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Abstract
We show that the set defined by digit restrictions contains arbitrarily long arithmetic
progressions if and only if its Assouad dimension is one. Moreover, we show that for
any 0 ≤ s ≤ 1, there exists some set on R with Hausdorff dimension s whose Fourier
dimension is zero and it contains arbitrarily long arithmetic progressions.

Keywords Set defined by digit restrictions · Assouad dimension · Arithmetic
progressions · Fourier dimension
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1 Introduction

For k ≥ 3, we call A ⊂ R a k-term arithmetic progression with gap δ if there exist
some t > 0 such that

A = {t + δx : x = 0, . . . , k − 1}.
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We call a set contains arbitrarily long arithmetic progressions if it contains a k-term
arithmetic progression for any k ≥ 3. In the fields of combinatorial theory and number
theory, we usually want to know whether a set can contain arithmetic progressions
and therefore it is important to find conditions guaranteeing the existence of arithmetic
progressions. In the discrete case, a theorem of Roth [24] states that if a subset A ⊂ N

has positive upper density, i.e.,

d(A) = lim sup
n→∞

�(A ∩ {1, 2, . . . , n})
n

> 0,

then A must contain a non-trivial three-term arithmetic progression. Here and in the
sequel, �(E) denotes the number of elements in E .Roth’s result partially solved a con-
jecture related to sets containing arithmetic progressions posed byErdős andTurán [8].
Later, Szemerédi [27,28] extended this to arbitrarily long arithmetic progressions. It is
worth tomention that Furstenberg [12] gave a second proof of Szemerédi’s theorem by
employing ergodic theory. However, Szemerédi’s theorem can also holds for sets with
zero density, for example, Van der Corput [29] proved that primes contains arbitrarily
many arithmetic progressions of length 3 in 1939. And Green and Tao [13] showed
that the primes contain arbitrarily long arithmetic progressions. In the continuous case,
Łaba andPramanik [15] recently initiated the study on the relationship betweenFourier
decay and the existence of arithmetic progressions. They proved that, if E ⊂ R is a
closed set with Hausdorff dimension close to one and E supports a probability mea-
sure obeying appropriate Fourier decay and mass decay, then E contains non-trivial
three-term arithmetic progressions. Their results attract many scholars to study the
connection between Fourier decay and the existence of arithmetic progressions, see
[4,5,11,16,21,22,25] and the references therein. In particular, Shmerkin [25] showed
that there exist Salem sets without any three-term arithmetic progressions, and Lai
[16] showed that there exist a prefect set with zero Fourier dimension but containing
arbitrarily long arithmetic progressions.

There is a natural question: under what conditions can a set inR contain arbitrarily
long arithmetic progressions? Fraser and Yu [10] showed that a bounded set cannot
contain arbitrarily long arithmetic progressions if it has Assouad dimension strictly
smaller thanone. Fraser andYu’s result extended a result ofDyatlov andZahl [7],which
states that any Ahlfors–David regular set of dimension less than one cannot contain
arbitrarily long arithmetic progressions. Recall that we call a set E an Ahlfors–David
regular set of dimension α if there exists a constant C ≥ 1 and a Borel probability
measure μ on E such that

C−1rα ≤ μ(B(x, r) ∩ E) ≤ Crα

for any x ∈ E and r > 0. It is well known that Ahlfors–David regular set is a kind of
nice set in the sense that its Hausdorff and Assouad dimensions are equal. However,
the Fourier dimension may be different from the Hausdorff dimension for an Ahlfors
regular set. For example, the classical Cantor ternary set has Fourier dimension 0 and
Hausdorff dimension log 2/ log 3, respectively.
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Fraser and Yu [10] also showed that the converse of their result is not true by
constructing examples. For example, let E = {1, 1/23, . . . , 1/n3, . . .} ⊂ R. Then we
can check that dimA E = 1, but it contains no arithmetic progressions of length 3.
Here and in the sequel, dimA E denotes the Assouad dimension of E and its definition
will be given in the next section. However, they proved that a set in R asymptotically
contains arbitrarily long arithmetic progressions (in the sense that it does not give strict
containment of arithmetic progressions) if and only if it has full Assouad dimension.

