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Abstract
In this paper we study spaces of holomorphic functions on the Siegel upper half-space
U and prove Paley–Wiener type theorems for such spaces. The boundary of U can
be identified with the Heisenberg group Hn . Using the group Fourier transform on
Hn , Ogden and Vagi (Adv Math 33(1):31–92, 1979) proved a Paley–Wiener theorem
for the Hardy space H2(U). We consider a scale of Hilbert spaces on U that includes
the Hardy space, the weighted Bergman spaces, the weighted Dirichlet spaces, and
in particular the Drury–Arveson space, and the Dirichlet space D. For each of these
spaces, we prove a Paley–Wiener theorem, some structure theorems, and provide
some applications. In particular we prove that the norm of the Dirichlet space modulo
constants Ḋ is the unique Hilbert space norm that is invariant under the action of the
group of automorphisms of U .

Keywords Siegel upper half-space · Holomorphic function spaces · Reproducing
kernel Hilbert space · Drury–Arveson · Dirichlet · Hardy · Bergman spaces

Mathematics Subject Classification 30H99 · 46E22 · 30C15 · 30C40

1 Introduction and Statement of theMain Results

Let C+ be the upper half-plane {z = x + iy ∈ C : y > 0}. Let H2(C+) denote the
Hardy space, that is the space of holomorphic functions in C+ such that
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‖ f ‖2H2(C+)
:= sup

y>0

∫ +∞

−∞
| f (x + iy)|2 dx < +∞.

The classical Paley–Wiener theorem [17] says that, given f ∈ H2(C+) there exists
g ∈ L2(0,+∞) such that

f (z) = 1

2π

∫ +∞

0
eizξ g(ξ) dξ , (1)

and

‖ f ‖2H2(C+)
= 1

2π
‖g‖2L2(0,+∞)

. (2)

Conversely, given any g ∈ L2(0,+∞), defining f as in (1), we have that f ∈ H2(C+)

and (2) holds. Since then, the Fourier transform on the real line has appeared as a fun-
damental tool in modern complex analysis and in the theory of holomorphic function
spaces in C+. We mention, for instance, the regularity of projection operators, the
boundary behavior and growth conditions of holomorphic functions, the boundedness
and compactness of Hankel and Toeplitz operators, just to name some of the most
important, see e.g. [19,23]. The Paley–Wiener theorem has been extended to other
Hilbert function spaces on C+: the weighted Bergman spaces (see e.g. [6,8,11]), and
more recently to the Dirichlet space [13,14].

The domain C+ is biholomorphic equivalent to the unit disk in the plane. In prin-
ciple, it is possible to transfer analogous results from the unit disk to C+. However,
often, it is far more natural to study a problem directly on the unbounded domain C+.

In this paper we wish to extend the approach described above to C
n+1, where we

always assume that n ≥ 1.
The Siegel upper-half space is the domain in Cn+1

U = {
ζ = (ζ ′, ζn+1) ∈ C

n × C : Im ζn+1 > 1
4 |ζ ′|2}

,

and we denote by �(ζ ) = Im ζn+1 − 1
4 |ζ ′|2 its defining function. The domain U is

biholomorphic to the unit ball B inCn+1 via the (multi-dimensional) Cayley transform
C : B → U ,

C(ω) =
(

2ω′

1 − ωn+1
, i
1 + ωn+1

1 − ωn+1

)
.

The boundary ∂U of U can be endowed with the structure of a nilpotent Lie group,
namely theHeisenberg groupHn . Thus, it is possible to use the groupFourier transform
on ∂U to characterize the boundary values of holomorphic functions on U in various
Hilbert function spaces, and therefore to take a first step in the program outlined in
the case of C+. In particular we prove Paley–Wiener type theorems for functions in
weighted Bergman and Dirichlet spaces, and on the Dirichlet space. In fact, we show
that the latter one is the unique Hilbert space modulo constants that is invariant under
the group of automorphisms of U . We now describe the content of the present paper
in greater details.
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The boundary ∂U is characterized by the points of Cn+1 such that �(ζ ) = 0, that
is, ζ = (ζ ′, t + i

4 |ζ ′|2), with t ∈ R. We introduce a parametrization of U by means
of a foliation of copies of the boundary. We set U = C

n × R × (0,+∞). Given
ζ = (ζ ′, ζn+1) ∈ U , we define �(ζ ′, ζn+1) = (z, t, h) ∈ U by⎧⎪⎨

⎪⎩
z = ζ ′

t = Re ζn+1

h = Im ζn+1 − 1
4 |ζ ′|2.

(3)

Then, � : U → U is a C∞-diffeomorphism, and �−1 is given by

�−1(z, t, h) = (
z, t + i 14 |z|2 + ih

) =: (ζ ′, ζn+1). (4)

Notice that h = �(ζ ′, ζn+1). When h = 0, we write [z, t] in place of (z, t, 0). The
points on the boundary act on U as biholomorphic maps in the following way. For
[z, t] ∈ ∂U , we define

	[z,t](ω′, ωn+1) = (
ω′ + z, ωn+1 + t + i 14 |z|2 + i

2ω
′ · z̄) , (5)

where ω′ · z̄ = ∑n
j=1 ω j z̄ j denotes the hermitian inner product in Cn . Notice that

�
(
	[z,t](ω′, ωn+1)

)
= �(ω′, ωn+1) ,

that is, the maps	[z,t] preserve the defining function �. In particular, for (ω′, ωn+1) ∈
∂U and [w, s] = �(ω′, ωn+1), by (5) we have

	[z,t]
(
(ω′, ωn+1)

) = 	[z,t]
(
�−1(w, s, 0)

)
= 	[z,t]

(
w, s + i 14 |w|2)

= (
w + z, s + i

4 |w|2 + t + i
4 |z|2 + i

2w · z̄)
= [

w + z, s + t − 1
2 Im(w · z̄)]

=: [w, s][z, t] . (6)

Therefore, it is possible to introduce a group structure on ∂U itself.

Definition The Heisenberg group Hn is the set Cn × R endowed with product

[w, s][z, t] = [
w + z, s + t − 1

2 Im(w · z̄)].
The Heisenberg group Hn is a nilpotent Lie group of step 2, and the Lebesgue

measure on C
n × R coincides with both the right and left Haar measure on Hn . In

other words, the Lebesgue measure is both right and left translation invariant.
If x is a vector of the Euclidean space Rd , we denote by dx the Lebesgue measure

in Rd . Notice that, since |det Jac�| = 1, for F integrable on U , setting F̃ = F ◦ �−1

and F̃h[z, t] := F̃(z, t, h), we have

∫
U
F(ζ ) dζ =

∫
U
F̃(z, t, h) dzdtdh =

∫ +∞

0

∫
Hn

F̃h[z, t] dzdtdh.
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We now introduce the Hilbert function spaces object of our study.

Definition For ν > −1, we consider the weighted Bergman spaces A2
ν

A2
ν =

{
F ∈ Hol(U) : ‖F‖2A2

ν
:=

∫
U

|F(ζ )|2ρ(ζ )ν dζ

=
∫
U

|F̃(z, t, h)|2 hν dzdtdh < +∞
}

.

For −n − 2 < ν < −1 and m a positive integer such that 2m + ν > −1, the
weighted Dirichlet spaces are defined as follows

Dν,(m) =
{
F ∈ Hol(U) : (i) lim

|ζ ′|≤R, Im ζn+1→+∞
F(ζ ) = 0 ;

(ii)
∫
U

|ρm(ζ )∂mζn+1
F(ζ )|2 ρν(ζ )dζ < +∞

}
.

(7)

For F as above, we define the norm on Dν,(m) as

‖F‖2Dν,(m)
=

∫
U

|ρm(ζ )∂mζn+1
F(ζ )|2 ρν(ζ )dζ.

Finally, for ν = −n − 2 and 2m > n + 1, we define the Dirichlet space D(m) as

D(m) =
{
F ∈ Hol(U) : (i) lim

|ζ ′|≤R, Im ζn+1→+∞
∂ζ j F(ζ ) = 0 for j = 1, . . . , n + 1;

(ii)
∫
U

|ρm(ζ )∂mζn+1
F(ζ )|2 ρ−n−2(ζ )dζ < +∞

}
,

(8)
with norm given by

‖F‖2D(m)
= ‖∂mζn+1

F‖2
A2
2m−n−2

+ |F(i)|2 (9)

where i = (0′, i) ∈ U .
The case ν = −1 corresponds to the classical Hardy space H2, defined as

H2 =
{
F ∈ Hol(U) : ‖F‖2H2 := sup

h>0

∫
Hn

|F̃h[z, t]|2 dzdt < +∞
}
. (10)

We point out that for ν fixed, when 2m + ν > −1, the spaces Dν,(m) all coincide,
with the same norms up to a positive constant multiple (see Theorem 2). Thus, when
the choice of the norm is unambiguous, we simply denote them by Dν . Analogously,
the spaces D(m) do not depend on the choice of the integer m (see Theorem 3), and
we denote them by D. Moreover, we will show that the norm of D modulo constants
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is invariant under the automorphism group; hence it is legitimate to call the space D
the Dirichlet space on the Siegel upper half-space.

