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Abstract
In this paper, we study the convergence of adaptive Fourier sums for real-valued 2π -
periodic functions. For this purpose, we approximate the sequence of classical Fourier
coefficients by a short exponential sum with a pre-defined number of N + 1 terms.
The obtained approximation can be interpreted as an adaptive N -th Fourier sum with
respect to the orthogonal Takenaka-Malmquist basis. Using the theoretical results on
rational approximation in Hardy spaces and on the decay of singular values of special
infinite Hankel matrices, we show that adaptive Fourier sums can converge essentially
faster than classical Fourier sums for a large class of functions. Further, we derive an
algorithm to compute almost optimal adaptive Fourier sums. Our numerical results
show that the significantly better convergence behavior of adaptive Fourier sums for
optimally chosen basis elements can also be achieved in practice. For comparison, we
also provide a greedy algorithm to determine an adaptive Fourier sum. This algorithm
requires less computational effort but yields essentially slower convergence.
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1 Introduction

In this paper, we want to study adaptive Fourier expansions of real-valued functions
f in L2(0, 2π ]) using a generalized Fourier basis. In different papers, see e.g. [9,21,
29,30], generalized Fourier bases have been considered with particular applications
in signal processing and system identification, see [9,14].

Before we can state the problem and our results in detail, we need to introduce some
notations. Let T be the unit circle in the complex domain, T := {z ∈ C : |z| = 1}. We
identifyTwith the interval [0, 2π) using themap z = ei t . Let L2([0, 2π)) be the space
of square integrable 2π -periodic functions. The Fourier expansion of f ∈ L2([0, 2π))

reads

f (t) =
∞∑

k=−∞
ck( f ) e

ikt ,

where ck( f ) := 1
2π

∫ 2π
0 f (t)e−iktdt denote the Fourier coefficients of f . Further, let

〈 f , g〉L2 := 1

2π

∫ 2π

0
f (t) g(t)dt (1.1)

be the inner product in L2([0, 2π)), and ‖ · ‖L2 denotes the corresponding norm. We
assume that f is real-valued, then c−k( f ) = ck( f ), and hence

f (t) = c0( f ) +
∞∑

k=1

(
ck( f ) e

ikt + ck( f ) e
−ikt

)
,

i.e., f (t) = 2Re f +(t), where

f +(t) := c0( f )

2
+

∞∑

k=1

ck( f ) e
ikt =

∞∑

k=0

ck( f
+) eikt . (1.2)

Let H2 ⊂ L2([0, 2π)) be the Hardy space of all functions f in L2([0, 2π)) for
which all negative Fourier coefficients vanish, i.e., c−k( f ) = 0 for k ∈ N. Obviously,
f + ∈ H2. We introduce the generalized Fourier system, the so-called Takenaka-
Malmquist system,

B0 =
√
1 − |z0|2

1 − z0 ei t
, B�(t) =

√
1 − |z�|2

1 − z� ei t

�−1∏

k=0

ei t − zk
1 − zk ei t

, � = 1, 2, . . . . (1.3)

The function system {B�}∞�=0 is completely determined by the sequence of “zeros”
{z�}∞�=0 wherewe assume that |z�| ≤ c < 1 for all � ≥ 0, see e.g. [32,33]. This function
system is an orthonormal system with respect to the inner product in (1.1), i.e., we
have 〈B�, Bk〉L2 = δ�,k with δ�,k being the Kronecker symbol. Moreover, this system
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is complete in H2 if and only if
∑

�≥0(1 − |z�|) = ∞. For a proof we refer to [2], p.
244.Note that for z� = 0, � ≥ 0,we obtain the classical Fourier basis B�(t) = ei�t . The
expansion of f + ∈ H2 in this orthogonal system reads f +(t) = ∑∞

k=0〈 f +, Bk〉L2 Bk

with adaptive Fourier coefficients 〈 f +, Bk〉L2 . Further, let

f +
N :=

N∑

k=0

〈 f +, Bk〉L2 Bk (1.4)

denote the N -th adaptive partial Fourier sum. Bultheel and Carrette [9] have shown
that similarly as for the classical Fourier basis, the generalized Fourier coefficients of
a 2π -periodic function with continuous q-th derivative with q > 2 in the Takenaka-
Malmquist basis decay with at least rate N−q . In this case the approximation error
eN ( f +) = ‖ f +− f +

N ‖∞ decayswith rate N 2−q . This result involves only the assump-
tion that z0 = 0 and |z�| ≤ c < 1.

In this paper we want to study the question, how well a given function f + ∈
H2 can be approximated by its generalized partial Fourier sum f +

N if the zeros z�
determining the Takenaka-Malmquist system are taken in an (almost) optimal way.
Our considerations are inspired by the study of adaptive Fourier series in [29] on the
one hand and by our own results on approximation by exponential sums on the other
hand, [23–25].

Our approach relies on the following idea. For a given classical Fourier expansion
(1.2) of f + ∈ H2 we try to approximate the sequence of Fourier coefficients c( f +) =
(ck( f +))∞k=0 by a sequence c̃ = c̃(N ) = (̃ck)∞k=0 being a finite linear combination of
non-increasing exponentials, i.e.,

c̃k =
N∑

�=0

a�z
k
�, k ∈ N0, (1.5)

with coefficients a� ∈ C and z� ∈ D0, where D0 := {z ∈ C : |z| < 1} denotes
the open unit disk. The goal is now to choose a� and z� such that ‖c( f +) − c̃‖2

�2
:=∑∞

k=0 |ck( f +) − c̃k |2 ≤ ε with ε as small as possible. Then

f̃ +(t) :=
∞∑

k=0

c̃k e
ikt

satisfies ‖ f + − f̃ ‖2
L2 ≤ ε by Parseval identity.

Using the special representation (1.5) for c̃k we will show that f̃ + can be written
as an N -th adaptive partial Fourier sum

f̃ +(t) =
N∑

�=0

b� B�(t)

in the Takenaka-Malmquist basis, where the basis elements {B�}N�=0 are determined
by the zeros z� in (1.5) and the coefficients b� can be obtained from a� in (1.5) by a
bijective linear map. Therefore, the problem to find an appropriate sequence of zeros
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{z�} that determine the adaptive Fourier basis {B�}N�=0 in (1.3) can be reformulated as
a problem of sparse approximation with exponential sums:

For a given decaying sequence c( f +) we want to find a new sequence c̃(N ) :=
(̃ck)∞k=0 of the form (1.5) such that ‖c( f +) − c̃(N )‖2

�2
≤ ε.

Practically, we have to solve the following problems. For a given accuracy level
ε > 0, find the smallest N ∈ N such that c̃(N ) in (1.5) satisfies ‖c( f +)− c̃(N )‖2

�2
≤ ε,

and compute z� ∈ D and a� ∈ C, � = 0, . . . , N , determining c̃(N ). Vice versa, for a
given “storage budget”, i.e., a given N ∈ N, find the parameters in (1.5) in order to
achieve the smallest possible error ‖c( f +) − c̃(N )‖2

�2
.

Our paper has two goals. First, we want to study the following question. What is
the asymptotic error behavior of ‖ f + − f +

N ‖L2 for N → ∞ compared to the decay
of the classical Fourier sums that can be achieved? Second, we want to present a new
computational method to explicitly compute the adaptive partial Fourier sum f +

N with
a presumed small error ε such that N is as small as possible by employing a (suitably
large) finite number of classical Fourier coefficients (ck( f +))Lk=0. This algorithm
particularly includes the computation of the zeros {z�}N�=0 needed to determine the
Takenaka-Malmquist basis for the adaptive partial Fourier sum f +

N . We will also
observe that optimal zeros z� will depend on the considered length of the sum N .

We will apply the theory of Adamjan, Arov and Krein (AAK theory) [1] to solve
the problem of sparse approximation of the sequence of classical Fourier coefficients
by exponential sums. This theory is strongly related to the problem of rational approx-
imation of functions in Hardy spaces and has been studied also with respect to its
applications in signal processing and system identification, see e.g. [1,6,10,17,18,20,
22,35]. For earlier approaches on the application of the AAK theory in order to solve
sparse approximation problems using exponential sums we refer to [7] and [3].

