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Abstract
Sampling in shift-invariant spaces is a realistic model for signals with smooth spec-
trum. In this paper, we consider phaseless sampling and reconstruction of real-valued
signals in a high-dimensional shift-invariant space from theirmagnitudemeasurements
on the whole Euclidean space and from their phaseless samples taken on a discrete set
with finite sampling density. The determination of a signal in a shift-invariant space,
up to a sign, by its magnitude measurements on the whole Euclidean space has been
shown in the literature to be equivalent to its nonseparability. In this paper, we intro-
duce an undirected graph associated with the signal in a shift-invariant space and use
connectivity of the graph to characterize nonseparability of the signal. Under the local
complement property assumption on a shift-invariant space, we find a discrete set with
finite sampling density such that nonseparable signals in the shift-invariant space can
be reconstructed in a stable way from their phaseless samples taken on that set. In this
paper, we also propose a reconstruction algorithm which provides an approximation
to the original signal when its noisy phaseless samples are available only. Finally,
numerical simulations are performed to demonstrate the robustness of the proposed
algorithm to reconstruct box spline signals from their noisy phaseless samples.
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1 Introduction

In this paper, we consider the phaseless sampling and reconstruction problem of
whether a real-valued signal f on R

d is determined, up to a sign, by its magnitude
measurements | f (x)| on R

d or on a discrete subset X ⊂ R
d . The above problem is

inherently ill-posed and it can be solved only if we have some extra information about
the signal f .

The additional knowledge about the signals in this paper is that they live in a shift-
invariant space

V (φ) :=
{ ∑

k∈Zd

c(k)φ(x − k) : c(k) ∈ R for all k ∈ Z
d
}

(1.1)

generated by a real-valued continuous functionφ with compact support. Shift-invariant
spaces have been used in wavelet analysis and approximation theory, and sampling in
shift-invariant spaces is a realistic model for signals with smooth spectrum, see [4,6,
11,22,32] and references therein. Typical examples of shift-invariant spaces include
those generated by refinable functions [21,36] and box splines [24,48,49].

The phaseless sampling and reconstruction problem of one-dimensional signals
in shift-invariant spaces has been studied in [16,39,40,43,47]. Thakur proved in [47]
that one-dimensional real-valued signals in a Paley–Wiener space, the shift-invariant
space generated by the sinc function sin π t

π t , could be reconstructed from their phaseless
samples taken at more than twice the Nyquist rate. Reconstruction of one-dimensional
signals in a shift-invariant space was studied in [43] when frequency magnitude mea-
surements are available. Unlike signals in the Paley–Wiener space, not all signals in a
shift-invariant space generated by a compactly supported function are determined, up
to a sign, by their magnitudemeasurements on the whole line. In [16], the set of signals
that can be determined by their magnitude measurements on the real line R is fully
characterized, and a fast algorithm is proposed to reconstruct signals in a shift-invariant
space from their phaseless samples taken on a discrete set with finite sampling density.
Up to our knowledge, there is no literature available on the phaseless sampling and
reconstruction of high-dimensional signals in a shift-invariant space, which is the core
of this paper.

The phaseless sampling and reconstruction of signals in a shift-invariant space
is an infinite-dimensional phase retrieval problem, which has received considerable
attention in recent years [1–3,12,16,27,37,39,40,43,47]. In most of literatures men-
tioned above, the phase retrieval problem considers determining all signals in an
infinite-dimensional linear space, up to a global phase, from magnitudes of their
frame measurements, which has been characterized by the complement property for
the frame. In our consideration of phaseless sampling and reconstruction, the set of
signals in a shift-invariant space V (φ) that are determined, up to a sign, by their
magnitudes on the whole Euclidean space is a true nonconvex subset of the entire
space V (φ). So we consider the problem of whether a particular signal in the space
is determined, up to a sign, by its magnitudes on the whole Euclidean space, which is
characterized by its nonseparability.
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The paper is organized as follows. An introductory problem about phaseless
sampling and reconstruction in the shift-invariant space V (φ) is to decide when a
real-valued signal f is determined, up to a sign, by its magnitudes | f (x)|, x ∈ R

d . An
equivalence has been provided in [16], see Theorem 2.1 in Sect. 2, that the signal f
must be nonseparable, i.e., the signal f is not the sum of two nonzero signals in V (φ)

with their supports being essentially disjoint. A natural question that arises is how to
determine the nonseparability of a given signal in a shift-invariant space. In Sect. 2, we
introduce an undirected graph G f for the signal f in a shift-invariant space V (φ) and
use connectivity of the graph G f to characterize nonseparability of the signal f , i.e.,
when it is determined, up to a sign, by the magnitude measurements | f (x)|, x ∈ R

d ,
see Theorems 2.4 and 2.6.

In Sect. 3, we consider the preparatory problem whether a signal in a shift-invariant
space V (φ) is determined, up to a sign, by its phaseless samples taken on a discrete set
with finite sampling density. In Theorem 3.1, we find a finite set � ⊂ (0, 1)d such that
magnitudes | f (x)|, x ∈ R

d , of any nonseparable signal f ∈ V (φ) are determined by
their phaseless samples | f (y)|, y ∈ � + Z

d . However, the above result does not yield
an algorithm to reconstruct a nonseparable signal from its phaseless samples taken
on the shift-invariant set � + Z

d . To deal with phaseless reconstruction, we introduce
local complement property for the shift-invariant space V (φ), which is similar to the
complement property for frames inHilbert/Banach spaces [3,7,9,12,16], seeDefinition
3.2 and Appendix A. Under the assumption that the shift-invariant space V (φ) has the
local complement property, we are able to find a shift-invariant set � + Z

d with finite
sampling density on which any nonseparable signal f ∈ V (φ) can be recovered, up
to a sign, from its phaseless samples | f (y)|, y ∈ � + Z

d , see Theorems 3.3 and 3.5
for constructions of the sampling set � + Z

d and Sect. 5 for a robust algorithm with
linear computational complexity.

The study of stability is pivotal in phaseless sampling and reconstruction. Thakur
provided a truncation error estimate in [47] to reconstruct bandlimited signals from
their truncated phaseless samples with more than twice of the Nyquist rate; Cahill
et al. found in [12] that phase retrievability of signals in an infinite-dimensional
Hilbert space from magnitudes of their frame measurements is not uniformly sta-
ble; Alaifari et al. discussed the stable reconstruction of ε-concentrated signals in
[2] from their magnitudes of Gabor measurements; and Grohs and Rathmair showed
in [27] that stability of the Gabor phase reconstruction is bounded by the recipro-
cal of the Cheeger constant of a flat metric. In Theorem 4.1, we establish a stable
reconstruction of nonseparable signals in a shift-invariant space from noisy phaseless
samples taken on a discrete set with finite sampling density. The above stable recon-
struction implies the nonexistence of resonance phenomenon when the noise level
is far below the minimal magnitude of amplitude vector of the original signal, see
Remark 4.2.

A fundamental problem in phaseless sampling and reconstruction is to design
efficient and robust algorithms for signal reconstruction in a noisy environment.
Based on the approach in Theorem 4.1, we propose an algorithm to reconstruct
nonseparable signals in V (φ) from their noisy phaseless samples on a sampling
set with finite density. The computational complexity of the proposed algorithm
depends almost linearly on the support length of the original nonseparable sig-
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nal. The reader may refer to [13,14,25,28,29,42] and references therein for various
algorithms to reconstruct finite-dimensional signals from magnitudes of their frame
measurements. The implementation and performance of the proposed algorithm
to recover box spline signals from their noisy phaseless samples are given in
Sect. 5.

Proofs are collected in Sect. 6. The local complement property for a locally finite-
dimensional space is discussed in Appendix A.

Notation Denote the cardinality of a set E by #E , the characteristic function on a
set E by χE , and the closed ball in R

d with center x and radius R ≥ 0 by B(x, R). For
x = (x1, . . . , xd)T ∈ R

d , y = (y1, . . . , yd)T ∈ R
d and k = (k1, . . . , kd)T ∈ Z

d+, we
define the partial order x ≤ y if xi ≤ yi , 1 ≤ i ≤ d, and the power xk = ∏d

i=1 x
ki
i .

For t ∈ R, we set t = (t, . . . , t)T . For positive quantities A and B, we use the notation
A = O(B) to represent A ≤ CB for some absolute constant C .

2 Phase Retrievability, Nonseparability and Connectivity

Phase retrieval plays important roles in signal/speech/image processing, see [7,8,13–
15,26,30,35,42] and references therein for historical remarks and recent advances. The
phase retrievability of a real-valued signal on R

d is whether it is determined, up to a
sign, by its magnitude measurements on R

d . It is characterized in [16] as follows.

Theorem 2.1 Let φ be a real-valued continuous function with compact support, and
V (φ) be the shift-invariant space in (1.1) generated by φ. Then a signal f ∈ V (φ) is
determined, up to a sign, by its magnitude measurements | f (x)|, x ∈ R

d , if and only
if f is nonseparable, i.e., there does not exist nonzero signals f1 and f2 in V (φ) such
that

f = f1 + f2 and f1 f2 = 0. (2.1)

The question that arises is how to determine the nonseparability of a signal in a
shift-invariant space. To answer the above question, we first recall the notion of global
linear independence of a compactly supported function [10,32,41].

Definition 2.2 Let φ be a nonzero function with compact support. We say that φ has
global linear independence if the correspondence

c := (c(k))k∈Zd �−→
∑

k∈Zd

c(k)φ(· − k) =: f ∈ V (φ) (2.2)

between an amplitude vector c and a signal f in the shift-invariant space V (φ) is
one-to-one.

In this paper, we always assume that the generator φ of the shift-invariant space
V (φ) has global linear independence. For d = 1, the nonseparability of a signal
f = ∑

k∈Z c(k)φ(·−k) in a shift-invariant space V (φ) is characterized in [16] that its
amplitude vector c := (c(k))k∈Z does not have consecutive zeros. However, there is no
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corresponding notion of consecutive zeros in the high-dimensional setting (d ≥ 2). To
characterize the nonseparability of signals on R

d , d ≥ 1, we introduce an undirected
graph for a signal in the shift-invariant space V (φ).

Definition 2.3 For any f (x) = ∑
k∈Zd c(k)φ(x − k) ∈ V (φ), define an undirected

graph

G f := (V f , E f ), (2.3)

where the vertex set

V f = {k ∈ Z
d : c(k) �= 0}

contains supports of the amplitude vector of the signal f , and

E f = {
(k, k′) ∈ V f × V f : k �= k′ and φ(x − k)φ(x − k′) �= 0 for some x ∈ R

d}

is the edge set associated with the signal f .