Our main technical tool is the Fourier transform on the Heisenberg group. For this,
and other basic facts concerning the Heisenberg group, we refer the reader to [12] and
[20].

Let λ ∈ R \ {0}. We set

Fλ =
{
F ∈ Hol(Cn) :

( |λ|
2π

)n ∫
Cn

|F(z)|2 e− λ
2 |z|2dz < +∞

}
(11)

when λ > 0, and Fλ = F |λ| when λ < 0, and call this space the Fock space. We
present further properties of such space in Sect. 2.2.

For λ ∈ R\{0} and [z, t] ∈ Hn , the Bargmann representation σλ[z, t] is the operator
acting on Fλ given by,

σλ[z, t]F(w) = eiλt−
λ
2w·z− λ

4 |z|2F(w + z) (12)

if λ > 0, and, if λ < 0, as σλ[z, t] = σ−λ[z,−t], that is,

σλ[z, t]F(w) = eiλt+
λ
2w·z+ λ

4 |z|2F(w + z̄). (13)

If f ∈ L1(Hn), for λ ∈ R \ {0}, σλ( f ) is the operator acting on Fλ as

σλ( f )F(w) =
∫
Hn

f [z, t]σλ[z, t]F(w) dzdt .

Before stating our main results, we recall a result proved by Ogden and Vagi [16],
that extends the classical Paley–Wiener theorem for the Hardy space, from the upper
half-plane to the case of U . We point out however, that Ogden and Vagi proved their
main result in the case of Siegel domains of type II . It would certainly be of interest
to extend our results to the latter more general class of domains.

Theorem [16] Let F ∈ H2. Then, there exists F̃0 ∈ L2(Hn) such that F̃h → F̃0 in
L2(Hn), as h → 0+. Moreover, the function F̃0 is such that

(i) ‖F‖H2 = ‖F̃0‖L2(Hn)
;

(ii) σλ(F̃0) = 0 when λ > 0;
(iii) ran

(
σλ(F̃0)

) ⊆ span{1} for λ < 0.

Conversely, if f ∈ L2(Hn) is such that (ii) and (iii) are satisfied, then setting

F(ζ ) = F̃h[z, t] = 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
σλ( f )σλ[z, t]∗

) |λ|ndλ , (14)

then F ∈ H2 is such that F̃0 = f and (i)–(iii) hold.
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We also need the following

Definition For ν ∈ R we define the space L2
ν as the space of functions τ on R \ {0}

such that:

(i)τ (λ) ∈ HS(Fλ) for every λ, i.e., τ(λ) : Fλ → Fλ is a Hilbert–Schmidt operator;

(ii)τ (λ) = 0 forλ > 0;

(iii) ran(τ (λ)) ⊆ span{1};

(iv)‖τ‖2L2
ν

:= 1

(2π)n+1

∫ 0

−∞
‖τ(λ)‖2HS |λ|n−(ν+1)dλ < +∞, where‖ · ‖HS

:= ‖ · ‖HS(Fλ).
(15)

Our first main result is the following Paley–Wiener type theorem for the weighted
Bergman spaces A2

ν .

Theorem 1 Let ν > −1 be fixed. Given F ∈ A2
ν , there exists τ ∈ L2

ν such that, for
ζ ∈ U ,

F(ζ ) = F̃h[z, t] = 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
τ(λ)σλ[z, t]∗

) |λ|ndλ , (16)

and

‖F‖2A2
ν

= �(ν + 1)

2ν+1 ‖τ‖2L2
ν
. (17)

Conversely, given τ ∈ L2
ν , let F be defined as in (16). Then F ∈ A2

ν and (17) holds.

Next we consider the case of weighted Dirichlet spaces.

Theorem 2 Let −(n+2) < ν < −1, and letm > − ν+1
2 . Let F ∈ Dν,(m). Then, there

exists τ ∈ L2
ν such that, for ζ ∈ U ,

F(ζ ) = F̃h[z, t] = 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
τ(λ)σλ[z, t]∗

) |λ|ndλ , (18)

and

‖F‖2Dν,(m)
= �(2m + ν + 1)

22m+ν+1 ‖τ‖2L2
ν
. (19)

Conversely, given τ ∈ L2
ν , let F be defined as in (18). Then F ∈ Dν,(m) and (19)

holds.
Therefore, for each m > − ν+1

2 , the spaces Dν,(m) all coincide and their norms
satisfy (19).

Hence, if no confusion arises, we simply write Dν in place of Dν,(m).
In the case ν = −n− 1,Dν is called the Drury–Arveson space and we denote it by

DA. The Drury–Arveson space on the unit ball B has drawn a great deal of interest in
the recent years, see [2–4,7,9,22,25,26], and references therein, to name a few. When
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n ≥ 1, DA plays a role similar to the one played by the Hardy space on the unit
disk, and for this reason it is sometimes denoted as H2

n+1. If f is holomorphic on B,
f (ζ ) = ∑

|α|≥0 aαζ α , the norm in DA(B) is given by

‖ f ‖2DA(B) =
∑
|α|≥0

α!
|α|! |aα|2.

However, to the best of our knowledge, no integral representation of this norm has
been found. In this paper we provide such a description, see Theorem 6.1.

The last main result is the following.

Theorem 3 Let m > n+1
2 be fixed. Let F ∈ D(m). Then, there exists τ ∈ L2−n−2 such

that, for ζ ∈ U ,

F(ζ ) = F̃h[z, t] = 1

(2π)n+1

∫ 0

−∞
tr

(
τ(λ)

(
eλhσλ[z, t]∗ − eλσλ(0, 0)

∗))
|λ|ndλ + c ,

(20)
where c = F(i), and

‖F‖2D(m)
= �(2m − n − 1)

22m−n−1 ‖τ‖2L2−n−2
+ |F(i)|2. (21)

Conversely, given τ ∈ L2−n−2, let F be defined as in (20). Then F ∈ D(m), c = F(i)
and (21) holds.

Therefore, for each m > n+1
2 , the spaces D(m) all coincide and their norms sat-

isfy (21).

Hence, if no confusion arises, we simply write D in place of D(m). We shall also
denote by Ḋ the quotient spaceD/C, endowedwith any of the norms ‖∂mζn+1

F‖A2
2m−n−2

.

We are going to show that Ḋ is the unique Hilbert space of functions modulo constants
that is invariant under composition with automorphisms, see Theorem 5.5. We would
like to point out that, when ν = −n − 2, even given the integrability condition of the
derivative of sufficiently high order m, it is not possible to find an anti-derivative of
orderm that vanishes as Im ζn+1 → +∞. Hence, the decay property in (8) is required
on the gradient of the function and not on the function itself. We will comment and
make more remarks in Sects. 4 and 5.

Beside their intrinsic interest, there are several reasons to study Paley–Wiener type
theorems. All the spaces we are considering are Hilbert spaces, in particular with a
reproducing kernel, and it is possible to define the same scale of space with p �= 2.
These spaces are classical Besov–Sobolev spaces; for the case of the unit ball, see,
e.g., [5,26,29]. The boundary behavior of functions in the weighted Bergman spaces
Ap

ν (U)with ν > −1was studied by Feldman [10], following the case of the upper half-
plane in C+ obtained by Ricci and Taibleson [21]. Among other results, we provide
the explicit expression of the reproducing kernels for all these spaces. These kernel
are also the integral kernels for the corresponding orthogonal projections. It would
be of interest to study the regularity properties of such projections on the scale of the
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appropriate homogeneous Sobolev spaces. As potential application of our results, we
also mention the theory of invariant subspaces, in the spirit of [15], [8], e.g., that deal
with this question in the 1-dimensional setting of the upper half-plane. Furthermore,
we point out that the the invariance of the norm of the Dirichlet space under the
composition with the automorphisms is much easier to prove in the setting of the
Siegel half-plane than in the unit ball—cfr. (2) in Theorem 5.5 and [29, Theorem
6.15].