The AAK theory gives us a tool to relate the approximation error ‖c( f +)− c̃(N )‖�2

to singular values of special infiniteHankelmatrices that are generated by the sequence
c( f +). Using this relation, we will be able to estimate the decay of the error ‖ f + −
f +
N ‖L2 by inspecting the decay of the singular values of these infinite Hankel matrices.

At this point, we can use recent results by Pushnitski and Yafaev [27], who derived
sharp estimates for singular values of Hankel operators. Roughly speaking, we can
conclude that the decayO(N−1(log N )−α) of the sequence c( f +) of classical Fourier
coefficients can lead to the decay O(N−α) for the error ‖ f + − f +

N ‖L2 of the N -th
adaptive partial Fourier sum. Thus, under certain side conditions, we will show that
one can even achieve exponential decay of the error for the adaptive Fourier sumwhile
the classical Fourier sum may not even possess quadratic decay, see Theorem 3.5.

In the second part of the paper, we present a new algorithm for solving the sparse
approximation problem (1.5). The procedure consists of two steps. In the first step we
approximate the given vector (ck( f +))Lk=0 by a vector c̆ = (c̆k)Lk=0 of the form

c̆k :=
M∑

�=0

ă� z̆
k
�

with possibly large M < L where ă� ∈ C \ {0} and with pairwise different z̆� ∈ D :=
{z ∈ C : 0 < |z| < 1}. This can either be done by interpolation or by employing
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a stabilized Prony method, like APM [26] to the given data (ck( f +))Lk=0 and taking
M < L/2. In a second step, we present our new algorithm to explicitly compute the
non-zero singular values of the infinite Hankel matrix generated by c̆. The decay of
these singular values will give us a criteria, how to choose the number N such that a
sequence c̃(N ) in (1.5) built by an exponential sum of length N + 1 provides an error
‖c̆ − c̃‖2

�2
being smaller than a predefined ε. Furthermore, our algorithm will provide

the zeros z� and coefficients a� to compute c̃(N ) in (1.5).
We emphasize that the sequences c̃(N ) in (1.5) obtained by our algorithm lead to

adaptive partial Fourier sums that are optimal in the sense of the AAK theory if the
sequence c( f +) of classical Fourier coefficients of f + coincides with c̆ for some M .
This is the case if f + is a rational function.

For comparison, we also provide a greedy algorithm that searches for appropriate
zeros z� for the Takenaka-Malmquist basis step by step. Here we apply a simple
adaption of Prony’s method for exponential sums of length 1.

Our numerical experiments impressively support our theoretical result that the
appropriate choice of zeros z� in the adaptive Fourier basis leads to a significantly faster
decay of the adaptive partial Fourier sums. In contrast, the simple greedy approach
leads to an error that decays only slightly faster than the error of the classical partial
Fourier sums.

This paper is organized as follows. In Sect. 2 we present a further basis {P�}∞�=0
such that {B�}N�=0 and {P�}N�=0 span the same subspaces for each N , and we describe
the corresponding basis transform. We prefer the basis {P�}∞�=0 in the theoretical
observations since it simplifies our representations. Section 3 is devoted to the study
of the decay of adaptive partial Fourier series that can be achieved. In Sect. 4 we
derive an algorithm to compute (almost) optimal zeros z� = z(N )

� , � = 0, . . . , N ,
such that the corresponding N -th adaptive partial Fourier sum f +

N satisfies a small
predetermined error bound. In Sect. 5we also present amuch simpler greedy algorithm
to compute the zeros z� determining the Takenaka-Malmquist basis consecutively.
Finally, in Sect. 6 we present numerical results for the decay of Fourier sums for three
different examples. In the first example, we consider the Fourier expansion of a rational
function, where our algorithm gives the optimal results according to AAK theory. in
the second example we examine a non-rational smooth function. In the third example
we study the adaptive Fourier sum of a piecewise smooth function with jumps such
that the classical Fourier coefficients do not satisfy the assumption in Theorem 3.5.
Our numerical results impressively show that a good choice of zeros in the adaptive
Fourier basis leads to a significantly faster decay of adaptive partial Fourier sums
compared to the classical Fourier sums. In the last example, the Gibbs phenomenon
occurs however for the adaptive Fourier sum similarly as in the classical case.

2 Adaptive Fourier Bases

Preliminary, we want to present a different basis that is closely related to the
Takenaka-Malmquist basis and simplifies our representations using approximations
with exponential sums.
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For a given vector of pairwise different values (z0, z1, . . . , zN ) with 0 < |z�| < 1
let

P�(t) := 1

(1 − z�ei t )
, � = 0, . . . , N . (2.1)

More generally, if 0 or multiple values occur in the vector (z0, . . . , zN ), let M� + 1 be
the number of different values in (z0, . . . , z�) that are denoted by z̃0, . . . , z̃M�

. Let K j,�

be the multiplicity of z̃ j in (z0, . . . , z�) such that K0,� + K1,� + . . . + KM�,� = � + 1.
Further, let μ� be the multiplicity of 0 in the vector (z0, . . . , z�−1). If z� = z̃ j , we
define P� by

P�(t) := ei tμ�

(1 − z̃ jei t )K j,�
. (2.2)

Theorem 2.1 The set of functions {B� : � = 0, . . . , N } determined by (1.3) with the
zeros z0, z1, . . . zN in D0 spans the same subspace as {P� : � = 0, . . . , N } given in
(2.1) and (2.2), respectively.

Proof Let us first assume that z0, . . . , zN are pairwise different and nonzero. Then the
functions B�(t) in (1.3) can be written in the form

B�(t) =
√
1 − |z�|2

�∑

j=0

p�, j

1 − z jei t
, � = 0, . . . , N , (2.3)

where the coefficients p�, j are uniquely determined by employing a partial fraction
decomposition. More exactly, determining the functions

Λ�, j (t) :=
∏�

k=0(1 − zkei t )

(1 − z jei t )
j = 0, . . . , �,

we find from (1.3) and (2.3) that

�∑

j=0

p�, jΛ�, j (t) =
�−1∏

k=0

(ei t − zk), � = 0, . . . , N ,

and p�, j are uniquely determined by comparing the coefficients of the trigonometric
polynomials of degree � with respect to the powers ei tk , k = 0, . . . , �. In particular, it
follows that p�,� �= 0. Thus, comparison with (2.1) yields

B�(t) =
√
1 − |z�|2

�∑

j=0

p�, j Pj (t), � = 0, . . . , N . (2.4)
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The system (2.4) implies

⎛

⎜⎜⎜⎝

(1 − |z0|2)−1/2B0(t)
(1 − |z1|2)−1/2B1(t)

...

(1 − |zN |2)−1/2BN (t)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

p0,0 0 . . . 0

p1,0 p1,1
...

...
. . . 0

pN ,0 . . . pN ,N−1 pN ,N

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

P0(t)
P1(t)

...

PN (t)

⎞

⎟⎟⎟⎠ ,

showing that the transform is invertible.
If the vector (z0, . . . , zN ) contains the value z j = 0 or multiple values, then we

find with the same notations as for the general definition of P� in (2.2) the generalized
partial fraction decomposition of the form

B�(t) =
√
1 − |z�|2 eμ�i t

M�∑

j=0

K j,�∑

r=1

p�, j,r

(1 − z̃ j ei t )K j,�
.

Now, similarly as before we observe that B�(t) can be written as a linear combination
of the functions Pj , j = 0, . . . , � obtained from these �+1 zeros, and in particular the
coefficients p�, j,K j,� do not vanish. Therefore we get again an invertible linear system
relating P�(t) and B�(t). �

Remark 2.2 Originally, the construction of the Takanaki-Malmquist basis is obtained
the other way around. For a given sequence {̃z�} of pairwise different zeros in D and
corresponding multiplicities K� (where at most one multiplicity can be infinite), one
can start with the functions 1

(1−̃z�eit )ν
, � ∈ N, 1 ≤ ν ≤ K�, and obtains the Takenaka-

Malmquist basis by a Gram-Schmidt orthogonalization procedure with respect to the
inner product (1.1), see [33].

3 Adaptive Fourier Sums and its Convergence

Let us assume that f (t) = 2Re f +(t) is a real-valued function in L2(R) with

f +(t) =
∞∑

k=0

ck( f
+) eikt .

