖L p,q‖Hαϕ‖L p′,q′ � ‖ f ‖L p,q‖Hαϕ‖L p′,1 .

We now estimate ‖Hαϕ‖L p′,1 from above by a finite linear combination of semi-
norms of ϕ on Hα , which will yield Hα f ∈ H′

α . We have, by Theorem 4.4 (see also
Remark 4.5),

‖Hαϕ‖L p′,1 =
∫ ∞

0
x−1/p(Hαϕ)∗(x) dx �

∫ ∞

0
x−1/p

∫ 1/x

0
ϕ∗(t) dt dx

+
∫ ∞

0
x−2−1/p

∫ ∞

1/x

ϕ∗(t)
t2

dt dx .
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On the one hand, since ϕ∗ is decreasing, ϕ∗(0) = supx∈R+ |ϕ(x)|, and ‖ϕ∗‖1 = ‖ϕ‖1
(see [2,19]),

∫ ∞

0
x−1/p

∫ 1/x

0
ϕ∗(t) dt dx =

∫ ∞

0
ϕ∗(t)

∫ 1/t

0
x−1/p dx dt �

∫ ∞

0
t−1/p′

ϕ∗(t) dt

= sup
x∈R+

|ϕ(x)| +
∫ ∞

1
ϕ∗(t) dt � sup

x∈R+
|ϕ(x)| + ‖ϕ‖1

� sup
x∈R+

|ϕ(x)| + sup
x∈R+

|x2ϕ(x)|,

On the other hand, similarly as before,

∫ ∞

0
x−2−1/p

∫ ∞

1/x

ϕ∗(t)
t2

dt dx =
∫ ∞

0

ϕ∗(t)
t2

∫ ∞

1/t
x−2−1/p dx dt

�
∫ ∞

0
t−1/p′

ϕ∗(t) dt

≤ sup
x∈R+

|ϕ(x)| +
∫ ∞

1
ϕ∗(t) dt � sup

x∈R+
|ϕ(x)|

+ sup
x∈R+

|x2ϕ(x)|.

Combining all estimates, we get

|〈Hα f , ϕ〉| ≤ Cp,q‖ f ‖L p,q

(
sup
x∈R+

|ϕ(x)| + sup
x∈R+

|x2ϕ(x)|
)

,

which yields the desired result.

5 The Boas Conjecture

The goal of this section is to prove Theorems 1.1 and 1.2. The approaches we follow
are similar to those considered in [34] and [5], respectively. It is worth emphasizing,
as mentioned at the beginning of Sect. 4, that the inversion formula (2.5) holds for
GM functions from the weighted Lebesgue space Lq

t(p,q) with 1 ≤ q ≤ ∞ and
1

α + 3/2
< p < ∞ (and thus, also for those from the Lorentz space L p,q with

1 ≤ q ≤ ∞ and 1 < p < ∞, by Theorem A).

5.1 Weighted Lebesgue Norm Inequalities

First of all, we prove a Pitt-type inequality for the Hankel transform of GM functions
that includes the cases q = 1,∞ (for the case 1 < q < ∞ this was proved in [8,11]).
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Theorem 5.1 Let f ∈ GM, 1 ≤ q ≤ ∞, and
1

α + 3/2
< p < ∞. If f ∈ Lq

t(p,q),

then Hα f ∈ Lq
t(p′,q)

and

‖Hα f ‖Lq
t(p′,q)

� ‖ f ‖Lq
t(p,q)

.

In order to prove Theorem 5.1 we will need Hardy’s inequalities [45, p. 20].

Theorem B Let 1 ≤ q < ∞ and σ > 0. Then, for every measurable f ,

∫ ∞

0

(
y−σ

∫ y

0
| f (x)| dx

x

)q dy

y
�

∫ ∞

0

(
x−σ | f (x)|)q dx

x
,

and

∫ ∞

0

(
yσ

∫ ∞

y
| f (x)| dx

x

)q dy

y
�

∫ ∞

0

(
xσ | f (x)|)q dx

x
,

where the involved constants do not depend on f .

Proof of Theorem 5.1 Weproceed similarly as in Theorem 4 of [5], where an analogous
result was proved for sine and cosine transforms. First of all, it follows by Lemma 4.1
that Hα f is well defined as an improper integral. We now apply the estimate (2.1) to
obtain, for any t > 0,

|Hα f (y)| � yα+1/2
∫ t

0
xα+1/2| f (x)| dx + y1/2

∣∣∣∣
∫ ∞

t
x1/2 f (x)Jα(xy) dx

∣∣∣∣.

