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Abstract
A phase-retrievable frame { fi }Ni for an n-dimensional Hilbert space is exact if it fails
to be phase-retrievable when removing any element from the frame sequence. Unlike
exact frames, exact phase-retrievable frames could have different lengths. We shall
prove that for the real Hilbert space case, exact phase-retrievable frame of length N
exists for every 2n−1 ≤ N ≤ n(n+1)/2. For arbitrary frames we introduce the con-
cept of redundancy with respect to its phase-retrievability and the concept of frames
with exact PR-redundancy.We investigate the phase-retrievability by studying itsmax-
imal phase-retrievable subspaces with respect to a given framewhich is not necessarily
phase-retrievable. These maximal PR-subspaces could have different dimensions. We
are able to identify the one with the largest dimension, which can be considered as a
generalization of the characterization for phase-retrievable frames. In the basis case,we
prove that ifM is a k-dimensional PR-subspace, then |supp(x)| ≥ k for every nonzero
vector x ∈ M . Moreover, if 1 ≤ k < [(n + 1)/2], then a k-dimensional PR-subspace
is maximal if and only if there exists a vector x ∈ M such that |supp(x)| = k.
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1 Introduction

A finite sequence F = { fi }Ni=1 of vectors in an n-dimensional Hilbert space H is
called a frame for H if there are two constants 0 < C1 ≤ C2 such that

C1‖ f ‖2 ≤
N∑

i=1

|〈 f , fi 〉|2 ≤ C2‖ f ‖2

holds for every f ∈ H , where C1,C2 are the frame bounds and N is the frame length.
Equivalently, a finite sequence is a frame for H if and only if it is a spanning set of H .
Two frames { fi }Ni=1 and {gi }Ni=1 are called similar if there exists an invertible operator
T such gi = T fi for every i . For a given frame F = { fi }Ni=1, the spark of F is the
cardinality of the smallest linearly dependent subset of the frame. A full-spark frame
is a frame whose spark is n + 1, i.e., every n-vectors in F are linearly independent.
For our convenience in this paper we also identify a frame { fi }Ni=1 with the n × N
matrix [ f1, f2, ..., fN ].

In recent years, frames have been extensively studied in the context of the so-called
phase-retrieval problem which arises in various fields of science and engineering
applications, such as X-ray crystallography, coherent diffractive imaging, optics and
quantum information. The problem asks to recover a signal of interest from the magni-
tudes of its linear or nonlinearmeasurements. For the linearmeasurementswith a frame
{ fi }Ni=1, one wants to reconstruct f from its intensity measurements {|〈 f , fi 〉|}Ni=1.
Clearly the intensity measurements are the same for both f and λ f for every uni-
modular scalar λ. Therefore the phase retrieval problem asks to recover f up to an
unimodular scalar. We refer to [1–24] and the reference therein for some historic
background of the problem and some recent developments on this topic.

Definition 1.1 A frame { fi }Ni=1 for a Hilbert space H is called phase retrievable if
the induced quotient map A : H/T → R

N defined by A( f /T) = {|〈 f , fi 〉|}Ni=1 is
injective, where T = {λ : |λ| = 1}.

There are few basic concepts when talking about frames or frame sequences: signal
recoverability, redundancy and the exactness of frames. The signal recoverability of a
sequenceF = { fi }Ni=1 canbemeasuredby the space spannedbyF , and the redundancy
of a frame F = { fi }Ni=1 for an n-dimensional Hilbert space can be measured by N/n.
An exact frame for a Hilbert space H is a frame such that it fails to be a frame
if we remove any one element from F . So exact frames are precisely the bases or
the frames with redundancy one. These concepts naturally lead us to the following
questions when dealing with the phase-retrieval problem: Given a frame F = { fi }N1
(which may not be phase-retrievable), how to measure its phase-retrievability? how to
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measure its redundancy with respect to the phase-retrievability and what can be said
about those phase-retrievable frames that have the exact PR-redundancy?

Even if a frame is not phase-retrievable, it is still possible that it can be used to
perform phase retrieval for some subsets of the Hilbert space. So for the purpose of
theory development and practical applications, it seems natural to investigate the sub-
sets on which phase-retrieval can be performed with respect to a given frame (could be
your favorite frame but not necessarily phase-retrievable). In this paper we initiate the
study on the maximal phase-retrievable subspaces for a given frame. This considera-
tion leads to the concept of frame redundancy with respect to the phase-retrievability
and the notion of exact phase-retrievable frames. Unlike exact frames which always
have length n = dim H , exact phase-retrievable frames could have different lengths.
This paper will be focused on the existence problem of exact phase-retrievable frames
(or more generally, the frames with the exact PR-redundancy) with all the possible
lengths, and the maximal phase-retrievable subspaces of all possible dimensions.

There are two well-known necessary and sufficient conditions for phase retriev-
able frames(c.f. [2–6]). The first one is given in terms of the so-called “complement
property”: A frame { fi }Ni=1 is said to have the complement property if for every
� ⊆ {1, ..., N } we have either { fi }i∈� or { fi }i∈�c spans H .

Proposition 1.1 The complement property is necessary for a frame to be phase-
retrievable. It is also sufficient for real Hilbert spaces.

The second condition is based on the rank-one operator lifting of the frame { fi }Ni=1.
Let f , g ∈ H and f ⊗ g be the rank-one operator defined by ( f ⊗ g)x = 〈x, g〉 f for
every x ∈ H . Inwhat followswe use 〈A, B〉 = tr(AB∗) to denote theHilbert-Schmidt
inner product on the space of n × n matrices and let S2 be the set of all the Hermitian
n× n matrices with rank less than or equal to 2. Let �L(F) be the analysis operator of
L(F) := {L( fi )}, where L( fi ) := fi ⊗ fi . From the definition of phase-retrievable
frames, it is easy to obtain the following characterization:

Proposition 1.2 A frame { fi }Ni=1 is phase-retrievable if and only if

ker(�L(F)) ∩ S2 = {0}.
The above characterization indicates that ker(�L(F)) ∩ S2 seems to be a good

candidate to measure the phase-retrievability for a frame F . This motivates us to
introduce the following concept of redundancy with respect to the phase-retrievability
(or PR-redundancy) and the concept of frames with the exact PR-redundancy property.
Let F = { fi }Ni=1 be a frame for H . For each subset � of {1, ..., N }, let F� = { fi }i∈�

and use |�| to denote the cardinality of �.