Our main goal is to generate a new adaptive Fourier basis {B�} as given in (1.3)
such that the adaptive N -th Fourier sums f +

N of f + in (1.4) have significantly faster

decay for N → ∞ than the classical Fourier sums SN ( f ) := ∑N
k=0 ck( f

+)eik·. For
this purpose we need to choose the sequence of zeros {z�}N�=0 defining the adaptive
Fourier basis {B�}N�=0 in an appropriate way. In this section we will show that indeed
a strong decay of the adaptive Fourier sums can be achieved. The crucial idea to find
the adaptive basis is the approach to approximate the sequence of classical Fourier
coefficients by finite exponential sums.
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For a given function f + ∈ H2 we will approximate c( f +) = (ck( f +))∞k=0 by a
new sequence c̃(N ) = c̃ = (̃ck)∞k=0 with coefficients being given by an exponential
sum of length N + 1,

c̃k =
N∑

�=0

a�z
k
�, (3.1)

where the parameters a� ∈ C and z� ∈ D have to be suitably chosen such that
‖̃c(N ) − c( f +)‖2

�2
:= ∑∞

k=0 |̃ck − ck( f +)|2 ≤ ε for some small ε. Taking now the

approximation f +
N (t) := ∑∞

k=0 c̃k e
ikt we immediately obtain the error estimate

‖ f + − f +
N ‖2L2 = ‖c( f +) − c̃(N )‖2

�2
≤ ε

by Parseval identity. Approximating the sequence of Fourier coefficients of f + as
given in (3.1), we find

f +
N (t) =

∞∑

k=0

c̃k e
ikt =

∞∑

k=0

( N∑

�=0

a�z
k
�

)
eikt

=
N∑

�=0

a�

∞∑

k=0

(z�e
i t )k =

N∑

�=0

a�

1

(1 − z�ei t )
=

N∑

�=0

a� P�(t), (3.2)

i.e., f +
N can be written with only N + 1 terms in the basis {P�}N�=0. This observation

justifies that we call this approximation f +
N . By Theorem 2.1, f +

N can also bewritten as
an expansion of N +1 terms in the orthogonal Takenaka-Malmquist basis determined
by the zeros (z0, . . . , zN ) in (3.1).

In formulas (3.1) and (3.2) we have for simplicity assumed that the zeros z� have
multiplicity 1. In the general case we can replace (3.1) by

c̃k =
M∑

�=0

K�−1∑

ν=0

a�,ν

(
k

ν

)
z̃k�, (3.3)

where z̃0, . . . , z̃M are nonzeropairwise different zeroswithmultiplicities K0, . . . , KM ,
respectively, and K0 + . . . + KM = N + 1. Then Theorem 2.1 implies

f +
N (t) =

∞∑

k=0

c̃ke
ikt =

∞∑

k=0

M∑

�=0

K�−1∑

ν=0

a�,ν

(
k

ν

)
(̃z� e

it )k

=
M∑

�=0

K�−1∑

ν=0

a�,ν z̃
ν
�

( ∞∑

k=0

(̃z� e
it )k

)ν+1 =
M∑

�=0

K�−1∑

ν=0

a�,ν z̃ν�
(1 − z̃�eit )ν+1 , (3.4)

which can also be written as a linear combination of basis functions P�, � = 0, . . . , N .
In the computation above we have used the identity
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∞∑

k=0

(
k

ν

)
zk = zν

ν!
( ∞∑

k=ν

zk
)(ν) = zν

ν!
( 1

1 − z

)(ν) = zν

(1 − z)ν+1

for |z| < 1, where the upper index (ν) means here the ν-th derivative.
Using this approach we can reformulate the problem of finding an (almost) optimal

adaptive Fourier basis as the problem to find an optimal approximation of the sequence
of classical Fourier coefficients by a sequence obtained from a short exponential sum.
Therefore, we consider now the question how to obtain for a fixed N a sequence
c̃(N ) = (̃ck)∞k=0 of the form (3.1) or (3.3) such that ‖̃c(N ) − c( f +)‖�2 is as small as
possible. In this section we first consider the theoretic problem. Using the Theorem
of Adamjan, Arov and Krein and the properties of infinite Hankel matrices, we will
be able to show that one can achieve very fast convergence rates for adaptive Fourier
sums for a large class of functions.

3.1 Infinite Hankel Matrices and the AAKTheorem

In the following we denote by �p := �p(N0) the space of p-summable sequences
v = (vk)

∞
k=0 with the norm ‖v‖p := (∑∞

k=0 |vk |p
)1/p, 1 ≤ p < ∞. LetD be the open

unit disc without zero, D := {z ∈ C : 0 < |z| < 1}. For a sequence v = (vk)
∞
k=0 ∈ �2

and z ∈ D we call

Pv(z) :=
∞∑

k=0

vk z
k

its corresponding Laurent polynomial and Pv(eit ), t ∈ R, its Fourier series. Further,
for c ∈ �2 we define the infinite Hankel matrix

�c :=

⎛

⎜⎜⎜⎝

c0 c1 c2 · · ·
c1 c2 c3 · · ·
c2 c3 c4 · · ·
...

...
...

. . .

⎞

⎟⎟⎟⎠ = (
ck+ j

)∞
k, j=0 . (3.5)

If the sequence c can be obtained as the (sub)sequence of Fourier coefficients, i.e.,
c = (ck( f ))∞k=0 for a function f ∈ L∞([0, 2π)), then �c is a bounded operator on
�2, see the Theorem of Nehari [19] or [35], Theorem 15.18. Moreover, �c is compact
on �2 if c = (ck( f ))∞k=0 for a continuous function f ∈ C([0, 2π)), see [12].

We assume that c is contained in the weighted Hilbert space

�2w :=
{
c ∈ �2 :

∞∑

k=0

(k + 1)|ck |2 < ∞
}

⊂ �2.

Then �c maps a sequence v = (v j )
∞
j=0 ∈ �2 into �2, and with

�c v =
( ∞∑

j=0

ck+ j v j

)∞
k=0

for v := (vk)
∞
k=0
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it follows by Cauchy Schwarz inequality that

‖�cv‖2�2 =
∞∑

k=0

∣∣
∞∑

j=0

c j+k v j

∣∣∣
2 ≤

∞∑

k=0

‖(ck+ j )
∞
j=0‖2�2 ‖v‖2

�2

=
( ∞∑

k=0

(k + 1) |ck |2
)

‖v‖2
�2

= ‖c‖2
�2w

‖v‖2
�2

.

Observe that �1 ⊂ �2w since c ∈ �1 implies that

∞∑

k=0

(k + 1)|ck |2 ≤ sup
k∈N0

|(k + 1)ck | ‖c‖�1 < ∞.

We want to apply now the Theorem of Adamjan, Arov and Krein [1] together with
some new results on the decay of singular values of Hankel operators by Pushnitski
and Yafarev [27] in order to show the strong convergence properties of adaptive N -th
Fourier sums in (1.4) if we take appropriate zeros {z�}N�=0 to determine B�(t).

Theorem 3.1 (Adamjan, Arov and Krein). Let c ∈ �2w be a given sequence and let �c
be the corresponding infinite Hankel matrix on �2. Further, let σ0(�c) ≥ σ1(�c) ≥
σ2(�c) ≥ . . . denote the singular values of �c in decreasing order. Then, for each
N ∈ N0 there exists an infinite Hankel matrix �c̃ of rank N + 1 such that

‖�c − �c̃‖�2→�2 = σN+1(�c).

For the proof of this theorem we refer to [1] or to [22].
We consider now Hankel operators with finite rank N + 1 in more detail. Let

c̃ = (̃ck)∞k=0 be a special sequence of the form (3.1) or (3.3). Then c̃ ∈ �1 and thus in
�2w since (3.1) implies

‖̃c‖�1 =
∞∑

k=0

|̃ck | =
∞∑

k=0

∣∣∣∣∣∣

N∑

j=0

a j z
k
j

∣∣∣∣∣∣
≤

N∑

j=0

( ∞∑

k=0

|a j z
k
j |
)

=
N∑

j=0

|a j |
1 − |z j | < ∞.