The paper is organized as follows. Section 2 is a preliminary section where we
recall some standard results on the Siegel half-space, the Heisenberg group and the
Hardy space on U . In Sects. 3, 4 and 5 the weighted Bergman spaces, the weighted
Dirichlet spaces and the Dirichlet space are studied respectively. In Sect. 6 we provide
the integral norm of the Drury–Arveson space on the unit ball, and then we conclude
with some final remarks and possible future directions of research.

2 Preliminaries

In this part we recall some well-known facts that will be used in what follows.

2.1 More on the Heisenberg Group and the the Siegel Upper Half-Space

The following lemma iswell known, see e.g. [27, 7.5.18];we thankF.Ricci for pointing
this reference to us.

Lemma 2.1 The group Aut(U) of biholomorphic self-maps of U is given by

Aut(U) =
⋃

γ∈{Id,v}
(MAN )γ (MAN ) ,

where

(i) N = {
	[z,t] : [z, t] ∈ Hn

}
(the subgroup of Heisenberg translations);

(ii) A = {
Dδ : δ > 0, Dδ(ζ

′, ζn+1) = (δζ ′, δ2ζn+1)
}
(the subgroup of non-

isotropic dilations);
(iii) M = {

U ∈ U (n) : 	U (ζ ′, ζn+1) = (Uζ ′, ζn+1)
}
(the subgroup of unitary

transformations in Cn);

(iv) v(ζ ) =
(

iζ ′
ζn+1

,− 1
ζn+1

)
(the inversion map).

On Hn we define a homogeneous norm by setting

|[z, t]|Hn := ( 1
16 |z|4 + t2

)1/4
.

This norm satisfies the following properties:

• |[z, t]|Hn ≥ 0 and it is 0 if and only if [z, t] = (0, 0);
•

∣∣[z, t][w, s]∣∣ ≤ |[z, t]| + |[w, s]|;
• |Dδ[z, t]|Hn = δ|[z, t]|Hn .
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The topology induced by the metric dHn

([z, t], [w, s]) = |[z, t][w, s]−1|Hn is equiv-
alent to the Euclidean topology of Cn × R. We also set

B
([z, t], r) =

{
[w, s] ∈ Hn : |[w, s][z, t]−1|Hn < r

}
.

We recall that a holomorphic function F satisfies the mean value property F(ζ ) =
1

|Q|
∫
Q F(ω) dω, where Q = Q(ζ, R) denotes the polydisk {ω : |ω j − ζ j | < R j } of

polyradius R, contained in the region of holomorphy of F , and |Q| is its Lebesgue
measure.Wewill also consider ametric onU ,which is somehowconformally invariant.
If �(ζ ′, ζn+1) = (z, t, h) as in (3), we set

P((z, t, h), r) = B
([z, t], r) × {

k : |h − k| < r2
}

and

P(ζ, r) = �−1(
P((z, t, h), r)

)
.

Then, we have

• |P(ζ, r)| = cnr2n+4;
• 	[w,s]

(
P(ζ, r)

) = P
(
	[w,s](ζ ), r

)
;

• Dδ

(
P(ζ, r)

) = P
(
Dδ(ζ ), rδ

)
.

It is elementary to see that a holomorphic function F satisfies the submean value
property

|F(ζ )| ≤ C

|P(ζ, r)|
∫

|h−k|<r2

∫
B([z,t],r)

|F̃(w, s, k)| dwdsdk.

2.2 The Fock Space and the Fourier Transform on the Heisenberg Group

Recall that the Fock space Fλ is defined in (11) and thus has inner product

〈 f , g〉Fλ =
( |λ|
2π

)n ∫
Cn

f (z)g(z) e− λ
2 |z|2dz.

Observe that
( |λ|
2π

)n
e− |λ|

2 |z|2dz is a probability measure, and that the normalized mono-
mials

{
zα/‖zα‖Fλ

}
, form a complete orthonormal basis, and

‖zα‖2Fλ = α!
(

2

|λ|
)|α|

.

Moreover, Fλ is a reproducing kernel Hilbert space, with reproducing kernel

e
|λ|
2 zw̄, [12].
Introducing real coordinates onHn , z j = x j + iy j , j = 1, . . . , n, thenHn = R

n ×
R
n ×R, and a basis for the left-invariant vector fields is {X1, . . . , Xn,Y1, . . . ,Yn, T },

where

X j = ∂x j − 1
2 y j∂t , Y j = ∂y j + 1

2 x j∂t , T = ∂t .
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A basis for the complexified vector fields is
{
Z1, . . . , Zn, Z̄1, . . . , Z̄n, T

}
, where

Z j = 1
2 (X j − iY j ) = ∂z j − i

4 z̄ j∂t , Z̄ j = 1
2 (X j + iY j ) = ∂z̄ j + i

4 z j∂t ,

j = 1, . . . , n , T ,

with non-trivial commutation rules

[Z j , Z̄ j ] = i
2T , j = 1, . . . , n.

We denote by Z (R)
j and Z̄ (R)

j , resp., j = 1, . . . , n, the right-invariant vector fields that

coincide with Z j and Z̄ j , resp., at the origin. It turns out that

Z (R)
j = ∂z j + i

4 z̄ j∂t , Z̄ (R)
j = ∂z j − i

4 z j∂t , j = 1, . . . , n.

Then, the differentials of the Bargmann representations, that are defined in (12) and
(13), can be computed to give, in particular:

(i) for all λ �= 0, dσλ(T ) = iλ;

(ii) for λ > 0, dσλ(Z
(R)

j ) = −λ
2w j ;

(iii) for λ < 0, dσλ(Z
(R)

j ) = ∂w j ;

see [12]. It is important to recall that, with our choice of normalization of the Fourier
transform, if f , g ∈ L1(Hn), σλ( f ∗ g) = σλ( f )σλ(g), so that

σλ(V
(L) f ) = −σλ( f )dσλ(V

(L)) and σλ(V
(R) f ) = −dσλ(V

(R))σλ( f ) ,

where V (L) and V (R) denote a left-invariant and a right-invariant vector field, respec-
tively.

If f ∈ L2(Hn), we have Plancherel’s formula

‖ f ‖2L2(Hn)
= 1

(2π)n+1

∫
R

‖σλ( f )‖2HS|λ|n dλ ,

and, if f ∈ L1 ∩ L2(Hn) the inversion formula

f [z, t] = 1

(2π)n+1

∫
R

tr
(
σλ( f )σλ[z, t]∗

)|λ|n dλ. (22)

2.3 The Cauchy–Riemann Equations and the Hardy Space

We consider now functions that are holomorphic in U . For F ∈ Hol(U), recalling (4),
we write F̃ = F ◦ �−1, so that

F(ζ ′, ζn+1) = F̃
(
ζ ′, ζn+1+ζ n+1

2 ; ζn+1−ζ n+1
2i − 1

4ζ
′ · ζ̄ ′

)
.
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The equation ∂ζ n+1
F = 0 now reads

0 = ∂ζ n+1
F(ζ ′, ζn+1) = 1

2∂t F̃(z, t, h) − 1
2i ∂h F̃(z, t, h)

= 1
2

(
∂t F̃ + i∂h F̃

)
(z, t, h) ,

that is,
i∂t F̃h = ∂h F̃h . (23)

The remaining Cauchy–Riemann equations ∂ζ j
F = 0, j = 1, . . . , n, respectively,

become

0 = ∂ζ j
F(ζ ′, ζn+1) = (

∂z j − i
4 z j∂t

)
F̃h[z, t] = Z

(R)

j F̃h[z, t]. (24)

If we also have that F̃h ∈ L1(Hn), using (24) we obtain that

0 = σλ

(
Z

(R)

j F̃h
) = −dσλ

(
Z

(R)

j

)
σλ

(
F̃h

)
,

for j = 1, . . . , n. These imply that ran
(
σλ(F̃h)

) ⊆ ker dσλ

(
Z

(R)

j

)
, so that, by (ii) and

(iii) in Sect. 2.2, it follows that

• σλ(F̃h) = 0 for λ > 0;
• ran

(
σλ(F̃h)

) ⊆ span{1}.
We learnt this argument from [20].

We recall that H2 defined in (10) is a reproducing kernel Hilbert space, whose inner
product can be realized by the L2-inner product of the boundary values, that is,

〈F,G〉H2 =
∫
Hn

F̃0[z, t]G̃0[z, t] dzdt .