In this paper, we will consider the set defined by digit restrictions and show that it
contains arbitrarily long arithmetic progressions if and only if its Assouad dimension
is one. Moreover, we show that for any 0 ≤ s ≤ 1, there exists some set in R with
Hausdorff dimension s whose Fourier dimension is zero and it contains arbitrarily
long arithmetic progressions.

2 Main Results

Let us first recall the definitions of set defined by digit restrictions and Assouad dimen-
sion. Let b ≥ 2 be an integer and D ⊂ {0, 1, . . . b− 1} a nonempty proper subset. Let
S ⊂ N be an infinite set, and let ES,D ⊂ [0, 1] be the compact set

ES,D =
{ ∞∑
n=1

xnb
−n : xn ∈ D if n /∈ S and xn ∈ {0, 1, . . . , b − 1} otherwise

}
.

The set ES,D is called a set defined by digit restrictions. It is well known that the
Hausdorff dimension of ES,D is closed related to the lower density of S, which is
defined by

d(S) := lim inf
n→∞

�(S ∩ {1, 2, . . . , n})
n

.

More precisely,
dimH ES,D = d(S, D), (2.1)

where

d(S, D) = log(�D)

log b
+

(
1 − log(�D)

log b

)
d(S).

Here and in the sequel, dimH E denotes the Hausdorff dimension of the set E . For
more details about Hausdorff dimension and the theory of fractal dimensions, we refer
the reader to the famous book [9]. And for the proof of (2.1) and other dimensional
properties and applications of ES,D in the case b = 2 and D = {0}, see [2,3,18].

Assouad dimension, introduced by Assouad [1], provides quantitative information
on the local behaviour of the geometry of the underlying set. More precisely, Let X
be a metric space and E ⊂ X . For r , R > 0, let Nr (E) denote the least number of
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balls with radii equal to r needed to cover the set E and let

Nr ,R(E) = sup
x∈E

Nr (B(x, R) ∩ E).

Then the Assouad dimension of E is defined as

dimA E = inf

{
α ≥ 0 : there are constants b,C > 0 such that for any

0 < r < R < b, Nr ,R(E) ≤ C

(
R

r

)α

holds

}
.

It is well known that dimH E ≤ dimA E for any bounded set E ⊂ R. For other basic
properties of Assouad dimension, see [19,23]. In particular, The Assouad dimension
of ES,D is

dimA ES,D = log(�D)

log b
+

(
1 − log(�D)

log b

)
· BD∗(S),

where

BD∗(S) := lim sup
m→∞

sup
k≥1

�(S ∩ {k + 1, . . . , k + m})
m

is the upper Banach density of S, see [6,17].
It is worth to point out that the Assouad dimension plays an important role in

the theory of embeddings of metric spaces in Euclidean spaces and in the study of
quasimmetric mappings, see [14,19,23].

The following result establishes the relationship between the Assouad dimension
and the existence of arithmetic progressions for the set defined by digit restrictions.

Theorem 2.1 Let ES,D be the set defined by digit restrictions. Then, ES,D contains
arbitrarily long arithmetic progressions if and only if dimA ES,D = 1.

The Fourier dimension of a set is a measure of exactly how rapid the decay of the
Fourier transformation of the measures supported on it. More precisely, the Fourier
dimension of A ⊂ R is defined as

dimF A = sup
{
β ∈ [0, 1] : there exist a probability measure μ on E and

constant C > 0, such that |μ̂(ξ)| ≤ C |ξ |−β/2 for all ξ ∈ R

}
,

where μ̂(ξ) = ∫
e−2π iξ xdμ(x) is the Fourier transformation of μ. It is well known

that dimF A ≤ dimH A for any Borel set A ⊂ R and A is called a Salem set if
dimF A = dimH A, see [20].
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Roughly speaking, Łaba and Pramanik’s result can be interpreted as saying that
large Fourier decay together with large power mass decay imply the existence of pro-
gressions. However, we will show that, for nontrivial set defined by digit restrictions,
its Fourier dimension is zero. To avoid the trivial case, we require that N \ S is not
finite. In fact, if N \ S is a finite set, by the construction of ES,D , it will be trivial in
the sense that it contains a nontrivial interval and therefore its Fourier dimension is
one. However, the Fourier dimensions of sets defined by digit restriction are all zero
except the trivial cases. This is the content of the following result.

