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Abstract

We estimate the L? norms of the discrepancy between the volume and the number
of integer points in 72 — x, a dilated by a factor r and translated by a vector x of a
convex body €2 in RY with smooth boundary with strictly positive curvature,

1/p

P
»/l‘&/’];‘d Z XrQ—x(k)—rd|Q| dXdM(r—R) ,

kezd

where © is a Borel measure compactly supported on the positive real axis and R —
+o0.
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1 Introduction

The discrepancy between the volume and the number of integer points in r2 — x, a
dilated by a factor r and translated by a vector x of bounded domain €2 in R?, is

D(Q,r.x) =Y xrax(k)—rl|Ql.
keZd

Here x,q—x(y) denotes the characteristic function of 2 — x and |2| the measure
of Q2. A classical problem is to estimate the size of D (€2, r, x), as r — +oo. For a
survey see e.g. [10,12] or [19].

By a classical result of D. G. Kendall, the L? norm with respect to the translation
variable x of the discrepancy D (€2, r, x) of an oval Q is of the order of rd=0n/z,
See [11] and what follows. For this reason we shall call r—@=-b/2p (2,7, x) the
normalized discrepancy. Our main result below is an estimate of the fractal dimension
of the set of values of the dilation variable » where this normalized discrepancy may
be large.

Throughout the paper, we shall assume that €2 is a convex body in R? with smooth
boundary with strictly positive Gaussian curvature such that the origin belongs to the
interior of 2. We will also assume that u is a positive Borel measure with compact
support containedin {0 < r < +o0} and with Fourier transform |(§)| < C(1+& H—A
for some B > 0. We recall that the Fourier transform of u is defined by

A = /R exp (—2miEr) du (r)

We also recall that the Fourier dimension of a compact set K C R is the supremum
of all § € [0, 1] for which there exists a probability measure v supported in K with
a positive constant C such that [V (§)] < C & |_5/ 2. It is known that the Fourier
dimension is smaller than or equal to the Hausdorff dimension, and indeed they may
differ. See [4, Section 4.4] and [14, Section 12.17].

Also, for any p > 1 and for any R > 2 we define

1/p
Id.Q.p.p. R) = {/ / = @=DEDQ, r, )| Pdxd(r — R)} ,
R JTd
where the translated measure d i (r — R) is defined by

/f(r)du(r—R)=/f(r~l-R)du(r)-
R R

Theorem 1.1 Letd = 2.
If0 < B < 2/5 then there exists a constant C such that for every R > 2,

j 442
1e.e.up R <1< p <At
Clog!/? (R) if p=4+28.
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If B = 2/5 then there exists a constant C such that for every R > 2,

c ] 4428,
1eQuup << o Tr=at2p
Clog!/PTV12(Ry if p =4+ 28.

If2/5 < B < 1/2 then there exists a constant C such that for every R > 2,

12,92, 1, p, R) < ¢ ’:fP<4+10/3/(3+5ﬁ),

If B = 1/2 then there exists a constant C such that for every R > 2,

c ] 4410/11
e p <€ o dr=arloil
Clog!/PH1%(R)  if p=4+10/11.

If B > 1/2 then there exists a constant C such that for every R > 2,

] 4+410/11
e p R <1< 7 p<4+10/11,
Clog!/?(R) if p=4+10/11.

Theorem 1.2 Letd > 3.
If 0 < B < 1 then there exists a constant C such that for every R > 2,

1<d’9,u,p,R>s{C 1 ip<2d=p)/d=p-1
Clog/? (R)y if p=2d—pB)/d—B—1).

If B = 1 then there exists a constant C such that for every R > 2,

C if p<2(d-—1)/(d—2),
1d, 2, u, p,R) < Clog3/4 (R) ifp=2d-1)/d—-2)andd =3,
Clog!'2(R) if p=2(d—1)/(d—2)andd > 3.

If B > 1 then there exists a constant C such that for every R > 2,

C if p<2d—-1/d-2),
1d, 2, ;u,p,R) < {Clog'>(R) if p=2(d—1)/(d—2)andd =3,
Clog? (R) if p=2(d—1)/(d—2)andd > 3.

The case d = 2 can be improved in the range § > 2/5 when 2 is an ellipse E.
More precisely we have the following result.

Theorem 1.3 Let E be an ellipse in the plane.
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If 0 < B < 1 then there exists a constant C such that for every R > 2,

¢ if p<4+28,
IQ2,E, ju, p, R) < | Clog'? (R) if B#2/5and p =4+ 28,
Clog!/PHV/12(R) if p=2/5and p =4+ 28

If B = 1 then there exists a constant C such that for every R > 2,

1B p, B < |€ s/ yp=o
Clog’’°(R) if p=6.

If B > 1 then there exists a constant C such that for every R > 2,

C ’ 6,
12, E i, p, R) < Vs p=
Clog*3(R) if p=6.

When the measure w is the Dirac delta §g centered at 0, then
1/p
1(d, 2,80, p, R) = {/ |[R™=DIPD(Q, R,xw’dx} .
Td

In this case, |;$\O(E)| = 1 so that 8 = 0, and the above Theorems 1.1 and 1.2 can be
restated as

Corollary 1.4

{/ IR@=D2D(Q, R x)l”dx}l/p - € i p<2d/d=1),
Td Y ~|clog?(R) if p=2d/d—1).

This recovers recent results of M. Huxley [9] for the case d = 2 and L. Brandolini,
L. Colzani, G. Gigante, G. Travaglini [2] for the general dimension d.
If w is the uniformly distributed measure in the interval {0 < r < 1}, then

R+1 1/p
I(d,Q, pu, p,R) = {/ / |r=@=D2p(Q, r,x)lpdxdr} )
R Td

The Fourier transform of the uniformly distributed measure in {0 < r < 1} has decay

=1,

] .
mE) = / exp (—2mi€r)dr = exp (—mi&) sin (m;)'
0 JTS;'
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On the other hand, if v (r) is a non negative smooth function with integral one and
support in 0 < r < 1, one can consider a smoothed average

1/p
{// |r_(d_1)/2D(§2,r,x)|pdx1//(r—R)dr} .
R JT4

This smoothed average is equivalent to the uniform average over {R <r < R + 1},
but the decay of the Fourier transform @ is faster than any power . Hence for the
uniformly distributed measure in {0 < r < 1} Theorems 1.1 and 1.2 apply with the
indices corresponding to 8 > 1, and one obtains the following

Corollary 1.5
R+1 1/p
{/ / |r_(d_l)/2D(Q,r,x)lpdxdr}
R Td
C ifd=2and p <4+10/11,
Clog'P (R) ifd=2and p=4+10/11,
<icC ifd>3and p <2(d—-1)/(d - 2),

Clog'>(R) ifd=3and p=2(d—1)/(d —?2),
Clog"/?(R) ifd>3and p=2(d—1)/(d —2).

As mentioned before, when d = 2 and 2 = E (an ellipse) this result can be
improved. By Theorem 1.3,

Corollary 1.6

R+1 1/p .
—(d— C ifd=2and p <6,
(d-1)/2 14
{/I; /Td |r D(E,r,x)| dxdr} §{C10g2/3([\>) lfd=2andp=6

Observe that the range of indices for which the L? norm remains uniformly bounded
with this choice of u is larger than the range of indices in [2,9] (those that we obtain
when = &p).

As an intermediate case between the two preceeding examples, one can consider
a measure du (r) = r~%x{0<r<1) (r)dr, with 0 < @ < 1. In this case (&) <
C(+|e)* !, thatis B = 1 — . As a more sophisticated intermediate example,
recall that R. Salem has proved by means of a random construction that there exist
compact sets with Fourier dimension equal to the Hausdorff dimension, for every
dimension between 0 and 1. See [15] and also [14, Section 12.17]. The above theorems
assert that the discrepancy cannot be too large in mean on translations of these sets.
On the other hand, there are cases when the Fourier dimension is strictly less than the
Hausdorff dimension. An example is the triadic Cantor set, with Fourier dimension 0
and Hausdorff dimension log(2)/log(3). In this particular case, and in similar cases
with 8 = 0, the above theorems are unable to exploit the average over a set of positive
Hausdorff dimension, and they do not improve the results already contained in [2].
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The techniques used to prove the above theorems also apply to the estimates of
mixed L?(L?) norms of the discrepancy:

{/Td (/R ‘ri(d?l)/zp (Q,r, x)‘zdu (H*l(r B R)))p/z dx}

This has been done by the authors in [3]. Here it suffices to remark that the set
of p’s that give bounded mixed L”(L?) norms is larger than the set of p’s that give
bounded pure L? norms. See also [5].

We would like to thank Luca Brandolini and Giancarlo Travaglini for several dis-
cussions on this subject during the early stages of the preparation of this paper.

I/p

2 Preliminary Lemmas

The proofs of the theorems will be splitted into a number of lemmas, some of them
well known. The starting point is the observation of D. G. Kendall that the discrepancy
D (2, r, x) is a periodic function of the translation, and it has a Fourier expansion with
coefficients that are a sampling of the Fourier transform of €2,

xe ) = [Qexp(—ZniEx) dx.