The estimate follows similarly for (3.3). We recall the following property of the cor-
responding infinite Hankel matrix �c̃, see e.g. [35], Theorem 16.13.

Theorem 3.2 (Kronecker). The Hankel operator �c̃ : �2 → �2 generated by c̃ =
(̃ck)∞k=0 ∈ �1 has finite rank N + 1, if and only if c̃ is of the form (3.1) or (3.3).

Proof For reader’s convenience we provide a short proof that also gives some insight
into the connection to difference equations. Let z0, . . . , zN be the zeros in (3.1) and
(3.3), respectively, where in the second case the multiplicities are taken into account.
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1. We define the characteristic polynomial P(z) by the values z0, . . . , zN ,

P(z) :=
N∏

j=0

(z − z j ) =
N+1∑

�=0

b�z
�, (3.6)

where the b� are the coefficients in the monomial representation of P(z). Then
(3.1) yields

N+1∑

�=0

b�c̃k+� =
N+1∑

�=0

b�

N∑

j=0

a j z
k+�
j =

N∑

j=0

a j z
k
j (

N∑

�=0

b� z
�
j ) =

N∑

j=0

a j z
k
j P(z j ) = 0

(3.7)
for all k ∈ N0, i.e., (̃ck)∞k=0 satisfies a difference equation of order N+1. Similarly,
from (3.3) it follows for the pairwise different zeros z̃0, . . . , z̃M with multiplicities
K j , j = 0, . . . , M , that

N+1∑

�=0

b�c̃k+� =
N+1∑

�=0

b�

M∑

j=0

K j−1∑

ν=0

a j,ν

(
k + �

ν

)
z̃k+�
j

=
M∑

j=0

K j−1∑

ν=0

a j,ν
z̃νj
ν!

N+1∑

�=0

b�(k+�)(k+�+1) . . . (k+ � − ν + 1)̃z�+k−ν
j

=
M∑

j=0

K j−1∑

ν=0

a j,ν
z̃νj
ν!

[
zk P(z)

](ν)

z=̃z j
= 0,

where
[
zk P(z)

](ν)

z=̃z j
denotes the ν-th derivative of zk P(z) = ∑N+1

�=0 b�z�+k at

z = z̃ j , which vanishes for ν = 0, . . . , K j −1 since z = z̃ j is a zero ofmultiplicity
K j in P(z). Thus, the (N + 1+ k)-th column of �c̃ is a linear combination of the
N + 1 preceding columns for all k, and we conclude rank �c̃ ≤ N + 1. Since
P(z) has exact degree N + 1 it follows that rank �c̃ = N + 1.

2. Conversely, if an infinite Hankel matrix �c̃ generated by c̃ possesses rank N + 1,
then c̃ satisfies a difference equation of order N + 1. Thus, there exist coefficients
b0, . . . , bN+1 such that

N+1∑

l=0

bl c̃k+l = 0 ∀k ∈ N0,

and b0 �= 0, bN+1 �= 0. The theory of difference equations then implies that c̃ can
be written in the form (3.1) or (3.3), see e.g. [5]. �
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3.2 Decay of Adaptive Fourier Sums

Let us assume now that for a given decaying sequence c = c( f +) ∈ �2w of classical
Fourier coefficients of f + ∈ H2 we have found the sequence c̃ of the form (3.1) (or
(3.3)) that generates an infinite Hankel matrix of rank N + 1 as given in Theorem 3.2
satisfying the relation ‖�c − �c̃‖�2→�2 = σN+1(�c) in Theorem 3.1. Then we can
conclude that

‖c − c̃‖�2 ≤ σN+1(�c). (3.8)

This follows easily from the observation

‖c − c̃‖�2 = ‖�c−̃c e0‖�2 ≤ sup
‖v‖

�2=1
‖�c−̃c v‖�2 = ‖�c − �c̃‖�2→�2 ,

where e0 := (1, 0, 0, . . .) ∈ �2.
Now the question remains, how the singular values of the infinite Hankel matrix

�c decay compared to the decay of the generating sequence c. Here, the following
recent theorem about the decay of singular values of Hankel operators comes to our
help, see [27].

Theorem 3.3 (Pushnitski and Yafaev). Let c = (ck)∞k=0 ∈ �2w satisfy the decay condi-
tion

ck = O(k−1(log k)−α), k → ∞ (3.9)

for some α > 0.

1. If 0 < α < 1/2, then the singular values of �c satisfy the estimate

σN (�c) = CαN
−α + o(N−α)

with Cα = 2−απ1−α(B( 1
2α , 1

2 ))
α , where B(·, ·) denotes the Beta function.

2. Let 
 denote the forward difference operator with 
ck := ck+1 − ck, and let
recursively 
mck := 
m−1ck+1 − 
m−1ck for m > 1. If α > 1/2 and c satisfies
(3.9) and


mck = O(k−1−m(log k)−α), k → ∞ (3.10)

for m = 0, . . . , �α� + 1, then

σN (�c) = CαN
−α + o(N−α),

where the constant Cα only depends on α.

For a proof we refer to [27] and [28].

Remark 3.4

1. If we even have the estimates

ck = o(k−1(log k)−α), and 
mck = o(k−1−m(log k)−α), k → ∞,

then it follows that σN (�c) = o(N−α) for N → ∞, see [27,28].
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2. The estimates in Theorem 3.3 on the decay of the singular values of the operator
�c imply that �c is in the Schatten class Sp,∞ with the norm

‖�c‖Sp,∞ := sup
N∈N

N 1/pσN (�c) < ∞

for p = 1/α. It has been already shown by Peller [22] that �c ∈ Sp,p with

‖�c‖p
Sp,p

:=
∞∑

n=1

σn(�c)
p < ∞,

if and only if c is a sequence of Fourier coefficients for a function f in the Besov
space B1/p

p . The above theorem also implies that we can even have a decay of
singular values of �c being faster than any polynomial.

3. In [34] it has been shown that for ck = (1 + k)−γ , γ > 1, the singular values of
�c satisfy

σN (�c) = exp
(

− π
√
2γ N + o(

√
N )

)
, N → ∞.

The results by Pushnitsky and Yafaev fill the gap between having decay (1+ k)−1 and
(1+ k)−γ with γ > 1. Observe however that for ck = (k+1)−1 we obtain the Hilbert
matrix �c, and this operator is not compact, see [22], Chapter 10.

Using the considerations above, we arrive at the following result.

Theorem 3.5 Let f +(t) = ∑∞
k=0 ck( f

+) eikt be a function in H2. If c = (ck( f +))∞k=0
satisfies the decay conditions (3.9) and (3.10) for α > 1/2 then for each N ∈ N, there
exists a vector of zeros z(N )

0 , . . . , z(N )
N determining a Takenaka-Malmquist system

{Bk}Nk=0 such that the N-th adaptive partial Fourier sum f +
N = ∑N

k=0〈 f , Bk〉L2Bk

satisfies the asymptotic estimate

‖ f + − f +
N ‖L2 ≤ CαN

−α

where Cα only depends on α.

Proof From Theorem 2.1 as well as (3.2) and (3.4) it follows that f +
N can be written

in the basis using {Pk : k = 0, . . . , N }, such that f +
N (t) = ∑∞

k=0 c̃
(N )
k ei tk , where the

coefficients c̃(N )
k are of the form

c̃(N )
k =

N∑

j=0

a(N )
j (z(N )

j )k or c̃(N )
k =

M∑

�=0

K�−1∑

ν=0

a(N )
�,ν

(
k

ν

)
(̃z(N )

� )k .