Theorem 2.2 Suppose that N \ S is not finite. Then, dimF ES,D = 0.

Combining the above two results and the formula of the Hausdorff dimension of
ES,D , we can obtain the following result.

Theorem 2.3 For any 0 ≤ s ≤ 1, there exists a compact set E ⊂ R such that
dimH E = s, dimF E = 0, and it contains arbitrarily long arithmetic progressions.

It is worth to point out that Lai [16] obtained the same result as above Theorem 2.3
with the help of some special Moran sets.

3 Proofs

This section is devoted to the proofs of our results.

Proof of Theorem 2.1 Due to the Lebesgue density theorem, any subset on R with
positive Lebesgue measure must contain arbitrary long arithmetic progressions. On
the other hand, it is well known that the Assouad dimension of nontrivial interval is
one. Therefore, if N \ S is finite, the claim in Theorem 2.1 holds since ES,D contains
a nontrivial interval.

Next, we assume that N \ S is not finite.
If ES,D contains arbitrarily long arithmetic progressions, then, for any n ≥ 3 there

exist xn and tn > 0 such that xn, xn+ tn, . . . , xn+ntn ∈ ES,D . Since ES,D is compact,
we have supn ntn < ∞ and therefore tn → 0 as n → ∞. Put Rn = ntn and rn = tn .
It is easy to check that

Nrn ,Rn (ES,D) ≥ n =
(
Rn

rn

)1

,

which implies that dimA ES,D ≥ 1 and therefore dimA ES,D = 1. Let us remark that
the claim of this part can be proved by the result of Fraser and Yu [10] directly.

On the other hand, suppose that dimA ES,D = 1, that is,

log(�D)

log b
+

(
1 − log(�D)

log b

)
lim sup
m→∞

sup
k≥1

�(S ∩ {k + 1, . . . , k + m})
m

= 1.

It implies that

lim sup
m→∞

sup
k≥1

�(S ∩ {k + 1, . . . , k + m})
m

= 1. (3.1)
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x1 x2 x3 x2Nj

order s�1

order s�2

order s�3

order s�Nj

Fig. 1 The construction of the arithmetic progression

Recall that S = {s1, s2, . . . , sn, . . .}. For any positive integers m, n with m < n,
define

Nn
m(S) =max

{
� : there exists i ≥ 1 such that si+ j = si+ j−1 + 1

for any 1 ≤ j ≤ � and sk ∈ [m, n] for any i ≤ k ≤ i + �
}
.

That is to say, Nn
m(S) is the maximum number of successive integers among the

elements of S falling in the interval [m, n].
We claim that, by (3.1), there exist m j ↗ +∞ and {k j } ⊂ N such that

N
k j+m j
k j+1 (S) → +∞ as j → ∞. (3.2)

In fact, if there exists some constant M > 0 such that

Nk+m
k+1 (S) ≤ M for any m ≥ 1 and k ≥ 1,

then, for any k ≥ 1 and large enough m

�(S ∩ {k + 1, . . . , k + m})
m

≤
M ·

[
m

M+1

]
m

≤ M

M + 1
< 1,

which is contradictory to the assumption (3.1).
For any n ≥ 2, by (3.2), there exists some j = j(n) such that

N
k j+m j
k j+1 (S) ≥ log n − log(�D)

log b
. (3.3)
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Write N j = N
k j+m j
k j+1 (S). By the definition, there exist some s�1, s�2 , . . . , s�N j

∈
[k j + 1, k j +m j ] such that s� j+1 = s� j + 1 for any 1 ≤ j ≤ N j − 1 and s�N j

+ 1 /∈ S.

By the definition, the set ES,D hits exactly Mn b-adic intervals of generation n,
where

Mn = b�(S∩{1,2,...,n})(�D)�((N\S)∩{1,2,...,n}).

These b-adic intervals are called the basic intervals of order n. Take any d ∈ D. Let

Is�1 =
(

d

bs�1
,
d + 1

bs�1

)
.

By the construction of ES,D and the definition of N j , the interval Is�1 contains (�D)bN j

basic intervals of order s�N j +1. Let x1, x2, . . . , x(�D)bN j be the left endpoints of these
intervals from left to the right. Figure 1 illustrates the construction of the points
x1, . . . , x(�D)bN j in the special case that b = 2 and D = {0}. Then, it is easy to

check that all these points are in ES,D , and for any 1 ≤ i ≤ (�D)bN j − 1,

|xi+1 − xi | = b
−s�N j

−1
.