The graph G f in (2.3) is well-defined for any signal f in the shift-invariant space
V (φ) as the generator φ has the global linear independence. Moreover,

(k, k′) ∈ E f if and only if k − k′ ∈ �φ, (2.4)

where �φ contains all k ∈ Z
d such that

Sk := {x ∈ R
d : φ(x)φ(x − k) �= 0} �= ∅. (2.5)

In the following theorem, we show that connectivity of the graph G f is a necessary
condition for the nonseparability of the signal f ∈ V (φ).

Theorem 2.4 Let φ be a compactly supported continuous function on R
d with global

linear independence, and V (φ) be the shift-invariant space (1.1) generated by φ. If
f ∈ V (φ) is nonseparable, then the graph G f in (2.3) is connected.

Before stating sufficiency for the connectivity of the graph G f , we recall the notion
of local linear independence on an open set, cf. Definition 2.2.

Definition 2.5 Let φ be a nonzero function with compact support and A be an open
set. We say that φ has local linear independence on A if

∑
k∈Zd c(k)φ(x − k) = 0

for all x ∈ A implies that c(k) = 0 for all k ∈ Z
d satisfying φ(x − k) �≡ 0 on A.

The global linear independence of a compactly supported function φ can be inter-
preted as its local linear R

d [10,46]. Define
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�A(x) := (
φ(x − k)

)
k∈KA

, x ∈ A, (2.6)

and

KA := {k ∈ Z
d : φ(· − k) �≡ 0 on A}. (2.7)

Onemayverify thatφ has local linear independenceon aboundedopen set A if andonly
if the dimension of the linear space spanned by�A(x), x ∈ A, is the cardinality of the
set KA. The above characterization can be used to verify the local linear independence
on a bounded open set, especially when φ has an explicit expression. For instance, one
may verify that the generator φ0 in Example 2.7 below has local linear independence
on (0, 1), but it is locally linearly dependent on (0, 1/2) and (1/2, 1).

In the following theorem, we show that the converse in Theorem 2.4 is true if φ has
local linear independence on all bounded open sets.

Theorem 2.6 Let φ be a compactly supported continuous function on R
d with local

linear independence on all bounded open sets, and f be a signal in the shift-invariant
space V (φ). If the graph G f in (2.3) is connected, then f is nonseparable.

The conclusion in Theorem 2.6 follows from Theorem 3.3 in Sect. 3 and Propo-
sition A.6 in Appendix A, see Sect. 6.4 for the detailed argument. We remark that
the connectivity of the graph G f in Theorem 2.6 is not sufficient for the signal f to
be nonseparable if the local linear independence assumption on the generator φ is
dropped.

Example 2.7 Define φ0(t) = h(4t − 1) + h(4t − 3) + h(4t − 5) − h(4t − 7), where
h(t) = max(1−|t |, 0) is the hat function supported on [−1, 1]. One may easily verify
that φ0 is a continuous function having global linear independence. Set

f1(t) =
∑
k∈Z

φ0(t − k) and f2(t) =
∑
k∈Z

(−1)kφ0(t − k).

Then f1 and f2 are nonzero signals in V (φ0) supported on [0, 1/2]+Z and [1/2, 1]+Z

respectively, and f1(t) f2(t) = 0 for all t ∈ R.Hence f1±2 f2 have the samemagnitude
measurements | f1| + 2| f2| on the real line but they are different, even up to a sign,
i.e., f1 + 2 f2 �≡ ±( f1 − 2 f2). On the other hand, one may verify that their associated
graphs G f1±2 f2 are connected.

Consider a continuous solution φ of a refinement equation

φ(x) =
N∑

n=0

a(n)φ(2x − n) and
∫

R

φ(x)dx = 1 (2.8)

with global linear independence, where
∑N

n=0 a(n) = 2 and N ≥ 1 [21,36].
The B-spline BN of order N , which is obtained by convolving the characteristic
function χ[0,1) on the unit interval N times, satisfies the above refinement equa-
tion [48,49]. The function φ in (2.8) has support [0, N ] and it has local linear
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independence on any bounded open set if and only if it has global linear inde-
pendence [18,33,34,38,44]. Therefore we have the following result for wavelet
signals by Theorems 2.4 and 2.6 , which is also established in [16] with a differ-
ent approach.

Corollary 2.8 Let φ satisfy the refinement equation (2.8) and have global linear inde-
pendence. Then f ∈ V (φ) is nonseparable if and only if the graph G f in (2.3) is
connected.

Given a matrix 	 ∈ Z
d×s of full rank d, define the box spline M	 by

∫

Rd
g(x)M	(x)dx =

∫

[0,1)s
g(	y)dy, g ∈ L2(Rd). (2.9)

It is known that the box spline M	 has local linear independence on any bounded
open set if and only if it has global linear independence if and only if all d × d
submatrices of 	 have determinants being either 0 or ±1 [19,20,23,31]. The reader
may refer to [24] for more properties and applications of box splines. Therefore, as
applications of Theorems 2.4 and 2.6 , we have the following result for box spline
signals.

Corollary 2.9 Let 	 ∈ Z
d×s be a matrix of full rank d such that all of its d × d sub-

matrices have determinants being either 0 or ±1. Then f ∈ V (M	) is nonseparable
if and only if the graph G f in (2.3) is connected.

3 Phaseless Sampling and Reconstruction

In this section, we consider the problem of whether a signal in the shift-invariant space
V (φ) is determined, up to a sign, by its phaseless samples taken on a discrete set with
finite sampling density. Here the sampling density of a discrete set X ⊂ R

d is defined
by

D(X) := lim
R→+∞,x∈Rd

#(X ∩ B(x, R))

Rd
(3.1)

[4,17,45]. One may easily verify that a shift-invariant set X = � + Z
d generated by

a finite set � ⊂ [0, 1)d has sampling density #�. In Theorem 3.1, we show that for
a shift-invariant space V (φ) generated by a compactly supported function φ, there
exists a shift-invariant set �+Z

d with finite density such that any nonseparable signal
f ∈ V (φ) can be determined, up to a sign, from the phaseless samples | f (y)|, y ∈
� + Z

d taken on that set. However, the above unique determination does not lead to
a reconstruction algorithm. To design efficient and robust algorithms to reconstruct
signals in a shift-invariant space V (φ) from their phaseless samples, we require in
this paper that the shift-invariant space V (φ) has local complement property on some
open sets. Under the local complement property for the shift-invariant space V (φ), we
provide two methods in Theorems 3.3 and 3.5 to construct finite sets � such that any
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nonseparable signal f in the shift-invariant space V (φ) can be reconstructed from its
phaseless samples | f (y)|, y ∈ � +Z

d . Applying Theorems 3.3 and 3.5 to box splines
of tensor-product type, we obtain two phaseless sampling sets in Corollaries 3.7 and
3.8 .

To determine a signal, up to a sign, by its phaseless samples taken on a discrete set,
a necessary condition is that the signal is nonseparable (hence phase retrievable). In
the next theorem, we show that the above requirement is also sufficient.

Theorem 3.1 Let φ be a compactly supported continuous function and V (φ) be the
shift-invariant space in (1.1) generated by φ. Then there exists a finite set � ⊂ (0, 1)d

such that any nonseparable signal f ∈ V (φ) is determined, up to a sign, by its
phaseless samples | f (γ )|, γ ∈ � +Z

d , on the set � +Z
d with finite sampling density.

The proof of Theorem 3.1 is given in Sect. 6.2, where the finite set � ⊂ (0, 1)d

is chosen so that magnitude measurements | f (x)|2, x ∈ [0, 1)d , of any signal f ∈
V (φ) is determined by | f (γ )|2, γ ∈ �. However, it does not provide an algorithm
to reconstruct a nonseparable signal from its phaseless samples taken on the shift-
invariant set � + Z

d . To design stable and efficient algorithms to reconstruct signals
in a shift-invariant space V (φ) from their phaseless samples, we require in this paper
that the shift-invariant space V (φ) has local complement property on some open
sets.

Definition 3.2 We say that the shift-invariant space V (φ) has local complement prop-
erty on a set A if for any A′ ⊂ A, there does not exist f , g ∈ V (φ) such that f , g �≡ 0
on A, but f (x) = 0 for all x ∈ A′ and g(y) = 0 for all y ∈ A\A′.

The local complement property on R
d is the complement property in [16] for

ideal sampling functionals on V (φ), cf. the complement property for frames in
Hilbert/Banach spaces [3,7,9,12]. Local complement property is closely related to
local phase retrievability. In fact, following the argument in [16], the shift-invariant
space V (φ) has the local complement property on A if and only if all signals
in V (φ) are local phase retrievable on A, i.e., for any f , g ∈ V (φ) satisfying
|g(x)| = | f (x)|, x ∈ A, there exists δ ∈ {−1, 1} such that g(x) = δ f (x) for all
x ∈ A. More discussions on the local complement property will be given in Appendix
A.

Under the assumption that the shift-invariant space V (φ) has local complement
property, a shift-invariant set�+Z

d can be constructed so that any nonseparable signal
f can be reconstructed, up to a sign, from its phaseless samples | f (y)|, y ∈ � + Z

d ,
via a reconstruction algorithm presented in Sect. 5.

Theorem 3.3 Let A1, . . . , AM be bounded open sets, φ be a compactly supported
continuous function, V (φ) be the shift-invariant space in (1.1) generated by φ, and let
Sk, k ∈ Z

d , be as in (2.5). Assume that φ has local linear independence on Am, 1 ≤
m ≤ M, the shift-invariant space V (φ) has local complement property on Am, 1 ≤
m ≤ M, and

Sk ∩ ( ∪M
m=1 (Am + Z

d)
) �= ∅ (3.2)
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for all k ∈ Z
d with Sk �= ∅. Then we can construct finite sets �m ⊂ Am, 1 ≤ m ≤ M,

explicitly such that the following statements are equivalent for any signal f ∈ V (φ):

(i) The signal f is nonseparable.
(ii) The graph G f in (2.3) is connected.
(iii) The signal f can be reconstructed, up to a sign, from its phaseless samples

| f (y)|, y ∈ � + Z
d , where

� = ∪M
m=1�m . (3.3)

The implication (i)�⇒ (ii) has been established in Theorem 2.4 and the implication
(iii) �⇒ (i) is obvious. Write f = ∑

k∈Zd c(k)φ(· − k). To prove (ii) �⇒ (iii), we
first determine c(k), k ∈ KAm + l, up to a sign δl,m ∈ {−1, 1}, by phaseless samples
| f (γ + l)|, γ ∈ �m, 1 ≤ m ≤ M , and then we use the connectivity of the graph
G f to adjust phases δl,m, 1 ≤ m ≤ M, l ∈ Z

d . Finally we sew those pieces together
to recover amplitudes c(k), k ∈ Z

d , and the signal f , up to a sign, in a noiseless
environment, see Sect. 6.3 for detailed argument.