Lemma 2.1 The number of integer points in r2 — x, a translated by a vector x € R?
and dilated by a factor r > 0 of a domain 2 in the d dimensional Euclidean space, is
a periodic function of the translation with Fourier expansion

Z Xra—x(k) = Z ri%a (rn) expminx).

kezd neZd
In particular,
D, r,x)= Z r?%q (rn) expinx).
neZd\ {0}
Proof This is a particular case of the Poisson summation formula. O

Remark 2.2 We emphasize that the Fourier expansion of the discrepancy converges at
least in L2 (Td), but we are not claiming that it converges pointwise. Indeed, the dis-
crepancy is discontinuous, hence the associated Fourier expansion does not converge
absolutely or uniformly. To overcome this problem, one can introduce a mollified dis-
crepancy. If the domain €2 is convex and contains the origin, then there exists ¢ > 0
such that if ¢ (x) is a non negative smooth radial function with support in {|x| < &}
and with integral 1, and if 0 < § < 1 and r > 1, then

8771 % xp_s®) < xra() <8907 * xprsa ()
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Fig. 1 The value of g(x) when |x| =1

and therefore

12 ((r — 87— rd> + (=8 > §6n) Xa ((r — 8)n)exp 2rinx)

nezd\ {0}
<DE,r,x)
< |9l ((r +8)7 — rd> + (r + 8¢ Z @ (8n) Xa ((r + 8)n) exp 2minx).
nezd\{0}

One has | (r+34 )d — rd| < Cri-15, and one can work with the mollified discrepancy
defined by

Ds(2,r,x)=r? Z ? (8n) X (rn) exp 2rinx).
neZ”’\{O}

Observe that since ¢ (¢)| < C (1 + |¢])~* for every A > 0, the mollified Fourier
expansion has no problems of convergence.

Let us recall that the support function of a convex set 2 C R< is defined by
g(x) = supycq {x - y}. When Q is strictly convex with smooth boundary, the point y
that realizes the supremum in this definition is the point of d€2 where the outer normal
is parallel to x (see Lemma 3.1 (2) and Fig. 1). For example, if €2 is the unit ball
centered at the origin, then g(x) = |x]|.

Lemma 2.3 Assume that 2 is a convex body in R with smooth boundary with strictly
positive Gaussian curvature. Let g (x) = supycq {x - y} be the support function of

Q. Then, there exist functions {a i & )};.rif) and {b i (&) };;OZ homogeneous of degree 0

) Birkhiuser



Journal of Fourier Analysis and Applications (2019) 25:2150-2195 2157

and smooth in R% \ {0} such that the Fourier transform of the characteristic function
of Q for |&| — 400 has the asymptotic expansion

o (€) = /Q exp (—27if - x) dx

h
= exp (—2mig (§)) &7 V2D "a; () |57
j=0
h
+exp Qig (=€) |17V b @) 1E1 T + O (|g|*<d+2h+3>/2) :

j=0

The functions a; (§) and b (§) depend on a finite number of derivatives of a parame-
trization of the boundary of Q2 at the points with outward unit normal £&/\&€|. In
particular, ag (§) and by (§) are, up to some absolute constants, equal to K (& Y172,
with K (£&) the Gaussian curvature of 02 at the points with outward unit normal

+&/151.

Proof This is a classical result. See e.g. [6-8,17]. Here, as an explicit example, we
just recall that the Fourier transform of a ball {x eR?: x| < R} can be expressed in
terms of a Bessel function, and Bessel functions have simple asymptotic expansions
in terms of trigonometric functions,

Xiixi<r) €) = RQyi<1y (RE) = RY|REI™2 Jg /2 27 | RE])
=g 'RV g7 @D 2 cos QR |E| — (d + 1) 7/4)
=27t (&2 = 1) ROV g "I sin QR 18] - (d + 1) /4)
+ oo 4 O(RW2=I/2g |~ [@d+20+3)/2)

See [18]. More generally, also the Fourier transform of an ellipsoid, that is an affine
image of a ball, can be expressed in terms of Bessel functions. O

By the above lemma, the normalized discrepancy has a Fourier expansion of the
form

h
Z rd Z aj(n) |n|_(d+1)/2_j exp (—2mig (n)r)exp 2minx)
Jj=0 neZd\{0}
h
+ Z rJ Z bj(n) |n|_(‘1+1)/2_j exp 2mwig (—n)r)exp 2minx) + - --
=0 nezd\{0}

By replacing (d + 1)/2 with a complex variable z one obtains an analytic function
of this complex variable with values in L? spaces. This will allow us to estimate the

norm of this discrepancy via complex interpolation.

Birkhauser



2158 Journal of Fourier Analysis and Applications (2019) 25:2150-2195

Lemma 2.4 Assume that Q2 is a convex body in RY with smooth boundary with
strictly positive Gaussian curvature. Let 7 be a complex parameter, and for every
h=0,1,2,...and r > 1, with the notation of the previous lemmas, let define the
Sfunction ® (8, z, r, x) via the Fourier expansions

h
=Y "r 7Y G6nyaj () nl = exp (~2xig (n) ) exp Qminx)

Jj=0 neZd\{0}

h
+Zr*i Z Pn)bj (n) |n|~*"/ exp (2mig (—n) r)exp (2minx).
j= nezd\{0}

The convergence of the above series is absolute and uniform. With z = (d + 1)/2,
define

Riy (8, r,x) =r~"VPD Q1 x) = @ (8, (d + 1) /2,7, %).
Then, if h > (d — 3) /2 there exists C such that for every § > Qandr > 1,
IRy @3, r, )| < Cr il

Proof This is a consequence of the previous lemmas. O

Lemma 2.5 Let N be a positive integer, and |1 a positive measure with compact support
in the positive real axis and with Fourier transform satisfying |[(€)| < (1 + |£])~P
for some B > 0. Then for every . > 0 and for every z € C there exists C > 0 such
that for every 6 > 0 and for every 1 < R < 400,

// |<b(8,z,r,x)|2Ndde(r—R)EC/ (1 + 8k~
R JTd R4

x f (L48lmy )™ - (1 + 8lmy )y | 7R oy | ~R@
ml,...,mNeRd

[mil,....[my|>1
my+---+my=k

. / (L4 8l )™ - (L + 8lny )" ng | TR oy | 7Re@

[nl,....[nn[>1

nyt-tny=
X (1+[gm) 4 -+ gmy) — gn) —--- — glnn))~?
x do(ny,...,ny)do(my,...,my)dk.

The inner integrals are with respect to the surface measure on the (N —1)d dimensional
variety of N points with sum k. In other words, they are essentially Lebesgue integrals

Birkhauser
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with respect to the first N — 1 variables, replacing the last variables my and ny
respectively withk —mj; — --- —my_1 and k — ny — --- — ny—1. The above final
expression is a decreasing function of Re(z).

Proof The function ® (8, z, r, x) is a sum of terms of the form

©;0,z,r,x)= rd Z Pn)c(n) In|~* 7 exp (F2mig (+n) r) exp Qrinx) .
neZd\{0}

The expression exp (F2wig (£n) r) has to be intended either as exp (—2mwig (n) r) or
exp (+2mwig (—n) r). Assume that the first exponential is exp(—2mig (n) r). It follows
that for every positive integer N,

(0@, z,r, x))N

=r V3N G6n) - @Gny)enn) - cny)ng |7 ey T

kezd ni,...nNn#0
ni+--+ny=k

x e—27ti(g(n1)+~--+g(nN))r62m'kx.

For a proof, just observe that since @(£) has a fast decay at infinity, all series involved
are absolutely convergent, and one can freely expand the Nth power and rearrange the
terms. Then, by Parseval equality,

/ 105, z,r, x)|*Ndx
Td

=r NN @6n) - @@ny)e(nn) -+ clny)ng |7 ey T
kezd ' ni,...ny#0

x e 2mi(gm)++gnn))r

Expanding the square and integrating in the variable r, one obtains

/R./Ird |®; (9, 2, r, ) *Ndxdu(r — R)

=3 Y G6m) - @@Emy)e(my) - clmy)lmy | my T

kezd my,...my#0
mymy =k

x Y @@n) - @@ny)e(nn) - cla)lng| T s a7

ni,....nN#0
ny+-+ny=k

y / o~ 2T+t g ) —g () =g . =2iN gy (- R).
R

Birkhauser
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The last integral is the Fourier transform of the measure r~2Ndu(r — R) and it is
easy to see that if R > 1, so that the singularity of » 2/ is far from the support of
du(r — R), it satisfies the same estimates as the Fourier transform of du (7). Indeed

/ e—2ﬂi§rr—2deM(r _ R) — e—27TiSR[ e—2ﬂi§r(r +R)_2]Ndu(r)
R R
= e_Z”iER/ Jﬁ(é —85)q(s)ds,
R

where ¢ (s) is the Fourier transform of a smooth extension outside the support of d
of the function (r + R)~%/" . Hence,

/ ¢~ 2T (Um) kg m) =g (n) == . =20N g _ RY
R
<C(+[gm) +---+gmy) —gn) — -+ —gn)) 7.

The function ¢(x) is smooth, so that |g(£)| < C (1 + |£]) ™" for every A > 0. Hence
for every j the above quantity is dominated up to a constant by

ST Emp TR (U 8my ) TRy TR

kezd my,...my#0
my4--+my=k

XY (DT (U sy )T TRy TR

Ny, nN#0
ni+--+ny=k

x (14 gmy) + -+ glmy) — gny) — - — gnn)N .

In this formula there is no cutoff in the variable k. In order to obtain a cutoff in k&,
observe that, if m| + --- +my =k, then

(148l )™ -+ (1 + 8l )™
—0
= (180l 4+ Iy + 8% flma] + ) + .. )
< (L 8(mal 4+ Imy )77 = (1481 ++ 4 my)™ = (1 48k

In particular, some of the cutoff functions (1 + §|m|)~% --- (1 + §|mpy|)~7 can be
replaced with (1 + 8]k|)~“. Finally, in the above formulas one can replace the sums
with integrals. Indeed, there exist positive constants A and B such that for every integer
point m # 0 and every x € Q, the cube centered at the origin with sides parallel to
the axes and of length one,

Alm| < |m + x| < B|m|.

This implies that the function |m +x|~R¢@ is slowly varying in the cube Q. Moreover,
also the function (1 + |g(m + x) + - - - |) 7 is slowly varying. Hence, one can replace

Birkhauser
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a sum over m with an integral over the union of cubes m + Q,

>+ sk

keZd

XY Em) T (L [Smy ) g TRy | TRE@
my,....my#0
my+-4my=k

Y (s T (L sy ) TRy | TRE@
Nlyenny ny#0
ni+-+ny=k

X (14 1g(m1) + -+ g(my) — gny) — - — g(ny)) ™"

< c/ (14 8k
]Rd

x / (L4 8lmi )™ - (L4 8lmu )" my | RED | 7@
MYy mNeRd

[mil,....imy|>1/2

my+-+my=k

x / (L+8Im D™ (A +8lny ) g | 7R -y | 7Re@
Nlyenny nyeR?