Definition 1.2 Given a frame F = { fi }Ni=1 for H . Let k be the smallest integer such
that there exists a subset � of {1, ..., N } with the property that |�| = k and

ker(�L(F�)) ∩ S2 = ker(�L(F)) ∩ S2.

Then we call N/k the PR-redundancy of F . A frame is said to have the exact PR-
redundancy property if its PR-redundancy is 1, and a phase-retrievable frame with the
exact PR-redundancy will be called an exact phase-retrievable frame.



Journal of Fourier Analysis and Applications (2019) 25:3154–3173 3157

LetF = { fi }Ni=1 be a frame for H . From the above definitionwe have the following:

(i) There exists a subset� of {1, ..., N } such thatF� is a frame for H with the exact
PR-redundancy property.

(ii) F has the exact PR-redundancy property if and only if for any proper subset �

of {1, ..., N }, there exist two vectors x, y ∈ H such that |〈x, f j 〉| = |〈y, f j 〉| for
every j ∈ �, but |〈x, fi 〉| = |〈y, fi 〉| for some i ∈ �c.

(iii) If F is phase-retrievable, then it is an exact phase-retrievable frame if and only
if F� is no longer phase-retrievable for any proper subset � of {1, ..., N }.

In what follows we always assume that H = R
n and useHn to denote the space of

all the n × n Hermitian matrices.

Lemma 1.3 If a frameF = { fi }N−1 forR
n has the exact PR-redundancy property, then

{L( fi )}Ni=1 is a linearly independent set (and hence N ≤ dimHn = n(n + 1)/2). The
converse is false.

Proof If {L( fi )}Ni=1 is linearly dependent, then there exists a proper subset � of
{1, ..., N } such that span {L( fi ) : i ∈ �} = span {L( fi ) : 1 ≤ i ≤ N }. This implies
that ker(�L(F�)) = ker(�L(F)). Hence F does not have the exact PR-redundancy
property. Therefore {L( fi )}Ni=1 is a linearly independent set.

Let n ≥ 3. Then 2n − 1 < n(n + 1)/2. Let { f1, ..., f2n−1} be a phase-retrievable
frame for H which clearly must have the exact PR-redundancy property. Thus
{L( fi )}2n−1

i=1 is linearly independent. Since dimHn = n(n + 1)/2 and span {L(x) :
x ∈ H} = Hn , we can extend {L( fi )}2n−1

i=1 to a basis {L( fi )}n(n+1)/2
i=1 for Hn . But

clearly F = { fi }n(n+1)/2
i=1 does not have the exact PR-redundancy. ��

Lemma 1.3 immediately implies the following length bound for exact phase-
retrievable frames.

Corollary 1.4 IfF = { fi }Ni=1 is an exact phase-retrievable frame forR
n, then 2n−1 ≤

N ≤ n(n + 1)/2.

This leads to the question about the attainable lengths for exact phase-retrievable
frames. Our first main result shows that every N between 2n − 1 and n(n + 1)/2 is
attainable, i.e., there exists an exact phase-retrievable frame of length N for every such
N .

It is known that for each N ≥ n, the set of full-spark frames of length N is open
and dense in the direct sum space H (N ) := H ⊕ ... ⊕ H (N -copies). It is clear that
if N > 2n − 1 and F = { fi }Ni=1 has the full spark, then N can not be an exact
phase-retrievable frame. Therefore the set of exact phase-retrievable frames of length
N has measure zero, and so the existence proof of exact phase-retrievable frames is
quite subtle, as demonstrated in Sect. 2.

For a non-phase-retrievable frameF , researchers have been interested in identifying
the subsets of the signal space such that phase-retrieval can be performed by the frame
on these subsets. A typical example is the subset of sparse signals (e.g. [18,24]). In
order to have a better understanding about frame phase-retrievability, in this paper we
are interested in the problem of identifying the largest subspaces M such that F does
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the phase-retrieval for all the signals inM . For this purpose we introduce the following
definition:

Definition 1.3 Let F = { fi }Ni=1 be a frame for H and M is a subspace of H . We say
that M is a phase-retrievable subspace with respect to F if {PM fi }Ni=1 is a phase-
retrievable frame for M , where PM is the orthogonal projection from H onto M . A
phase-retrievable subspace M is called maximal if it is not a proper subspace of any
other phase-retrievable subspaces with respect to F .

We will use the abbreviation “F-PR subspace” to denote a phase-retrievable sub-
space with respect to F . For a given a frame F , here is a list of sample questions
about phase-retrievable subspaces: What are possible dimensions k such that there
exists a k-dimensional maximal F-PR subspace? Can we characterize all the maxi-
mal phase-retrievable subspaces? Due to the fact that the dimensions of the maximal
PR-subspaces could be different, it is interesting to find out the information about the
largest (or the smallest) dimension for the maximal F-PR subspaces. We will explore
the answers to these questions in Sects. 3 and 4.

As an motivating example, we will show that if F = { fi }ni=1 is a basis for H ,
then there exists a k-dimensional maximal F-PR subspace if and only if 1 ≤ k ≤
[(n+1)/2], where [a] denotes the integer part of a . For any general frameF , we will
identify the largest k such that there exists a k-dimensional maximal F-PR subspace.
This leads to a generalization of Proposition 1.1. In the case that F = { fi }ni=1 is an
orthonormal basis, we show that if M is a F-PR subspace, then the support supp(x)
(with respect to the dual basis) of every nonzero vector x in M has the cardinality
greater than or equal to k. Moreover, we will prove that for any given vector x with
|supp(x)| = k, there exists a k-dimensional maximal F-PR subspace M containing
x . This support condition is also necessary in the case that k < [(n+ 1)/2], i.e, in this
case we have that a k-dimensional F-PR subspace M is maximal if and only if there
exists an nonzero vector x in M whose support has the cardinality k.

The following simple property will be needed in the rest of the paper.

Lemma 1.5 Suppose that H is the direct sum of two subspaces X and Y . If F1 is a
frame for X with the exact PR-redundancy property and F2 is a frame for Y with the
exact PR-redundancy property, then F = F1 ∪ F2 is a frame for H with the exact
PR-redundancy property.