The sequence c̃(N ) = (̃c(N )
k )∞k=0 determines a Hankel operator of rank N + 1. Thus,

if c̃(N ), i.e., the zeros z(N )
j (resp. z̃(N )

j ) and the coefficients a(N )
j (resp. a(N )

j,ν ) are taken
such that
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‖�c − �c̃(N )‖�2→�2 = σN+1(�c),

then it follows from(3.8) that‖c−̃c(N )‖�2 ≤ σN+1(�c). ByTheorem3.1, this sequence
c̃(N ) can always be found, and by Theorem 3.3 we have σN+1(�c) ≤ O(N−α). The
assertion finally follows from Parseval identity,

‖ f + − f +
N ‖L2 = ‖c − c̃(N )‖�2 ≤ ‖�c − �c̃(N )‖�2→�2 = σN+1(�c) ≤ Cα N−α

with the constant Cα from Theorem 3.3. �

Remark 3.6 For continuous functions f , the decay condition (3.9) with some α > 0
ensures that f has bounded variation and the corresponding Fourier series converges
uniformly, see e.g. [8]. Piecewise continuously differentiable functions with jump dis-
continuities suffer from Gibbs phenomenon and do not satisfy the decay assumptions
(3.9). For example, ck = (k + 1)−1 leads to a Hankel operator which is bounded but
not compact, see [35]. On the other hand, it has been shown in [4] that the singular
values of the finite Hilbert matrix Hn = ((k + j + 1)−1)n−1

j,k=0 decay exponentially
with

σk+1(Hn) ≤ 4

[
exp

(
π2

2 log(8n − 4)

)]−2k

σ1(Hn).

Our numerical experiments show this behavior of faster convergence, but we do not
get rid of the Gibbs phenomenon in this case.

For piecewise continuously differentiable functions f with finite jump disconti-
nuities we propose to apply a splitting method that decomposes the function f into
a simple discontinuous step function and a smooth function with an exponentially
decaying adaptive Fourier series, see e.g. [16] or [25], Remark 6.2.

4 Computation of Adaptive Fourier Sums

In this section we derive an algorithm to compute the partial adaptive Fourier sums of
f + in H2. For this purpose , we suppose that we know the vector of Fourier coefficients
(ck( f +))Lk=0 in the classical Fourier expansion for a sufficiently large L .

We assume that the sequence of Fourier coefficients c( f ) = c = (ck)∞k=0 of some
f + ∈ H2 possesses the form or can be very well approximated by

ck = ck( f
+) =

M∑

j=0

ă j z̆
k
j , k ∈ N0, (4.1)

with possibly large M and with pairwise different zeros z̆ j ∈ D, and ă j ∈ C.
If f + is a rational function in H2 of the form q(e−i t )/p(e−i t )with deg q ≤ deg p =

M , and if p possesses pairwise different zeros, then the representation (4.1) is exact
for all k and can be obtained by Prony’s method using L + 1 Fourier coefficients,
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where L + 1 ≥ 2M + 2, see [25]. If f + is not rational, we employ an approximation
procedure to find ă j and z̆ j such that (4.1) is correct for the given c0, . . . , cL with high
precision. We can proceed as follows. For the given Fourier coefficients (ck( f +))Lk=0

we determine τ :=
∣∣∣ cL ( f +)

c0( f +)

∣∣∣
1/L

< 1. Let now

z̆ j := τ ω
j
L+1 = τ e−2π i j/(L+1), j = 0, . . . , L, (4.2)

being equidistantly placed on the circle with radius τ . Further, let

ă j := 1

L + 1

L∑

k=0

ck( f
+) τ−k ω

jk
L+1, (4.3)

which can be simply computed from (ck( f +) τ−k)Lk=0 by an FFT of length L + 1.
Then we have

L∑

j=0

ă j z̆
k
j =

L∑

j=0

(
1

L + 1

L∑

�=0

c�( f
+) τ−�ω

−� j
L+1

)
τ kω

jk
L+1

= 1

L + 1

L∑

�=0

c�( f
+) τ k−�

L∑

j=0

ω
j(k−�)
L+1 = ck( f

+)

for k = 0, . . . , L .
We can also apply a Prony like method as e.g. ESPRIT [31] or the APMmethod in

[25,26] to obtain a high precision approximation of the given Fourier coefficients ck
in the form (4.1) for some M with 2M + 1 ≤ L . In our practical experiments it has
been usually sufficient to take e.g. M between 10 and 20 to get approximations for the
given Fourier coefficients of the form (4.1) with accuracy 10−8 or better.

In this section, we present an algorithm to solve the problem of finding an optimal
sequence c̃ = c̃(N ) = (̃ck)∞k=0 of the form

c̃(N )
k =

N∑

j=0

a(N )
j (z(N )

j )k (4.4)

for a pre-defined N < M such that

‖c − c̃(N )‖�2 ≤ ‖�c − �c̃(N )‖�2→�2 = σN+1(�c)

holds for a given sequence c in (4.1), i.e., c̃(N ) is the optimal sequence for approxi-
mation by Theorem 3.1. Our method includes a numerical procedure to compute all
nonzero singular values of �c. Knowing these singular values we will be able to give
an a priori estimate of the error ‖c − c̃(N )‖�2 that can be achieved using the new
sequence c̃(N ) built by the shorter exponential sum in (4.4) and thus of the L2-error
‖ f + − f +

N ‖L2 achieved by the N -th adaptive Fourier sum f +
N .
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Once we have computed the sequence c̃(N ) in (4.4) by determining the appropriate
parameters a(N )

j , z(N )
j , j = 0, . . . , N , we can find according to (3.2) the adaptive N -th

Fourier sum

f +
N =

N∑

j=0

a(N )
j Pj

where the coefficients a(N )
j , j = 0, . . . , N appear in (4.4) and where the Pj are

defined by the z(N )
j in (4.4). If we are interested in representing the approximation f +

N

of f + in terms of the Takenaka-Malmquist basis, then we need to use z(N )
0 , . . . , z(N )

N

from (4.4) to define the basis {B�}N�=0, and the corresponding coefficients b(N )
� in the

representation f +
N = ∑N

�=0 b
(N )
� B� can be obtained by employing the basis transform

as given in (2.4).

4.1 New Algorithm to Compute the Approximating Sequence c̃ in (4.4)

In order to compute an optimal approximation c̃(N ) of c we want to apply a result for
infinite Hankel matrices with finite rank given in [1]. To formulate this result, we first
recall the notation of con-eigenvalues and con-eigenvectors and its correspondence to
singular pairs of matrices.

Observe that �c is symmetric. Generalizing the idea of unitary diagonalization of
Hermitian matrices resp. compact selfadjoint operators, we will apply the concept of
con-similarity and con-diagonalization, see e.g. [15] for the finite-dimensional case.

For an infinite Hankel matrix �c we call λ ∈ C a con-eigenvalue with the corre-
sponding con-eigenvector v ∈ �2 if it satisfies

�cv = λ v.

Observe that for �cv = λ v we also have

�c(eiαv) = e−iα�cv = (e−iαλ)v = (e−2iαλ)(eiαv)

for all α ∈ R. Thus, for each con-eigenvalue λ of �c we can find a corresponding real
non-negative con-eigenvalue σ = |λ| by this rotation trick. In the following, we will
restrict the con-eigenvalues to their unique nonnegative representatives.

The symmetric infinite Hankel matrix �c with finite rank is compact and unitarily
con-diagonalizable, see [15]. Since �cv = λ v implies

(�∗
c�c)v = �∗

cλv = λ�cv = λ�cv = |λ|2v,

we directly observe that the nonnegative con-eigenvalues and con-eigenvectors of �c
are also singular values and corresponding singular vectors of �c. Conversely, for
symmetric matrices a singular pair (σ, v) is also a con-eigenpair of �f if the geometric
multiplicity of σ is 1.
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Theorem 4.1 Let theHankel matrix�c of rank M+1 be generated by the sequence c of
the form (4.1) with 1 > |z̆0| ≥ · · · ≥ |z̆M | > 0. Let the M +1 nonzero singular values
of �c be ordered by size σ0 ≥ σ1 . . . ≥ σM > 0. Then, for each N ∈ {0, . . . , M − 1}
satisfying σN+1 �= σk for N + 1 �= k the Laurent polynomial of the con-eigenvector
v(N+1) = (v

(N+1)
l )∞l=0 corresponding to σN+1,

Pv(N+1) (z) :=
∞∑

l=0

v
(N+1)
l zl ,

has exactly N + 1 zeros z(N )
0 , . . . , z(N )

N in D, repeated according to their multiplic-

ity. Furthermore, if z(N )
0 , . . . , z(N )

N are pairwise different, then there exist coefficients

a(N )
0 , . . . , a(N )

N ∈ C such that for

c̃(N ) =
(
c̃(N )
l

)∞
l=0

=
⎛

⎝
N∑

j=0

a(N )
j (z(N )

j )l

⎞

⎠
∞

l=0

(4.5)

we have

‖c − c̃(N )‖�2 ≤ σN+1.