Integration by parts, the estimate (2.4), and the fact that f vanishes at infinity (which

follows from f ∈ Lq
t(p,q) and

1

α + 3/2
< p < ∞, by Lemma 3.1) imply that

y1/2
∣∣∣∣
∫ ∞

t
x1/2 f (x)Jα(xy) dx

∣∣∣∣ � 1

y
| f (t)| + 1

y

∫ ∞

t
|d f (x)| � 1

y

∫ ∞

t
|d f (x)|,

where in the last inequality we used the estimate | f (t)| ≤ ∫ ∞
t |d f (x)|, which is valid

since f vanishes at infinity. Thus, we deduce by (iii) of Lemma 3.1,

|Hα f (y)| � yα+1/2
∫ t

0
xα+1/2| f (x)| dx + 1

y

∫ ∞

t/λ

| f (x)|
x

dx .
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Note that since f ∈ Lq
t(p,q), 1 ≤ q ≤ ∞, and

1

α + 3/2
< p < ∞, the right-hand side

is finite, by Hölder’s inequality. Hence, by letting t = 1/y we obtain

‖Hα f ‖Lq
t(p′,q)

=
( ∫ ∞

0

(
y1/p

′ |Hα f (y)|
)q dy

y

)1/q

�
( ∫ ∞

0

(
yα+1/2+1/p′

∫ 1/y

0
xα+1/2| f (x)| dx

)q dy

y

)1/q

+
( ∫ ∞

0

(
y−1/p

∫ ∞

1/(λy)
| f (x)|dx

x

)q dy

y

)1/q

=
( ∫ ∞

0

(
y−α−1/2−1/p′

∫ y

0
xα+3/2| f (x)| dx

x

)q dy

y

)1/q

+
( ∫ ∞

0

(
y1/p

∫ ∞

y/λ
| f (x)|dx

x

)q dy

y

)1/q

,

where in the last inequality we applied the change of variables y → 1/y. On the one

hand, since p >
1

α + 3/2
, Hardy’s inequality yields

( ∫ ∞

0

(
y−α−1/2−1/p′

∫ y

0
xα+3/2| f (x)| dx

x

)q dy

y

)1/q

�
( ∫ ∞

0

(
x1/p| f (x)|)q dx

x

)1/q

= ‖ f ‖Lq
t(p,q)

,

whilst on the other hand, again by Hardy’s inequality,

(∫ ∞

0

(
y1/p

∫ ∞

y/λ
| f (x)|dx

x

)q dy

y

)1/q

�
( ∫ ∞

0

(
x1/p| f (x)|)q dx

x

)1/q

= ‖ f ‖Lq
t(p,q)

.

The case q = ∞ is similar and is omitted (in fact, this complementary case is dealt
with in full detail in the case of Lorentz spaces, in Theorem 5.5 below; note that
Hardy’s inequalities are not needed in this case).

Lemma 5.2 Let f ∈ Lq
t(p,q), with

(i) q = 1 and
1

α + 3/2
≤ p < ∞, or

(ii) 1 < q ≤ ∞ and
1

α + 3/2
< p < ∞.

Then the inequality

‖MHα f ‖L p′,q = ‖MHα f ‖Lq
t(p′,q)

� ‖ f ‖Lq
t(p,q)

. (5.1)

holds for any ϕ ∈ Hα .
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Remark 5.3 Given ϕ : R+ → C, the operator g was defined in (3.1) for a given
function g. However, if ϕ ∈ Hα and f is a function for which Hα f ∈ H′

α , abusing of
notation we may write

Hα f (t) = 〈 f , Hαϕt 〉,

as done in (5.1), taking into account the definition of Hα f (2.8). This notation is
adopted in what follows.

Proof of Lemma 5.2 The proof is carried out exactly in the same lines as [34, Theorem
3.1]. Indeed, Hölder’s inequality implies

|Hα f (t)| ≤ t−1/p′ ‖ f ‖Lq
t(p,q)

‖Hαϕ‖
Lq′
t(p′,q′)

,

so that the operator T : f �→ MHα f maps Lq
t(p,q) into L p′,∞. Fixing q and interpo-

lating between different values of p, the interpolation theoremwith change ofmeasures
by Stein and Weiss (cf. [37]) yields

T : Lq
t(p,q) → L p′,q ,

as desired.

Finally, we are in a position to prove our main result concerning weighted Lebesgue
spaces.

Proof of Theorem 1.1 It follows from Theorem 5.1 that

‖Hα f ‖Lq
t(p′,q)

� ‖ f ‖Lq
t(p,q)

, 1 ≤ q ≤ ∞,
1

α + 3/2
< p < ∞.

By Lemma 5.2 (with Hα f in place of f ), we get

‖M f ‖Lq
t(p,q)

� ‖Hα f ‖Lq
t(p′,q)

,

for any ϕ ∈ Hα . Finally, Theorem 3.3 together with the appropriate choice of ϕ yields

‖ f ‖Lq
t(p,q)

� ‖M f ‖Lq
t(p,q)

,

with all the estimates valid for the ranges 1 ≤ q ≤ ∞ and
1

α + 3/2
< p < ∞. The

hypothesis xr f (x) → 0 as x → 0 needed to apply Theorem 3.3 follows from the fact
that f ∈ Lq

t(p,q) and Lemma 3.1.