[nil,....Inn|>1/2

ny+-+ny=k

x (L4 |gmy) + -+ glmy) — gn) —---— gy~
xdony,...,ny)do(@my,...,my)dk.

Finally, with a change of variables one can transform the domain of integration
{|x] > 1/2} into {|y| > 1}, and the thesis follows immediately. Indeed, if |x| > 1
then |x|~Re¢® decreases as Re(z) increases. O

3 The Case of a Generic Convex Set with Non Vanishing Curvature

This section contains the proof of Theorems 1.1 and 1.2.

Lemma3.1 Let g (x) = sup,cq {x -y} be the support function of a convex set Q
which contains the origin, and with a smooth boundary with strictly positive Gaussian
curvature.

(1) The support function is convex, homogeneous of degree one, positive and smooth
away from the origin, and it is equivalent to the Euclidean norm, that is there exist
0 < A < B such that for every x,

Alx| < g(x) < Blx|.

Birkhauser
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(2) For every x € R\ {0} there exist a unique point z(x) € 9 such that x - z(x) =
g(x). In particular, z(x) is the unique point in 92 with outer normal x. Furthermore
z(x) is homogeneous of degree O in the variable x.

(3) There exist two positive constants ¢ and C such that for every ¥, w with |0 =
lw| =1

cl—w-9) <z ¥ -z ¥<C(—w-v).

Proof (1) is trivial and (2) follows from the smoothness and positive curvature of the
boundary of 2. The estimate in (3) can be written as

c(@—-—w)- =<z -—z() <CH-w)- v

A compactness argument implies that there exist two radii ¢ < C such that at every
point of 9€2, ©2 contains the ball with radius ¢ tangent to 92 and is contained in the
ball with radius C tangent to 9€2, and (3) follows. O

Lemma 3.2 In the hypotheses of the above lemma, assume that 8 > 0, 8,y > 0 and
Y > 1. Set

1 ifp=1landy >1,
T=1(y,f)=min{l,y,B} o=0, B =11 ifB=y =1,

0 else.

Then, for every ¥ with || = 1 and every k # 0, if we call A = g (V) — Vg (k) - U,

§Y
fo P+ g (o) + g (k— p9) =Y Pdp

<CY"(1+YA) "log’ 2+YA).

Remark 3.3 Here and in the rest of the paper we will use the Kronecker delta notation

s — 1 if x =y,
ST lo ifx #y.

Proof The case f = 0 is trivial. When 8 > 0, then (1 + YA) " log® (2 + Y A) is the
gain with respect to the trivial estimate

sY
/ o’ ldp=cCY?”.
0
Fix 9 and k and define

F(p) =g (pd) +gk—pd),
F'(p) =g () — Vg (k—p?) -9,
F" (p) =0" - Vg (k — p?) - 0.

Birkhauser
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The quadratic form 9¥7-V?g (x)-¥ is positive semidefinite, with a 0 eigenvalue in the
direction given by Vg (x), and strictly positive eigenvalues in the other directions. See
[16]. Let A > 0 be the minimum of all the d — 1 positive eigenvalues of 9 - Vg (x) -9
over the sphere {|x| = 1}. Splitting ¢ = g + ¥ with ¥ parallel to Vg (k — p?¥) and
¥ orthogonal to Vg (k — p?¥), and since V2g (x) is homogeneous of degree —1, we
therefore have

9 V2g (k — p9) - O
=9 Vg (k—pv)-

Z;ﬁf.v{g k=pv -
k — po| ! lk — po|

Aol
~ lk—p|

In particular, F” (p) > 0, so that F’ (p) is increasing and if p > 0,
F'(p) = F' (0) =g () — Vg (k) - 0.

If z (x) is the unique point in the boundary of €2 such that x - z (x) = g (x), as
described in Lemma 3.1, then

Vg(x) =V(zx) x)=Vz(x)-x +2(x) =2(x).

The last equality follows from Euler’s formula, since z (x) is homogeneous of
degree 0. Hence,

FF(O)y=g@®) —Vghk) - 0=g@) —zk) 9>0.

This follows by the definition of g (¢) as the maximum of y - ¥ for y € Q.

Thus, F (p) is an increasing function. If ¥ > F (0) define r = F~!(Y), and if
Y < F (0) define r = 0. Observe that forr > Oonehas Y = F (r) > g (rv}) > Cr.
Thus, in any case, 0 < r < CY. Then

[F(p)—Y|>F (0)|p—rl=(g@®@) —Vgk) -9 |p—rl=Alp—rl.
Hence,
SY
A P’ LA+ g (p0) + gk — p) — Y P dp
sY
sc/ P (Ut Al —r) P dp
0

SAY
= CA—V/ VA + = Ar) 7P dr.
0
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Call§AY =T and Ar = S. Then we need to show that
T
/ A+ = S)Pdr < CTY T log® (T).
0
In any case we have

T T
/ty‘1(1+|t—5|)—ﬁdr§f Y4t < CTY.
0 0

In particular, the thesis follows when T < 4.
If7T >4and 0 < § < 2then

T
/ VA + = S) P ar
0
1 T
< C(/ tV*‘dt+/ t”ﬂ‘dt>
0 1
< Ty —minv-B 1ogdrs (T).

T >4and2 < S < T/2then

T
/ VA 41— 8)Pdr
0

S/2 28 T
5(/ +/ +f >tV—1(1+|z—S|)—ﬂdt
0 §/2 28

< csv=F 4 gr—minllB) 199016 (§) 4 cTV ~minly:Bl 1008 (T')
<CT" "log’ (T).

If7T >4and T/2 < § < 2T, then

T
f A+ =8S)Pdr
0

s/2 T
< CT—ﬂf t”_ldt—i—CTV_lf A+t —S)Pdr
0 s/2

< crv=F 4 cry—minllA) ogdis (T)
< ¢y —mintl Al ogd18 (T).

If T >4and S > 2T, then
T T ]
/ R dtg/ (A4 1=T )P de<cTyminth Bl jogtLe (T,
0 0
O
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Lemma 3.4 In the hypotheses of the previous lemma and with

_ [l ifr=@d-1)/2
;—5(d,y,ﬁ)—{0 else.

one has
SY |
/ f "1+ g (o) + g (k — p®) — Y) P dpdv
[#]=1J0
< CYy—min{t,(d—l)/Z} loga+§ (2 + Y) .

Proof Fix k. By the previous lemma and with the notation w = k/ |k| and A (¥, w) =
g () — Vg (w) - ¥, we have to estimate

/M:] /:Y P!+ g (09) + g (k= p9) = Y F dpdv
<CY? /ﬁl—l (I1+YA @, w) “log” 2+ YA (¥, w))dd.
By Lemma 3.1, since 2 has everywhere positive curvature,
c1-9 0)<A@w)<Cl-79- w).
Therefore,
YY /|‘§|_1 (I+YA @, w) “log? 2+ YA (9, w))dd
<CY” /lﬁ—l (I4+Y(1 -9 -w) Tlog? 24+Y A -9 w))dd

T
<CY’ / (14+Y (I —cosg)) Flog? 2+ 7Y (1 —cosg)) sin™? pdy
0

b/

T -7
<CYyr /(; (1 + Y(pz) log? (2 + Ygoz) 0! 2de
¢! 2dp+CY"T /

y—1/2
<CcY? /
0 Y—1/2

< cyy—@d-n/2 + CyY—min{t.(d—1)/2} 10g0+§ Q2+7Y)
< CYy—min{r,(d—l)/Z} 10g0+§ (2 + Y) .

wd—2—2r log® (2 + Y<p2> do

O
Lemma 3.5 Let g (x) be the support function of @, and letd > 2, d/2 < o < d,

B=0¢=2¢dap) =min{l,f.d—a (d~1)/2} (Fig 2). Finally, define n =
n(d, a, B) as follows.
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«
«

d—o

3/2 3 .

/2

1/2 3 1 3

(a) The case d = 2. (b) The case d > 2.

Fig.2 The value of ¢ as a function of 8 and «

Ifd = 2 define
2 ifp=1/2anda =3/2,
1 ifp=1/2and1 <a < 3/2,
n=31 if0<B<1/2anda=2-8,
1 ifB>1/2anda =3/2,
0 else.
Ifd = 3 define
2 ifB=1land3/2 <a <2,
)1 ifB>1and3/2 <a <2,
=11 fO0<pB<landa =3— B,
0 else.

If d > 4 define
1 ifB=landd/2 <a<d-—1,

n=31 if0<B<landa =d— 8,
0 else.

Then there exists C such that for every k € R4\ {0} and for every —o0o < Y < 400,

/}Rd x| "k — x| (1+ g (x) + g (k —x) — Y P dx

< ClkI2 (14 k| + 1Y) "¢ log" 2+ k| +1Y]).
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Proof Let us explain the numerology behind the lemma. If there is no cutoff
(14 |g (x) + g (k — x) — Y|) P, then the change of variables x = |k|zand k = |k| w
gives

/d e [k — x| dx = [ / 12 o — 2] dz = C k|2
R R

On the other hand, the cutoff (1 4 |g (x) + g (k — x) — Y|)~# gives an extra decay. In
particular, the integral with the cutoff (1 + |g (x) + g (k — x) — Yl)_ﬁ with B large is
essentially over the d — 1 dimensional set {g (x) + g (k — x) = Y}, that is the cutoff
reduces the space dimension by 1. Hence, at least when g is large, the integral with
the cutoff can be seen as the convolution in R?~! of two homogeneous functions of
degree —a, and this suggests the decay |k|9~172%. Hence, if with § = 0 the decay
is [k|¢72*, and if with 8 > 1 the decay is |k|4=172% then, by interpolation, when
0 < B < 1 the decay is k|92 This is just a rough numerology, indeed also the
parameter Y enters into play and the details of the proof are more delicate.
For every Y and k one has

/Rd |7 Jk — x| (14 |g (¥) + g (k —x) — Y]) P dx

5/ X7 |k — x|7%dx = C k|72
Rd
Assume |k| 4+ |Y| > 1. Since ¢ |x| < g (x) < C |x|, one has
c(kl+Ix]) =g (x) + gk —x) < C(lk| + [x]).
Hence, if —oo < Y < ¢ |k| for a small enough ¢ > 0, one also has
lg(x)+gk—x)=Y|=C(kl+[Y]).