Proof By passing to a similar frame we can assume that Y = X⊥. Clearly F is a
frame for H . Now assume that a vector f is removed from F1. Since F1 is a frame
for X with the exact PR-redundancy property, there exists some nonzero operator
A = u⊗u−v⊗vwith u, v ∈ X such that A ∈ ker(�L(F1\{ f })) and A /∈ ker(�L(F1)).
Since Y ⊥ X , we also have A ∈ ker(�L(F2)). This implies that A ∈ ker(�L(F\{ f }))
and A /∈ ker(�L(F)). The same argument works if we remove one element from F2.
Thus F has the exact PR-redundancy property. ��
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2 Exact Phase-Retrievable Frames

In this section we prove the existence theorem for exact phase-retrievable frames of
length N with 2n − 1 ≤ N ≤ n(n + 1)/2.

Theorem 2.1 For every integer N with 2n − 1 ≤ N ≤ n(n + 1)/2, there exists an
exact phase-retrievable frame of length N.

Before giving a proof for the above theorem,we introduce some preliminary results.
Weuse the following notations formatrices: A(I , J ) is the submatrix of A consisting of
the entries with row indices in I and column indices in J . A(:, J ) = A({1, . . . , n}, J )

and A(i, j) = A({i}, { j}).
Lemma 2.2 Let f (x1, . . . , xn) be a polynomial and ai be independent continuous
random variables. Then f (a1, . . . , an) = 0 almost surely.

Proof The conclusion can be proved by induction on n and we omit the details. ��
Lemma 2.3 Let A be an n × m random matrix such that rank (A) = r almost surely.
Let B be an (n+1)×(m+1)matrix such that B(1..n, 1..m) = A and B(n+1,m+1)
is a continuous random variable which is independent of the entries of A. Then we
have rank (B) ≥ r + 1 almost surely.

Proof Let � be the sample space. Since A has only finitely many submatrices and
rank (A) = r almost surely, there is a partition {�i }Ni=1 of � such that for each
1 ≤ i ≤ N , there is an r × r submatrix Ai which is of rank r almost surely on �i .
Therefore, the submatrix of A consisting of rows and columns in Ai and the (n + 1)-
th row and the (m + 1)-th column is of rank r + 1 almost surely on �i , thanks to
Lemma 2.2. This completes the proof. ��

The following lemma can be proved similarly, which we leave to interested readers.

Lemma 2.4 Let A be an n × m random matrix such that rank (A) = r ≤ n − 1
almost surely. Let a be an n-dimensional vector with entries consisting of continuous
independent random variables, which are also independent of the entries of A. Then
we have rank ((A a)) = r + 1 almost surely.

We are ready to give a proof of Theorem 2.1.

Proof of Theorem 2.1 Since every full-spark frame of length 2n − 1 is an exact PR-
frame, we only need to prove the theorem for 2n ≤ N ≤ n(n + 1)/2. First, we show
that for 2n ≤ N ≤ n(n + 1)/2, there exist n × N matrices A such that

(P1) A contains the n × n identity matrix as a submatrix;
(P2) the rest N − n columns of A consisting of independent continuous random

variables or zeros and each column contains at least one 0 and two non-zero
entries;

(P3) there are exactly n non-zero entries in every row of A;
(P4) for each 1 ≤ i ≤ n, there exist mutually different indices j1, . . ., jn such that

ai, jl , al, jl = 0;
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(P5) columns of A form an exact PR frame with probability 1.

We first point out that a phase-retrievable frame which satisfies (P3) must be exact.
If fact, if A has rowswith exactly n non-zero entries, then one can remove a column and
obtain a rowwith n−1 non-zero entries. Choosing the column vectors whose entries in
this row do not vanish gives a non-spannings set. The complement consists of vectors
that have a zero entry in common, so they are also not spanning. This contradicts the
complement property, so the columns of A form an exact phase-retrievable frame.

Now let us explain (P4) in more details. Fix some i , say, i = 1. By (P3), there exist
mutually different indices j1, . . ., jn such that a1, jl = 0 for 1 ≤ l ≤ n. (P4) says that
every row contains a non-zero entry in such columns and different rows correspond
to different columns.

Consider the following example,

A =
⎛

⎝
1 0 0 a1,4 a1,5 0
0 1 0 a2,4 0 a2,3
0 0 1 0 a3,5 a3,3

⎞

⎠ , (2.1)

where ai, j are independent continuous random variables. For i = 1, set { j1, j2, j3} =
{1, 4, 5}. Then we have a1, jl , al, jl = 0 for 1 ≤ l ≤ 3.

It is easy to see that A satisfies (P1)∼ (P5). In other words, such matrix exists for
n = 3.

Now we assume that such matrix A exists for some n and N with n ≥ 3. Let us
consider the case of n + 1. We prove the conclusion in the following four steps.

(I). There is an (n + 1) × (N + n + 1) matrix satisfying (P1) ∼ (P5).
Define the (n + 1) × (N + n) matrix B as follows,

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

a1,N+1 0 0 0
0 a2,N+2 0 0

A 0 0 · · · 0 0
. . .

0 0 an,N+n 0
0 . . . 0 an+1,N+1 an+1,N+2 an+1,N+n 1

⎞

⎟⎟⎟⎟⎟⎟⎠

where all the symbols ai, j are independent continuous random variables. It is easy to
see that B meets (P1) ∼ (P4). It remains to prove that (P5) holds for B.

Take some J ⊂ {1, . . . , N + n + 1}. Set

J c = {1 ≤ j ≤ N + n + 1 : j /∈ J },
J |N = { j ∈ J : j ≤ N },
J c|N = { j ∈ J c : j ≤ N }.

Without loss of generality, we assume that N + n + 1 ∈ J c.
Suppose that rank (B(:, J c)) < n + 1 on some sample set �′ which is of positive

probability. Since N + n + 1 ∈ J c, we have rank (A(:, J c|N )) < n a.s. on �′.
Consequently, rank (A(:, J |N )) = n a.s. on �′.
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On the other hand, Since N +n+1 ∈ J c, not all of N +1, . . ., N +n are contained
in J c. Otherwise, rank (B(:, J c)) = n + 1 a.s. on �′. Hence there is some 1 ≤ i ≤ n
such that N + i ∈ J . By Lemma 2.3, rank (B(:, J )) = n + 1 a.s. on �′.

(II). There is an (n + 1) × (N + n) matrix satisfying (P1) ∼ (P5).
Since A satisfies (P2), by rearranging columns of A, wemay assume that A(:, N ) =

(0, a2,N , . . .)t , where at least two entries are non-zero. Define the (n + 1) × (N + n)

matrix B as follows,

B =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 a1,N+1 0 0 0
a2,N a2,N+1 0 0 0

. . . ∗ 0 a3,N+2 · · · 0 0
. . .