Definition 3.4 We say that M = {am ∈ R
d , 1 ≤ m ≤ M} is a phase retrievable

frame for R
d if any vector x ∈ R

d is determined, up to a sign, by its measurements
|〈x, am〉|, am ∈ M, and that M is a minimal phase retrieval frame for R

d if any true
subset of M is not a phase retrievable frame.

Given a compactly supported function φ and a bounded open set A, let

WA be the linear space spanned by �A(x)(�A(x))T , x ∈ A, (3.4)

where�A is given in (2.6). In the proof of Theorem 3.3 given in Sect. 6.3, the finite sets
�m ⊂ Am, 1 ≤ m ≤ M , are so chosen that outer products �Am (γ )(�Am (γ ))T , γ ∈
�m , form a basis of the linear space WAm . This together with the local comple-
ment property on Am, 1 ≤ m ≤ M , for the shift-invariant space V (φ) implies that
�Am (γ ), γ ∈ �m , is a phase retrievable frame for R

#KAm . After careful examination
of the proof of Theorem 3.3, we can apply the pare-down technique to the above
phase retrievable frame and find a subset �′ ⊂ � such that nonseparable signals in the
shift-invariant space V (φ) can be reconstructed from their phaseless samples taken on
�′ + Z

d , which has smaller sampling density than the set � + Z
d has.

Theorem 3.5 Let Am, 1 ≤ m ≤ M, and φ be as in Theorem 3.3, and let �′
m ⊂

Am, 1 ≤ m ≤ M, be chosen so that �Am (γ ′), γ ′ ∈ �′
m, are phase retrievable frames

for R
#KAm . Then any nonseparable signal f ∈ V (φ) can be reconstructed, up to a

sign, from its phaseless samples | f (y)|, y ∈ �′ + Z
d , where

�′ = ∪M
m=1�

′
m . (3.5)

Let � be the phaseless sampling set either in Theorem 3.3 or in Theorem 3.5, a
phaseless reconstruction algorithm is proposed in Sect. 5. We remark that the phase
retrievable frame property for the sampling set �′ in Theorem 3.5, �A(γ ′), γ ′ ∈ �′
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may not imply that their outer products �A(γ ′)(�A(γ ′))T , γ ′ ∈ �′, form a basis (or
a spanning set) of WA in (3.4), as shown in the following example.

Example 3.6 Let

φ1(x) =

⎧
⎪⎪⎨
⎪⎪⎩

x3/2 if 0 ≤ x < 1
− x3 + 3x2 − 2x + 1/2 if 1 ≤ x < 2
x3/2 − 3x2 + 5x − 3/2 if 2 ≤ x < 3
0 otherwise,

and set �1(x) = (φ1(x), φ1(x + 1), φ1(x + 2))T , 0 ≤ x < 1. Then

�1(x) = 1

2

⎛
⎝
0
1
1

⎞
⎠ +

⎛
⎝

0
1

− 1

⎞
⎠ x + 1

2

⎛
⎝

1
− 2
1

⎞
⎠ x3

and

�1(x)�1(x)
T = 1

4

⎛
⎝
0 0 0
0 1 1
0 1 1

⎞
⎠ +

⎛
⎝
0 0 0
0 1 0
0 0 − 1

⎞
⎠ x +

⎛
⎝
0 0 0
0 1 − 1
0 − 1 1

⎞
⎠ x2

+1

4

⎛
⎝
0 1 1
1 − 4 − 1
1 − 1 2

⎞
⎠ x3 + 1

2

⎛
⎝

0 1 − 1
1 − 4 3

− 1 3 − 2

⎞
⎠ x4 + 1

4

⎛
⎝

1 − 2 1
− 2 4 − 2
1 − 2 1

⎞
⎠ x6.

Therefore the space spanned by�1(x), 0 < x < 1, isR
3, and the spaceW(0,1) spanned

by�1(x)�1(x)T , 0 < x < 1, is the 6-dimensional linear space of symmetric matrices
of size 3 × 3. On the other hand, any 3 × 3 square submatrices of the 3 × 5 matrix

(
�1(0) �1

(
1

5

)
�1

(
2

5

)
�1

(
3

5

)
�1

(
4

5

))
= 1

250

⎛
⎝

0 1 8 27 64
125 173 209 221 197
125 76 33 2 − 11

⎞
⎠

is nonsingular, which implies that �1(m/5), 0 ≤ m ≤ 4, form a phase retrievable
frame for R

3, but their outer products do not form a spanning set of the 6-dimensional
space W(0,1).

We finish this section with explicit construction of finite sets � in Theorems 3.3
and 3.5 for the shift-invariant space generated by a box spline of tensor-product type,
cf. Sects. 5.1 and 5.2. Take N = (N1, . . . , Nd)

T with Ni ≥ 2, 1 ≤ i ≤ d, and let
BNi be the B-spline of order Ni . Define the box spline function of tensor-product
type

BN(x) := BN1(x1) × · · · × BNd (xd), x = (x1, . . . , xd)
T ∈ R

d . (3.6)

Applying the argument used in the proof ofTheorem3.3withM = 1 and A1 = (0, 1)d ,
we have the following result, which is given in [16] for d = 1.
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Corollary 3.7 Let Xi contain 2Ni − 1 distinct points in (0, 1), 1 ≤ i ≤ d. Then any
nonseparable signal f ∈ V (BN) can be reconstructed, up to a sign, from its phaseless
samples taken on the set X1 × . . . × Xd + Z

d .

The phaseless sampling set X1 × . . . × Xd + Z
d in the above corollary has density∏d

i=1(2Ni − 1). Applying Theorem 3.5, we may select a phaseless sampling set with
smaller sampling density 2N − 1, where N = ∏d

i=1 Ni .

Corollary 3.8 For almost all (y1, y2, . . . , y2N−1) ∈ (0, 1)d × · · · × (0, 1)d , it holds
that any nonseparable signal f ∈ V (BN) can be reconstructed, up to a sign, from its
phaseless samples taken on the set {y1, y2, . . . , y2N−1} + Z

d .

4 Stability of Phaseless Sampling and Reconstruction

Stability is of paramount importance in the phaseless sampling and reconstruction
problem. In this section, we construct an approximation

fε =
∑

k∈Zd

cε(k)φ(· − k) ∈ V (φ), (4.1)

up to a sign, to the original nonseparable signal

f =
∑

k∈Zd

c(k)φ(· − k) ∈ V (φ) (4.2)

from the noisy phaseless samples

zε(y) = | f (y)| + ε(y) ≥ 0, y ∈ � + Z
d , (4.3)

where ε = (ε(y))y∈�+Zd has the bounded noise level ‖ε‖∞ = maxy∈�+Zd |ε(y)|,
and the finite set � = ∪M

m=1�m is given either by (3.3) in Theorem 3.3 or by (3.5) in
Theorem 3.5.

Let

�m = {k ∈ Z
d : φ(γ − k) �= 0 for some γ ∈ �m}, 1 ≤ m ≤ M, (4.4)

and define the hard thresholding function Hη, η ≥ 0, by Hη(t) = tχR\(−η,η)(t). Based
on the constructive proofs of Theorems 3.3 and 3.5, we propose the following approach
with M0 ≥ 0 being the phase adjustment threshold value chosen appropriately. Its
detailed implementation is given in Sect. 5.
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1. For l ∈ Z
d and 1 ≤ m ≤ M , let

cε,l;m = (cε,l;m (k))k∈Zd (4.5)

take zero components except that cε,l;m (k), k ∈ l + �m , are solutions of the local minimization
problem

min
e(k),k∈l+�m

∑
γ∈�m

∣∣∣∣
∣∣∣

∑
k∈l+�m

e(k)φ(γ + l − k)
∣∣∣ − zε(γ + l)

∣∣∣∣
2

. (4.6)

2. Adjust phases of cε,l;m , l ∈ Z
d , 1 ≤ m ≤ M , appropriately so that the resulting vectors δl,mcε,l;m

with δl,m ∈ {−1, 1} satisfy

〈δl,mcε,l;m , δl′,m′cε,l′;m′ 〉 ≥ −M0 (4.7)

for all l, l ′ ∈ Z
d and 1 ≤ m,m′ ≤ M .

3. Sew vectors δl,mcε,l;m , l ∈ Z
d , 1 ≤ m ≤ M , together to obtain

dε(k) =
∑M

m=1
∑

l∈Zd δl,mcε,l;m (k)χl+�m (k)
∑M

m=1
∑

l∈Zd χl+�m (k)
, k ∈ Z

d . (4.8)

4. Threshold the vector dε = (dε(k))k∈Zd ,

cε(k) = Hη(dε(k)), k ∈ Z
d (4.9)

to construct the approximation fε in (4.1), where η = √
M0.

Given l ∈ Z
d and1 ≤ m ≤ M , the localminimizers cε,l;m(k), k ∈ l+�m , in thefirst

step of the above approach are determined, up to a sign, from noisy phaseless samples
zε(γ +l), γ ∈ �m , and they provide approximations to amplitudes c(k), k ∈ l+�m , of
the original nonseparable signal f , up to a sign depending on l ∈ Z

d and 1 ≤ m ≤ M ,
see (6.20). Due to the above approximation property, we adjust phases of vectors
cε,l;m, l ∈ Z

d , 1 ≤ m ≤ M , in the second step of our approach so that components
δl,mcε,l;m(k), k ∈ l + �m , of the resulting vectors δl,mcε,l;m are close to amplitudes
c(k), k ∈ l + �m of the original signal f , up to a sign δ ∈ {−1, 1} independent on l ∈
Z
d and 1 ≤ m ≤ M . Thereforewe can sew the vectors δl,mcε,l;m, l ∈ Z

d , 1 ≤ m ≤ M ,
together to yield an approximation dε in the third step of our approach to the amplitude
vector c of the original nonseparable signal f , up to a sign δ. The final thresholding
procedure in our approach leads to an approximation fε to the original signal f , up
to a sign, with their graphs G fε and G f being the same, see (4.16) and (4.18). The
mathematical justification of the above signal reconstruction in a noisy scenario is
presented in the following theorem, while its implementation will be presented in
Sect. 5.