In this case —o00 < Y < ¢ |k|,

[ B = e 0 g =) = VP

<C(kl+yp~*? fRd x| ™%k — x| ™ dx < C k|72 (k| + 1Y) 7P

Assume now |k|+|Y| > 1 and Y > ¢ |k|. Let us split the integral into the three sets
{lx] + |k|] < eY}, {eY < |x| + |k|] <8Y} and {§Y < |x| + |k|] < 400}, with & small
and § large. In {|x| + |k| < €Y} one has

lg(x)+gk—x)—-Y|=CY.
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Hence

/ Tk — x| (14 g (1) + g (k —x) — Y] P dx
|x|+|k|<eY

< crﬁ/ x| 7% |k — x| ™ dx < CY 7P k|72 < C k972 (k| + 1Y) 7P
Rd

In {6Y < |x| + |k| < +00} one has
lg (x) + gk —x) = Y[ = C(lk| + [x]).
Hence
f x| " k= x|7* (1 + g () + gk —x) — Y) Pax
8Y <|x|+|k|<+o00
=c I e — |7 (] + )P dx
Y <|x|+|k|<+o0
< CY—ﬂ/ x| 7 [k — x|~ dx
R4
< CIK* 2 (Kl +1YD~F.
It remains to estimate the integral over the spherical shell

{lx| = éY} if Y <4lk| /e,

fe¥ < Ix|+ [k < 8¥} < {{sY/z < x| <8Y) if Y >4k Je.

Recall that Y > ¢ |k|. Hence if ¢ |[k| < Y < 4 |k| /e, then

/ x|k —x|"*A+|gtk+x)+gk—x)—Y) Pdx
x|<sY

<

/ e Tk — X7 (1t [g (0 + g (k — x) — ¥ dx
{lx—k/2|<8Y+|k|/2}N{Ix|<|k—x]}

+/ el [k — x| (1 + g () + g (k —x) — ¥)) P dx
{lx—k/2|<8Y +k|/2})N{|x|=]k—x]}
§C|k|‘°‘/ X7 (14 |g (x) + g (k —x) — Y P dx.
|x|<C8Y
Similarly, if Y > 4 |k| /¢, then

f Tk — x| (14 g (1) + g (k —x) — Y] P dx
eY /2<|x|<8Y

< c/ X722 (14 g (0) + g (k —x) — Y]) P d.
eY /2<|x|<8§Y

)
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In polar coordinates x = pv with p > 0 and || = 1 the first integral takes the
form

|k|—“‘/|| y X7 (1 + g (x) + g (k —x) — Y dx
x|<CsY
C8Y
= |k|—“‘/|| 1/0 PN (1 g (09) + g (k — po) — Y) P dpdv.
¥=

Similarly, the second integral takes the form

/ 172 (1 + |g () + g (k — ) — Y])# dx
eY /2<|x|<8Y
§Y 4
=f / P2 (L + g (p) + g (k — p) — Y) P dpd.
|91=1 Jey /2

By Lemma 3.4, the first integral can be bounded by

CsY
k|~ f / P (1 4 1g (p) + g (k — po) — Y) P dpdv
[9=1J0
<C |k|—ot Yd—a—min{l,ﬁ,d—ot,(d—l)/2} loga'l-‘,-gl Q2+7Y)
<C |k|d—2(x Y—min{],ﬂ,d—ot,(d—l)/Z} 10g01+§1 (2 + Y) ,

where

_J1 if min{l,8,d —a}=(d—-1)/2,
ST=1o0 else,

if f=1landd —a > 1,

if f=d—a <1,

else.

o] =

O = =

Again by Lemma 3.4, the second integral can be bounded by

8Y
/ / P (1 I8 (p9) + g (k — p?) — YI) P dpd
[91=1 Jey /2

SY
e / f (1+1g (p9) + g (k — p?) — Y)) P dpd?
1w1=1Jo
< CYd—2oz—min{l,/S,(d—l)/2} 10g02+§2 (2 + Y)
S C |k|d—2a Y—min{l,ﬂ,(d—l)/Z} 10g02+§2 (2 + Y)
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where

{1 if min{l,B}=d—1)/2,
G =

0 else,
1 it =1,
2= { 0 else.

It is easy to show that when d > 3 then ¢1 + o1 < 5, and that when d > 3 and
o < d — 1, then ¢» 4+ 02 < n. This shows the lemma in the case d > 3. The case
d = 2 is more delicate. First observe that the integral

fRd |7k — x| (1+ |g (¥) + g (k —x) — Y) P dx

is a decreasing function of the variable . It follows that for 1/2 < B < 1 and
o = 2 — B, one can take some 8 € (1/2, B) and obtain

/Rz |k —x|™ A+ g () + gk —x) — Y) P dx

- / I k= x| (1 + g (1) + g (k —x) — Y] P dx

R
< C k|22 y—minllp2-a1/2) < |22 y—min{l.p.2-1/2)
E C |k|2—20l Y—1/2.

This shows thatford =2and 1/2 < 8 < 1 and@ = 2 — B one can indeed take n = 0.
A similar argument shows that one can take n = O alsowhen § = land 1 < o < 3/2.
In the remaining cases, it is easy to show that ¢; + o1 < n, and that when o < 3/2,
then ¢ + 0r < 1. O

Lemma3.6 Letzy = d/2. IfRe (z) > 72, there exists C > O such that for every R > 1
and0 < § < 1/2,

A;{/Td |® (S, z,r,x)|"dxdu(r — R) < {Clog(l/é) if Re (2) = 2.

Proof By Plancherel formula applied to ® (8, z, r, x) as a function of the variable x,

fR[ﬂ‘d |® (8, z, 7, x) |*dxdu(r — R)

h
<Y X pem P [ e - .

J=0mezd, m#0
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Observe that if R > 1 then the singularity of 7~/ is outside the support of dju(r — R),
and recall that ¢ (r) has fast decay at infinity. Hence for every A > 0,

/ / |® (S, z,r, x) |Pdxdu(r — R) < C Z (1 + 8|m|) ™" |m|~2Re@
e meZd, m#0

and the lemma follows. O

The following lemma is an estimate of the L? norms of the function @ (6, z, r, x)
when p = 4 and the space dimension d > 2. In dimension d = 2 there is a second
relevant exponent p = 6, and this will be considered later.

Lemma3.7 Let z € C. Define v = min{l, (d — 1)/2} and let n = n(d, Re(z), B)
be defined as in Lemma 3.5. Let z4 = max{(3d — B)/4, (3d — v)/4} (Fig. 3). If
Re(z) > za, then there exists C > 0 such that for every R > 1 and 0 < § < 1/2,

4 B C if Re (z) > za4,
/}R/;T”@(&Z,F,XH dde(r R) < {Clogn-i-l (1/8) l'fRe(Z)=Z4.

Proof Call « = Re (z). By the above Lemma 2.5 with N = 2, it suffices to estimate

/(1+5|k|)_’\ / Im| ™%k —m|™® / In|~%lk —n|™®
R4 lml, lk—m|>1 nl,lk—n|>1

x (1+ |gm) + gk —m) — g(n) — gtk —n)|) P dndmdk.

a @

3d/4 a=(3d—03)/4
(3d—1)/4 a=(3d-1)/4
3d 1)/

. /"
5/3 a=(10-6)/6 a=df?

8/5

a=8/5 /2

3/2 a=(6-8)/4
a=11/8
11/8

2/5 1/2 ] 1 s

(a) The case d = 2 with z4 (bottom) and (b) The case d > 2 with z2 (bottom) and
z6 (top). z4 (top).

Fig.3 The minimal values of @ = Re(z) as a function of 8
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Notice that we have canceled all the cutoff functions in the variables m, k — m, n,
k — n. The integral over the set {|k| < 2} is bounded by

/ / |m|7°‘|k—m|7°‘/ n|~%lk — n|"“dndmdk
|k|<2 J |m|,|k—m|>1 |n|,lk—n|>1

5/ dk/ |m|_2°‘dm/ [n|"*dn < C.
|k]<2 |m|>1 n|>1

Let us now consider the integral over the set {|k| > 2},

(1+ 8]k~ / [m|~%k —m|™* / [n| ™%k —n|™®
|k|>2 jml,k—m|>1 |1, lk—n|>1

x (14 |g(m) + gtk —m) — g(n) — gtk —n)|) P dndmdk.

By Lemma 3.5, the inner integral
/ T n| =¥k — n| % (1 + g (m) + g(k —m) — g(n) — g(k —m)) P dn
nl,|lk—n|>

is bounded by

CIk|972 (1 4 |k| 4+ g(m) + g(k —m))~ 1og" 2 + k| + g(m) + g(k — m))
< CIk“™2 (1 + k| + [m]) "¢ log"(2 + |k| + |m]).