∗ 0 0 an,N+n−1 0
an+1,N an+1,N+1 an+1,N+2 an+1,N+n−1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Again, we only need to prove that (P5) holds for B.
As in Step I, we take some J ⊂ {1, . . . , N + n}. We suppose that N + n ∈ J c and

that rank (B(:, J c)) < n + 1 on some sample set �′ which is of positive probability.
Then we have rank (A(:, J |N )) = n a.s. on �′.

If there is some 1 ≤ i ≤ n such that N+i ∈ J , then we have rank (B(:, J )) = n+1
a.s. on �′, thanks to Lemma 2.3.

Next we assume that N + i ∈ J c for 1 ≤ i ≤ n. Since rank (B(:, J c)) < n + 1
a.s. on �′, for any j ≤ N with A(1, j) = 0, we have j ∈ J , thanks to Lemma 2.2.
Similarly we get that N ∈ J .

By setting i = 1 in (P4), we get mutually different 1 ≤ j1, . . . , jn ≤ N
such that A(1, jl), A(l, jl) = 0. Hence j1, . . . , jn ∈ J |N . Moreover, rank (A(:,
{ j1, . . . , jn})) = n a.s. on �′, thanks to Lemma 2.2. Note that N ∈ J |N and N = jl
for 1 ≤ l ≤ n. By Lemma 2.3, we have

rank (B(:, { j1, . . . , jn, N })) = n + 1, a.s. on�′.

Hence

rank (B(:, J )) ≥ rank (B(:, { j1, . . . , jn, N })) = n + 1, a.s. on�′.

(III). There is an (n + 1) × (N + 2) matrix satisfying (P1) ∼ (P5).
By rearranging columns of A, we may assume that

(1) A(:, {1, . . . , n}) is the n × n identity matrix (P1),
(2) A(n, N ) = 0 and there are at least two non-zero entries in the N -th column (P2),
(3) A(i, N − i), A(n, N − i) = 0 for 1 ≤ i ≤ n − 1 (P4).
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Define the (n + 1) × (N + 2) matrix B as follows,

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ a1,N−1 ∗ a1,N+1 0
∗ a2,N−2 ∗ ∗ a2,N+1 0

In×n ∗ ∗ ∗ ∗ a3,N+1 0
. . . . . . . . .

an−1,N−n+1 ∗ ∗ ∗ 0
an,N−n+1 an,N−2 an,N−1 0 an,N+1 0

0 . . . 0 an+1,N−n+1 an+1,N−2 an+1,N−1 an+1,N 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Again, we only need to prove that (P5) holds for B.
As in Step I, take some J ⊂ {1, . . . , N + 2} and suppose that N + 2 ∈ J c and

rank (B(:, J c)) < n + 1 on some sample set �′ which is of positive probability. Then
we have rank (A(:, J |N )) = n a.s. on �′.

There are three cases.
(i). N + 1 ∈ J c

In this case, we conclude that

(a) rank (B(1..n, J c|N )) ≤ n − 2, a.s. on �′;
(b) there is some 1 ≤ j0 ≤ n − 1 such that N − j0 ∈ J .

In fact, if there is some �′′ ⊂ �′ with positive probability such that
rank (B(1..n, J c|N )) = n − 1 a.s. on �′′, then we see from Lemma 2.4 that
rank (B(1..n, J c|N ∪ {N + 1})) = n a.s. on �′′. By Lemma 2.3, we get rank (B(:
, J c)) = n + 1 a.s. on �′′, which contradicts with the assumption. This proves (a).

On the other hand, if N − j ∈ J c for any 1 ≤ j ≤ n − 1, then the expansion of
the determinant of B(:, {N − n + 1, N − n + 2, . . . , N − 1, N + 1, N + 2}) contains
the term A(n, N + 1) · 1 · ∏n−1

i=1 A(i, N − i), which is not zero a.s. By Lemma 2.2,
rank (B(:, J c)) = n+1 a.s. on�′. Again, we get a contradiction with the assumption.
Hence (b) holds.

We see from (a) and (b) that rank (B(1..n, J c|N ∪ {N − j0})) ≤ n − 1, a.s. on �′.
Since A is a PR frame a.s., we have rank (B(1..n, J |N \ {N − j0})) = n a.s. Now we
see from Lemma 2.3 that rank (B(:, J |N )) = n + 1 a.s. on �′.

(ii). N + 1 ∈ J and N − j0 ∈ J for some 0 ≤ j0 ≤ n − 1.
Since rank (A(:, J |N )) = n a.s. on �′, by Lemma 2.3,

rank (B({1, . . . , n}, J |N ∪ {N + 1} \ {N − j0})) = n, a.s. on�′.

Using Lemma 2.3 again, we get

rank (B(:, J |N ∪ {N + 1})) = n + 1, a.s. on�′.

Hence

rank (B(:, J )) = n + 1, a.s. on�′.

(iii). N + 1 ∈ J and N − j ∈ J c for any 0 ≤ j ≤ n − 1.
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By (P2), there is some 1 ≤ i0 ≤ n−1 such that A(i0, N ) = 0. Hence the expansion
of the determinant of B(:, {N − n + 1, N − n + 2, . . . , N , N + 2}) contains the term
B(n + 1, N + 2)A(n, N − i0)A(i0, N )

∏
1≤i≤n−1,i =i0 A(i, N − i), which is not zero

a.s. By Lemma 2.2, rank (B(:, J c)) = n + 1 a.s. on �′, which contradicts with the
assumption.

(IV). For 2n ≤ N ≤ n(n+1)/2, there exist n× N matrices satisfying (P1) ∼ (P5).
Let Kn be the set of all integers k such that there exists an n× k matrix A satisfying

(P1) ∼ (P5).
Since K3 ⊃ {6}, we see from the previous arguments that

K4 ⊃ {8, 9, 10},
K5 ⊃ {10, 11, 12, 13, 14, 15}.

Hence for 3 ≤ n ≤ 5,

Kn ⊃ {k : 2n ≤ k ≤ n(n + 1)/2}. (2.2)

Now suppose that (2.2) is true for some n ≥ 5. Since 2n+(n+1) ≤ n(n+1)/2+2
for n ≥ 5, we have

{k + 2 : 2n ≤ k ≤ n(n + 1)/2} ∪ {k + n : 2n ≤ k ≤ n(n + 1)/2}
∪{k + n + 1 : 2n ≤ k ≤ n(n + 1)/2}
= {k : 2(n + 1) ≤ k ≤ (n + 1)(n + 2)/2}.