It follows from (3.3) that (�D)bN j ≥ n and therefore ES,D contains a arithmetic pro-
gressions of length n. By the arbitrariness of n we claim that ES,D contains arbitrarily
long arithmetic progressions. ��

Next we shall prove Theorem 2.2. It follows from the definition of the Fourier
dimension and the following proposition immediately.

Proposition 3.1 Suppose thatN\S is not finite andν is a probabilitymeasure supported
on ES,D . Then,

lim sup
|n|→∞

|̂ν(n)| > 0,

where

ν̂(n) =
∫

e−2π int dν(t), n ∈ Z.

Proof First we consider a special class of sets defined by digit restrictions. Define

E = {
ES,D : N \ S is not finite and 1 /∈ S

}
.

We claim that for any E ∈ E and any probability measure μ supported on E ,

lim sup
|n|→∞

|μ̂(n)| > 0,
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The idea of the proof is essentially due to Salem and Zygmund [26] (see also [20,
p. 113]).

Suppose for a contradiction that

lim|n|→∞ μ̂(n) = 0. (3.4)

Take any d ∈ {0, 1, . . . , b − 1} \ D. Define

I =
(
d

b
,
d + 1

b

)
.

Since N \ S is not finite, there exists an increasing sequence of integers {k j }∞j=1 such
that k1 ≥ k0 and k j + 1 /∈ S for j = 1, 2, . . . . It is not difficult to check that, for any
x ∈ ES,D and j = 1, 2, . . .,

{bk j x} /∈ I . (3.5)

Here {y} stands for the fractional part of y, that is, {y} ∈ [0, 1).
In fact, for x = ∑∞

n=1 xnb
−n ∈ ES,D and any j ≥ 1

bk j x = bk j
k j∑
n=1

xn
bn

+ bk j
∞∑

n=k j+1

xn
bn

.

Noting that xk j+1 = d, we have {bk j x} /∈ I .
Now choose a function ϕ from the Schwartz class such that the support of ϕ is

contained in I , i.e., spt ϕ ⊂ I . That is, ϕ is infinitely differentiable and its derivatives
of all orders tend to zero at infinity more quickly than |x |−k for all integers k. We can
also require that

∫
ϕ(x)dx = 1. For any j = 1, 2, . . . , define

ϕ j (x) = ϕ({bk j x}) x ∈ [0, 1].

By (3.5), we have spt ϕ j ∩ ES,D = ∅. It follows from the Fourier inversion formula
that

ϕ j (x) = ϕ({bk j x}) =
∑
�∈Z

ϕ̂(�)e2π i�{b
k j x} =

∑
�∈Z

ϕ̂(�)e2π i�b
k j x .

Therefore, we have ϕ̂ j (bk j �) = ϕ̂(�) and the other Fourier coefficients of ϕ j are zeros.
It follows from the Parseval formula that, for any j ≥ 1 and any m > 1,
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0 =
∫

ϕ j (x)dμ(x) =
∑
�∈Z

ϕ̂ j (�)μ̂(�)

=
∑
�∈Z

ϕ̂ j (bk j �)μ̂(bk j �) =
∑
�∈Z

ϕ̂(�)μ̂(bk j �)

= ϕ̂(0)μ̂(0) +
∑

1<|�|<m

ϕ̂(�)μ̂(bk j �) +
∑

|�|≥m

ϕ̂(�)μ̂(bk j �).

Next, we shall estimate the above three terms. The first term is just μ(ES,D) = 1.
Note that ϕ is in the Schwartz class and

∣∣∣∣∣∣
∑

|�|≥m

ϕ̂(�)μ̂(bk j �)

∣∣∣∣∣∣ ≤ μ(ES,D)
∑

|�|≥m

|ϕ̂(�)|,

the third term can be arbitrarily small by choosing m large enough. Finally, for any
m, by the assumption (3.4) we have

∣∣∣∣∣∣
∑

1<|�|<m

ϕ̂(�)μ̂(bk j �)

∣∣∣∣∣∣ ≤ 2m sup
|n|≥bk j ,n∈Z

|μ̂(n)| → 0

as j → ∞.