Thus, the goal estimate becomes

/ (1 + 8k~ Ikld_zo‘/lml_“lk —m|™% (1 + k| + Im[)~¢ log" (k| + |m|)dmdk
Ik|>2 Rd

<C f (1 + 81k ™ k1972 log" (k|) Im| ™|k — m|~*dmdk
|k|>2 [m|<2k|
+c/ 1+ 8k~ |k|d*2“/ Im|~2*=¢ log" (|m|)dmdk
|k|>2 [m|>2]k|
< / (1+ 81k k24~ log" (k) dk
|k|>2

- C if « > (3d —¢) /4,
- Clog”+1 2/8) ifa=@3d-1¢)/4.

The result now follows after the observation that o« > (3d — ¢)/4 ifand only if @ > z4
and @ = (3d — ¢)/4 if and only if & = z4. O
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In the following lemma the space dimension is d = 2.

Lemma 3.8 Let d = 2 and let z = max{(10 — B)/6, 8/5} (Fig. 3a). If Re(z) > ze,
then there exists C > 0 such that for every R > 1 and 0 < § < 1/2,

Cc if Re (z) > ze,
f /2 | (8, 2,7, x) [®dxdu(r—R)< { Clog (1/8)  if Re(2) = z¢ and B # 2/5,
BT Clog?(1/8) if Re(z) = z¢ and = 2/5.

Proof Call « = Re (z). By Lemma 2.5 with N = 3, it suffices to estimate

/2 (1+ 8k~ // Imy |~ ma| =k —my —ma| ™%
R

[mil,|m2|,lk—my—ma|>1

X Ini ™% ln2| ™|k — ny — na| ™
1L Izl Jk—=n—na|>1

x (14 |g(my) + g(ma) + gtk —my —my) — g(ny)—gna)—gk —ny —na)|)~*
x dnidnydmidmydk.

Split R? as {|k| < 2} U {|k| > 2}. The integral over the disc {|k| < 2} is bounded by

2
/ (/ |m1|—°‘/ |mz|‘“|k—m1—mz|—“dm2dm1> dk
k<2 \Jjm|>1 R?
2
=C/ (/ |m1|_“|k—m1|2_2“dm1> dk
kj<2 \Jjmi|>1

2
= C/ </ |m1|2_3°‘dm1) dk + C/ k|3 %dk < C,
k|<1/2 \J|my|>1 1/2<k|<2

sincea > z¢ > 4/3. Consider now the case {|k| > 2}. Apply Lemma 3.5 to the integral
with respect to np with k replaced with k — ny and Y replaced with g(my) + g(m»2) +
gk —my —ma) — g(ny),

= o)~k — n1 — o]
|n1l,n2l, lk—n1—n2|>1

x (14 |g(m1)+g(ma)+g(k —my —m)—g(n1) — gna)—g(k —ni —nz)) "
X dnzdl’n

< cf 1| — P2
RZ

x (1 + |k —ni| + |g(m) + g(ma) + gk —my —ma) — gn))~¢
x 1og"(2 + |k — ny| + [g(m1) + g(m2) + gk —my —m3) — g(n1))dnadn,
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< /R I |71k = P72 (1 k= i)™ log" 2 + [k — maydy

< CIk|* % log" (k).
Here n = n(2, a, B) as defined in Lemma 3.5. Moreover,

/2 [mq |~ /2 Ima| =%k —my — ma|~*dmadm,
R R

= Cf Im1 |~k — my | **dmy = Clk|*3.
]RZ

Finally, the integral over {|k| > 2} gives

e e c ifa > (10 — ¢)/6,
1+ 81k)) ™ 1k[37* ¢ log" |k |)dk

The result now follows after the observation thate > (10—¢)/6if and only if ¢ > z¢
and @ = (10 — ¢)/6 if and only if ¢ = z¢. O

Lemma 3.9 The notation is as in the previous lemmas.

(1) Letd = 3. If B < 1 then there exists a constant C such that for every Re (z) > 2,
forevery R>1and0 <4 < 1/2,

1/p
{/ / |® (S, z, 7, x) |Pdxdu(r — R)}
R 'ﬂ"d

_Jc ifp<3+B/2-B),
| ClogP(1/8) if p=3+B/2—PB).

If B = 1 then there exists a constant C such that for every Re (z) > 2, for every
R>1and0 < 6§ < 1/2,

I/p C if p<4
p _ )
{/%/Ed |CI>(8,Z, r,x)| dxdﬂ(r R)} =< {C10g3/4 (1/8) Ucp —4.

If B > 1 then there exists a constant C such that for every Re (z) > 2, for every
R>1and0 <§ < 1/2,

e ¢ ifp<4
p _ b
{A;{/;Td|d>(8,z,r,x)| dxd,U«(r R)} = {Clogl/z(l/é) pr:4
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(2) Letd > 4. If B < 1 then there exists a constant C such that for every Re (z7) >
d+1)/2, forevery R > 1and0 < § < 1/2,

1/p
{// |<D(8,z,r,x)|pdxd,u(r—R)}
R JTd

_le if p<2d—p)/d—p-1),
~ | Clog? (1/8) ifp=2(d—B)/(d—B—1).

If B = 1 then there exists a constant C such that for every Re (z) > (d + 1)/2,
forevery R>1and0 <4 < 1/2,

1/p
{/ / |® (8, z, 7, x)|Pdxdu(r — R)}
R JTd

_Jc if p<2(d—1)/d-2),
~ | Clog2(1/8)  if p=2d—1)/(d—2).

If B > 1 then there exists a constant C such that for every Re (z) > (d + 1)/2,
forevery R>1and0 <6 < 1/2,

1/p
{/ / |® (8, z, 7, x) |Pdxdu(r — R)}
R JTd

_Jc if p<2(d—1)/d-2),
| ClogP (1/8) if p=2(d—1)/(d—2).

Proof 1t is enough to prove the result for z = (d + 1)/2. The Lemma follows via
complex interpolation. For the definition of the complex interpolation method and the
complex interpolation of L? spaces, see for example [1, Chapters 4 and 5]. Here we
recall the relevant result: Let X be a measure space, | <a < b < 400, —00 < A <
B < 400, and let ® (z) be a function with values in L? (X) + L? (X), continuous
and bounded on the closed strip {A < Re (z) < B} and analytic on the open strip
{A < Re (z) < B}. Assume that there exist constants H and K such that for every
—00 <t < 400,

[®A+i)pax) < H,
1P B+ i)l < K.

If1/p=(—19)/a+ /b, with0 < ¥ < 1, then
1o (1 - A+0B)lrx) < H K.

In our case, the analytic function is ® (8, z, r, x), the measure space is R x T4 with
measure dju(r — R)dx,a =2,b=4,A =20+ ¢, B = z4+ ¢, with ¢ > 0 (Fig. 3b).
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The norms H and K are given in Lemmas 3.6 and 3.7. Set

% =1-v)A+9B.
This gives
_d+1-2A
2B —2A
and
b= 2(d — min{B, 1})

d—1—min{B, 1} +2¢

When ¢ > 0 and p < 2(d — min{gB, 1})/(d — 1 — min{g, 1}),

1/p
{/ / |® G, (d+1)/2,r,x) |dedu(r—R)} <C.
R JTd

When e = 0 and p = 2(d — min{B, 1})/(d — 1 — min{B, 1}),

1/p
{/ / |® 6, (d+1)/2,r,x)|Pdxdu(r — R)}
R JTd
< Clogl/P-*-??/(Zd—Zmin{ﬂ,l}) (1/8),

where n = n(d, z4, B) as in Lemma 3.5. O

Lemma 3.10 The notation is as in the previous lemmas and let d = 2.
If 0 < B < 2/5 then there exists a constant C such that for every Re (z) > 3/2, for
every R>1and0 <6 < 1/2,

r e if p<4+28
p _ ,
{A%/TZMJ(S,ZJ,XH dxdﬂ(r R)} = [Clogl/p(l/a) lfP=4+2,3

If B = 2/5 then there exists a constant C such that for every Re (z) > 3/2, for every
R>1and0<§ < 1/2,

1/p . 440
{/ / |P (8, z,r,x)|Pdxdu(r —R)} < c i tfp <4428,
R JT2 Clog /p+1/ (]/5) lfp :4_{_2/3.

If2/5 < B < 1/2 then there exists a constant C such that for every Re (z) > 3/2, for
every R>1and0 <6 < 1/2,

1/p .
{// @G,z r 1) |pdxd,u,(r—R)} _l¢ ' if p<4+108/G+5p).
R JT2 Clog'? (1/6) if p =4+ 10B/(3 + 5B).
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If B = 1/2 then there exists a constant C such that for every Re (z) > 3/2, for every
R>1and0 <68 < 1/2,

1/p
{/ / |® (8, z,r,x)|Pdxdu(r — R)}
R JT?

C if p<4410/11,
<
~ | Clog"/P*t12(1/8)  if p =4+ 10/11.

If B > 1/2 then there exists a constant C such that for every Re (z) > 3/2, for every
R>1and0 < 6§ < 1/2,

1/p .
{// |¢(5,Z,F,X)|pdxdu(r—R)} < ¢ 1 l.fp<4—|—10/11,
S Clog!/? (1/8) if p =4+ 10/11.

Proof Again, it is enough to prove the result for z = 3/2. The case 8 = 0 is contained
in Lemma 3.7.If 8 > 0 the proof follows by complex interpolation witha = 4,b = 6,
A =z4+¢, B = z6+ ¢, with e > 0 (Fig. 3a). The norms H and K are given in
Lemmas 3.7 and 3.8. Set

3
5=(U=0)A+0B.