Hence Kn+1 ⊃ {k : 2(n + 1) ≤ k ≤ (n + 1)(n + 2)/2}. By induction, (2.2) is true
for n ≥ 3.

Finally, since columns of a randomly generated n × (2n − 1) matrix form an exact
PR frame almost surely, we get the conclusion as desired. ��

The following are some explicit examples for n = 5 and 10 ≤ N ≤ 15. In each case,
column vectors of A form an exact PR frame. Moreover, such matrices correspond to
exact PR frames almost surely if the non-zero entries are replaced with independent
continuous random variables.

(n, N ) = (5, 10):

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

6 4 2 11 0
13 10 8 0 3
7 7 0 9 8
16 0 8 30 13
0 4 12 14 18

⎞

⎟⎟⎟⎟⎠
,
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(n, N ) = (5, 11):

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

5 0 3 35 7 0
18 0 14 27 0 2
0 23 5 0 1 14
0 8 0 14 7 14
0 0 3 30 3 14

⎞

⎟⎟⎟⎟⎠
,

(n, N ) = (5, 12):

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 7
0 1 0 0 0 4
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 10 10 11 0 0
0 7 16 0 15 0
16 2 0 2 3 0
1 0 23 3 0 9
0 12 2 11 0 2

⎞

⎟⎟⎟⎟⎠
.

(n, N ) = (5, 13):

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 6 0
0 1 0 0 0 6 0
0 0 1 0 0 0 9
0 0 0 1 0 0 16
0 0 0 0 1 0 0

4 12 16 0 0 0
8 5 0 0 15 0
5 0 0 11 12 0
0 6 1 0 0 8
7 6 0 10 0 9

⎞

⎟⎟⎟⎟⎠
,

(n, N ) = (5, 14):

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 11 0
0 1 0 0 0 5 0
0 0 1 0 0 0 3
0 0 0 1 0 0 17
0 0 0 0 1 0 0

20 0 16 4 0 0 0
0 1 16 0 0 4 0
6 0 0 0 13 8 0
0 0 8 8 0 0 4
0 1 2 0 1 0 3

⎞

⎟⎟⎟⎟⎠
,

(n, N ) = (5, 15):

A =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0 12 0 4
0 1 0 0 0 17 0 0
0 0 1 0 0 0 1 8
0 0 0 1 0 0 3 0
0 0 0 0 1 0 0 0

0 7 0 13 0 0 0
3 0 10 0 0 2 0
0 0 0 0 12 17 0
0 0 1 15 0 0 2
3 1 0 0 13 0 18

⎞

⎟⎟⎟⎟⎠
.

3 Phase-Retrievable Subspaces

We first prove the following special case.

Proposition 3.1 Let F = { fi }ni=1 be a basis for H. Then there exists a k-dimensional
maximal F-PR subspace if and only if 1 ≤ k ≤ [(n + 1)/2].
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Proof Suppose that M is a k-dimensional F-PR subspace. Then we have that n ≥
2k − 1 and hence k ≤ (n + 1)/2. For the other direction, note that for each invertible
operator T on H ,M is anmaximalF-PR subspace if and only if (T t )−1M is amaximal
TF-PR subspace. So it suffices to show that for each k-dimensional subspace M with
1 ≤ k ≤ [(n + 1)/2] there exists a basis {ui }ni=1 such that M is an maximal PR
subspace with respect to {ui }ni=1.

Let {ϕ j }2k−1
j=1 ⊂ M be a PR-frame for M . Without losing the generality we can

assume that {ϕ1, ..., ϕk} is an orthonormal basis for M . Extend it to an orthonormal
basis {ei }ni=1 for H , where ei = ϕi for i = 1, ..., k. Define ui by

ui = ei (i = 1, .., k, 2k, ..., n) and ui = ei + ϕi (i = k + 1, ..., 2k − 1).

Let PM be the orthogonal projection onto M . Clearly we have

{PMui }ni=1 = {ϕ1, ..., ϕ2k−1, 0, ..., 0},

and hence {ui }ni=1 is a phase-retrievable for M . It is also easy to verify that {ui }ni=1
is a basis for H . Now we show that M is a maximal PR subspace with respect to
{u1, ..., un}. Let M̃ = span {M, u}with u = ∑n

j=k+1 a j e j in M⊥ and ||u|| = 1. Then
PM̃ui = ei for 1 ≤ i ≤ k, PM̃ui = ϕi + aiu for k + 1 ≤ i ≤ 2k − 1 and PM̃ui = aiu
for i ≥ 2k−1. If ai = 0 for i = 2k, ..., n, then {PM̃ui }ni=1 is not phase-retrievable for
M̃ since it only contains at most 2k−1 nonzero elements. If ai0 = 0 for some i0 ≥ 2k,
then clearly {PM̃ui }ni=1 is phase-retrievable for M̃ if and only if {PM̃ui }2k−1

i=1 ∪ {ai0u}
is phase-retrievable for M̃ . Thus M̃ is not a PR subspace with respect to {u1, ..., un}
since we need at least 2k + 1 number of elements in a phase-retrievable frame for the
(k + 1)-dimensional space M̃ . ��

Now let us consider the general frame case: LetF be a frame for H . For each subset
� of {1, ..., N }, let

d� = max{dim span (F�), dim span (F�c)}.

Define

d(F) = min{d� : � ⊂ {1, ..., N }}.

Theorem 3.2 Let F be a frame for H. Then k is the largest integer such that there
exists a k-dimensional maximal F-PR subspace if and only if k = d(F).

Clearly, d(F) = n if and only if F has the complement property. Thus the above
theorem is a natural generalization of Proposition 1.1 . We need following lemma for
the proof of Theorem 3.2.

Lemma 3.3 Let T x = ∑k
i=1〈x, xk〉xk be a rank-k operator and M be a subspace of

H such that dim T M = k, then dim P(M) = k, where P is the orthogonal projection
onto span {x1, ..., xk}.
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Proof Since 〈x, xk〉 = 〈Px, xk〉, we get that range(T |M ) = range(T |PM ). Thus
dim P(M) ≥ k and hence dim P(M) = k. ��
Proof of Theorem 3.2 Clearly we only need to prove that if d(F) = k, then there
exists a k-dimensional F-PR subspace and every (k + 1)-dimensional subspace is not
phase-retrievable with respect to F .