Combining the above estimates, we have μ(ES,D) = 0, which is a contradiction
and therefore the claim holds.

Finally, we assume that N \ S is not finite and ν is a probability measure supported
on ES,D .

Let k0 = min{k : k /∈ S}. The number k0 does exist due to the fact that N \ S is not
finite. Clearly, we can decompose ES,D as

ES,D =
b−1⋃
i=0

(
ES,D ∩

(
i

bk0−1 ,
i + 1

bk0−1

))
:=

b−1⋃
i=0

Ji .

Observing that Ji ∈ E for i = 0, 1, . . . , b − 1, we have

ν =
b−1∑
i=0

νi ,

where νi = ν|Ji , the restriction of ν on Ji , i = 0, 1, . . . , b − 1. Therefore, it follows
from the above argument and the fact ν̂ = ∑b−1

i=0 ν̂i that

lim sup
|n|→∞

|̂ν(n)| > 0.

��
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Proof of Theorem 2.3 First, in the case b = 2 and D = {0}, it follows from (2.1) that

dimH ES,{0} = d(S)

and

dimA ES,{0} = BD∗(S).

Therefore, by Theorems 2.1 and 2.2, it is sufficient to construct a set S ⊂ N such that
N \ S is not finite and satisfies

d(S) = s (3.6)

and

BD∗(S) = 1. (3.7)

Then, define

E = ES,{0}.

We believe that the existence of such S satisfying (3.6) and (3.7) is well known.
However, for completion, we present a proof below. We divide the proof into the
following three cases according to the values of s.

Case 1: 0 < s < 1. Let {Mn}n≥1 be an increasing sequence of positive integers
with M1 = 1 and

sM2 > 1, lim
n→∞

Mn

Mn+1
= 0.

Next we will use the sequence {Mn} to construct the desired subset S. Let us remark
that our construction are inspired by the method in [6].

For i ≥ 1, let

S2i =
{
M2i + 1, . . . , M2i +

[
2i − 1

2i
(M2i+1 − M2i )

]
− 1, M2i+1

}

and

S2i−1 = {M2i−1 + 1, . . . , M2i−1 + [sM2i ] − L2i−1 − 1, M2i } ,

where

L2i−1 =
i−1∑
j=1

[sM2 j ] +
i−1∑
j=1

[
2 j − 1

2 j
(M2 j+1 − M2 j )

]
.

Here and in the sequel, the notation [x] denotes the integer part of x .
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Then, define

S =
⋃
i≥1

Si .

Note that, for any i ≥ 1,

[
2i − 1

2i
(M2i+1 − M2i )

]
= M2i+1 − M2i .

Therefore, N \ S is not finite.
On the other hand, it is easy to check that

�(S ∩ {1, . . . , M2i }) = [sM2i ] for any i ≥ 1

and

lim sup
m→∞

sup
k≥1

�(S ∩ {k + 1, . . . , k + m})
m

≥ sup
i≥1

�(S ∩ S2i )

M2i+1 − M2i
= 1.

Therefore, S satisfies conditions (3.6) and (3.7).
Case 2: s = 0. Let

S =
∞⋃
n=1

{n3 + 1, . . . , n3 + n}.

Then, it is easy to check that S satisfies conditions (3.6), (3.7) and N \ S is not finite.
Case 3: s = 1. The proof is similar to that in Case 1. We only give the key

constructions.
Let {Mn}n≥1 be an increasing sequence of positive integers with M1 = 1 and

lim
n→∞

Mn

Mn+1
= 0.

For i ≥ 1, let

S2i =
{
M2i + 1, . . . , M2i +

[
2i

2i + 1
(M2i+1 − M2i )

]
− 1, M2i+1

}

and

S2i−1 =
{
M2i−1 + 1, . . . , M2i−1 +

[
2i − 1

2i
M2i

]
− L2i−1 − 1, M2i

}
,
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where

L2i−1 =
i−1∑
j=1

[
2 j − 1

2 j
M2 j

]
+

i−1∑
j=1

[
2 j

2 j + 1
(M2 j+1 − M2 j )

]
.

Define

S =
⋃
i≥1

Si .

��
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