This gives
3-2A
V= —",
2B —2A
and
24(z6 — z4)

P e —4za—3+ 26

When ¢ > 0and p < 24(z¢ — 24)/(626 — 424 — 3),

1/p
{// |<I>(8,3/2,x)|pdxdu(r—R)} <C.
R JT?
When ¢ = 0 and p = 24(z6 — z4) /(626 — 424 — 3),
1/p
{/R/W |®(8,3/2,r,x) |Pdxdu(r — R)} < Clog!/PHn1=)/4+@=D/6 (1 /5

where n = n(2, z4, B) as in Lemma 3.5 and w is the exponent of the logarithm in
Lemma 3.8, thatisw =1if 8 A#2/5andw =2if B = 2/5. O
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Proof (of the Theorems 1.1 and 1.2) By Remark 2.2, one has

1/p
{// |r(d1)/2D(§2,r,x)|”dxdu(r—R)}
R JTd

1/p
- {/ / lr = @=D2Ds(Q, r £ 68, x) |Pdxd(r — R)}
R JTd

1/p
—i—C{// Ir(d_l)/28|pdxdu(r—R)} )
R JTd

If § = R~@=D/2 the last term is bounded. On the other hand, by Lemma 2.4

1/p

{/ / lr=@=D2Ds(Q, r £ 68, x) |Pdxdp(r — R)}

R JTd
1/p
< {/ / D@, (d + 1)/2,r £68,x)|Pdxdu(r — R)}
R JTd
1/p
+{// IRh(S,r:I:S,x)V’dxdu(r—R)} .
R JTd

If h > (d — 3) /2 then the last term is bounded, while the first term can be written
as

1/p
{/ / |®, (d+1)/2,r,x)|Pdxdu(r — (R + 8))} .
R JTd

The theorem now follows from the two previous lemmas, with R replaced by R =+ §.
]

4 The Case of the Ellipse

Here we assume d = 2 and Q = E = {x € R? : [M x| < 1}, where M is a non
singular 2 x 2 matrix. In this case the support function is g(x) = |M7” x|. By the
change of variable MTx = y applied to all variables ny, ..., ny, my, ..., my,inthis
case Lemma 2.5 can be restated as

// |8, z, r, x)*Ndxdu(r — R)
R JT?
scf 1+ 8lk])

RZ

x / (L4 8m D™ (1 + 8lmy) | 7R - | 7Re@
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% / (L+8ImD™ - (14 8lny ) ng | 7R . | 7Re@

nyl,...,Inn|>1

ni+--+ny=k
x (L4 [lmi| + -+ Imy| = ] = -+ — [nn|)~P
X da(nl, . ,nN)da(ml, . .,mN)dk.

Lemmad.1 (1) If B > 0and 0 < 2 — o < B, there exists C such that for every
—o00 < X < 409,

+0o0 .
/ A +1X —t)Prldr < (1 + | x> minlB D 1og%6 (2 + | X]).
0
o< ,I éen jor every there exists such that for everjy -0 < < -|-OO,
(2) Ifo <2, then f B th ists C such that f X
1
f (141X — o)~ ¢!~ (~ log (t))dr < C (1 + X7
0

(3) If0 < B < land2 — o > B, then there exists C such that for every —oco < X <
+ooand?2 < T < +o0,

T
/0 A +1X —t)Prl=%dr < cT?> % Plogh—s (T).

4) If0 < B < land a > 1, there exists C such that for every —oo < X < 4-00 and
2<T < 400,

+00
f A+ X —t) P24 < cT? 2P,
T

Proof (1) If X < 0, then

Hoo 141X] oo
[ asix - tear sawixp? [0 s [ cmetan
0 0 1+ X|

<CA+|xp*r.

If0 < X <1, then

+00 2 +o00
/ A+ 1X -t P ' dr 5/ z‘*adr+f tl=eBgr < C.
0 0 2
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If X > 1, then

+o0
/ A+ X —) Pl
0

X/2 2X 400
SCX_ﬂf Tl_adf+CX1_“/ (1+|X—r|)_ﬁdr+C/ Ry
0

X/2 2X
cx*op ifo<p<l,

<{cx'"“log(14+X) ifB=1,
cx'—« if B> 1.

(2) It suffices to observe that there exists C such that for every X,
max {(1+[X —t)P}<ca+xpr.
0<r<l

(3)Let X > 0.If T < X/2, then

T T
/ A+1X -t Pcldr < cx—ﬂ/ =% < cxPrie.
0 0

If X/2 <T <2X,then
T
/ A+1X -t P dr
0

X/2 2X
< cx—f‘/ rl_“dt+CX1_°‘/ A+|X -z Pdr
0 X/2

<Ccx> P,
If T > 2X, then
T
/ A+1X -z P! de
0

X/2 2X T
SCX*ﬂ/ r‘*“dr+cx1*°‘f ( +|x_r|)*ﬂdf+c/ ol Par
0 X/2 2X

< CT* 9 Plogh—s (T).

If X < 0 then simply observe that

T T
/ (1+|X—r|)*ﬁr‘*“dz5/ A+ 11X — )P dr.
0 0
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(4) As before, it suffices to show the result for X > 0. If T < X /2, then

+o00
/ A+ X —t) P24y
T

X/2 2X +00
< CX—ﬂ/ ‘L’l_zad‘f—i-CXl_za/ (1+|X—T|)_ﬂ dr + C/ =284,
T X)2 2X

S CXfﬂT272a + szfzafﬁ S CT2720(7,3.

If X/2 <T <2X,then

+o0
/ A+ X -t P24y
T

2X +o00
< T1—2“/ A+1X—t)Pdc+ C/ tl1=2e=Byr < cT? 0P,
X/2 2X

If T > 2X, then

+o0 +o00
/ (1 + |X - ":|)_}3 Tl_zad‘[ < C/ rl—ZQ—ﬂdr < CT2—20(—/3.
T T

O

Lemma4.2 (1) Let3/2 < «a < 2 and B > 2 — «. Then there exists C such that for
every k € R? with |k| > 2 and for every —oo < Y < +00,

[ e 1Y = = = 2l d
R

< CIk|™ log®2e (|k[)(1 + Y — [k|[)>~*mintlA 100818 (2 4 |Y — [k]|).

2)Let3/2 <o < 2and 0 < B <2 — «. Then there exists C such that for every
k € R? with |k| > 2 and for every —oo < Y < 400,

/ X7 |k — x| (1 + 1Y — |x| — [k —x|) 7P dx < Clk|*"2*7F log®-=5 (|k|).
RZ

(3) Let « = 3/2 and B = 1/2. Then there exists C such that for every k € R?* with
|k| > 2 and for every —oo < Y < 400,

/2 |7k — x| (14 Y — |x| — [k — x| 7P dx < Clk|™* log* (k).
R
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(4)Let3/4 < a < 3/2 and B > 0. Then there exists C such that for every k € R?
with |k| > 2 and for every —oo < Y < 400,

[ b b= gy = bl 1
R

_ | CIkpPe ifo<p <12,
= | Clkl 7232 (14 |y — |k /2 minllAY Jogdis 2+Y —[k|]) if 1/2 < B.

(5) Let « > 1. Then for every k € R?
f lx|7%|x — k| %dx < Qo —2)" L.
|x],|x—k|>1
Proof The symmetry between 0 and k gives

[t Y = = = )
R

=2/ |x| "%k — x| (1+|Y—|x|—|k—x||)_ﬂdx
{lxl+lk—x|<3[k|, |x|<|k—x]}

+2f x| ™%k —x|7¢ (1 + Y — |x| — [k —x|) " Pdx
x|+ k—x|=3K], |x|<|k—x]
SClkl_“/ Ix|7 (1 + 1Y — |x| — [k — x| P dx
[x|+|k—x|<3|k|
—i—C/ x| 72 (1+|Y — |x| — [k — x|]) P dx.
|x|+|k—x|>3|k|

We estimate here the first integral, the second being studied similarly. The integral
is invariant under rotations of k, so that one can assume k = (|k|, 0). Write in polar
coordinates y = (pcos (), psin (¥#)), with0 < p < +00,0 < ¥ < 2m. In these
polar coordinates the ellipse {|x| + |k — x| = 7} has equation

B 7'.2 _ |k|2
P = 2@ = [k[cos (@)

In the variables (z, ¥), |k| < T < +00,0 < ¥ < 27w, one has

dp % —2[k|t cos () + |k|?
dt — 2(t — |k|cos ()2

and

2 — k> 12 =2lk|t cos (¥) + |k|?
dx = pdpdv = >—dtd?.
2(tr — lklcos (¥)) 2 (t — |k| cos ()
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Hence,

/ (U + 1Y — [x] — k — x|~ x| *dx
|x|+]k—x|<3|k|

3lk| p2m P ‘L’2 _ |k|2 -«
= 1 Y — -
/|k| /0 (= <2<r—|k|cos(ﬁ>>>

y 2 — 2|k|T cos () + |k|?
2 (1 — |k| cos (9))?

td?d

3|k|
- 2“*2f (LY =) ™F (@ = kD' (4 + (k| /7))
Ik
21
x / (1= 2.kl cos @) + (k1/D2) (1 = (IkI/7) cos (9)*~2 dod.
0

The term 1 + (|k|/7) in the last double integral is bounded between 1 and 2. Hence,

/ (L4 1Y — Jxl — [k — x|~ x| dx
[x]|+k—x|<3|k]|

20k|
= C/ A+ 1Y — k| = =D ™P 2" E (kI/ (k| + 7), @) d,
0
where
E([, Ol) = 2/ (1 — 2t cos ('l?) —+ tz) (] — tcos (19))06—3 4.
0

WhenO <t < 1/2, E(t,a) < C.When1/2 <t < 1, theintegral over7/2 < <
is bounded independently of #, and when 0 < ¥ < 7/2 one has 1—192/2 <cos () <
1 — 4192 /2. Hence one ends up with the integral

/n/z (1 Y (1 . 192/2) + t2) (1 1 (1 - 4:92/712))“73 v
0

Y S PP S 1=t ar0n?)" " aw
L )( )

1-t w/

1—¢ 2
<Ccd—rno! / do +C (1 — z)"“3/ 92dy + C/ D24 dy
0 | Jisi
C(l =032 ifa <3/2,
<q1—Clog(l —1t) ifaa=3/2,

C ifa > 3/2.