Suppose that M is a (k + 1)-dimensional subspace of H and it is also phase-
retrievable with respect to F . Then, by Proposition 1.1, we get that d(PF) = k + 1,
and hence d(F) ≥ d(PF) ≥ k + 1, which leads to a contradiction. Therefore every
(k + 1)-dimensional subspace is not phase-retrievable with respect to F .

Next we show that there exists a k-dimensional F-PR subspace. Let � be a subset
of {1, ..., N } be such that dim H� ≥ k, where H� = spanF�. For X = (x1, ..., xk) ∈
H (k) := H ⊕ ... ⊕ H , define TX (z) = ∑k

i=1〈z, xk〉xk .
Consider the following set

S� = {(x1, ..., xk) ∈ H (k) : dim TX (H�) = k}.

Since dim spanF� ≥ k, we get that there exists a linearly independent set
( fi1 , ..., fik ) in F�. This implies that ( fi1 , ..., fik ) ∈ S� and hence S� is not empty.

Moreover, since dim TX (H�) = k if and only if there exists an k × k submatrix of
the n × |�| matrix [TX fω] whose determinant is a nonzero polynomial of the input
variables x1, ..., xk , we obtain that S� is open dense in H (k).

Now for each subset � in {1, ..., N }. Let �� = � if d� = dim span (F�), and
otherwise �� = �c. Thus we have dim spanF�� ≥ k for every subset �. Since each
S�� is open dense in H (k), we get that

S :=
⋂

�⊂{1,...,N }
S��

is open dense in H (k). Let X = (x1, ..., xk) ∈ S and M = span {x, ..., xk}. Then by
Lemma3.3we obtain that dim P(H��) = k. This implies that either dim span PF� =
k or dim span PF�c = k for each subset�. Hence {P f j }Nj=1 is a frame for M that has
the complement property, which implies by Proposition 1.1 that M is a k-dimensional
F-PR subspace. ��

From the proof of Theorem 3.2, we also have the following:

Corollary 3.4 Let F be a frame for H. Then for almost all the vectors (x1, ...x�) in
H (�) (here � ≤ d(F)), the subspace span {x1, ..., x�} is phase-retrievable with respect
to F . More precisely, for each � ≤ d(F), the following set

{(x1, ...x�) ∈ H (�) : span {x1, ..., x�} is phase retrievable with respect to F}

is open dense in H (�).

The following lemma follows immediately from the definitions, and it tells us that
it is enough to focus on maximal phase-retrievable subspaces for frames that have the
exact PR-redundancy property.
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Lemma 3.5 LetF = { fi }Ni=1 be a frame for H, and� ⊂ {1, ..., N }. If ker(�L(F�))∩
S2 = ker(�L(F)) ∩ S2, then M is a F-PR subspace if and only if it is a F�-PR
subspace. Consequently, M is an maximal F-PR subspace if and only if it is an
maximal F�-PR subspace.

Now we would like to know what are the possible values of d(F). Since every
frame contains a basis, we get by Proposition 3.1 that d(F) ≥ [ n+1

2 ]. The following
theorem tells us that for every k between [(n + 1)/2] and n, there is a frame F with
the exact PR-redundancy property such that k = d(F).

Theorem 3.6 Let H = R
n and k be an integer such that n ≥ k ≥ [ n+1

2 ]. Then for
each N between 2k−1 and k(k+1)/2+ (n− k)(n− k+1)/2, there exists a frameF
of length N such that it has the exact PR-redundancy property and d(F) = k, i.e., k
is the largest integer such that there exists a k-dimensional maximal F-PR subspace.

Before giving the proof we remark that while the proof of the this theorem uses The-
orem 2.1, it is also a generalization of Theorem 2.1 since it clearly recovers Theorem
2.1 if we let n = k.

Proof Let M be a k-dimensional subspace of H .
We divide the proof into two cases.
Case (i). Assume that 2k − 1 ≤ N ≤ k(k + 1)/2.
By Theorem 2.1, there exists an exact PR-frame G = {gi }Ni=1 for M . Without

losing the generality we can also assume that {g1, ..., gk} is an orthonormal basis for
M . Extend it to an orthonormal basis {ei }ni=1 with e1 = g1, ..., ek = gk . Let

F = { fi }Ni=1 = {e1, ..., ek, gk+1 + ek+1, ..., gn + en, gn+1...., gN }.

Then it is a frame for H . Consider the subset� = {1, ..., k, n+1, ..., N } of {1, ..., N }.
We have dim spanF� = dim M = k, and dim spanF�c ≤ n − k. Note that from
k ≥ [ n+1

2 ] we get that n − k ≤ k. Thus we have d(F) ≤ max{n − k, k} = k. On the
other hand, it is easy to prove that d(F) ≥ d(PMF) = d(G) = k, where PM is the
orthogonal projection onto M . Therefore we have d(F) = k.

Now we show thatF has the exact PR-redundancy property. If fact, if� is a proper
subset of {1, ..., N }, then PMF� is not a PR frame for M since PMF = G is an
exact PR-frame for M . Therefore, there exists x and y in M such that |〈x, PM fi 〉| =
|〈y, PM fi 〉| for all i ∈ � and A = x ⊗ x − y ⊗ y = 0. Since PMF is a PR-
frame for M , we obtain that |〈x, PM fi 〉| = |〈y, PM fi 〉| for some i ∈ �c. Note that
|〈z, fi 〉 = 〈z, PM fi 〉 for every z ∈ M . Therefore, we have that A ∈ ker�L(F�) ∩ S2
but A /∈ ker�L(F) ∩ S2, and hence ker�L(F�) ∩ S2 = ker�L(F) ∩ S2 for any proper
subset �. So F has the exact PR-redundancy property.

Case (ii): Assume that k(k + 1)/2 < N ≤ k(k + 1)/2 + (n − k)(n − k + 1)/2.
Since k ≥ [(n + 1)/2] ≥ n/2, it is easy to verify that

k(k + 1)/2 ≥ (2k − 1) + 2(n − k) − 1 = 2n − 2.
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Then we can write N = N1 + N2 such that

2k − 1 ≤ N1 ≤ k(k + 1)/2 and 2(n − k) − 1 ≤ N2 ≤ (n − k)(n − k + 1)/2.

By Theorem 2.1, there exist an exact PR-frameF1 of length N1 for M and an exact
PR-frame F2 of length N2 for the M⊥. By Lemma 1.5, we know that F = F1 ∪F2 is
a frame of length N with the exact PR-redundancy property. Clearly d(F) ≤ k since

max{dim spanF1, dim spanF2} = k.