The reproducing kernel, which is called the Szegö kernel, is given by

S(ω, ζ ) = n!
(4π)n+1

(ωn+1 − ζ n+1

2i
− 1

4ω
′ · ζ̄ ′

)−(n+1)
,

or, equivalently,

S̃(z,t,h),k[w, s] = n!
(2π)n+1

(
h + k − i

(
s − t + 1

2 Im(w · z)) + 1
4 |w − z|2

)−(n+1)
,

see e.g. [24].

3 TheWeighted Bergman Spaces

The next result will be used repeatedly throughout the remainder of the paper. We
recall that the spaces L2

ν where defined in (15).
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Lemma 3.1 Let ν > −n − 2 and τ ∈ L2
ν . For (z, t, h) = �(ζ) with ζ ∈ U define

F̃(z, t, h) = 1

(2π)n+1

∫ 0

−∞
eλh tr

(
τ(λ)σλ[z, t]∗

) |λ|ndλ.

Then, F is holomorphic in U .

Proof We first show that the integral defining F converges absolutely. Consider the
orthonormal basis {eα} of Fλ, where eα(z) = zα/‖zα‖Fλ , α a multiindex. As τ(λ)

and σλ[z, t] are operators on Fλ, we compute

tr
(
τ(λ)σλ[z, t]∗

) = tr
(
σλ[z, t]∗τ(λ)

) =
∑
α

〈τ(λ)eα, σλ[z, t]eα〉Fλ

=
∑
α

〈τ(λ)eα, P0σλ[z, t]eα〉Fλ = tr
(
τ(λ)P0σλ[z, t]∗

)
, (25)

where P0 denotes the orthogonal projection onto the subspace generated by e0, since
ran(τ (λ)) ⊆ span{e0}. Therefore,

∣∣ tr(τ (λ)σλ[z, t]∗)
∣∣ ≤ ‖τ(λ)‖HS‖P0σλ[z, t]‖HS.

Since λ < 0, we have that

P0σλ[z, t]eα = 〈σλ[z, t]eα, e0〉Fλe0

=
(
eiλt+

λ
4 |z2|

( |λ|
2π

)n ∫
Cn

e
λ
2w·z(z + w)α

‖wα‖Fλ

e− |λ|
2 |w|2dw

)
e0

=
(

1√
α!

( |λ|
2

)|α|/2
eiλt+

λ
4 |z|2 z̄α

)
e0. (26)

Therefore,

‖P0σλ[z, t]‖2HS = e
λ
2 |z|2 ∑

α

1

α!
( |λ|

2

)|α|
|zα|2 = 1 ,

so that

∫ 0

−∞
eλh

∣∣ tr(τ (λ)σλ[z, t]∗)
∣∣ |λ|ndλ ≤

∫ 0

−∞
eλh‖τ(λ)‖HS |λ|ndλ

≤ ‖τ‖L2
ν

( ∫ 0

−∞
e2λh |λ|n+ν+1dλ

)1/2

, (27)

which is finite since ν > −n−2. This inequality also shows that the integral is locally
uniformly bounded in (z, t, h) ∈ U.

In order to show that F is holomorphic in U , by the previous estimate, it suffices
to show that the integrand J̃ (z, t, h) = ehλ tr

(
τ(λ)σλ[z, t]∗

)
satisfies Eqs. (23) and

(24). Indeed, using (25) and (26) we have
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J̃ (z, t, h) = ehλ tr
(
τ(λ)σλ[z, t]∗

)
= ehλ−iλt+ λ

4 |z|2 ∑
α

1√
α!

( |λ|
2

)|α|/2
zα〈τ(λ)eα, e0〉Fλ .

Hence,

(∂t + i∂h) J̃ (z, t, h) = (∂z j − i
4 z j∂t ) J̃ (z, t, h) = 0.

The conclusion follows. ��
We now turn to the Bergman spaces. We begin with the elementary observation

that if 	[w,s],	U and Dδ are as in Lemma 2.1, and F ∈ A2
ν , then F ◦ 	[w,s] and

F ◦ 	U have the same norm as F , while ‖F ◦ Dδ‖A2
ν

= δ−(2n+4)/2‖F‖A2
ν
. We set

F(ε) = F(· + εi).

Proposition 3.2 Let ν > −1. The following properties hold.

(i) There exists a constant C > 0 such that for all ζ ∈ U , ε > 0 and F ∈ A2
ν ,

|F(ζ + εi)| ≤ Cε−(n+2+ν)/2‖F‖A2
ν
.

As a consequence, A2
ν is a reproducing kernel Hilbert space.

(ii) There exists a constant C > 0 such that for all ε > 0 and F ∈ A2
ν

‖F̃(ε),h‖L2(Hn)
≤ Cε−(1+ν)/2‖F‖A2

ν
.

In particular, F(ε) ∈ H2 and ‖F(ε)‖H2 ≤ Cε−(1+ν)/2‖F‖A2
ν
.

Proof We begin by observing that if ζ = hi, then P(hi, r) is comparable to P =
P(r) = {(w, s, k) : |w| < r , |s| < r2, |h − k| < r2}. We have that

|F(hi)|2 ≤ C
1

|P(r)|
∫
P

|F(ω)|2 dω

≤ Ch−(n+2)
∫

|h−k|<r2

∫
B([0,0],r)

|F̃(w, s, k)|2 dwds dk.

For a generic ζ = �−1(z, t, h), we have ζ = 	[z,t](hi), and F(ζ ) = (
F ◦	[z,t])(hi),

so that

|F(ζ )|2 ≤ Ch−(n+2)
∫

|h−k|<r2

∫
B([0,0],r)

|(F ◦ 	[z,t])̃ (w, s, k)|2 dwds dk

= Ch−(n+2)
∫

|h−k|<r2

∫
B([z,t]),r)

|F̃(w, s, k)|2 dwds dk

= Ch−(n+2)
∫
P((z,t,h),r)

|F̃(w, s, k)|2 dwds dk. (28)
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Given ε > 0, we apply (28) to F(ζ + εi) = F̃(h)(z, t, ε) and obtain

|F(ζ + εi)|2 = |F̃(h)(z, t, ε)|2 ≤ Cε−(n+2)
∫
P((z,t,ε),

√
ε/2)

|F̃(h)(w, s, k)|2 dwds dk

≤ Cε−(n+2+ν)

∫
P((z,t,ε),

√
ε/2)

|F̃(h)(w, s, k)|2 dwds kνdk.

Since ‖F(h)‖A2
ν

≤ ‖F‖A2
ν
, this proves (i).

Next, if F ∈ A2
ν and ε > 0,

|F̃h+ε[z, t]|2 = |F(ζ + εi)|2

≤ Cε−(n+2+ν)

∫
P((z,t,ε),

√
ε/2)

|F̃(h)(w, s, k)|2 dwds kνdk

≤ Cε−(n+2+ν)

∫ 3ε/2

ε/2

∫
B([z,t],√ε/2)

|F̃h+k[w, s]|2 dwds kνdk.

Therefore,

‖F̃(ε),h‖2L2(Hn)

≤ Cε−(n+2+ν)

∫
Hn

∫ 3ε/2

ε/2

∫
B([z,t],√ε/2)

|F̃h+k[w, s]|2 dwds kνdk dzdt

= Cε−(n+2+ν)

∫
B([0,0],ε)

∫ 3ε/2

ε/2

∫
Hn

|F̃h+k
([w, s][z, t])|2 dzdt kνdk dwds

≤ Cε−(1+ν)‖F‖2A2
ν
.

Moreover,

‖F̃ε‖L2(Hn)
≤ ‖F(ε)‖H2 = sup

h>0
‖F̃ε+h‖L2(Hn)

≤ Cε−2(1+ν)/p‖F‖A2
ν
.

This proves (ii). ��
With a standard argument, see, for instance, [6, Remark 1.16], it is possible to prove

the following result.

Proposition 3.3 If ν ≤ −1, then A2
ν = {0}.

We now have all the ingredients to prove our first main result.

Proof of Theorem 1 Let F ∈ A2
ν and ε > 0. Then, F(ε) ∈ H2 so that F̃(ε),h ∈ L2(Hn)

for h > 0, and σλ(F̃ε+h) = σλ(F̃(ε),h) = 0 if λ > 0. Moreover, by (14) and the
inversion formula (22), we have that σλ(F̃(ε),h) = ehλ(F̃(ε),0) if λ < 0. Therefore, if
F ∈ A2

ν , ε, h > 0:

• F̃h ∈ L2(Hn) for all h > 0;
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• σλ(F̃h) = 0 if λ > 0;
• ran(σλ(F̃h)) ⊆ span{1} if λ < 0;
• σλ(F̃ε+h) = ehλσ (F̃ε).