Theorem 4.1 Let A1, . . . , AM be bounded open sets satisfying (3.2), φ be a compactly
supported continuous function such that φ has local linear independence on Am, 1 ≤
m ≤ M, and let �m ⊂ Am, 1 ≤ m ≤ M, be so chosen that �Am (γ ), γ ∈ �m, is a
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phase retrievable frame for R
#KAm . Set � = ∪M

m=1�m and

∥∥�−1
∥∥
P = sup

�m⊂�m ,1≤m≤M

(
min

(
sup

‖d‖2=1
‖��md‖−1

2 ,

sup
‖d‖2=1

‖��m\�md‖−1
2

))−1
, (4.10)

where ��m = (φ(γ − k))γ∈�m ,k∈�m for �m ⊂ �m. Assume that the original signal
f = ∑

k∈Zd c(k)φ(· − k) is nonseparable, and

F0 := inf
k∈V f

|c(k)|2 > 0, (4.11)

where G f = (V f , E f ) is the graph associated with the the signal f . If the phase
adjustment threshold value M0 ≥ 0 and the noise level ‖ε‖∞ := supy∈�+Zd |ε(y)|
satisfy

M0 ≤ 2F0
9

(4.12)

and

8#�
∥∥�−1

∥∥2
P‖ε‖2∞ ≤ M0, (4.13)

then there exists δ ∈ {−1, 1} such that the signal fε = ∑
k∈Zd cε(k)φ(· − k) ∈ V (φ)

reconstructed from the proposed approach (4.5)–(4.9) satisfies

|cε(k) − δc(k)| ≤ 2
√
#�

∥∥�−1
∥∥
P‖ε‖∞, k ∈ V f (4.14)

and

cε(k) = c(k) = 0, k /∈ V f . (4.15)

By Theorem 4.1, the reconstructed signal fε in (4.1) provides an approximation,
up to a sign, to the original nonseparable signal f in (4.2),

‖ fε − δ f ‖∞ ≤ 2
√
#�

∥∥�−1
∥∥
P

(
sup
x∈Rd

∑

k∈Zd

∣∣φ(x − k)
∣∣)‖ε‖∞ (4.16)

and

sup
y∈�+Zd

∣∣| fε(y)| − | f (y)|∣∣ ≤ 2
√
#�

∥∥�−1
∥∥
P

(
sup
x∈Rd

∑

k∈Zd

∣∣φ(x − k)
∣∣)‖ε‖∞. (4.17)

By (4.11), (4.12), (4.13) and (4.14), a vertex in the graph G f is also a vertex of
the graph G fε . This together with (2.3) and (4.15) implies that the graphs G f and G fε
associated with the original signal f and the reconstructed signal fε are the same, i.e.,
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G f = G fε . (4.18)

The square root of the quantity F0 in (4.11) is the minimal magnitude of amplitude
vector of the original signal f . It can be used to measure the “distance” between the
nonseparable signal f to the set of all separable signals in V (φ). For instance, take a
sufficiently small α ∈ (0, 1) and a nonseparable spline signal

fα(x) = B2(x) + αB2(x − 1) + B2(x − 2) ∈ V (B2) (4.19)

of order 2 with F0 = α. Write g(x) = c0B2(x)+c1B2(x−1)+c2B2(x−2) ∈ V (B2),
one may verify that all signals g(x) satisfying max(|c0 − 1|, |c1 − α|, |c2 − 1|) <√
F0 = α are nonseparable, and also that the signal g(x) with c0 = 1, c1 = 0, c2 = 1

is separable and satisfies max(|c0 − 1|, |c1 − α|, |c2 − 1|) = √
F0.

The quantity ‖�−1‖P in (4.10) for phase retrievable frames ��m , 1 ≤ m ≤ M , is
closely related to their strong complement property [9,12]. Following the argument
in [9, Theorem 18], we conclude that the reciprocal of ‖�−1‖P is a Lipschitz lower
bound of nonlinear maps xm �−→ |��m xm |, 1 ≤ m ≤ M , i.e.,

‖�−1‖−1
P min

(‖xm − ym‖2, ‖xm + ym‖2
) ≤ ∥∥|�θm xm | − |�θm ym |∥∥2

hold for all xm, ym ∈ R
#�m , 1 ≤ m ≤ M . By (4.16) and (4.17), we see that the

quantity ‖�−1‖P in our phaseless sampling and reconstruction plays a similar role to
the minimal nonzero singular value of a matrix in finding a least squares solution of a
linear system.

Selection of the threshold value M0 ≥ 0 is imperative to find a good approximation
to the original signal from its phaseless samples, and its inappropriate selection could
lead our approach to fail. In the noiseless environment, we may take M0 = 0 and
the proposed approach leads to a perfect reconstruction, i.e., fε = ± f , when f is
nonseparable. In practical applications, the noise level is usually positive and the phase
adjustment threshold value M0 needs to be appropriately selected. For instance, we
may require that (4.12) and (4.13) are satisfied if we have some prior information
about the amplitude vector of the original signal. From the proof of Theorem 4.1
and also the simulations in the next section, it is observed that phases can not be
adjusted to satisfy (4.7) if the threshold value M0 is far below square of noise level
‖ε‖∞ (for instance, (4.13) is not satisfied), while the phase adjustment (4.7) in the
algorithm is not essentially determined and hence the reconstructed signal is not a
good approximation of the original signal if the threshold value M0 is much larger
than the square of minimal magnitude of amplitude vector of the original signal (for
instance, (4.12) is not satisfied).

Remark 4.2 By Theorem 4.1, there is no resonance phenomenon in the sense that

inf
δ∈{−1,1} ‖ fε − δ f ‖∞ ≤ C‖ε‖∞ (4.20)
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if the noise level is far below the minimal magnitude
√
F0 of amplitude vector of the

original signal f , i.e.,

‖ε‖∞ ≤ C0

√
F0 = C0 inf

k∈V f
|c(k)| (4.21)

for some sufficiently small positive constant C0. The above requirement (4.21) on the
noise level is necessary, since the phaseless sampling and reconstruction problem is
ill-posed (and hence the estimate (4.20) is not satisfied) if the ratio between the noise
level andminimalmagnitude of amplitude vector of the original signal is not small. For
instance, taking nonseparable spline signals fα(x) = B2(x)+αB2(x−1)+B2(x−2)
and f̃α(x) = B2(x) + αB2(x − 1) − B2(x − 2) ∈ V (B2) of order 2, we have

min
δ∈{−1,1} ‖ fα − δ f̃α‖∞ = 2 and

∥∥| fα| − | f̃α|∥∥∞ = 2α

1 + α
,

where α ∈ (0, 1) is sufficiently small. Hence there does not exist an absolute constant
C independent on α ∈ (0, 1) such that the estimate (4.20) is satisfied.

5 Reconstruction Algorithm and Numerical Simulations

Consider the scenario that available data

zε(y) = | f (y)| + ε(y), y ∈ � + K , (5.1)

are noisy phaseless samples of a nonseparable signal f = ∑
k∈Zd c(k)φ(·−k) ∈ V (φ)

taken on � + K , where � = ∪M
m=1�m is either as in (3.3) or in (3.5), K ⊂ Z

d is a
finite set, and the additive noise ε = (ε(y))y∈�+K is bounded,

‖ε‖∞ := max
y∈�+K

|ε(y)| ≤ ε (5.2)

for some ε ≥ 0. Based on the approach in Sect. 4, we propose an algorithm to construct
a signal fε of the form

fε =
∑

k∈K̃
cε(k)φ(· − k) ∈ V (φ), (5.3)

where K̃ = ∪l∈K ∪M
m=1 (l + �m) and �m, 1 ≤ m ≤ M , are as in (4.4). Observe that

the original signal f and its truncation

fK =
∑

k∈K̃
c(k)φ(· − k) (5.4)
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have the same (phaseless) sampling values on � + K by the supporting property φ.
Therefore the signal fε in (5.3) is an approximation, up to a sign, to the truncation fK
of the original nonseparable signal f by Theorem 4.1.

Algorithm 1MAPSET Algorithm

Inputs: finite set K ⊂ Z
d ; sampling set� = ∪M

m=1�m either in (3.3) or in (3.5); noisy phaseless sampling

data
(
zε(y)

)
y∈�+K ; index set K̃ = ∪l∈K ∪M

m=1 (l + �m ) ⊂ Z
d ; and the phase adjustment threshold

value M0.
Initials: Start from zero vectors cε,l;m = (

cε,l;m (k)
)
k∈K̃ , l ∈ K , 1 ≤ m ≤ M .

Instructions:
1) Local minimization: For l ∈ K and 1 ≤ m ≤ M , replace cε,l;m (k), k ∈ l + �m , by a solution of the
local minimization problem

min
e(k),k∈l+�m

∑
γ∈�m

∣∣∣∣
∣∣∣

∑
k∈l+�m

e(k)φ(γ + l − k)
∣∣∣ − zε(γ + l)

∣∣∣∣
2

.

2) Phase adjustment: For l ∈ K and 1 ≤ m ≤ M , multiply cε,l;m by δl,m ∈ {−1, 1} so that
〈δl,mcε,l;m , δl′,m′cε,l′;m′ 〉 ≥ −M0 for all l, l ′ ∈ K and 1 ≤ m,m′ ≤ M .
3) Sewing local approximations:

dε(k) =
∑M

m=1
∑

l∈K δl,mcε,l;m (k)χl+�m (k)
∑M

m=1
∑

l∈K χl+�m (k)
, k ∈ K̃ . (5.5)

4) Hard thresholding:

cε(k) = Hη(dε(k)), k ∈ K̃ , (5.6)

where η = √
M0.

Outputs: Amplitude vector (cε(k))k∈K̃ , and the reconstructed signal fε = ∑
k∈K̃ cε(k)φ(· − k).