On the other hand, since F has a k-dimensional PR-subspace M , we get from
Theorem 3.2 that d(F) ≥ k. Thus we have d(F) = k. ��

We remark that that k(k + 1)/2+ (n− k)(n− k + 1)/2 is not necessarily the upper
bound of N such that there exists a frameF of length N with the exact PR-redundancy
property and d(F) = k. Indeed, let {e1, e2, e3} be an orthonormal basis forR3. Then it
can be verified thatF = {e1, e2, e3, e1+e2, e1+e2+e3}. has the exact PR-redundancy
property.However,we have k = d(F) = 2 and 5 > k(k+1)/2+(3−k)(3−k+1)/2 =
4 .

Proposition 3.7 Let H = R
n. Suppose that a frame F of length N has the exact

PR-redundancy property and d(F) < n. Then N < n(n + 1)/2.

Proof Since F has the exact PR-redundancy, we get that N ≤ n(n + 1)/2. If N =
n(n+ 1)/2, then, by Lemma 1.3, { fi ⊗ fi }N is linearly independent and hence a basis
for Hn . This implies that F is phase-retrievable and so d(F) = n. This contradiction
shows that N < n(n + 1)/2. ��
Question. Give an integer k such that n > k ≥ [ n+1

2 ]. What is the least upper bound
N such that there exists a frame F of length N which has the exact PR-redundancy
property and d(F) = k?

4 Maximal Phase-Retrievable Subspaces with Respect to Bases

Given a basis F = { f1, ..., fn}. We would like to have a better understanding about
the maximal phase-retrievable subspaces with respect to F . We will first focus on
orthonormal bases and then use the similarity to pass to general bases.

Now we assume that E = {e1, ..., en} is an orthonormal basis for Rn . By Proposi-
tion 3.1, we know that there exists a k-dimensional maximal E-PR subspace for ever
integer k with 1 ≤ k ≤ [ n+1

2 ]. What more can be said about these k-dimensional
maximal E-PR subspaces?We explore this question by establishing a connection with
the support property of the vectors in maximal PR-subspaces. Recall that for a vector
x = ∑n

i=1 αi ei ∈ R
n , the support of x is defined by suppE (x) := {i |αi = 0}. We will

also use supp(x) to denote suppE (x) if E is well understood in the statements, and use
|�| to denote the cardinality of any set �.
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Proposition 4.1 Suppose that M is a k-dimensional E − PR subspace. Then for any
nonzero vector x ∈ M, we have |supp(x)| ≥ k.

Proof Assume to the contrary that there exists a nonzero x ∈ M with |supp(x)| =
j < k. We may assume that ‖x‖ = 1 and that supp(x) = {1, 2, ..., j}. Pick vectors
y1, ..., yk−1 in M such that the set {x, y1, ..., yk−1} is an orthonormal basis for M .
Then the partition {PM (e1), ..., PM (e j )} and {PM (e j+1), ..., PM (en)} does not have
the complement property since the first set contains less than k elements and the
members of the second set are all contained in the (k − 1)-dimensional subspace
span {y1, ..., yk−1}. Thus M is not a E − PR subspace, which leads to a contradiction.

��
Corollary 4.2 If M is a k-dimensional E − PR subspace and there exists x ∈ M such
that |supp(x)| = k, then M is maximal.

Now suppose that k ≤ [(n + 1)/2]. Let x ∈ H be a vector of norm one and
|supp(x)| = k. We show that x can be extended to an orthonormal set {x, u1, ..., uk−1}
such that M = span {x, u1, ..., uk−1} is a k-dimensional E-PR subspace.

Theorem 4.3 Let u1 ∈ R
n be a unit vector such that |supp(u1)| = k and k ≤ [(n +

1)/2]. Then u1 can be extended to an orthonormal set {u1, ..., uk} such that M =
span {u1, ..., uk} is a k-dimensional maximal E-PR subspace.

Proof We can assume that {e1, ..., en} is the standard orthonormal basis for Rn and
u1 = ∑k

i=1 αi ei such that αi = 0 for every 1 ≤ i ≤ k.
It is easy to observe the following fact: Letm : 1 ≤ m ≤ k. Suppose that {u1, ..., um}

is an orthonormal set extension of u1 and

A(u1, ..., um) = [u1, ..., um].

is the matrix consisting of column vectors u1, ..., um . Also let A�(u1, ..., um) be the
matrix consisting of the row vectors of A(u1, ..., um) corresponding to an index set�.
If A�(u1, ..., um) is invertible for every subset � of {1, ..., n} of cardinality m with
the property that � ∩ {1, ..., k} = ∅, then the row vectors of A(u1, ..., um) form a
frame for Rm that has the complement property.

Now we use the induction to show that such an matrix A(u1, ..., um) exists for
every m ∈ {1, ..., k}. Clearly, the n × 1 matrix A(u1) satisfies the requirement. Now
assume that such an n × m matrix A(u1, ..., um) has been constructed and m < k.
We want to prove that there exists a unit vector um+1 ⊥ ui (1 ≤ i ≤ m) such that
A(u1, ..., um, um+1) has the required property.

LetU = span{u1, ..., um}⊥, and let� be a subset of {1, ..., n} such that |�| = m+1
and � ∩ {1, ..., k} = ∅. Define

�� = {u ∈ U : A�(u1, ..., um, u) is invertible}.

We claim that �� is an open dense subset of U .
Using the fact that the set of invertible matrices form an open set in the space of all

matrices, it is clear that �� is open in U .
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Now we show that �� = ∅. Let �′ be a subset of � with cardinality m and
�′ ∩ {1, ..., k} = ∅. Then, by our induction assumption, we have that A�′(u1, ..., um)

is invertible,which implies that them columnvectors of A�(u1, ..., um) form a linearly
independent set in the m + 1 dimensional space R� = 
i∈�R. Let z ∈ R

m+1 be a
nonzero vector such that it is orthogonal to all the column vectors of A�(u1, ..., um).
Define u = (u1, ..., un)T ∈ R

n by letting ui = zi for i ∈ �, and 0 otherwise. Then
u ∈ U and hence u ∈ ��. Therefore we get that �� = ∅.