For a proof of this theorem we refer to [1] and to [3].
To compute the parameters a(N )

j and z(N )
j , j = 0, . . . , N of c̃(N ) in (4.5) explicitly,

we need to perform the following steps.

Step (i) We have to find a numerical procedure to compute the singular pairs
(σn, v(n)) of the infinite Hankel matrix �c for n = 0, . . . , M .

Step (ii) We have to find all zeros z(N )
j of the expansion Pv(N+1) (z) lying inside D.

Step (iii) In a final step we have to compute the optimal coefficients a(N )
j in (4.5).

We describe each of these steps in detail.
Step (i): To compute the singular pairs of �c, we investigate the special structure

of the con-eigenvectors of �c corresponding to the non-zero con-eigenvalues (resp.
singular values). We can show the following result that provides us with an algorithm
to compute all non-zero singular values of �c and the corresponding con-eigenvectors
exactly by solving a con-eigenvalue problem of size M + 1.

Theorem 4.2 Let c be of the form (4.1). Then the con-eigenvector v(l) = (v
(l)
k )∞k=0 of

�c corresponding to a single nonzero singular value σl of �c, l ∈ {0, 1, . . . , M} is
given by

v
(l)
k = 1

σl

M∑

j=0

ă j b
(l)
j z̆kj , k ∈ N0, (4.6)

where the vector b(l) = (b(l)
0 , . . . , b(l)

M )T is the con-eigenvector of the finite con-
eigenvalue problem

AM+1ZM+1b = σlb (4.7)
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with

AM+1 :=

⎛

⎜⎜⎜⎝

ă0 0
ă1

. . .

0 ăM

⎞

⎟⎟⎟⎠ , ZM+1 :=

⎛

⎜⎜⎜⎜⎜⎝

1
1−|z̆0|2

1
1−z̆0 z̆1

· · · 1
1−z̆0 z̆M

1
1−z̆1 z̆0

1
1−|z̆1|2 · · · 1

1−z̆1 z̆M
...

...
. . .

...
1

1−z̆M z̆0

1
1−z̆M z̆1

· · · 1
1−|z̆M |2

⎞

⎟⎟⎟⎟⎟⎠
.

Proof Let (σl , v(l)) with σl �= 0 be a con-eigenpair of �c, i.e., �cv(l) = σ v(l). We fix
b(l)
j := ∑∞

r=0 v
(l)
r z̆rj = Pv(l) (z̆ j ) for j = 0, . . . , M . Then it follows by (4.1) that

σlv
(l)
k = (�cv(l))k =

∞∑

r=0

ck+rv
(l)
r =

∞∑

r=0

M∑

j=0

ă j z̆
k+r
j v(l)

r

=
M∑

j=0

ă j (

∞∑

r=0

v(l)
r z̆rj )z̆

k
j =

M∑

j=0

ă j b
(l)
j z̆kj

for all k ∈ N0, and hence (4.6) is true. Relation (4.7) is now a consequence of (4.6)
observing that

σl b
(l)
k = σl

∞∑

r=0

v(l)
r (z̆k)

r =
∞∑

r=0

( M∑

j=0

ă j b
(l)
j z̆rj

)
(z̆k)

r =
M∑

j=0

ă j b
(l)
j

1 − z̆ j z̆k

for k = 1, . . . , M . �


Step (ii): In particular, it follows from Theorem 4.2 for all N = 0, . . . , M that the
Laurent polynomial

Pv(N+1) (z) :=
∞∑

k=0

v
(N+1)
k zk = 1

σN+1

∞∑

k=0

( M∑

j=0

ă j b
(N+1)
j z̆

k
j

)
zk = 1

σN+1

M∑

j=0

ă j b
(N+1)
j

1 − z̆ j z

(4.8)

is a rational function with numerator being a polynomial of degree at most M . Thus,
in order to find the zeros of Pv(N+1) (z) we only need to compute the M zeros of the
numerator in this rational representation. By Theorem 4.1 we will find exactly N + 1
zeros z(N )

0 , . . . , z(N )
N in D.

Step (iii): Once we have computed the zeros z(N )
j , j = 0, . . . , N , we can find the

optimal coefficients a(N )
j by solving a least squares problem.

We combine our observations with Theorem 4.1 and obtain the following algorithm
to compute all parameters of the desired approximation c̃(N ).
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Algorithm 4.3 Algorithm to compute the representation (4.4).
Input: Representation (or approximation) (4.1) of c with z̆ j ∈ D and ă j ∈ C \ {0},

j = 0, . . . , M ,
target approximation error ε.

1. Solve the con-eigenproblem for the matrix AM+1ZM+1, determine N such that
σN+1 is the largest singular value with σ 2

N+1 ≤ ε and determine the corresponding
con-eigenvector v(N+1).

2. Compute the N + 1 zeros z(N )
j ∈ D, j = 0, . . . , N , of the con-eigenpolynomial

Pv(N+1) (z) of �c using its rational representation (4.8).
3. Compute the coefficients a(N )

j by solving the minimization problem

min
ã0,...,̃aN

‖c − c̃(N )‖2
�2

= min
ã0,...,̃aN

∞∑

k=1

|ck −
N∑

j=1

ã j (z
(N )
j )k |2.

Output: parameters z(N )
j , a(N )

j , j = 0, . . . , N , to determine c̃(N ) of the form (4.4)

such that ‖c − c̃(N )‖2
�2

≤ σ 2
N+1 < ε.

Remarks 4.4

1. Note that a related idea of dimension reduction has been used by Beylkin and
Monzón in [7]. But in contrast to the above approach, they considered the rank
reduction of a finite Hankel matrix.We also refer to [24], where a similar algorithm
has been prosed for reduction of exponential sums.

2. Since AM+1ZM+1 is con-diagonalizable by Theorem 4.2, it follows that

AM+1 ZM+1 B = B�, and AM+1 ZM+1 B = B�

with B = (b(0) . . . b(M)) containing the con-eigenvectors ofAM+1ZM+1 and with
� = diag (σ0, . . . , σM ). Therefore

AM+1ZM+1AM+1ZM+1B = AM+1ZM+1 BB
−1

AM+1ZM+1B = B�2,

i.e., AM+1ZM+1AM+1ZM+1 has only real nonnegative eigenvalues λ j = σ 2
j .

Conversely, if (λ j ,w( j)) is an eigenpair of AM+1ZM+1AM+1ZM+1, then b( j) :=
AM+1ZM+1w( j) + σ jw( j) is a con-eigenvector of AM+1ZM+1 to the con-
eigenvalue σ j = √

λ j , since

AM+1ZM+1b
( j) = AM+1ZM+1(AM+1ZM+1w( j) + σ jw( j))

= AM+1ZM+1AM+1ZM+1w( j) + σ jAM+1ZM+1w( j)

= σ 2
j w

( j) + σ jAM+1ZM+1w( j) = σ jb( j).

Thus, to solve the con-eigenvalue problem in step 2 of Algorithm 4.3, we can
employ a usual eigenvalue-decomposition of AM+1ZM+1AM+1ZM+1.
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3. Usually, the singular values of AM+1ZM+1 decay very fast. There are several
possibilities to improve the numerical stability of the necessary SVD for this
matrix product. Indeed, AM+1ZM+1 can be understood as a Cauchy matrix since

(AM+1ZM+1) jk = ă j/z̆ j

1/z̆ j − z̆k
, j, k = 0, . . . , M .

For accurate singular value decomposition we refer to the algorithm proposed by
Demmel [11] that is based on a rank revealing decomposition with complexity
O(M3). Further ideas to overcome instability issues can be found in [13] where
the con-eigenvalue problem is explicitly solved. If we start with the approximation
using (4.2) and (4.3), the matrix ZM is circulant and can be simply diagonalized
by the Fourier transform.