—t
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Hence

|k|—°‘/ X7 (1+ Y = |x| — [k — x| P dx
|x|+k—x|<3|k|

S C |k | —a—min{O,a—3/2}

2|k| .
x / (1Y — |k| — g|)=F g!mofminl0.0=3/2) 6032 ((|k| 4 1) /7)d].
0

Similarly,
/ 2% (L4 1Y = Jx| = [k — x|~ dx
|x|+]k—x|>3k|

—+00
< c/ A+1Y — k| — )P 1224,
2\k|

Assume 3/2 < @ < 2 and @ > 2 — B. Then applying Lemma 4.1 (1), we obtain
+o00

2\k|
|k|“"/ (1+|Y—|k|—r|)—ﬁrl—“dr+f A+1Y — k| — )P 24
0 2|k|

—+00
< |k|*°‘/ (L4 1Y — k| — )P c'~dr
0
< ClkI™ (1 + 1Y — [k|p> o~ minthAl ogd16 (2 + ¥ — [k])).
Assume now o = 3/2 and 8 > 1/2. Then
2|k|
|k|‘“f (1+1Y — [kl — )P ' "% log (k| + 1) /7) d*
0
+oo
+/ A+1Y — k| — )P ! 2%dr
2|k|
—+00
< |k|—“f (L+1Y — [kl — )P ' log (k| + 1) /7) dT
0

+o00
< [k|™%log (1 + |k|)/ A+1Y — k| — )Pz
0

+o0
+ |k|_°‘/ A+1Y — k| =) P ' "%log (1 + 1/7) d.
0
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Applying Lemma 4.1 (1), we obtain

—+00
k| log<|k|>/ (1Y — k| — )P o' ~dr
0
< Clk|™ log (|k]) (1 4 Y — [k|>~@~™nE-1 10?12 4 |Y — [K|)).
Applying Lemma 4.1 (1) and (2), we obtain
—+o00
|k|*°‘/ (A+1Y = k] — 7~ ¢ log (1 + 1/7)dz
0
—+00
< |k|—“/ A+1Y — k| =) P~z
0

1
+ |k|—“/ (L 1Y — k] — 7))~ £'( log (1))d
0
< ClkI™*(1 + |Y — [k|p>~ e mintB-l 100%.1 (2 + |¥ — [K[]).

If3/2 <o <2and o <2 — B, then applying Lemma 4.1 (3), we obtain
2|k|
el / A+ 1Y — [kl =) P et < CIkIP 2 P log” - (IkI),
0
and, by Lemma 4.1 (4),

+o0
/ A+1Y — k| — )P 220r < Clk|P2 P,
20k|

Assume o« = 3/2 and 8 = 1/2. Then, by Lemma 4.1 (2), (3) and (4),

2|k|
|k|‘°‘/ (1 +1Y = |kl =)™ 2= log (k| + 7)/7) d7
0

—+o00
+/ A41Y — k| — )P 2%gr
2|k|
2|k|
< Clk|™® 1og(|k|>/ (L4 |Y — k| — )Pt ~dr
0

1
+C|k|_°‘/ A+1Y — k| =) P r'"%(=log (1))dT
0

+o0
+ / A+1Y — k| —t) P24
2/k|

< CIk|™ log?(Ik]).
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Assume 3/4 < « < 3/2 and B > 1/2. Then applying Lemma 4.1 (1), we obtain

2/k|
|k|_2“+3/2/ A+1Y — |kl —t) P71 dr
0

+oo
+/ A+1Y — k| — )P 227
2|k|

+00
< |k|—2“+3/2f (L4 1Y — k| — <)) P Pdr
0

< Clk|72 P21 4 |y — k|12 minll P 10g%08 (2 + 1Y — [K[]).

If3/4 <o <3/2and 0 < B < 1/2, then applying Lemma 4.1 (3), we obtain
20kl
|k|—2“+3/2f (L+1Y — k| =) P 2dr < Clk>~2* 7,
0
and, by Lemma 4.1 (4),

+00
/ A+ 1Y — k| — )P ' 72%de < Clk)P22 5.
20k|

Finally, (5) follows by a simple rearrangement inequality (see [13, Theorem 3.4]),

/ x| 7%|x — k|™%dx < / Ix|72dx = 2o —2)" L.
x|, lx—k|>1 [x|>1

m}

The next two lemmas are the counterpart of Lemmas 3.7 and 3.8 in the case of
the ellipse. The minimal value z4 of Re(z) for which the L* norm of ®(8, z, -, ) is
proved to be bounded is lowered from max{(6 — 8)/4, 11/8} to max{(6 — B)/4, 5/4}.
Similarly, z¢ is lowered from max{(10 — B)/6, 8/5} to max{(10 — B)/6,3/2}
(Figs. 3, 4).

Lemma4.3 Letd =2 and B > 0. Set z4 = max{(6 — B)/4,5/4}. If Re(z) > za, then
there exists C > 0 such that for every R > 1 and 0 < § < 1/2,

C if Re (z) > za,

/ f2 |® (6, z,7,x) |4dxdu(r —R) < {Clog(1/é) if Re(z) =z4and B # 1,
R Clog? (1/8) ifRe(z) =z4and p = 1.
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5/3
8/5

3/2

5/4

2/5 i 3

Fig. 4 The minimal values of « = Re(z) for the ellipse in dimension 2. The values z4 (bottom) and z¢
(top). Compare with Fig. 3a

Proof Call « = Re (z). By Lemma 2.5 with N = 2, it suffices to estimate

/ (1 +8|k|)—*/ (14 8lm)™" Im| ™|k — m|™®
R2 |m|,|k—m|>1
xf (1+8ln)~" |n| "k — n|™®
|n|,lk—n|>1
x (14 ||m| + |k —m| — |n| — |k — n|]) " dndmdk.

Split RZas {|k| < 2}U{|k| > 2}. By Lemma 4.2 (5), the integral over the disc {|k| < 2}
is bounded by

2
/ (/ |m|_°’|k—m|_°‘dm> dk <C.
k| <2 |m|,|k—m|>1

Consider now the case {|k| > 2}. Assume 8 > 1/2. Apply Lemma 4.2 (4) to the
integral with respect to n with Y replaced with [m| + |k — m]|.

/ |~k —n|~ (1 +||m| + [k —m| — |n| — |k —n|))~# dn
|n],lk—n|>1

< CIkP¥*72 (1 + [Im] + |k — m| — |k||)!/2~mint1.A}
x 1og®# (2 + ||Im| + |k — m| — |k]]).
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Thus we obtain the integral
k3272 / |m| Ik — m| =L+ [Im] + |k — m| — [k|})!/2-mint0 )
|m|,|k—m|>1
x log®# (2 + |Im| + [k — m| — |k|[)dm.
If B =1and o > 5/4, the logarithm can be removed as long as one replaces « with a

slightly smaller value greater than 5/4. Therefore, if (o, 8) # (5/4, 1), then we only
need to estimate

|k|3/2*2“/ I =T ] = m] = (DT P
Iml,lk—=m|>1

S C|k|4—4a—min{1,/3}
where we have applied Lemma 4.2 (4). Finally, the integral over {|k| > 2} gives

/ (1 +5|k|)—k|k|4—4a—mll‘l{l,ﬁ}dk
[k[>2

- C ifoa > z4,
“ | Clog(l/8) ifaa=z4andp # 1.

Assume 0 < 8 < 1/2. Apply Lemma 4.2(4) to the integral with respect to n with ¥
replaced with |m| + |k — m|.

In| ™k —n|~* (1 + |lm| + |k —m| — |n| — |k — n|)) P dn < Clk|* 2P,

|n|,lk—n|>1

Thus we obtain the integral
|k|2‘2"“ﬁ/ Im| =%k —m|™%dm < Clk|*4*=5.
|m|,|k—m|>1

Finally, the integral over {|k| > 2} gives

C ifoa > z4

/ (1 + 81kD k|4 Pak < .
lk|>2 Clog(1/8) ifa = z4.
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It remains to study the case « = 5/4 and 8 = 1. By Lemma 4.2 (4),

/ (1 +6|k|)‘k/ (1 +8lm)™" Im| ™|k — m|™®
R2 |m|,|k—m|>1

X / n" %k —n|~% (1 + ||m| + |k —m| — |n| — |k — n|))"? dndmdk
|n|,lk—n|>1

EC/ (1 + 81k~ |k|—‘f (L + 8lml) ™ m]| |k — m|
R2 |m|,|k—m|>1

x (1+ [|m| + [k —m| — |kI)""*log(2 + [Im| + |k — m| — |k|)dmdk.
Since there is a C > O such thatfor0 <6 < 1/2
(14 8|m|)~*log(2 + 2|m|) < Clog(1/8),

and 2 + ||m| + |k — m| — |k|| <2 + 2|m|, we obtain

/ (14 81k~ |k|—1/ (1+8|m))~" m| ™|k — m|™®
R2 |m|,|k—m|>1
x (14 [Im| + |k —m| — [kI)~?10og2 + ||m| + |k — m| — |k||)dmdk

< cmg(l/é)/ (1+8lk)™ |k|—1/ lm| ™%k —m|™*
R2 |m

|, |k—m|>1

x (1 + ||m| + |k —m| — |k|)~"*dmdk

< cmg(l/é)/ (1+ 81k ™ k| ~2dk < Clog?(1/8),
R2

by Lemma 4.2 (4). O

Lemmad4.4 Letd = 2 and B > 0. Set 7z = max{(10 — B)/6,3/2}. If Re(z) > ze,
then there exists C > 0 such that for every R > 1 and 0 < § < 1/2,

/R/W |® (8, z, 7, x) [®dxdu(r — R)

C if Re (2) > z,

Clog(1/8)  ifRe(z) =z6and0 < B < 2/5,
Clog? (1/8) if Re(z) = z6 and p =2/5,
Clog(1/9) if Re(z) =z6and2/5 < B < 1,
Clog’ (1/8) ifRe(z) =zsand B =1,
Clog*(1/8) ifRe(z) =zsandp > 1.