The proposed algorithm contains four parts: minimization, adjusting phases,
sewing and thresholding, and we call it the MAPSET algorithm. For every l ∈ K
and 1 ≤ m ≤ M , the local minimizers cε,l;m(k), k ∈ l + �m , in the first step of
the MAPSET algorithm are determined, up to a sign, from noisy phaseless samples
zε(γ + l), γ ∈ �m , by the selection of the sampling set �m , and it can be found by
solving a finite family of least squares problems

min
δγ ∈{−1,1},γ∈�m

min
e(k),k∈l+�m

∑
γ∈�m

∣∣∣
∑

k∈l+�m

e(k)φ(γ + l − k) − δγ zε(γ + l)
∣∣∣
2
. (5.7)

The phase adjustment in the second step of the MAPSET algorithm is not unique in a
noisy environment. Our implementation to the second step has three components: (1)
we first construct a symmetric sign matrix B = (bl,m;l ′,m′)l,l ′∈K ,1≤m,m′≤M by

bl,m;l ′,m′ =
⎧
⎨
⎩
1 if 〈cε,l;m, cε,l ′;m′ 〉 ≥ M0
−1 if 〈cε,l;m, cε,l ′;m′ 〉 ≤ −M0
0 otherwise
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for l, l ′ ∈ K , 1 ≤ m,m′ ≤ M ; (2) we then find a diagonal matrix D =
(δl,m)l∈K ,1≤m≤M with diagonal entries δl,m, l ∈ K , 1 ≤ m ≤ M , being either 1
or −1 such that DBD has nonnegative entries; and (3) we finally use diagonal entries
δl,m as signs of our phase adjustment to vectors cε,l;m, l ∈ K , 1 ≤ m ≤ M . The third
and fourth steps of the MAPSET algorithm can be implemented as stated.

Set N = #K . By (4.4), we have

#�m = O(1), 1 ≤ m ≤ M and #K̃ = O(N ). (5.8)

The computational complexity of the first step in the MAPSET algorithm is O(N ),
since the number of additions and multiplications required to solve the family of
least squares problems (5.7) is O(1). Recall that for every l ∈ K and 1 ≤ m ≤
M , the vector cε,l;m has O(1) nonzero entries, and observe that every row of the
matrix B has O(1) nonzero entries by the supporting property of vectors cε,l;m, l ∈
K , 1 ≤ m ≤ M . Therefore the computational complexity of the second step in the
MAPSET algorithm is O(N ) too. By (5.5), (5.6) and (5.8), we need O(N ) additions
andmultiplications to implement the third and fourth steps of theMAPSET algorithm.
Combining the above arguments, we conclude that the proposed MAPSET algorithm
has linear computational complexity to construct an approximation in V (φ) fromnoisy
phaseless samples of a nonseparable signal f in V (φ).

In the rest of this section,wedemonstrate the performanceof the proposedMAPSET
algorithm on reconstructing box spline signals from their noisy phaseless samples on
discrete sets.

5.1 Nonseparable Spline Signals of Tensor-Product Type

Let B(3,3) be the tensor product of one-dimensional quadratic spline B3, and setb0(s) =
s2/2, b−1(s) = (−2s2 + 2s + 1)/2 and b−2(s) = (1 − s)2/2, 0 ≤ s ≤ 1. For
A = (0, 1)2 and φ = B(3,3), one may verify that the set KA in (2.7) is

K(0,1)2 = {(i, j) : −2 ≤ i, j ≤ 0},

and the vector-valued function �A in (2.6) becomes

�(0,1)2(s, t) = (
bi (s)b j (t)

)
(i, j)∈K

(0,1)2
, (s, t) ∈ (0, 1)2 (5.9)

which is a 9-dimensional vector-valued polynomial about s ptq , 0 ≤ p, q ≤ 2. This
implies that the shift-invariant space generated by B(3,3) are locally linearly indepen-
dent on (0, 1)2 and it has local complement property on (0, 1)2. By Corollary 3.7, the
set

�0 = {(i, j)/6, 1 ≤ i, j ≤ 5} ⊂ (0, 1)2 (5.10)

with cardinality 25 can be selected to be a phaseless sampling set in (3.3), see Fig. 1.
For the above uniformly distributed set �0, the corresponding ‖�−1‖P in (4.10) is
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Fig. 1 Plotted on the left is a uniformly distributed set �0 satisfying (3.3), while on the right is a randomly
distributed set �1 satisfying (3.5). The corresponding ‖�−1‖P in (4.10) to the above sets are 2.7962× 103

(left) and 3.2995 × 104 (right), respectively

2.7962 × 103. From the argument used in Corollary 3.8,
(
�(0,1)2(si , ti )

)
1≤i≤17 is a

phase retrievable frame for almost all (si , ti ) ∈ (0, 1)2, 1 ≤ i ≤ 17, however the
corresponding ‖�−1‖P in (4.10) is relatively large from our calculation. So we use
another randomly distributed set

�1 = {(si , ti ), 1 ≤ i ≤ 19} ⊂ (0, 1)2 (5.11)

with cardinality 19 in our simulations, see Fig. 1. The above set satisfies (3.5) and the
corresponding ‖�−1‖P in (4.10) is 3.2995 × 104.

In our simulations, the available data zε(y) = | f (y)| + ε(y) ≥ 0, y ∈ � + K , are
noisy phaseless samples of a spline signal

f (s, t) =
∑

0≤m≤K1,0≤n≤K2

c(m, n)B(3,3)(s − m, t − n) (5.12)

taken on � +K , where K = [0, K1]×[0, K2] for some positive integers K1, K2 ≥ 1,
� is either the uniform set �0 in (5.10) or the random set �1 in (5.11), amplitudes of
the signal f ,

c(m, n) ∈ [−1, 1]\[−0.1, 0.1], 0 ≤ m ≤ K1, 0 ≤ n ≤ K2, (5.13)

are randomly chosen, and the additive noises ε(y) ∈ [−ε, ε], y ∈ � + K , with noise
level ε ≥ 0 are randomly selected. Denote the signal reconstructed by the proposed
MAPSET algorithmwith phase adjustment threshold valueM0 = 0.01, cf. (4.12) with
F0 = 0.01, by

fε(s, t) =
∑

−2≤m≤K1,−2≤n≤K2

cε(m, n)B(3,3)(s − m, t − n). (5.14)
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Fig. 2 Plotted on the left is a nonseparable spline signal in (5.12) with K1 = K2 = 7. In the middle and
on the right are the difference between the above spline signal f and the signal fε reconstructed by the
MAPSET algorithm with noise level ε = 10−4 and sampling set � being �0 and �1 in Fig. 1, respectively.
The maximal amplitude errors e(ε) in (5.15) are 0.0014 (middle) and 0.0030 (right), and the reconstruction
errors minδ∈{−1,1} ‖ fε − δ f ‖∞ are 7.2567 × 10−4 (middle) and 0.0015 (right), respectively

Define the maximal amplitude error of the MAPSET algorithm by

e(ε) := min
δ∈{−1,1} max−2≤m≤K1,−2≤n≤K2

|cε(m, n) − δc(m, n)|. (5.15)

As the original spline signal f in (5.12) is nonseparable, the conclusions (4.14) and
(4.15) guarantee that the reconstruction signal fε provides an approximation, up to a
sign, to the original signal f if‖�−1‖Pε ismuch smaller than amultiple of

√
M0,where

M0 is the phase adjustment threshold value. Our numerical simulations indicate that
theMAPSET algorithm reconstructs phases successfully in 100 trials and themaximal
amplitude error e(ε) in (5.15) is about O(ε), provided that ε ≤ 2 × 10−3 for � = �0
and ε ≤ 7 × 10−4 for � = �1. Presented in Fig. 2 are a nonseparable spline signal
f in (5.12), and the difference between the original signal f and the reconstructed
signal fε via the MAPSET algorithm with noise level ε = 10−4.

The signal fε reconstructed from the MAPSET algorithm may not provide a good
approximation, up to a sign, to the original signal f if the noise level ε is much larger
than amultiple of

√
F0/‖�−1‖P, cf. (4.13) in Theorem 4.1. Our numerical simulations

indicate that the MAPSET algorithm sometimes fails to reconstruct the phase of the
original signal f when ε ≥ 3 × 10−3 for � = �0 and ε ≥ 8 × 10−4 for � = �1,
where

√
F0/‖�−1‖P are 3.5763 × 10−5 and 3.0307 × 10−6 respectively. Detailed

analysis of our simulations shows that the main reason of failures of our MAPSET
algorithm at high noise level is that the local minimizer in the first step of the algorithm
does not provide a good approximation to amplitudes of the original signal, up to a sign.

5.2 Nonseparable Spline Signals of Non-tensor Product Type

Let M	Z be the box spline function in (2.9) with 	Z =
(
1 1 0 1
0 0 1 1

)
, see [24]. Unlike

the spline function B(3,3) of tensor-product type, our numerical result indicates that the
shift-invariant space generated by M	Z does not have the local complement property
on (0, 1)2, cf. Sect. 5.1. Set AU := {(s, t) : 0 < s < t < 1} and AL := {(s, t) : 0 <

t < s < 1}. One may verify that the triangle regions AU and AL satisfy (3.2), and the
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shift-invariant space generated by M	Z has local complement property on AU and on
AL .

For A = AU and φ = M	Z , one may verify that the set KAU in (2.7) is
{(0, 0), (−1, 0), (−2, 0), (−1,−1), (−2,−1)} and the function �AU (s, t) in (2.6) is

�AU (s, t) = 1

2

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 − 1 2 0 − 1
0 1 0 4 4

− 1 1 2 − 2 0
1 − 1 − 6 − 2 8

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

s2

(t − s)2

s
t − s
1

⎞
⎟⎟⎟⎟⎠

, (s, t) ∈ AU . (5.16)

Observe that the space spanned by the outer products of vectors (s2, (t − s)2, s, t −
s, 1)T , (s, t) ∈ AU has dimension 13. This together with (5.16) implies that the space
spanned by the outer products of�AU (s, t) has dimension 13. Therefore we can select
a set�2,U ⊂ AU with cardinality 13 to satisfy (3.3), see Fig. 3. Similarly, for the lower
triangle region AL , a sampling set �2,L with cardinality 13 can be chosen to satisfy
(3.3). For our simulations, we use

�2 = �2,U ∪ �2,L

as the sampling set contained in AU ∪ AL ⊂ (0, 1)2, see Fig. 3. For the above set �2,
the corresponding ‖�−1‖P in (4.10) is 87.9420.

Recall that�AU (s, t) is a vector-valued polynomial generated by s2, (t−s)2, s, t−s
and 1, and observe that the matrix (�AU (si , ti ))1≤i≤5 has full rank 5 for almost all
(si , ti ) ∈ AU , 1 ≤ i ≤ 5 as its determinant is a nonzero polynomial of (si , ti ), 1 ≤
i ≤ 5. Thus (�AU (si , ti ))1≤i≤9 is a phase retrievable frame for almost all (si , ti ) ∈
AU , 1 ≤ i ≤ 9. So we can use randomly distributed sets �3,U ⊂ AU and �3,L ⊂ AL

with cardinality 9 that satisfy (3.5), see Fig. 3. Set

�3 = �3,U ∪ �3,L .