For the density of �U , let y ∈ U be an arbitrary vector and pick a vector u ∈ ��.
Consider the vector ut = tu + (1 − t)y ∈ U for t ∈ R. Since A�(u1, ..., um, u)

is invertible, we have that det(A�(u1, ..., um, ut )) is a nonzero polynomial of t , and
hence it is finitely many zeros. This implies that there exists a sequence {t j } such that
ut j ∈ �� and lim j→∞ t j = 0. Hence ut j → y and therefore �U is dense in U .

By the Baire-Category theorem we obtain that the intersection � of all such ��

is open dense in Y . Pick any um+1 ∈ �, then A(u1, ..., um, um+1) has the required
property. This completes the induction proof for the existence of such a matrix A =
[u1, ..., uk], where {u1, ..., uk} is an orthonormal set extending the given vector u1.

Write u j = (a1 j , a2 j , ..., anj )T for 1 ≤ j ≤ k. Let M = span{u1, ..., uk} and P
be the orthogonal projection onto M . Then

Pei =
k∑

j=
< ei , u j > u j =

n∑

j=1

ai j u j

for all 1 ≤ i ≤ n. For every subset � of {1, ..., n}, since {u1, ..., uk} is an orthonormal
set, we have that {Pe j : j ∈ �} are linearly independent if and only if A� is invertible.
Thus, {Pei }ni=1 has the complement property since the set of row vectors of A has the
complement property. ��
Remark 4.1 Note that from the proof of the above theorem it is easy to see that the
existence of such an matrix A(u1, ..., uk) does not require the condition k ≤ [(n +
1)/2]. However, the complement property of the row vectors for Rk does require this
condition.

We already knew that if M is a k-dimensional PR-subspace with respect to an
orthonormal basis E , then the condition min{|supp(x)| : 0 = x ∈ M} = k is
sufficient for M to be maximal. We will prove in Theorem 4.4 that it is also necessary
if k < [ n+1

2 ]. However, this condition is not necessary when k = [ n+1
2 ]. Indeed, let

{e1, e2, e3, e4} be the standard orthonormal basis for R4 and M = span {e1 + e2 +
e3, e1−e2+e4}. ThenM is a 2-dimensionalmaximal PR-subspacewith |supp(x)| = 3
for every nonzero x ∈ M .

Theorem 4.4 Assume that M = span {u1, ..., uk} is a k-dimensional maximal PR-
subspace with respect to {e1, ..., en} and k < [ n+1

2 ]. Then min{|supp(x)| : 0 = x ∈
M} = k.

Proof By Proposition 4.1, it suffices to show there is an nonzero vector x ∈ M such
that |supp(x)| ≤ k.
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Let {u1, ..., uk} be an orthonormal basis for M . We adopt the notation used in the
proof of Theorem 4.3: For every subset� of {1, ..., n}, let A�(u1, ..., uk) be thematrix
consisting of row vectors of [u1, ..., uk] corresponding to the row index set �. It is
obvious that if there is a subset�with |�| = n−k such that rank A�(u1, ..., uk) < k,
then there is a nonzero vector x ∈ M such that supp(x) ⊆ �c and hence |supp(x)| ≤
k. We will prove that such a subset � exists.

Assume, to the contrary, that rank A�(u1, ..., uk) = k for any subset � with |�| =
n − k. Thus we have rank A�(u1, ..., uk) = k for any subset � with |�| ≥ n − k.

For each subset �, since k < [ n+1
2 ], we only have three possible cases:

(i) |�| ≥ n − k and |�c| < n − k.
(ii) |�c| ≥ n − k and |�| < n − k.
(iii) |�| < n − k and |�c| < n − k.

Note that case (iii) implies that |�| > k and |�c| > k. Now we assign each �

to a subset S(�) by the following rule: Set S(�) to be � or �c depending case
(i) or case (ii). Suppose that � satisfies (i i i). Since the row vectors of [u1, ..., uk]
has the complement property, we have that either rank A�(u1, ..., uk) = k or
rank A�c (u1, ..., uk) = k. In this case we set S(�) = � if rank A�(u1, ..., uk) = k,
and otherwise set S(�) = Ac. Let

S = {
S(�) : � ⊆ {1, ..., n}}.

Then for each�we have either S(�) = � or S(�) = �c, rank AS(�)(u1, ..., uk) = k
and |S(�)| ≥ k + 1.

Let U = span{u1, ..., uk}⊥ and

�� = {u ∈ U : rank AS(�)(u1, ...uk, u) = k + 1}.

Then by the exact same argument as in the proof of Theorem4.3,we get that�� is open
dense inU . The Baire-Category theorem implies that there exists unit vector uk+1 ∈ U
such that rank AS(�)(u1, ...uk, uk+1) = k + 1 for every subset � ⊆ {1, ..., n}. This
shows that the rowvectors of thematrix [u1, ..., uk, uk+1]has the complementary prop-
erty, and hence span{u1, .., uk, uk+1} is a PR-subspacewith respect to the orthonormal
basis {e1, ..., en}, which contradicts the maximality of M . ��

Finally, let us examine the general basis case. Let F = { f1, ..., fn} be a basis for
R
n , and F∗ = { f ∗

1 , ..., f ∗
n } be its dual basis. Let T be the invertible matrix such that

fi = T ei for all i , where E = {e1, ..., en} be the standard orthonormal basis for Rn .
We observe the following facts:

(i) M is a PR-subspace with respect to F if and only if T t M is a PR-subspace with
respect to E .

(ii) The dual basis of F is F∗ = {(T−1)t T−1ei }ni=1, i.e., f
∗
i = (T−1)t T−1ei .

(iii) The coordinate vector of x with respect to the basisF∗ is the same as the coordinate
vector of T t x with respect to the basis E .
Based on the above observations we summarize the main results of this section in

the following theorem:
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Theorem 4.5 Let F = { f1, ..., fn} be a basis for Rn, and F∗ = { f ∗
1 , ..., f ∗

n } be its
dual basis. Then we have

(i) If M is a k-dimensional PR-subspace with respect to F , then |suppF∗(x)| ≥ k for
any nonzero vector x ∈ M. Consequently, M is maximal if there exists a vector
x ∈ M such that |suppF∗(x)| = k.

(ii) For any vector x ∈ R
n such that |suppF∗(x)| = k, there exists a k-dimensional

maximal PR-subspace M with respect to F such that x ∈ M.
(iii) If k < [(n+ 1)/2] and M is a k-dimensional PR-subspace with respect to F , then

M is maximal if and only if there exists a vector x ∈ M such that |suppF∗(x)| = k.
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