Since F(ε) ∈ H2, by the Ogden–Vagi Theorem, there exists gε ∈ L2(Hn) such that
σλ(gε) = 0 if λ > 0, ran(σλ(gε)) ⊆ span{1} if λ < 0, and

F(ζ + εi) = F̃(ε),h[z, t] = 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
σλ(gε)σλ[z, t]∗

) |λ|ndλ ,

where �(ζ) = (z, t, h). Switching the roles of h and ε and arguing as above, there
exists gh ∈ L2(Hn) such that σλ(gh) = 0 if λ > 0, ran(σλ(gh)) ⊆ span{1} if λ < 0,
and

F(ζ + εi) = 1

(2π)n+1

∫ 0

−∞
eελ tr

(
σλ(gh)σλ[z, t]∗

) |λ|ndλ.

These equalities imply that ehλσλ(gε) = eελσλ(gh) for all ε, h > 0, that is, for every
λ < 0

HS(Fλ) � e−ελσλ(gε) =: τ(λ)

is well defined, i.e. independent of ε, with τ(λ) = 0 if λ > 0 and ran(τ (λ)) ⊆ span{1}.
Hence,

F(ζ + εi) = 1

(2π)n+1

∫ 0

−∞
e(h+ε)λ tr

(
τ(λ)σλ[z, t]∗

) |λ|ndλ ,

that is,

F(ζ ) = 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
τ(λ)σλ[z, t]∗

) |λ|ndλ.

In particular, σλ(F̃h) = ehλτ (λ). Therefore,

‖F‖2A2
ν

=
∫ +∞

0

∫
Hn

|F̃h[z, t]|2 dzdt hνdh

= 1

(2π)n+1

∫ +∞

0

∫ 0

−∞
‖σλ(F̃h)‖2HS |λ|ndλ hνdh

= 1

(2π)n+1

∫ +∞

0
‖τ(−λ)‖2HS

∫ +∞

0
e−2λhhνdh λndλ

= �(ν + 1)

2ν+1(2π)n+1

∫ +∞

0
‖τ(−λ)‖2HSλn−1−ν dλ

= �(ν + 1)

2ν+1 ‖τ‖2L2
ν
. (29)
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Conversely, let τ ∈ L2
ν and F defined by (16). By Lemma 3.1 we have that F ∈

Hol(U). Moreover, F̃h ∈ L2(Hn) for every h > 0, since ν > −1 and by Plancherel’s
formula

‖F̃h‖2L2(Hn)
= 1

(2π)n+1

∫ 0

−∞
‖eλhτ(λ)‖2HS |λ|ndλ ≤ Ch‖τ‖2L2

ν
.

Moreover, σλ(F̃h) = ehλτ (λ). Hence, identities (29) hold true, and (17) follows. ��

An immediate consequence is the following result.

Corollary 3.4 Let ν > −1 and F ∈ A2
ν . For ε > 0, let F(ε)(ζ ) = F(ζ + εi). Then, F

is holomorphic in a neighborhood of U and F(ε) → F in A2
ν as ε → 0+.

Remark 3.5 It is well known that the reproducing kernel for A2
ν is the kernel function,

called the weighted Bergman kernel,

Kν(ω, ζ ) = γn,ν

(ωn+1 − ζ n+1

2i
− 1

4ω
′ · ζ ′

)−(n+2+ν)

,

where γn,ν = 1
(4π)n+1

�(n+2+ν)
�(ν+1) . This fact can be obtained from the expression of the

kernel of the corresponding weighted Bergman space on the unit ball, by means of
the transformation rule for the Bergman kernel, or as a corollary of the Paley–Wiener
theorem, using the same techniques we will use in Corollary 4.3.

4 TheWeighted Dirichlet Spaces

Recall that the weighted Dirichlet spacesDν,(m) are defined in (7). Note that condition
(i) in (7) means that

lim
Im ζn+1→+∞ sup

|ζ ′|≤R
|F(ζ )| = 0.

An analogous remark holds for (i) in (8) as well. We begin with an elementary lemma.

Lemma 4.1 The following properties hold true.

(i) Let a, b ∈ R. If a > −1 and b > 0, then there exists C0 > 0 such that

I (ζ ) =
∫
U

ρa(ω)∣∣ ζn+1−ω̄n+1
2i − 1

4ζ
′ · ω̄′∣∣a+b+n+2 dω = C0

1

(Im ζn+1 − 1
4 |ζ ′|2)b .

If a ≤ −1 or b ≤ 0, then the above integral equals +∞.
(ii) The spaces Dν,(m) are reproducing kernel Hilbert spaces.
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Proof (i) This is an elementary calculation. We provide the details for sake of com-
pleteness. We observe that, if (z, t, h) = �(ζ ′, ζn+1) and (w, s, k) = �(ω′, ωn+1),
we have

∣∣ 1
2i

(
ζn+1 − ω̄n+1

) − 1
4ζ

′ · ω̄′∣∣2
= 1

4

(
h + k + 1

2 |z − w|2)2 + 1
4

(
(s − t) − 1

2 Im z · w̄
)2

.

Then, by the standard translation invariance of the Lebesgue measure in R and C
n ,

and integration in polar coordinates in C
n , we have

Ĩ (z, t, h)

= 2a+b+n+2
∫
U

ka((
h + k + 1

4 |w|2)2 + s2
)(a+b+n+2)/2

dsdwdk

= 2a+b+n+3πn+1

n!
∫ +∞

0

∫ +∞

0

∫
R

kar2n−1

((
h + k + 1

4r
2
)2 + s2

)(a+b+n+2)/2
dsdrdk

= 2a+b+n+3πn+1

n! C1

∫ +∞

0

∫ +∞

0

kar2n−1

(
h + k + 1

4r
2
)a+b+n+1 drdk

= 2a+b+3n+3πn+1

n! C1C2

∫ +∞

0

ka(
h + k

)a+b+1 dk

= C0

hb
,

as we wished to show.
(ii) Let F ∈ Dν,(m). Then, ∂mζn+1

F ∈ A2
2m+ν . For ζ ∈ U we define

G(ζ ) = c
∫
U

∂mζn+1
F(ω)( ζn+1−ω̄n+1

2i − 1
4ζ

′ · ω̄′)n+2+ν+m ρ(ω)2m+νdω , (30)

where c is a constant to be chosen later. Then, (i) and Cauchy–Schwarz’s inequality
give that

|G(ζ )| ≤ C0h
−(n+2+ν)/2

∥∥∂mζn+1
F‖A2

2m+ν
, (31)

where C0 is as in (i), and h = Im ζn+1 − 1
4 |ζ ′|2. Arguing as above, it is easy to see that

G is holomorphic in U , and that we can differentiate under the integral signm times to
obtain that, using Remark 3.5, for a suitable constant c, ∂mζn+1

G = ∂mζn+1
F . Therefore,

(F − G)(ζ ) = ∑m−1
j=0 g j (ζ

′)ζ j
n+1, where the g j ’s are entire functions in C

n . By (31)
it also follows that lim|ζ ′|≤R, Im ζn+1→+∞ G(ζ ) = 0. Therefore, for each ζ ′ fixed, the
polynomial F(ζ ′, ·) − G(ζ ′, ·) tends to 0 as Im ζn+1 → +∞. This implies that the
g j ’s are identically 0; hence G = F .

Now, (31) with G replaced by F gives that the point evaluations are bounded on
Dν,(m), and also implies uniform estimates on compact subsets of U . An elementary
argument shows thatDν,(m) is complete; hence a reproducing kernel Hilbert space. ��
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We set
Hm = {

F ∈ Hol(U) : ∂α
ζ F ∈ H2, |α| ≤ m

}
. (32)

Lemma 4.2 Let −(n+2) < ν < −1, and letm > − ν+1
2 . Then,Dν,(m) ∩Hm is dense

in Dν,(m).

Proof Let F ∈ Dν,(m). For ε, δ > 0, q > 0 to be selected later, and ζ ∈ U , we define

G(ε,δ)(ζ )

= c
∫
U

1( − εiωn+1 + 1
)q · ∂mζn+1

F(ω)( ζn+1+iδ−ω̄n+1
2i − 1

4ζ
′ · ω̄′)n+2+ν+m ρ(ω)2m+νdω ,

where c is as in (30). Recall that ∂mζn+1
F ∈ A2

2m+ν . Observe that the factor
( −

εiωn+1 + 1
)−q is bounded on U . Then, the same argument as in Lemma 4.1 (ii) and

the dominated convergence theorem give that G(ε,δ) are holomorphic and, by (30),
converge uniformly on compact subsets to F , as ε, δ → 0+. Thus, we need to show:
(a) that G(ε,δ) ∈ Hm ; and (b) that converge to F in Dν,(m).