Remark 5.4 Note that in Theorem 3.3, rather than choosing ϕ = χ(0,1), we allow ϕ to
be supported on (0, 1+ ε/2), so that it is also valid for some choice of ϕ ∈ Hα , which
is needed to prove Theorem 1.1.
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5.2 Lorentz Norm Inequalities

In order to prove Theorem 1.2, we need to establish some auxiliary estimates on
Lorentz norms.

Theorem 5.5 Let f ∈ GM, and assume that f ∈ L p,q with 1 < p < ∞ and
1 ≤ q ≤ ∞. Then Hα f ∈ L p′,q , and moreover

‖Hα f ‖L p′,q � ‖ f ‖L p,q .

Proof First of all, we apply the estimate (2.1) to obtain, for any t > 0,

|Hα f (y)| �
∫ t

0
| f (x)| dx + y1/2

∣∣∣∣
∫ ∞

t
x1/2 f (x)Jα(xy) dx

∣∣∣∣.

Integration by parts, the estimate (2.4), and the fact that f vanishes at infinity (which
follows from f ∈ Lq

t(p,q) (cf. Theorem A) and Lemma 3.1) imply that

y1/2
∣∣∣∣
∫ ∞

t
x1/2 f (x)Jα(xy) dx

∣∣∣∣ � 1

y
| f (t)| + 1

y

∫ ∞

t/λ

| f (x)|
x

dx,

and thus we deduce

(Hα f )∗(y) �
∫ t

0
| f (x)| dx + 1

y
| f (t)| + 1

y

∫ ∞

t/λ

| f (x)|
x

dx

�
∫ t

0
| f (x)| dx + 1

y

∫ ∞

t/λ

| f (x)|
x

dx,

where the right-hand side is finite, since f ∈ GM and f ∈ Lq
t(p,q). From this point,

the proof for the case 1 ≤ q < ∞ is exactly the same as the one of [5, Theorem 4]
(and similar to that of Theorem 5.1) and is therefore omitted. We give a detailed proof
for the case q = ∞. Since y1/p

′ � y1+1/(2p′) ∫ 1/y
0 t−1/(2p′) dt for y > 0, we have

y1/p
′
(Hα f )∗(y) � y1+1/(2p′)

∫ 1/y

0
t−1/(2p′)(Hα f )∗(y) dt

� y1+1/(2p′)
∫ 1/y

0
t−1/(2p′)

(∫ t

0
| f (x)| dx

)
dt

+ y1/(2p
′)

∫ 1/y

0
t−1/(2p′)

( ∫ ∞

t/λ

| f (x)|
x

dx

)
dt

� ‖ f ‖L∞
t(p,∞)

(
y1+1/(2p′)

∫ 1/y

0
t−1/(2p′)

( ∫ t

0
x−1/p dx

)
dt

+ y1/(2p
′)

∫ 1/y

0
t−1/(2p′)

( ∫ ∞

t/λ
x−1−1/p dx

)
dt

)
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� ‖ f ‖L∞
t(p,∞)

,

i.e., ‖Hα f ‖L p′,∞ � ‖ f ‖L∞
t(p,∞)

� ‖ f ‖L p,∞ .

We now prove a relation between the norm of f from a certain Lorentz space and
the corresponding norm of MHα f in the corresponding space (cf. (3.1) and (3.2)),
given ϕ ∈ Hα . This is an extension of the result by Y. Sagher for the Fourier transform
given in [34] and is proved in the same way.

Lemma 5.6 Let 1 < p < ∞ and 0 < q ≤ ∞. If f ∈ L p,q , then

‖MHα f ‖L p′,q ≤ Cϕ,p‖ f ‖L p,q . (5.2)

Proof Let f ∈ L p. Since Hαϕt (u) = Hαϕ(tu), we have, by Hölder’s inequality,

|Hα f (t)| = |〈ϕt , Hα f 〉| ≤ ‖ f ‖L p

(∫ ∞

0
|Hαϕ(ut)|p′

du

)1/p′

= t−1/p′ ‖ f ‖L p‖Hαϕ‖L p′ .

Hence, t1/p
′
MHα f (t) ≤ ‖ f ‖L p‖Hαϕ‖L p′ . In other words, the sublinear operator T

defined by T f = MHα f is bounded from L p = L p,p to L p′,∞. Interpolating, we
obtain the boundedness of the operator T from L p,q to L p′,q for any 0 < q ≤ ∞ (see
[35, Theorem 26]), i.e., (5.2) holds.