For the above set �3, the corresponding ‖�−1‖P in (4.10) is 761.2227.
In our simulations, the available data zε(y) = | f (y)| + ε(y) ≥ 0, y ∈ � + K , are

noisy phaseless samples of a spline signal

f (s, t) =
∑

0≤m≤K1,0≤n≤K2

c(m, n)M	Z (s − m, t − n), (5.17)

taken on � + K , where K = [0, K1] × [0, K2] for some 1 ≤ K1, K2 ∈ Z, � is either
�2 or �3 in Fig. 3, amplitudes of the signal f are as in (5.13), and the additive noises
ε(y) ∈ [−ε, ε], y ∈ � + K , with noise level ε ≥ 0 are randomly selected. Denote
the signal reconstructed by the proposed MAPSET algorithm with phase adjustment
threshold value M0 = 0.01 by

fε(s, t) =
∑

0≤m≤K1,0≤n≤K2

cε(m, n)M	Z (s − m, t − n). (5.18)



Journal of Fourier Analysis and Applications (2019) 25:1361–1394 1381

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 3 Plotted on the left are the sampling sets �2,U ⊂ AU (in the red star) and �2,L ⊂ AL (in the blue
dot). Plotted on the right are the random sets �3,U ⊂ AU (in the red star) and �3,L ⊂ AL (in the blue
dot) that have cardinality 9. The corresponding ‖�−1‖P in (4.10) to the above sets is 87.9420 (left) and
761.2227 (right) respectively

Fig. 4 Plotted on the left is a nonseparable spline signal of the form (5.17), where K = [0, 7] × [0, 6], and
in the middle and on the right are the difference between the above signal f and the signal fε reconstructed
by the MAPSET algorithm with noise level ε = 10−4 and the sampling set � being �2 and �3 in Fig. 3,
respectively. The maximal amplitude errors e(ε) in (5.15) are 2.4922× 10−4 (middle) and 3.8975× 10−4

(right). The reconstruction errors minδ∈{−1,1} ‖ fε −δ f ‖∞ are 1.9660×10−4 (middle) and 2.9216×10−4

(right)

As in Sect. 5.1, the reconstruction signal fε provides an approximation, up to a sign, to
the original signal f . Our numerical simulations indicate that the MAPSET algorithm
saves phases in 100 trials and the reconstruction error e(ε) is about O(ε), provided
that ε ≤ 5×10−3 for � = �2 and ε ≤ 3×10−3 for � = �3, where

√
F0/‖�−1‖P are

1.1371×10−3 and 1.3137×10−4 respectively. Presented in Fig. 4 are a nonseparable
spline signal f in (5.17) with (K1, K2) = (9, 8), and the difference between the
original signal f and the reconstructed signal fε via the MAPSET algorithm with
noise level ε = 10−4.

As in Sect. 5.1, the MAPSET algorithm may not yield a good approximation to
the original signal if the noise level ε is not sufficiently small. Our numerical results
indicate that the MAPSET algorithm sometimes fails to save the phase of the original
signal f when ε ≥ 6 × 10−3 for � = �2 and ε ≥ 4 × 10−3 for � = �3. As in the
phaseless reconstruction of box spline of tensor-product type, our detailed analysis
indicates that the main reason of failures of ourMAPSET algorithm at high noise level
is that the local minimizer in the first step of the algorithm does not provide a good
approximation to amplitudes of the original signal, up to a sign.
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6 Proofs

In this section, we include the proofs of Theorems 2.4, 3.1, 3.3, 2.6, 3.5, 4.1, and
Corollaries 3.7 and 3.8 .

6.1 Proof of Theorem 2.4

Suppose, on the contrary, that G f is disconnected. Let W be the set of vertices in a
connected component of the graph G f . Then W �= ∅, V f \W �= ∅, and there are no
edges between vertices in W and V f \W . Write

f =
∑

k∈Zd

c(k)φ(· − k) =
∑
k∈V f

c(k)φ(· − k)

=
∑
k∈W

c(k)φ(· − k) +
∑

k∈V f \W
c(k)φ(· − k) =: f1 + f2 (6.1)

where c(k) ∈ R, k ∈ Z
d . From the global linear independence on φ and nontriviality

of the sets W and V f \W , we obtain

f1 �= 0 and f2 �= 0. (6.2)

Combining (6.1) and (6.2) with nonseparability of the signal f , we obtain that
f1(x0) f2(x0) �= 0 for some x0 ∈ R

d . Then by the global linear independence of
φ, there exist k ∈ W and k′ ∈ V f \W such that φ(x0 − k) �= 0 and φ(x0 − k′) �= 0.
Hence (k, k′) is an edge between k ∈ W and k′ ∈ V f \W , which contradicts to the
construction of the set W .

6.2 Proof of Theorem 3.1

A linear space V on R
d is said to be locally finite-dimensional if it has finite-

dimensional restriction on any bounded open set. The shift-invariant space in (1.1)
generated by a compactly supported function φ is locally finite-dimensional. The
reader may refer to [5] and references therein on locally finite-dimensional spaces,
see Appendix A for local complement property of a locally finite-dimensional space.
In this section, we will prove the following generalization of Theorem 3.1.

Theorem 6.1 Let V be a locally finite-dimensional shift-invariant space of functions
on R

d . Then there exists a finite set � ⊂ (0, 1)d such that any nonseparable signal
f ∈ V is determined, up to a sign, by its phaseless samples on � + Z

d .

Proof Let A = (0, 1)d and V |A be the space containing restrictions of all signals
in V on A. By the shift-invariance, it suffices to find a set � ⊂ A and functions
dγ (x), γ ∈ �, such that

| f (x)|2 =
∑
γ∈�

dγ (x)| f (γ )|2, x ∈ A (6.3)
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hold for all f ∈ V . By the assumption on V , V |A is finite-dimensional. Let gn ∈
V , 1 ≤ n ≤ N , be a basis for V |A, and W be the linear space spanned by symmetric
matrices

G(x) := (
gn(x)gn′(x)

)
1≤n,n′≤N , x ∈ A.

Then there exists a finite set � ⊂ A with cardinality at most N (N + 1)/2 such that
G(γ ), γ ∈ �, are a basis for the space W . This implies that for any x ∈ A there exist
dγ (x), γ ∈ �, such that

G(x) =
∑
γ∈�

dγ (x)G(γ ), x ∈ A.

For any f ∈ V , we write f (x) = ∑N
n=1 cngn(x), x ∈ A. Then

| f (x)|2 =
∣∣∣

N∑
n=1

cngn(x)
∣∣∣
2 =

N∑
n,n′=1

cncn′gn(x)gn′(x)

=
N∑

n,n′=1

cncn′
( ∑

γ∈�

dγ (x)gn(γ )gn′(γ )
)

=
∑
γ∈�

dγ (x)| f (γ )|2, x ∈ A.

This proves (6.3) and hence completes the proof. ��

6.3 Proof of Theorem 3.3

The implication (iii) �⇒ (i) is trivial. By (3.2), local linear independence of φ on
Am, 1 ≤ m ≤ M , and shift-invariance of the linear space V (φ), we obtain that the
generator φ has the global linear independence. Then the implication (i) �⇒ (ii)
follows from Theorem 2.4.

Now it remains to prove (ii) �⇒ (iii). Let �m, 1 ≤ m ≤ M , be finite sets con-
structed in Proposition A.3 with the set A and the space V replaced by Am and V (φ)

respectively, and set � = ∪M
m=1�m . Let f , g ∈ V (φ) satisfy

|g(y)| = | f (y)| for all y ∈ � + Z
d . (6.4)

Then it suffices to prove that

g = δ f (6.5)

for some δ ∈ {−1, 1}. Take l ∈ Z
d and 1 ≤ m ≤ M . By Proposition A.3 and the

shift-invariance of the linear space V (φ), we have

|g(x + l)| = | f (x + l)|, x ∈ Am .
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This, together with shift-invariance of the linear space V (φ) and local complement
property on Am , implies the existence of δl,m ∈ {−1, 1} such that

g(x) = δl,m f (x), x ∈ Am + l. (6.6)

Write f = ∑
k∈Zd c(k)φ(·−k) and g = ∑

k∈Zd d(k)φ(·−k) ∈ V (φ). Then it follows
from (6.6) and local linear independence of the generator φ on Am that

d(k′ + l) = δl,mc(k
′ + l), k′ ∈ KAm , (6.7)

where KAm is given in (2.7).
By (6.7), the proof of (6.5) reduces to showing

δl,m = δ (6.8)

for all l ∈ Z
d and 1 ≤ m ≤ M so that k′ + l ∈ V f for some k′ ∈ KAm . Recall that

c(k) �= 0 for all k ∈ V f . Then by (6.7) there exists δk ∈ {−1, 1} for all k ∈ V f such
that

δl,m = δk

for all l ∈ Z
d and 1 ≤ m ≤ M so that k = k′ + l ∈ V f for some k′ ∈ KAm . Thus it

suffices to prove that

δk = δk̃ for all k, k̃ ∈ V f . (6.9)

By the connectivity of the graph G f , the proof of (6.9) reduces further to proving

δk = δk̃ (6.10)

for all edges (k, k̃) of the graph G f . For an edge (k, k̃) of the graph G f , we have that

S := {x ∈ R
d : φ(x − k)φ(x − k̃) �= 0} �= ∅.

Then there exists 1 ≤ m ≤ M by (2.5) and (3.2) such that S ∩ (Am + k) �= ∅. Thus
k, k̃ ∈ KAm + k, which together with (6.7) and (6.9) implies that δk = δk,m = δk̃ .
Hence (6.10) holds. This completes the proof.

6.4 Proof of Theorem 2.6

By Proposition A.6, there are open sets A1, . . . , AM satisfying the requirements in
Theorem 3.3. Then the conclusion in Theorem 2.6 follows from Theorem 3.3.
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6.5 Proof of Theorem 3.5

Let f = ∑
k∈Zd c(k)φ(· − k) and g = ∑

k∈Zd d(k)φ(· − k) satisfy

|g(y)| = | f (y)| for all y ∈ �′ + Z
d ,

where �′ = ∪M
m=1�

′
m is given in (3.5). Take l ∈ Z

d and 1 ≤ m ≤ M . Then

∣∣∣
∑

k∈KAm+l

d(k)φ(γ ′ + l − k)
∣∣∣ =

∣∣∣
∑

k∈KAm+l

c(k)φ(γ ′ + l − k)
∣∣∣ for all γ ′ ∈ �′

m .