Let α = (α′, αn+1) be a multiindex, |α| ≤ m. Then, differentiating under the
integral sign, for a suitable constant c′, we have

∂α
ζ G(ε,δ)(ζ )

= c′
∫
U

ω′α′

( − εiωn+1 + 1
)q · ∂mζn+1

F(ω)( ζn+1+iδ−ω̄n+1
2i − 1

4ζ
′ · ω̄′)n+2+ν+m+|α| ρ(ω)2m+ν dω

=:
∫
U
K (ζ, ω)∂mζn+1

F(ω)ρ(ω)2m+ν dω.

Letting (z, t, h) = �(ζ ′, ζn+1), (w, s, k) = �(ω′, ωn+1) and writing K̃ =
K

(
�(·),�(·)), we see that

|K̃ (
(z, t, h), (w, s, k)

)|
≤ C

1(
ε(k + 1

4 |w|2 + |s|) + 1
)q−|α′|/2

× 1(
h + δ + k + 1

2 |z − w|2 + ∣∣(s − t) − 1
2 Im z · w̄

∣∣)n+2+ν+m+|α|

=: C L̃
(
(z, t, h), (w, s, k)

)
.

Using Cauchy–Schwarz’s inequality, for q > 0 sufficiently large, we have

∫
Hn

∣∣(∂α
ζ G(ε,δ)

)
h̃ [z, t]∣∣2 dzdt

≤
∫
Hn

( ∫
U
L̃

(
(z, t, h), (w, s, k)

)|∂mk F̃(w, s, k)| dsdw k2m+νdk

)2

dzdt
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≤
( ∫

U

1(
ε(k + 1

4 |w|2 + |s|) + 1
)2q−|α′| , dsdw k2m+νdk

)

×
∫
Hn

∫
U

|∂mk F̃(w, s, k)|2(
h + δ + k + 1

2 |z − w|2 + ∣∣(s − t) − 1
2 Im z · w̄

∣∣)2(n+2+ν+m+|α|)

× dsdw k2m+νdkdzdt

≤ C
∫
U

|∂mk F̃(w, s, k)|2
∫
Hn

1(
h + δ + k + 1

2 |z|2 + |t |)2(n+2+ν+m+|α|)

× dzdtdsdw k2m+νdk. (33)

By Lemma 4.1 (i) it follows that ‖∂α
ζ G(ε,δ)‖H2 ≤ C‖F‖2Dν,(m)

, for |α| ≤ m, and when
|α| = m, also that

∫ +∞

0

∫
Hn

∣∣(∂α
ζ G(ε,δ)

)
h̃ [z, t]∣∣2 dzdt h2ν+mdh

≤ C
∫
U

|∂mk F̃(w, s, k)|2

×
(∫

U

1(
h + δ + k + 1

2 |z|2 + |t |)2(n+2+ν+2m)
dzdt h2ν+mdh

)
dsdw k2m+νdk.

This implies that ∂mζn+1
G(ε,δ) ∈ A2

2m+ν . It is also easy to see that lim|z|≤R, h→+∞
G̃(ε,δ)(z, t, h) = 0. Therefore, G(ε,δ) ∈ Hm , i.e. the conclusion (a) follows. Now, it is
elementary to show (b). Indeed, since

( − εiωn+1 + 1
)−q

∂mζn+1
F ∈ A2

2m+ν , we have
that

∂mζn+1
G(ε,δ)(ζ )

= c
∫
U

∂mζn+1
F(ω)( − εiωn+1 + 1

)q · 1( ζn+1+iδ−ω̄n+1
2i − 1

4ζ
′ · ω̄′)n+2+2m+ν

ρ(ω)2m+νdω

= ∂mζn+1
F(ζ + δi)( − εiζn+1 + εδ + 1

)q .

A simple application of the dominated convergence theorem together with Corol-
lary 3.4 give the desired conclusion. ��

Proof of Theorem 2 Let F ∈ Dν,(m) ∩ Hm , with m > − ν+1
2 . Observe that, since

∂
j
ζn+1

F ∈ A2
2m+ν ∩ H2 for j = 0, . . . ,m, we have that ∂ j

h F̃h ∈ L2(Hn) for all h > 0,

and j = 0, . . . ,m. This easily implies that, for F ∈ Hm , setting τ(λ) = σλ(F̃0),

σλ

(
∂mh F̃h

) = ∂mh σλ

(
F̃h

) = ∂mh
(
ehλτ (λ)

) = λmehλτ (λ).
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Observe that with this choice of τ , formula (18) holds for F . Moreover,

‖F‖2Dν,(m)
=

∫
U

|ρm(ζ )∂mζn+1
F(ζ )|2 ρν(ζ )dζ

=
∫ +∞

0

∫
Hn

∣∣hm∂mh F̃h[z, t]
∣∣2 dzdt hνdh

= 1

(2π)n+1

∫ +∞

0

∫ 0

−∞
∥∥σλ

(
∂mh F̃h

)∥∥2
HS |λ|ndλ h2m+ν dh

= 1

(2π)n+1

∫ +∞

0

∫ 0

−∞
e2hλ‖τ(λ)‖2HS |λ|2m+ndλ h2m+ν dh

= 1

(2π)n+1

∫ +∞

0
‖τ(−λ)‖2HS|λ|2m+n

∫ +∞

0
e−2hλh2m+ν dhdλ

= 1

(2π)n+1

�(2m + ν + 1)

22m+ν+1

∫ +∞

0
‖τ(−λ)‖2HS|λ|n−(ν+1) dλ

= �(2m + ν + 1)

22m+ν+1 ‖τ‖2L2
ν
.

Suppose now that F ∈ Dν,(m) and let {FN } be a sequence inDν,(m)∩Hm , FN → F
in Dν,(m). Then, FN converges to F also uniformly on compact subsets. Let τN ∈ L2

ν

be such that (F̃N )h[z, t] = 1
(2π)n+1

∫ 0
−∞ ehλ tr

(
τN (λ)σλ[z, t]∗

) |λ|ndλ, and let τ =
limN→+∞ τN in L2

ν . Then,

F̃h[z, t] = lim
N→+∞

1

(2π)n+1

∫ 0

−∞
ehλ tr

(
τN (λ)σλ[z, t]∗

) |λ|ndλ

= 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
τ(λ)σλ[z, t]∗

) |λ|ndλ ,

by applying estimate (27). This proves (18), and (19) follows as well.
Conversely, let F be given by (18). Then, Lemma 3.1 gives that F is holomorphic

in U . Plancherel’s formula now gives (19).
Finally, we observe that by (19) it follows easily that the spaces Dν,(m) do not

depend on the choice of the integer m and their norms coincide, up to a multiplicative
constant. ��
Corollary 4.3 Let −(n + 2) < ν < −1. Let m be a positive integer, m > −(ν + 1)/2.
Then, there exists a constant γν,n,m such that the reproducing kernel Kν , expressed
with respect to the inner product in Dν,(m) is given by

Kν(ω, ζ ) = γn,m,ν

(
ωn+1 − ζ n+1

2i
− 1

4ω
′ · ζ ′

)−(n+2+ν)

,

where γn,m,ν = 4m

(4π)n+1
�(n+2+ν)

�(2m+ν+1) .
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Proof We use the inversion formula and the polarized identity coming from the Paley–
Wiener type Theorem 2. For F ∈ Dν,(m), let τF denote the element of L2

ν such that

F̃(z, t, h) = 1

(2π)n+1

∫ 0

−∞
ehλ tr

(
τF (λ)P0σλ[z, t]∗

) |λ|ndλ ,

where P0 denotes the orthogonal projection onto the subspace generated by e0.
Moreover, by the reproducing formula for Dν,(m), (19), writing Kν(ζ, ·) = Kζ and
(z, t, h) = �(ζ), we have

F̃(z, t, h) = F(ζ ) = 〈F, Kζ 〉Dν,(m)

= �(2m + ν + 1)

22m+ν+1(2π)n+1

∫ 0

−∞
tr

(
τF (λ)τKζ (λ)∗

) |λ|n−ν−1dλ.

Since these two equalities hold for all τ ∈ L2
ν , it follows that

τKζ (λ) = 22m+ν+1

�(2m + ν + 1)
|λ|ν+1P0σλ[z, t].