IA
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Proof Call « = Re (z). By Lemma 2.5 with N = 3, it suffices to estimate

f (1 + 8|k~
RZ

x // (L4 8lmy )™ (14 8lmal) ™ [my |~ |m2] "k — my — ma|™*

[my|,lmal,
|k—m1—my|>1

X (148l D)™  my | na| ™1k — ny — na| ™

[nil,lnal,
lk—n1—nz|>1

x (L4 [lmi| + Ima| + |k —my = ma| — |ni| = |na| = [k —ny —na|)™F
X dnzdnldmzdmldk.

Split R2? as {|k| < 2} U {|k| > 2}. The integral over the disc {|k| < 2} is bounded by

2
/ (/ |m1|*“/ Imzl"‘lk—ml—mzl"‘dmzdm) dk
k<2 \Jm|>1 R2
2
=c/ (/ |m1|°‘|k—m1|22°‘dm1) dk
k<2 \Jm|>1

2
= c/ <f |m1|2—3“dm1> dk + C/ k|3 ~%dk < C,
ki<1/2 \Jjmy|>1 1/2<k|<2

since o > z¢ > 4/3.

Consider now the case {|k| > 2}. Assume« > 2—Band o > 3/2. When |k—n{| >
2, apply Lemma 4.2 (1) to the integral with respect to n, with k replaced with k — n
and Y replaced with |m| + |m>| + |k — m| — m3| — |ny], and when |k — n1| < 2
apply Lemma 4.2 (5) to the same integral,

Ini|~¥na| =%k —ny —na| ™
[n1l,|n2l,lk—ny—na|>1

(L] |-Hma] + 1k — my — ma] — 1] — na] — [k iy — ol dnadny
< c/ 1| — |
]RZ

x (1+ [jmy| + |mal + |k — my —ma| — |n1| — |k — ny|[)>~~min{l.A)

x 1og®1 (2 + ||m1| + [ma| + |k —my —ma| — [n1| — |k — ny|])dn,

+C/ |ni|~%dn;.
lk—n1|<2
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The last integral is bounded by a constant times |k|~*. If B = 1, the logarithm can
be removed as long as one replaces o with a slightly smaller value greater than 3/2.
Thus we only need to estimate

[tk = mpe
R

x (1+ [|mi| + ma| + |k —my —ma| — n1| — [k — ny|[)>~@™00PY gy
S C|k|—ol |k|max{0,4—2a—min{l,ﬁ}} logaa’zfﬂ/z(lkD’

where we have applied Lemma 4.2 (1) and (2). Moreover,
/ |m1|_“/ [ma| =%k —my — ma|~“dmadm,
RR2 RR?
= C/ |1k — mi P72dmy = Cli|* .
R2
Finally, the integral over {|k| > 2} gives

/k 2(1 +8|k|)—3k|k|4—4a+max{0,4—2ot—min{1,ﬂ}} logﬁa_Q,ﬁ/qu')dk
=

_|e if & > (10 — B)/6,
=~ |Clog(1/8) if @ =(10—pB)/6and2/5 <p < 1.

Assume now 3/2 <« <2 — fsothat0 < g < 1/2. Apply Lemma 4.2 (2) and
(5) to the integral with respect to np with k replaced with k — ny,

Ini| ™ n2| %k —ny —na|™*
[n1l,n2l,[k—n1—na|>1

(14 |lmi] + |ma| + [k = my —ma| — |n1| — Ina| — [k = ny — na| )™ dnadn,

< c/|n1|*°‘|k — i 272 P logh«f (2 + |k — ny|) dny
RZ
< Clk[*73 P logh-=£ (|k|).

Moreover,

/2 my |~ /2 Ima| ™%k —my —ma|"“dmadm;
R R

= Cf Im1 |~k — m1 >~ 2*dm; = C|k[*~3.
RZ
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Finally, the integral over {|k| > 2} gives

/k A + 81k T |k 80P g2 (|k|)dk
>

c if @ > (10— B)/6,
<{Clog(1/8) ifa=(10—p)/6and0 < B < 2/5,
Clog®(1/8)  if @ = (10— B)/6 and B = 2/5.

It remains to study the case « = 3/2 and 8 > 1. Apply Lemma 4.2 (1) and (5) to the
integral with respect to n, with k replaced with k — ny,

(L4 81k (1 +8lmi )™ (1 + 8lma) ™ lmy |~ ma| ™|k — my —ma| ™

X (14 8lni )2 | 2 ™|k — ny — na| ™
|nil,n2l,lk—ni—n2|>1

x (1+ [Imy| + |ma| + |k — my—ma|—|ni|—|n2| — |k —ny — nal]) ™ dnodn,

< CO+ 8D A+ 8lmi )™ (14 8lmal)™ lmy| ¥ ma| ™|k — my — ma| ™

X /2<1+6|n1|)—”|n1|—°‘|k—n1|—°‘log<2+|k—m|)
R

X (14 |lm1| + |ma| + [k —my —ma| — |n1| — lk —ng|)~"?

x 1og?1(2 + |m1| + Ima| + [k — my —ma| — |ny| — |k — ny|])dn,

+ C(L+ 81k H my |~ ma| |k —my — mzlf‘y/ Ini|~dn.
np—k|<2

Since there is a C > 0 such that for0 < 6 < 1/2

(14 81k (1 =+ 8lmy )™ (1 + 8ma)) ™ (1 + 8|y )
x log(2 + |k| + [m1| + |ma| + [n1])
< Clog(1/9),

we obtain
Clog" e (1/8)(1 + 81k) ™ m |~ |ma| ™|k — my — ma| ™
% / |k — ]
RZ
x (1+ [|my| + |ma| + |k — my —ma| — |n1| — |k —ny |~ dny

+ C(1+ 81k my |~ [ma| [k — my — mzl_a/ [n1|~%dn;.
lnp—k|<2

By Lemma 4.2(3), the above integrals are bounded by

Clog" 218 (1/8)(1 + 81k) ™ k|~ log® |k||m1|~“ma| |k — my — ma| ™.
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Moreover,

/2 my |~ /2 Ima| ™%k —my —ma|"*dmadm;
R R

=Cf|mﬁ%—mﬁ”wM=Cw“%
R2
Finally, the integral over {|k| > 2} gives

log! 915 (1/8) (14 81k]) " [k)* % log? [k|dk < Clog*™®16(1/5).
[k|>2

Lemma 4.5 The notation is as in the previous lemmas and let d = 2.
If0 < B < 2/5 then there exists a constant C such that for every Re (z) > 3/2, for
every R>1and0 <6 < 1/2,

Yr |c ifp<4+28
p _ s
{/RAZ (® .20 Fdxdut R)} = {c1ogl/p(1/5) ifp=4+28.

If B = 2/5 then there exists a constant C such that for every Re (z) > 3/2, for every
R>1and0 < 6§ < 1/2,

I/p .
{// |<D(5,z,r,x)|”dxdu(r_R)} = ¢ 1/p+1/12 l.fp <4+2p,
R JT? C]Og/P+/ (l/(S) lfp=4+2ﬂ

If2/5 < B < 1 then there exists a constant C such that for every Re (z) > 3/2, for
every R>1and0 <6 < 1/2,

r ¢ ifp<4+28
p _ d s
{/R/qrz (® 020 Pdxdutr R)} = {c10g1/17(1/5) ifp=4+28.

If B = 1 then there exists a constant C such that for every Re (z) > 3/2, for every
R>1and0 < 6§ < 1/2,

I/p .
{// |¢'(5,Z,I’,X)|pdxd,u(r—R)} < ¢ s Q‘p<6,
o Clog"/P*23(1/0) if p =6.

If B > 1 then there exists a constant C such that for every Re (z) > 3/2, for every
R>1and0 < 6§ < 1/2,

1/p .
{//IQQLhDWMWW—R4 =8 S yp =6
R JT Clog!/P™1/2(1/8) if p=6.
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Proof Again, it is enough to prove the result for z = 3/2. The case 8 = 0 is contained
inLemma4.3.If 8 > 0 the proof follows by complex interpolation witha = 4,b = 6,
A =z4+¢e, B = z6+¢,withe > 0 (Fig. 4). The norms H and K are given in Lemmas
4.3 and 4.4. Set

3
5:(1—19)A+193.
This gives

3(8—4e)
9 — Tﬂglfﬂ<l,
| —deif g > 1,

and

142 :
1_a-» v _ | ie<t
P a b |2 ifg>1

6 > 1.

When ¢ > 0 and p < min{6, 4 + 28},

I/p
{/ / |®(3,3/2,x) |Pdxdu(r — R)} <C.
R JT2

When ¢ = 0 and p = min{6, 4 + 28},

1/p
{ / / |<I>(6,3/2,r,x>|"dxdu<r—R)} < Clog!/Prnd=0/4+wv/6 (1 /5y
R JT2

wherew =4if =1, 0=3i1ff>1,0w=1if B =2/5and w = 0 in the other
cases, while n = 1 if § = 1 and n = 0 in the other cases. O

The proof of Theorem 1.3 can now be concluded as in the case of the general convex
set with smooth boundary with strictly positive curvature.

5 Concluding Remarks

As already observed in the Introduction, the normalization p@d=n/ 2D(Q, r,x) is
optimal in the sense that the exponent (d — 1)/2 cannot be replaced by a smaller
exponent. For the case p = 2 see [11], the case p > 2 immediately follows from the
embedding of L? in L?.

On the other hand, we do not know to which extent the range of indices p = p(f)
for which the above theorems hold is optimal, even when § > 1, which contains the
case of a uniformly distributed measure, or when 8 = 0, which contains the case of a
measure concentrated at a single point.
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One can expect that a different normalization r ~VD(2, r, x) with y > (d — 1)/2

gives a larger range of indices p and B. In any case the optimal range on indices is
likely a quite hard problem. See for example the survey paper [10] for results and open
problems in the cases p = +00 and u a point mass measure.
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