By the assumption on �Am (γ ′), γ ′ ∈ �′
m, 1 ≤ m ≤ M , there exists δl,m ∈ {1,−1}

such that

d(k) = δl,mc(k), k ∈ KAm + l.

Following the same argument as the one used for the implication (ii)�⇒(iii) in The-
orem 3.3, we can find δ ∈ {−1, 1} such that δl,m = δ for all l ∈ Z

d and 1 ≤ m ≤ M .
This completes the proof.

6.6 Proof of Corollary 3.7

The box spline BN has local linear independence on (0, 1)d by the characterization in
[19,20,23,31], and the shift-invariant space V (BN) generated by BN has local com-
plement property on (0, 1)d since the restriction of a signal in V (BN) on (0, 1)d is
a polynomial of finite degree. Therefore the requirements for the generator BN in
Theorem 3.3 are satisfied with M = 1 and A1 = (0, 1)d .

It is observed that the function �(0,1)d in (2.6) is a vector-valued polynomial of
degree N − 1, and its outer product �(0,1)d (x)�(0,1)d (x)

T , x ∈ (0, 1)d is a matrix-
valued polynomial of degree 2N− 2. Recall that Xi is a discrete set containing 2Ni −
1 distinct points in (0, 1), 1 ≤ i ≤ d. Therefore one may verify by induction on
dimension d that �(0,1)d (y)�(0,1)d (y)

T , y ∈ X1 × · · · × Xd , is a spanning set of the
linear space spanned by �(0,1)d (x)�(0,1)d (x)

T , x ∈ (0, 1)d . Therefore the conclusion
follows by applying the argument used in the proof of Theorem 3.3 with M = 1 and
A1 = (0, 1)d .

6.7 Proof of Corollary 3.8

From the argument used in the proof of Corollary 3.7, the requirements for the gener-
ator BN in Theorem 3.5 are satisfied with M = 1 and A1 = (0, 1)d .

By the local linear independence on (0, 1)d for the box spline BN, there exists a
nonsingular matrix A of size N × N such that

�(0,1)d (x) = AxN for all x ∈ (0, 1)d , (6.11)
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where xN = (xk)
Z
d+�k≤N is a N -dimensional column vector. For M ≥ N , let

�(0,1)d (y1, . . . , yM) = [
�(0,1)d (y1), . . . , �(0,1)d (yM)

]

be the matrix of size N × M with columns �(0,1)d (yi ), yi ∈ (0, 1)d , 1 ≤ i ≤ M.
Then

det�(0,1)d (y1, . . . , yN ) = det A
∑

0≤α1,...,αN ≤N

ε(α1, . . . , αN )yα1
1 . . . yαN

N (6.12)

is a nonzero polynomial about y1, . . . , yN by (6.11), where the sum is taken over
the set of all mutually distinct 0 ≤ αi ≤ N, 1 ≤ i ≤ N , where ε(α1, . . . , αN ) ∈
{−1, 1}. Hence for almost all (y1, . . . , y2N−1) ∈ (0, 1)d × . . . × (0, 1)d , all N × N
submatrices of �(0,1)d (y1, y2, . . . , y2N−1) are nonsingular. This together with the
complement property [7] for frames implies that �(0,1)d (yi ), 1 ≤ i ≤ 2N − 1, are
phase retrievable frames for almost all (y1, . . . , y2N−1) ∈ (0, 1)d × . . . × (0, 1)d .
Therefore the conclusion follows from Theorem 3.5.

6.8 Proof of Theorem 4.1

Given � ⊂ R
d and f = ∑

k∈Zd c(k)φ(· − k), we define

G̃ f ,� = (V f , E f ,�), (6.13)

where (k, k′) ∈ E f ,� only if φ(y − k)φ(y − k′) �= 0 for some y ∈ � + Z
d . To prove

Theorem 4.1, we need a lemma about the graph G f .

Lemma 6.2 Let φ, Am and �m, 1 ≤ m ≤ M, be as in Theorem 4.1. Set � = ∪M
m=1�m.

Then for any f ∈ V (φ), the graph G f in (2.3) and G̃ f ,� in (6.13) are the same,

G f = G̃ f ,�. (6.14)

Proof Clearly it suffices to prove that an edge in G f is also an edge in G̃ f ,� . Suppose,
on the contrary, that there exists an edge (k, k′) in G f such that

φ(y − k)φ(y − k′) = 0 for all y ∈ ∪M
m=1�m + Z

d . (6.15)

Define

S = {x ∈ R
d : φ(x − k)φ(x − k′) �= 0} �= ∅. (6.16)

By (3.2), there exist l0 ∈ Z
d and 1 ≤ m0 ≤ M such that

S ∩ (Am0 + l0) �= ∅. (6.17)
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Set g±(x) = φ(x + l0 − k) ± φ(x + l0 − k′), x ∈ Am0 . Then it follows from (6.15)
that

|g±(γ )| = |φ(γ + l0 − k)| + |φ(γ + l0 − k′)|, γ ∈ �m0 .

By the construction of the set �m0 , we get either g+ = g− or g+ = −g− on Am0 .
Therefore either φ(x + l0 − k) ≡ 0 on Am0 or φ(x + l0 − k′) ≡ 0 on Am0 . This
contradicts to the construction of set S in (6.16) and (6.17). ��

Now, we continue the proof of Theorem 4.1.

Proof of Theorem 4.1 Take l ∈ Z
d and 1 ≤ m ≤ M . For any γ ∈ �m , there exists

δ̃γ,l;m ∈ {−1, 1} such that

( ∑
γ∈�m

∣∣∣∣
∑

k∈l+�m

(cε,l;m(k) − δ̃γ,l;mc(k))φ(γ + l − k)

∣∣∣∣
2)1/2

=
( ∑

γ∈�m

∣∣∣∣
∣∣∣

∑
k∈l+�m

cε,l;m(k)φ(γ + l − k)
∣∣∣

−
∣∣∣

∑
k∈l+�m

c(k)φ(γ + l − k)
∣∣∣
∣∣∣∣
2)1/2

≤
( ∑

γ∈�m

∣∣∣∣
∣∣∣

∑
k∈l+�m

cε,l;m(k)φ(γ + l − k)
∣∣∣ − zε(γ + l)

∣∣∣∣
2)1/2

+
( ∑

γ∈�m

∣∣∣∣
∣∣∣

∑
k∈l+�m

c(k)φ(γ + l − k)
∣∣∣ − zε(γ + l)

∣∣∣∣
2)1/2

≤ 2

( ∑
γ∈�m

∣∣∣∣
∣∣∣

∑
k∈l+�m

c(k)φ(γ + l − k)
∣∣∣ − zε(γ + l)

∣∣∣∣
2)1/2

≤ 2
√
#�m‖ε‖∞ ≤ 2

√
#�‖ε‖∞, (6.18)

where the second inequality holds by (4.6) and the last inequality follows from

zε(γ + l) =
∣∣∣

∑
k∈l+�m

c(k)φ(γ + l − k)
∣∣∣ + ε(γ + l), γ ∈ �m .

From the phase retrievable frame property for
(
φ(γ −k)

)
k∈KAm

, γ ∈ �m , we obtain
that

�m = KAm , 1 ≤ m ≤ M . (6.19)

Let Pl,m = {γ ∈ �m : δ̃γ,l;m = 1}. This together with (6.19) and the phase retrievable
frame assumption that either

(
φ(γ − k)

)
k∈�m

, γ ∈ Pl,m or
(
φ(γ − k)

)
k∈�m

, γ ∈
�m\Pl,m is a spanning set for R

#�m . This together with (6.18) implies that
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( ∑
k∈l+�m

∣∣cε,l;m(k) − δ̃l,mc(k)
∣∣2)1/2 ≤ 2‖�−1‖P

√
#�‖ε‖∞ (6.20)

for some sign δ̃l,m ∈ {−1, 1}.
Now we show that phases of cε,l;m, l ∈ Z

d , 1 ≤ m ≤ M , can be adjusted so that
(4.7) holds. Let δ̃l,m, l ∈ Z

d , 1 ≤ m ≤ M , be as in (6.20). Then for any l, l ′ ∈ Z
d and

1 ≤ m,m′ ≤ M , set �l,m;l ′,m′ = (�m + l) ∩ (�m′ + l ′). Then

〈δ̃l,mcε,l;m, δ̃l ′,m′cε,l ′;m′ 〉 =
∑

k∈�l,m;l′,m′
δ̃l,m δ̃l ′,m′cε,l;m(k)cε,l ′;m′(k)

≥
∑

k∈�l,m;l′,m′
|c(k)|2 −

∑
k∈�l,m;l′,m′

|c(k)||δ̃l ′,m′cε,l ′;m′(k) − c(k)|

−
∑

k∈�l,m;l′,m′
|δ̃l,mcε,l;m(k) − c(k)||c(k))|

−
∑

k∈�l,m;l′,m′
|δ̃l,mcε,l;m(k) − c(k)||δ̃l ′,m′cε,l ′;m′(k) − c(k)|

≥ −1

2

∑
k∈�l,m;l′,m′

(
|δ̃l ′,m′cε,l ′;m′(k) − c(k)|2 + |δ̃l,mcε,l;m(k) − c(k)|2

)

−
∑

k∈�l,m;l′,m′
|δ̃l,mcε,l;m(k) − c(k)||δ̃l ′,m′cε,l ′;m′(k) − c(k)|

≥ − 8‖�−1‖2P#�‖ε‖2∞ ≥ −M0, (6.21)

where the third inequality follows from (6.20) and the last inequality holds by the
assumption (4.13) on the noise level ‖ε‖∞ and the threshold value M0.

The phase adjustments in (4.7) for cε,l;m, l ∈ Z
d , 1 ≤ m ≤ M , are not unique.