Therefore, using (26) and writing C = 22m+ν+1

�(2m+ν+1)(2π)n+1 , we have

K̃(z,t,h)(w, s, k)

= C
∫ 0

−∞
e(h+k)λ tr

(
P0σλ[z, t]P0σλ[w, s]∗) |λ|n+ν+1dλ

= C
∫ 0

−∞
e(h+k)λ

∑
α

1

α!
( |λ|

2

)|α|
eiλ(t−s)+ λ

4 |z|2+ λ
4 |w|2wα z̄α |λ|n+ν+1dλ

= C
∫ +∞

0
e−λ(h+k−i(s−t+ 1

2 Im(w·z̄))+ 1
4 |w−z|2) λn+ν+1dλ

= C �(n + 2 + ν)
(
h + k + 1

4 |w − z|2 − i(s − t + 1
2 Im(w · z̄))

)−(n+2+ν)

,

that is,

Kν(ω, ζ ) = 4m

(4π)n+1

�(n + 2 + ν)

�(2m + ν + 1)

(ωn+1 − ζ n+1

2i
− 1

4ω
′ · ζ ′

)−(n+2+ν)

,

as we wished to show. ��

5 The Dirichlet Space

In this section we prove Theorem 3 and we provide justification of the name Dirichlet
space for the space D(m).
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In order to simplify some formulas, we introduce the notation

Q(ω, ζ ) = ωn+1 − ζ n+1

2i
− 1

4ω
′ · ζ

′
,

whereas we remind the reader that i denotes the point (0, i) ∈ U .
We start proving a couple of lemmaswhich are the analogue of Lemmas 4.1 and 4.2.

Lemma 5.1 The following properties hold true.

(i) Let m > n+1
2 be fixed. Then, there exists a constant C > 0 such that

I (ζ ) =
∫
U

∣∣∣∣ 1

Qm(ζ, ω)
− 1

Qm(i, ω)

∣∣∣∣
2

ρ2m−n−2(ω) dω ≤ C
(1 + |ζ |2)2m+1

(Im ζn+1 − 1
4 |ζ ′|2) .

(ii) The spaces D(m) are reproducing kernel Hilbert spaces.

Proof (i) Given any ζ ∈ U there exists a constant C > 0, such that

∣∣Q(i, ω) − Q(ζ, ω)
∣∣ =

∣∣∣ i − ζn+1

2i
+ 1

4
ζ ′ · ω′

∣∣∣ ≤ C(1 + |ζ |)(1 + |ω′|) ,

so that,

∣∣∣∣ 1

Qm(ζ, ω)
− 1

Qm(i, ω)

∣∣∣∣
2

≤ C
(1 + |ζ |)2(1 + |ω′|)2∣∣Qm(ζ, ω)Qm(i, ω)

∣∣
m−1∑
j=0

∣∣Q j (ζ, ω)Qm−1− j (i, ω)
∣∣2.

Thus, in order to conclude the proof, it is enough to estimate the integral

I j (ζ ) =
∫
U
(1 + |ω′|)2

∣∣∣∣ Q
j (ζ, ω)Qm−1− j (i, ω)

Qm(ζ, ω)Qm(i, ω)

∣∣∣∣
2

ρ2m−n−2(ω) dω.

Observing that

∣∣∣∣ Q(ζ, ω)

Q(i, ω)

∣∣∣∣ ≤ C(1 + |ζ |2) ,

it holds that

I j (ζ ) =
∫
U

(1 + |ω′|)2
|Q(i, ω)|

∣∣∣∣ Q
j (ζ, ω)Qm−1− j (i, ω)

Qm(ζ, ω)Qm− 1
2 (i, ω)

∣∣∣∣
2

ρ2m−n−2(ω) dω

≤ C(1 + |ζ |2)1+2 j
∫
U

ρ2m−n−2(ω)

|Q(ζ, ω)|2m+1 dω

≤ C
(1 + |ζ |2)1+2 j

(Im ζn+1 − 1
4 |ζ ′|2) ,
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where the last inequality follows from (i) in Lemma 4.1. Thus,

I (ζ ) ≤ C(1 + |ζ |2)2
m−1∑
j=0

I j (ζ ) ≤ C
(1 + |ζ |2)2m+1

(Im ζn+1 − 1
4 |ζ ′|2) ,

as we wished to prove.
(ii) Let F ∈ D(m). Then ∂mζn+1

F ∈ A2
2m−n−2. For ζ ∈ U we define

G(ζ ) = c
∫
U

∂mζn+1
F(ω)

[
1

Qm(ζ, ω)
− 1

Qm(i, ω)

]
ρ(ω)2m−n−2 dω , (34)

where c is a suitable constant to be chosen later. Then, (i) and Cauchy–Schwarz’s
inequality guarantee that G is well-defined, in particular,

|G(ζ )| ≤ C
(1 + |ζ |2)m+ 1

2

(Im ζn+1 − 1
4 |ζ ′|2) 1

2

‖∂mζn+1
F‖A2

2m−n−2
≤ C

(1 + |ζ |2)m+ 1
2

(Im ζn+1 − 1
4 |ζ ′|2) 1

2

‖F‖D(m)
.

(35)
Arguing as in the proof of Lemma 4.1 we obtain that G ∈ D(m) and, for a suitable
choice of the constant c, ∂mζn+1

G = ∂mζn+1
F . Therefore, for each ζ ′ fixed, we obtain

that (F − G)(ζ ) = ∑m−1
j=0 g j (ζ

′)ζ j
n+1, where the g j ’s are entire functions in C

n .
Since both G and F belong to D(m), it follows that F(ζ ) − G(ζ ) = F(i). This fact
and (34) give an integral representation for any function F ∈ D(m) and that (9) is a
norm. Finally, this integral representation and (35) show that the point evaluations are
bounded onD(m), and the fact thatD(m) is a reproducing kernel Hilbert space follows
as in Lemma 4.1. ��
Lemma 5.2 Let m > n+1

2 and let Hm be as in (32) and let D(m)(i) be the closed
subspace ofD(m) of functions that vanish in i. Then,D(m)(i)∩Hm is dense inD(m)(i).

Proof Let F ∈ D(m)(i). For ε, δ > 0, and q > 0 to be selected later, and ζ ∈ U we
define

G(ε,δ)(ζ )

= c
∫
U

∂mζn+1
F(ω)

(1 − εiωn+1)q

[
1

Qm(ζ + δi, ω)
− 1

Qm((1 + δ)i, ω)

]
ρ(ω)2m−n−2 dω ,

where c > 0 is as in (34). From Lemma 5.1 and the dominated convergence theorem
we deduce that the functionsG(ε,δ) are holomorphic inU and converge to F uniformly
on compact subsets, as ε, δ → 0+.

We now show that G(ε,δ) ∈ Hm . Let α = (α′, αn+1) be a multiindex, α ≤ m. Then,
for a suitable constant c′,

∂α
ζ G(ε,δ)(ζ ) = c′

∫
U

ω′α′

( − εiωn+1 + 1
)q · ∂mζn+1

F(ω)

Qm+|α|(ζ, ω)
ρ(ω)2m−n−2 dω

=:
∫
U
K (ζ, ω)∂mζn+1

F(ω)ρ(ω)2m−n−2 dω.
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Arguing as in the proof of Lemma 4.2 and selecting q sufficiently large, we obtain that
∂α
ζ G(ε,δ) ∈ H2 for |α| ≤ m, ∂mζn+1

G(ε,δ) ∈ A2
2m−n−2 and lim|ζ ′|≤R, Im ζn+1→+∞ ∂ζ j

G(ε,δ)(ζ ) = 0, for j = 1, . . . , n + 1. Thus, G(ε,δ) belongs to D(m) ∩ Hm . The
convergence of G(ε,δ) to F in D(m) follows with the same argument as in the proof of
Lemma 4.2. The proof is therefore complete. ��

In order to prove Theorem 3 we need the analogue of Lemma 3.1, in the case
ν = −n − 2.

Lemma 5.3 Let τ ∈ L2−n−2. For (z, t, h) = �(ζ) with ζ ∈ U define

F̃(z, t, h) = 1

(2π)n+1

∫ 0

−∞
tr

(
τ(λ)

(
eλhσλ[z, t]∗ − eλσλ[0, 0]∗

))
|λ|ndλ.