Corollary 5.7 Let 1 < p < ∞ and 1 ≤ q ≤ ∞. If Hα f ∈ L p′,q and f is a GM
function, then f ∈ L p,q .

Proof By Lemma 5.6 and Theorem 3.3, we get

‖ f ‖Lq
t(p,q)

� ‖Hα f ‖L p′,q .

Finally, Theorem A yields the desired result.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 First of all, combining Theorem 5.5 and Lemma 5.6 we obtain

‖M f ‖Lq
t(p,q)

= ‖M f ‖L p,q � ‖Hα f ‖L p′,q � ‖ f ‖L p,q ,

for ϕ ∈ Hα . Now, Theorem 3.3 together with the appropriate choice of ϕ yields
‖ f ‖Lq

t(p,q)
� ‖M f ‖Lq

t(p,q)
. Finally, Theorem A completes the proof.

Putting together Theorems 1.1, 1.2, andA, we can derive the following equivalence.

Corollary 5.8 Let f ∈ GM be real-valued and let 1 < p, q < ∞. Then, for any
α ≥ −1/2,

f ∈ Lq
t(p,q) ⇔ Hα f ∈ Lq

t(p′,q)
⇔ f ∈ L p,q ⇔ Hα f ∈ L p′,q .
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5.3 The Boas Conjecture for the Fourier Transform

5.3.1 One-Dimensional Fourier Transforms

Let f be a function defined on R. We denote

fe(x) = f (x) + f (−x)

2
, fo(x) = f (x) − f (−x)

2
,

the even and odd part of f , respectively, so that f = fe + fo. Theorems 1.1 and 1.2
together with (2.2) and the well-known representation of the Fourier transform f̂ =
H−1/2 fe + i H1/2 fo allow us to easily derive the solution to the Boas conjecture
for the Fourier transform, in the case of real-valued GM functions. For the sake of
completeness, we first prove a preliminary lemma.

Lemma 5.9 Let f : R → C. Let w : R → R+ be an even weight and 0 < q ≤ ∞.
Then f ∈ Lq

R
(w) if and only if fe, fo ∈ Lq

R
(w).

Proof The “if” part is trivial. For the “only if” part, we have, in the case q < ∞,

∫

R

w(x)| f (x)|q dx =
∫ ∞

0
w(x)

(| fe(x) + fo(x)|q + | fe(x) − fo(x)|q dx
)

≥
∫ ∞

0
w(x)| fe(x)|q dx,

where we used the inequality |a+b|q ≤ 2q(|a|q +|b|q). This shows that fe ∈ Lq
R
(w)

and therefore also fo = f − fe ∈ Lq
R
(w). For the case q = ∞, triangle inequality

yields

sup
x∈R

w(x)| f (x)| ≥ 1

2
sup

x∈(0,∞)

w(x)| fe(x) + fo(x)| + 1

2
sup

x∈(0,∞)

w(x)| fe(x)
− fo(x)| ≥ sup

x∈(0,∞)

w(x)| fe(x)|,

and the result follows similarly as before.

Lemma 5.10 Let f : R → C and 0 < p, q ≤ ∞. Then f ∈ L p,q
R

if and only if
fe, fo ∈ L p,q

R
.

Proof Again, the “if” part is trivial. For the “only if” part, note that

d f (s) = 1

2

(|{x ∈ R : | fe(x) + fo(x)| > s}| + |{x ∈ R : | fe(x) − fo(x)| > s}|).

Since

1

2
|{x ∈ R : | fe(x)| > s}| ≤ |{x ∈ R : | fe(x) + fo(x)| > s}|
+|{x ∈ R : | fe(x) − fo(x)| > s}|,



Journal of Fourier Analysis and Applications (2019) 25:3310–3341 3339

or in other words, d fe (s) ≤ 4d f (s), it follows that fe ∈ L p,q
R

by (1.3), and also
fo = f − fe ∈ L p,q

R
.

We are in a position to prove Corollary 1.3, dealing with one-dimensional Fourier
transforms.

Proof of Corollary 1.3 The result readily follows from the representation f̂ =
H−1/2 fe + i H1/2 fo, together with Corollary 5.8 and Lemmas 5.9 and 5.10.

The interval for p in Corollary 1.3 cannot be extended even for weighted Lebesgue

spaces as done in Theorem 1.1, where
1

α + 3/2
< p < ∞, because the even part of f̂

corresponds to the cosine transform, i.e., theHankel transform of orderα = −1/2, and
the optimal interval for the cosine transform is 1 < p < ∞, according to Theorem 1.1.

Proof of Corollary 1.4 The result follows by using the relation (1.7), and by Theo-

rem 1.1 with α = n

2
− 1, and

1

p
= γ − n − 1

2
+ n

q
.
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