4. Observing that the components ck have the form (4.1) and the c̃k have the form
(4.4), the �2-minimization problem for infinite sequences in step 3 of Algorithm
4.3 can be reformulated as a finite-dimensional least squares problem,

min
ã0,...,̃aN

‖c − c̃‖2
�2

= min
ã0,...,̃aN

(
− 2Re

∞∑

k=0

c̃kck +
∞∑

k=0

|̃ck |2
)

= min
ã0,...,̃aN

(
− 2Re

N∑

j=0

M∑

i=0

ã j ăi

∞∑

k=0

(z(N )
j z̆i )

k +
N∑

j=0

N∑

i=0

ã j ãi

∞∑

k=0

(z(N )
j z(N )

i )k
)

= min
ã0,...,̃aN

(
− 2Re

N∑

j=0

M∑

i=0

ã j ăi

1 − z(N )
j z̆i

+
N∑

j=0

N∑

i=0

ã j ãi

1 − z(N )
j z(N )

i

)
,

where the values z̆i , z
(N )
j and ăi are known. In practice, if only L + 1 sequence

values ck , k = 0, . . . , L are given, then the minimization problemmay be replaced
by

min
ã0,...,̃aN

L∑

k=0

|ck − c̃k |2 = min
ã0,...,̃aK

L∑

k=0

|ck −
N∑

j=0

ã j (z
(N )
j )k |2.

5. The numerical complexity of Algorithm 4.3 is governed by the first step, where
we need to solve a con-eigenvalue problem for matrices of size (M+1)× (M+1)
with computational costs of O(M3).

5 Greedy Approach for Adaptive Fourier Sums

Wewant to compareAlgorithm4.3 proposed in the last sectionwith a greedy approach.
This method is very simple to implement but does not provide similarly strong decay
of the obtained adaptive Fourier sum, as we will show in the numerical experiments
in Sect. 6. Again, we assume that we know a vector (ck( f ))Lk=0 of Fourier coefficients
of f with sufficiently large L .
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The idea is now to approximate the vector c(0) := (ck( f ))Lk=0 by a sequence of the
form (a0zk0)

L
k=0 where we try to choose a0 and z0 in an optimal way. Then we consider

the residual

c(1) := c(0) − (a0z
k
0)

L
k=0

and repeat this process. The iteration stops once we have achieved

‖c(N )‖22 ≤ ε

for some N ≤ L and predefined tolerance ε.
At each iteration step we try to approximate the given data c( j) by a vector that

satisfies a difference equation of order 1. This idea corresponds to Prony’s method for
just one exponential term. We consider a “characteristic” polynomial

P( j)(z) := (z − z j ) = p( j)
1 z + p( j)

0 ,

i.e., p( j)
0 = −z j and p( j)

1 = 1. Now, we try to find p( j)
0 such that

c( j)
k p( j)

0 + c( j)
k+1 p

( j)
1 = 0

is satisfied for all k = 0, . . . , L − 1 as well as possible. To find p( j)
0 we form the

Hankel matrix Hc( j)

Hc( j) =

⎛

⎜⎜⎜⎜⎝

c( j)
0 c( j)

1

c( j)
1 c( j)

2
...

...

c( j)
L−1 c( j)

L

⎞

⎟⎟⎟⎟⎠
. (5.1)

Then we have to compute (p( j)
0 , p( j)

1 )T as the singular vector of Hc( j) to the smallest

singular value with the normalization p( j)
1 = 1. Observe that (Hc( j) )∗Hc( j) is only

of size 2 × 2. Having fixed z j = −p( j)
0 in this way, we compute the constant a j by

solving the minimization problem

min
a j

L∑

k=0

|c( j)
k − a j z

k
j |2

with the result

a j = (c( j))T c( j)

(c( j))T (zkj )
L
k=0

. (5.2)

Finally, we compute the residual c( j+1) := c( j) − (a j zkj )
L
k=0. The complete algorithm

is summarized as follows.
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Algorithm 5.1 Greedy algorithm for adaptive Fourier sums.
Input: ck , k = 0, . . . , L for sufficiently large L .

1. Initialize c = c(0) := (ck)Lk=0 and j := 0.
2. While ‖c‖22 > ε

(a) Compute the right singular vector p = (−z j , 1)T ofHc in (5.1) corresponding
to its smallest singular value.

(b) Compute the coefficient a j according to (5.2).
(c) Update

c := c − (a j z
k
j )
L
k=0

and j := j + 1.

3. Set N := j − 1.

Output: Parameters N , a j , z j , j = 0, . . . , N .

Alternatively, the update of the coefficients a j in iteration step 2b) can be done in
a global way to obtain the best approximation that can be achieved with an adaptive
basis with the zeros z0, . . . , z j found so far. In this case, we replace the step 2b) by
solving the least squares problem

min
a0,...,a j

L∑

k=0

|ck −
j∑

�=0

a� z
k
�|2.

The numerical complexity ofAlgorithm5.1 is onlyO(L) per iteration step if a j is com-
puted according to (5.2). The alternative way to improve the coefficients a0, . . . , a j at
each step increases the computational cost essentially toO(( j +1)L2). In our numer-
ical experiments, we will compare this simple approach with the results of Algorithm
4.3 in Sect. 4.

6 Numerical Examples

In this section we present three numerical examples demonstrating the performance
of our algorithms. In these examples we set a priori z(N )

0 = 0 and take the Fourier
coefficient c0( f ) independently. Then we approximate the Fourier coefficients ck( f )
as described in the previous subsections, but starting with k = 1.

Example 1 Weapproximate the rational function f (t) =
10∑

�=1

ă�

(1−z̆�ei t )
with the classical

Fourier expansion f (t) = ∑∞
k=0 ck( f )e

ikt where

ck( f ) =
10∑

�=1

ă� z̆
k
� , k ∈ N0. (6.1)
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In this example, we have ă0 = 0, z̆0 = 0, and the further parameters z̆ j , ă j , j =
1, . . . , 10, in the representation (6.1) have been obtained by applying a generator of
random numbers in D and are given as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̆1
z̆2
z̆3
z̆4
z̆5
z̆6
z̆7
z̆8
z̆9
z̆10

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.5609 + 0.1737i
0.0734 − 0.1485i
0.4582 − 0.3709i
0.2030 − 0.0861i

−0.3715 − 0.0216i
−0.1573 − 0.4553i
−0.0471 + 0.1074i
0.5780 − 0.3286i

−0.4123 − 0.1385i
0.4266 + 0.0996i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ă1
ă2
ă3
ă4
ă5
ă6
ă7
ă8
ă9
ă10

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.2978 + 0.4876i
−0.2515 + 0.4556i
0.1405 + 0.3813i

−0.2817 − 0.2871i
0.3893 + 0.1132i
0.5792 − 0.5730i
0.2763 − 0.0897i

−0.1873 − 0.2247i
0.1009 − 0.4062i

−0.4707 − 0.3855i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We denote by SN ( f ) the N -th classical Fourier sum

SN ( f )(t) =
N∑

k=0

ck( f )e
ikt ,

and by

fN := c0( f ) +
N∑

j=1

a(N )
j Pj

the N -th adaptive Fourier sum. Here we have taken z(N )
0 = 0, a(N )

0 = c0( f ). The

parameters a(N )
j and the zeros z(N )

j , j = 1, . . . , N , determining the adaptive Fourier

basis {Pj }Nj=1 have been computed by Algorithm 4.3 for N = 1, . . . , 9. The obtained

nodes z(N )
j are displayed for N = 1, N = 3 and N = 5 in Fig. 1. Further, we denote

the sequence of adaptive Fourier sums obtained by the greedy Algorithm 5.1 by

-1 0 1
-1

-0.5

0

0.5

1
N = 1

-1 0 1
-1

-0.5

0

0.5

1
N = 3

-1 0 1
-1

-0.5

0

0.5

1
N = 5

Fig. 1 The original nodes z1, . . . , z10 (stars) and the new nodes z(N )
1 , . . . , z(N )

N obtained by Algorithm 4.3
(circles)
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Fig. 2 The real and imaginary parts of the original function f (blue solid line), the Fourier approximation

SN ( f ) (green dotted line), the greedy adaptive Fourier sum f (G)
N (magenta dashed line) and adaptive

Fourier sum f N (red dash-dot line) for Example 1 (Color figure online)

f (G)
N := c0( f ) +

N∑

k=1

a(G)
k Pk,

where again z0 = 0, a(G)
0 = c0( f ), and the consecutively obtained zeros z j , j =

1, . . . , N are taken to determine the adaptive Fourier basis {Pk}Nk=0. In Figs. 2 and 3
we compare the function f with the N -th adaptive Fourier sum fN , the N -th adaptive
Fourier sum F (G)

N and the classical Fourier sum SN ( f ). In Fig. 3 the corresponding
error functions are displayed. Furthermore, in Fig. 4 we compare the errors of the
computed adaptive Fourier sums ‖ f − fN‖L2 and ‖ f − f (G)

N ‖L2 for N = 1, . . . , 9
and the singular values σN of the matrix A10Z10.