Then, F is holomorphic in U .
Proof Firstly we show that F is defined by an absolutely convergent integral. From
(25) and (26) we obtain that

∣∣∣ tr
(
τ(λ)

(
eλhσλ[z, t]∗ − eλσλ[0, 0]∗

))∣∣∣
≤

∣∣∣〈τ(λ)e0, (e
λ(h+i t+ |z|2

4 ) − eλ)e0
〉
Fλ +

∑
α �=0

〈τ(λ)eα, P0σλ[z, t]eα〉Fλ

∣∣∣

≤ ‖τ(λ)‖HS
(∣∣∣∣eλ(h+i t+ |z|2

4 ) − eλ

∣∣∣∣ +
(
1 − e

λ
2 |z|2) 1

2
)

.

Therefore, using (27) we have

∫ 0

−∞
tr

(
τ(λ)

(
eλhσλ[z, t]∗ − eλσλ[0, 0]∗

))
|λ|ndλ

≤ ‖τ‖L2−n−2

(∫ 0

−1

(∣∣∣∣eλ(h+i t+ |z|2
4 ) − eλ

∣∣∣∣ +
(
1 − e

λ
2 |z|2) 1

2
)2

|λ|−1dλ

)1/2

+ ‖τ‖L2−n−2

(∫ −1

−∞

(
eλh + eλ

)2 |λ|−1dλ

)1/2

< ∞.

These two last inequalities also show that F̃(z, t, h) is locally uniformly bounded
in (z, t, h) ∈ U. The holomorphicity of F follows arguing as in the proof of
Lemma 3.1. ��

We can now prove Theorem 3.

Proof of Theorem 3. We first assume that F ∈ D(m)(i). Then, from Lemma 5.2 and a
minor modification of the proof of Theorem 2, we obtain (20) and (21). If F ∈ D(m)

does not vanish in i, we apply the proof to F − F(i) and we are done.
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Conversely, let F be given by (20). Then, Lemma5.3 guarantees the holomorphicity
of F in U and Plancherel’s formula gives (21). ��
Corollary 5.4 Letm be a positive integer,m > (n+1)/2. Then, the reproducing kernel
K , expressed with respect to the inner product in D(m) is given by

K (ω, ζ ) = 1 + γn,m log
Q(ω, i)Q(i, ζ )

Q(ω, ζ )
,

where γn,m = 22m−n

�(2m−n−1)(2π)n+1 .

Proof Let τF denotes the element of L2−n−2 such that

F̃(z, t, h) = 1

(2π)n+1

∫ 0

−∞
tr

(
τF (λ)P0

(
eλhσλ[z, t]∗ − eλσλ[0, 0]∗

))
|λ|ndλ

+F̃(0, 0, 1).

Also, by the definition of reproducing kernel, (21), and (z, t, h) = �(ζ), and writing
K (ζ, ·) = Kζ , we have

F̃(z, t, h) = F(ζ ) = 〈F, Kζ 〉D(m)

= �(2m − n − 1)

22m−n−1(2π)n+1

∫ 0

−∞
tr

(
τF (λ)τKζ (λ)∗

) |λ|2n+1dλ + F(i)Kζ (i).

Since these two equalities hold for all τ ∈ L2−n−2 we conclude that

Kζ (i) = 1 and τKζ (λ) = C |λ|−n−1P0
(
eλhσλ[z, t] − eλσλ[0, 0]

)
,

where C = 22m−n−1

�(2m−n−1) . Thus, from Lemma 5.3, we obtain

K̃(z,t,h)(w, s, k)

= C

(2π)n+1

∫ 0

−∞
tr

(
P0

(
eλhσλ[z, t] − eλσλ[0, 0]

)
P0

(
eλkσλ[w, s]∗ − eλσλ[0, 0]∗

))

× |λ|−1dλ + 1.

Exploiting (26) the conclusion follows. ��
We conclude the section providing the justification for referring to the space D(m)

as the Dirichlet space on the Siegel half-space. We denote by Ḋ(B) the Dirichlet space
modulo the constant functions on the unit ball B ⊆ C

n+1. If f is holomorphic on B,
f (ζ ) = ∑

|α|≥0 aαζ α , the norm in Ḋ(B) is given by

‖ f ‖2Ḋ(B)
=

∑
|α|≥0

|α| α!
|α|! |aα|2 ,
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see [28]. Then, the reproducing kernel of Ḋ(B) is given by

K B(ω, ζ ) = (n + 1)!
πn+1 log

1

1 − ω · ζ
,

see, e.g. [18] or [29].

Theorem 5.5 Letm be a positive integer,m > (n+1)/2 and denote by Ḋ(m) the space
D(m)/C, that is, the space D(m) modulo the constant functions. Then:

(1) The space Ḋ(m), identified with D(m)(i) and endowed with the norm

‖F‖Ḋ(m)
= ‖∂mζn+1

F‖A2
2m−n−2

,

is a Hilbert space with reproducing kernel

K (ω, ζ ) = γn,m log
Q(ω, i)Q(i, ζ )

Q(ω, ζ )
, (36)

where γn,m is as in Corollary 5.4.
(2) For every ϕ ∈ Aut(U) and every F ∈ Ḋ(m) it holds

‖F ◦ ϕ‖Ḋ(m)
= ‖F‖Ḋ(m)

. (37)

(3) The space Ḋ(m) is isometrically equivalent to Ḋ(B), the Dirichlet space modulo
the constant functions on the unit ball B ⊂ C

n+1. In particular, the space Ḋ(m) is the
unique Hilbert space of holomorphic functions on U satisfying property (37).

Proof The proof of (1) is straightforward. We now prove (2). It is enough to prove it
for a ϕ ∈ Aut(U) of type (i), (ii), (iii) and (iv) described in Lemma 2.1. If ϕ falls in
the cases (i), (ii) or (iii), then it is immediate to obtain (37) by direct computations. If
ϕ is of type (iv) we observe that

(Kω ◦ ϕ)(ζ ) = K (ϕ(ζ ), ω) = K (ζ, ϕ(ω)) = Kϕ(ω)(ζ ).

In particular,

K (ϕ(ζ ), ϕ(ω)) = K (ζ, ω).

Thus, if ω1, . . . , ωN ∈ U and F(ζ ) = ∑N
k=1 αk K (ζ, ωk), we have

‖F ◦ ϕ‖2Ḋ(m)
=

∥∥∥
N∑

k=1

αk K (ϕ(·), ωk)

∥∥∥2Ḋ(m)

=
∥∥∥

N∑
k=1

αk K (·, ϕ(ωk))

∥∥∥2Ḋ(m)

=
N∑

j,k=1

α jαk K (ϕ(ω j ), ϕ(ωk)) =
N∑

j,k=1

α jαk K (ω j , ωk)

= ‖F‖2Ḋ(m)
,
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as we wished to show. Since the functions of the form
∑N

k=1 αk K (ζ, ωk) are dense in
Ḋ(m) the conclusion for a generic F ∈ Ḋ(m) follows.

At last, (3) follows from the following observation. Let K B and KU denote the
reproducing kernel of Ḋ(B) and Ḋ(m) respectively. Then,

K B(ω, ζ ) = (n + 1)!
πn+1γn,m

KU (C(ω), C(ζ )) ,

where C denote the Cayley transform and γn,m is as in (36). From this it is easy to
deduce that the map

F �→ (n + 1)!
πn+1γn,m

(F ◦ C)

is a surjective isometry from Ḋ(m) onto Ḋ(B) as we wished to show. Hence, the
uniqueness of Ḋ(m) follows from the analogous result for the space Ḋ(B), see [1,
28]. ��

6 The Drury–Arveson Norm on the Unit Ball and Final Remarks

Following [18], we set

R0 = Id, Rk =
(
Id + R

k

)
Rk−1 for k = 1, 2, . . . ,

where R denotes the radial derivative R f (ζ ) = ∑n+1
j=1 ζ j∂ζ j f (ζ ). Then, we have the

following result on the exact norm in DA(B).

Theorem 6.1 If f ∈ DA(B), then

‖ f ‖2DA(B) = n
n!

πn+1

∫
B

(1 − |ζ |2)n−1

|ζ |2n
∣∣Rn f (ζ )

∣∣2dζ.

This is an elementary computation that follows from the identityRnzα = (n+|α|)!
n!|α|! zα ,

for every multiindex α.
We believe this work raises some interesting questions. We first mention the char-

acterization of the Carleson measures and of the multiplier algebra for the scale of
spaces studied in this work. Moreover, these spaces depend on the parameter ν where
ν ≥ −n − 2. It would be interesting to study the spaces corresponding to the values
ν < −n−2. Furthermore, wewould like to study the analogous Banach spaces, whose
underlying norm is the L p-norm, with p �= 2. Finally, it would be interesting to extend
the results in this paper to the more general setting of Siegel domains of type II . We
plan to come back to these problems in future works.
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