Next we show that they are essentially the phase adjustments in (6.21), i.e., for the
phase adjustment δl,m ∈ {−1, 1} in (4.7) there exists δ ∈ {−1, 1} such that

δl,mc(k) = δδ̃l,mc(k) for all k ∈ l + �m, l ∈ Z
d , 1 ≤ m ≤ M . (6.22)

To prove (6.22), we claim that

δ̃l,m/δl,m = δl ′,m′/δ̃l ′,m′ (6.23)

for all (l,m) and (l ′,m′)with�l,m;l ′,m′ ∩V f �= ∅. Suppose on the contrary that (6.23)
does not hold. Then

〈δl,mcε,l;m, δl ′,m′cε,l ′;m′ 〉 = −〈δ̃l,mcε,l;m, δ̃l ′,m′cε,l ′;m′ 〉.
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Therefore

〈δl,mcε,l;m, δl ′,m′cε,l ′;m〉
≤ −

∑
k∈�l,m;l′,m′

|c(k)|2 +
∑

k∈�l,m;l′,m′
|c(k)||δ̃l ′,m′cε,l ′;m′(k) − c(k)|

+
∑

k∈�l,m;l′,m′
|δ̃l,mcε,l;m(k) − c(k)||c(k))|

+
∑

k∈�l,m;l′,m′
|δ̃l,mcε,l;m(k) − c(k)||δ̃l ′,m′cε,l ′;m′(k) − c(k)|

≤ −
∑

k∈�l,m;l′,m′
|c(k)|2 + 4

√
#�‖�−1‖P

( ∑
k∈�l,m;l′,m′

|c(k)|2
)1/2‖ε‖∞

+ 4#�‖�−1‖2P‖ε‖2∞
≤ −

∑
k∈�l,m;l′,m′

|c(k)|2 +
(
2M0

∑
k∈�l,m;l′,m′

|c(k)|2
)1/2 + M0

2
< −M0,

where the second inequality follows from (6.20), and the third and fourth inequalities
hold by (4.11), (4.12) and (4.13). This contradicts to the requirement (4.7) for the
phase adjustment and hence completes the proof of the Claim (6.23).

By (6.23), for any k ∈ V f there exists δk ∈ {−1, 1} such that

δl,mc(k) = δk δ̃l,mc(k) for all k ∈ l + �m . (6.24)

Let (k1, k2) be an edge in G f . By Lemma 6.2 there exist l ∈ Z
d and 1 ≤ m ≤ M such

that k1, k2 ∈ �m + l. Therefore

δl,mc(k1) = δk1 δ̃l,mc(k1) and δl,mc(k2) = δk2 δ̃l,mc(k2)

by (6.24). This implies that δk1 = δk2 for any edge (k1, k2) in G f . Combining it with
the connectivity of the graph G f , we can find δ ∈ {−1, 1} such that

δk = δ for all k ∈ V f . (6.25)

Combining (6.24) and (6.25) proves (6.22).
By (6.20) and (6.22), we obtain

|dε(k) − δc(k)| ≤
∑M

m=1
∑

l∈Zd |δl,mcε,l;m(k) − δc(k)|χl+�m (k)∑M
m=1

∑
l∈Zd χl+�m (k)

=
∑M

m=1
∑

l∈Zd |cε,l;m(k) − δ̃l,mc(k)|χl+�m (k)∑M
m=1

∑
l∈Zd χl+�m (k)

≤ 2
√
#�‖�−1‖P‖ε‖∞, k ∈ Z

d . (6.26)
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This together with (4.12) and (4.13) implies that

|dε(k)| ≥ √
2M0 for all k ∈ V f (6.27)

and

|dε(k)| ≤ √
M0/2 for all k /∈ V f . (6.28)

Combining (4.9), (6.26), (6.27) and (6.28) completes the proof of the desired error
estimates (4.14) and (4.15). ��
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Appendix A: Local Complement Property

A linear space V on R
d is said to be locally finite-dimensional if it has finite-

dimensional restrictions on any bounded open set. Examples of locally finite-
dimensional spaces include the space of polynomials of a fixed degrees, the
shift-invariant space generated by finitely many compactly supported functions, and
their linear subspaces. The reader may refer to [5] and references therein on locally
finite-dimensional spaces. In Sect. 6.2, we have discussed phaseless sampling on a
locally finite-dimensional space. In this section, we consider the local complement
property for a locally finite-dimensional space, cf. Definition 3.2.

Definition A.1 Let V be a linear space of real-valued continuous functions on R
d , and

A ⊂ R
d . We say that V has local complement property on A if for any A′ ⊂ A there

does not exist f , g ∈ V such that f , g �≡ 0 on A, f ≡ 0 on A′ and g ≡ 0 on A\A′.

In the following theorem, we establish the equivalence between the local comple-
ment property on a bounded open set and complement property for ideal sampling
functionals on a finite subset, cf. [16].

Theorem A.2 Let A be a bounded open set and V be a locally finite-dimensional space
of real-valued continuous signals on R

d . Then V has the local complement property
on A if and only if there exists a finite set � ⊂ A such that for any �′ ⊂ � either there
does not exist f ∈ V satisfying

f �≡ 0 on A and f (γ ′) = 0, γ ′ ∈ �′, (A.1)

or there does not exist g ∈ V satisfying

g �≡ 0 on A and g(γ ) = 0, γ ∈ �\�′. (A.2)

To prove the sufficiency of Theorem A.2, we need a proposition.
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Proposition A.3 Let A be a bounded open set and V be a locally finite-dimensional
space of real-valued continuous signals on R

d . Then there exist a finite set � ⊂ A and
functions dγ (x), γ ∈ �, such that

| f (x)|2 =
∑
γ∈�

dγ (x)| f (γ )|2, x ∈ A (A.3)

hold for all f ∈ V .

Proof Let gn, 1 ≤ n ≤ N , be a basis of the space V |A, and W be the linear space
spanned by symmetric matrices G(x) := (

gn(x)gn′(x)
)
1≤n,n′≤N , x ∈ A. Then there

exists a finite set � ⊂ A such that G(γ ), γ ∈ �, is a basis (or a spanning set) for the
space W . With the above set �, we can follow the proof of Theorem 6.1 in Sect. 6.2
to prove (A.3). ��

Now we prove Theorem A.2.

Proof of TheoremA.2 We prove the necessity by an indirect proof. Suppose, on the
contrary, that V does not have the local complementary property on A. Then there
exist a subset A′ ⊂ A and nonzero functions f , g ∈ V on A such that f (x) = 0 for
all x ∈ A′ and g(y) = 0 for all y ∈ A\A′. This leads to a contradiction by taking a
finite subset � ⊂ A and letting �′ = � ∩ A′.

To prove the sufficiency, let � be as in Proposition A.3. Suppose, on the contrary,
that there exist nonzero functions f , g ∈ V on A such that (A.1) and (A.2) are satisfied
for some set �′ ⊂ �. Let f1 = f +g and f2 = f −g. We obtain from (A.1) and (A.2)
that | f1(γ )| = | f2(γ )| for all γ ∈ �. This together with Proposition A.3 implies that
| f1(x)| = | f2(x)| for all x ∈ A. Since V (φ) has local complement property on A, we
have that either f1 = f2 or f1 = − f2. Therefore either f = 0 or g = 0 on A, which
contradicts to our assumption on functions f and g.

��
Let gn, 1 ≤ n ≤ N , be a basis of the space V |A and let � be chosen in the proof of

Proposition A.3. Then Theorem A.2 can be reformulated as follows: V has the local
complement property on A if and only if for any �′ ⊂ � either there does not exist
a nonzero vector (c0(n))1≤n≤N such that

∑N
n=1 c0(n)gn(γ ′) = 0 for all γ ′ ∈ �′ or

there does not exist a nonzero vector (c1(n))1≤n≤N such that
∑N

n=1 c1(n)gn(γ ) = 0
for all γ ∈ �\�′. Thus the linear space V has the local complement property on A if
and only if for any �′ ⊂ �, either (gn(γ ′))1≤n≤N , γ ′ ∈ �′ form a frame for R

N or
(gn(γ ))1≤n≤N , γ ∈ �\�′ form a frame for R

N . The above characterization together
with [7, Theorem 2.8] implies that the following criterion that can be used to verify
the local complement property on a bounded open set A in finite steps.

Theorem A.4 Let gn, 1 ≤ n ≤ N, be a basis of the space V |A and let � be chosen
in the proof of Proposition A.3. Then the linear space V has the local complement
property on A if and only if (gn(γ ))1≤n≤N , γ ∈ �, is a phase retrievable frame for
R

N .

The local complement property for different open sets could be equivalent. Follow-
ing the argument used in the proof of Theorem A.2, we have
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Proposition A.5 Let A be a bounded open set and V be a locally finite-dimensional
space with the local complement property on A. If B is a bounded open subset of A
such that signals g and f satisfying |g(x)| = | f (x)| on B have the same magnitude
measurements on A, then V has local complement property on B.

The conclusion in the above proposition is not true in general. A linear space may
have the local complement property on a bounded open A, but not on some of its open
supsets and subsets. For instance, the shift-invariant space V (φ0) in Example 2.7 has
the local complement property on (0, 1), but not on its supset (0, 3/2) and its subset
(0, 1/2).

We finish the appendix with a proposition about local linear independence and local
complement property, which is used in the proof of Theorem 2.6.

Proposition A.6 Let φ be a compactly supported continuous function with local linear
independence on any open set. Then there exist Am, 1 ≤ m ≤ M, such that (3.2) holds
and V (φ) has the local complement property on Am, 1 ≤ m ≤ M.

Proof Let Sk, k ∈ Z
d , be as in (2.5). For a set T ⊂ Z

d , define

ST = ∩k∈T Sk = {
x ∈ R

d : φ(x) �= 0 and φ(x − k) �= 0 for all k ∈ T
}
.

We say that T is maximal if ST �= ∅ and ST ′ = ∅ for all T ′
� T . From the definition,

there are finitely many maximal sets T1, . . . , TM , and denote the corresponding sets
by Am := STm , 1 ≤ m ≤ M .

Clearly, (3.2) holds for the above selected open sets as

∪M
m=1Tm = {

k ∈ Z
d : Sk �= ∅}

.

Then it remains to prove thatV (φ)has local complement property on Am , 1 ≤ m ≤ M .
Assume that f , g ∈ V (φ) satisfy | f (x)| = |g(x)| for all x ∈ Am , which implies that
( f + g)(x)( f − g)(x) = 0 for all x ∈ Am . Write f + g = ∑

k∈Zd c0(k)φ(· − k)
and f − g = ∑

k∈Zd c1(k)φ(· − k) for some sequences (c0(k)) and (c1(k)). Set
B1 = {x ∈ Am : ( f +g)(x) �= 0} and B2 = {x ∈ Am : ( f −g)(x) �= 0}. Then either
f − g = 0 on B1, or f + g = 0 on B2, or f − g = f + g = 0 on Am . Hence either
c0(k) = 0 for all k ∈ Tm or c1(k) = 0 on k ∈ Tm by the local independence on B1, or
on B2 or on Am . Therefore either f = g on Am , or f = −g on Am , or f = g = 0 on
Am . This completes the proof. ��
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