Observe that in this example the considered function f (t) is smooth and the classical
Fourier coefficients possess already an exponential decay which is governed by the
knot z̆ j with largest modulus, i.e. by |z̆8| = 0.6649. We have

|ck( f )| = |
10∑

�=1

ă�z
k
�| ≤ C |z̆8|k

with some constant C which does not depend on k. Compared to that, the rational
representation and thus the adaptive Fourier series is finite and has only 10 nonzero
adaptive Fourier coefficients. For N > 3, the adaptive Fourier sum already provides
essentially smaller errors, see Fig. 3.
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Example 1:
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Fig. 3 The error |Re( f (t)− SN ( f )(t))| (green dotted line), |Re( f (t)− f GN (t))| (magenta dashed line) and
|Re( f (t) − fN (t))| (red solid line) and the corresponding errors for the imaginary part of the functions for
t ∈ [−π, π ] on the x-axis for Example 1 for N = 3, 6, 9 (Color figure online)

Fig. 4 Decay of the error
‖ f − fN ‖L2 (solid line) and

error ‖ f − f (G)
N ‖L2 (dashed

line) for Example 1 for
N = 1, . . . , 9. The error
‖ f − fN ‖L2 is of the same
order as σN . The small triangles
represent the singular values σN
of ANZN for N = 1, . . . , 9

10−7
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10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5 6 7 8 9

Example 2 We approximate the real function f (t) = ∑∞
k=1 ck( f ) sin(kt) with

ck( f ) = 1/k2, k ∈ N. First, using the samples ck( f ) for k = 1, . . . , 101, we apply
the APM method in [26] and obtain beside the a priori fixed z̆0 = 0 and ă0 = 0 for
M = 11 the zeros z̆ j and coefficients ă j , j = 1, . . . , 11,
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Fig. 5 Left: Illustration of the zeros z(N )
j and the corresponding coefficients a(N )

j for N = 1, . . . , 10 for
Example 2. The size of the zeros can be seen from their vertical position and the size of the corresponding
coefficients from the thickness of the circles. Right: Decay of the error ‖ f − fN ‖L2 (solid line) and error

‖ f − f (G)
N ‖L2 (dashed line) for Example 2 for N = 1, . . . , 10. The error ‖ f − fN ‖L2 is of the same order

as σN

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z̆1
z̆2
z̆3
z̆4
z̆5
z̆6
z̆7
z̆8
z̆9
z̆10
z̆11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9890
0.9621
0.9166
0.8493
0.7577
0.6415
0.5042
0.3543
0.2078
0.0870
0.0148

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ă1
ă2
ă3
ă4
ă5
ă6
ă7
ă8
ă9
ă10
ă11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0002
0.0014
0.0049
0.0129
0.0289
0.0567
0.0997
0.1571
0.2163
0.2438
0.1780

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.2)

such that
1

k2
= ck( f ) ≈ c̃k( f ) =

11∑

j=1

ă j z̆
k
j . (6.3)

We compute the zeros z(N )
j and the coefficients a(N )

j , j = 1, . . . , N of the shorter

sums of the form (4.4) by applying Algorithm 4.3, again with z(N )
0 = 0, a(N )

0 =
c0( f ) = 0. The computed parameters are illustrated in Fig. 5 (left). In this special
example the obtained zeros z(N )

j are real numbers in (0, 1). The position of the zeros

z(N )
j , j = 1, . . . , N is given for each N = 1, 2, . . . , 10 by the position of the circles

with respect to the vertical axis, and the diameter of the point balls represents the size
of the corresponding coefficients a(N )

j . If the coefficients are smaller than 0.04 then we
have rounded it up to 0.04 such that the corresponding knots can still be recognized.
For N = 11 the illustration in Fig. 5 (left) shows the 11 zeros z̆ j and the corresponding
coefficients ă j , j = 1, . . . , 11, given in (6.2). The decays of the errors ‖ f − fN‖L2

and ‖ f − f (G)
N ‖L2 for the Fourier coefficients are presented in Fig. 5 (right).

The original function f together with the corresponding Fourier sums fN , f
(G)
N and

SN ( f ) are displayed in Fig. 6 for N = 1, 3 and 5. The errors on the interval [0, 2π ]
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Fig. 6 The original function f (blue solid line), the Fourier approximation SN ( f ) (green dotted line), the

greedy adaptive Fourier sum f (G)
N (magenta dashed line) and the adaptive Fourier sum fN (red dash-dot

line) for Example 2 (Color figure online)
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Fig. 7 The error | f (t)− SN ( f )(t)| (green dotted line), | f (t)− f (G)
N (t)| (magenta dashed line) and | f (t)−

fN (t)| (red solid line) for t ∈ [−π, π ] on the x-axis for Example 2 for N = 6 and N = 9 (Color figure
online)

are displayed in Fig. 7. The singular values σN+1 of the matrixA11Z11 almost exactly
coincide with the obtained errors ‖ f − fN‖L2 in Fig. 5 (right).

We indeedobtain in this example the theoretically predicted exponential error for the
adaptive Fourier sum, while the classical Fourier coefficients only possess a quadratic
decay.

Example 3 Finally we consider the adaptive Fourier expansion for the piecewise
smooth real function f (t) = ∑∞

k=1 ck( f ) sin(kt) with ck( f ) = 1/k, k ∈ N. This
time, the conditions of Theorem 3.5 are not longer satisfied. We start with L = 99
classical Fourier coefficients and apply Algorithms 4.3 and 5.1. As we can see in Fig.
8 (left), also in this case pointwise convergence of the adaptive Fourier sum is faster
than for the classical Fourier sum, while we get not rid of the Gibbs phenomenon. In
Fig. 8 (right), we illustrate again the error of the adaptive Fourier sum compared to the
greedy adaptive Fourier sum and to the singular values of ANZN for N = 1, . . . , 9.
For a similar example, where the function 1/x is approximated by short exponential
sums we refer to [24].

7 Conclusion

As we have shown in this paper, an adaptive Fourier sum using the Takenaka-
Malmquist basis can converge essentially faster than the classical Fourier sum. For
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Fig. 8 Left: The original function f (blue solid line), the Fourier approximation SN ( f ) (green dotted line),
and the adaptive Fourier sum fN (red dash-dot line) for N = 3 and N = 9. Right: Decay of the error

‖ f − fN ‖L2 (solid line) and error ‖ f − f (G)
N ‖L2 (dashed line) for Example 3 for N = 1, . . . , 9. The error

‖ f − fN ‖L2 is of the same order as the singular values σN of ANZN (Color figure online)

this purpose, one needs to choose the zeros determining the basis functions adaptively.
The optimal zeros change for different N , i.e., the zeros z(N )

j determining the optimal

adaptive Fourier sum f +
N are usually all different from the zeros z(N+1)

j determining

an optimal f +
N+1. This is also the reason, why greedy algorithms that choose zeros

separately one by one (and stay with the zeros that have been fixed in earlier steps)
cannot compete with our approach that chooses all N zeros at once.

Algorithm 4.3 to construct (almost) optimal zero vectors however includes the chal-
lenge to compute the singular value decomposition of a matrix whose singular values
are exponentially decaying. If a suitable interpolation is employed in a preprocessing
step, then this matrix is a product of a diagonal matrix AN and a circulant matrix ZN

such that the eigenvalues of each of thesematrix factors can be simply determined. But
we are not aware of an efficient procedure to obtain the singular values and singular
vectors of the matrix product AN ZN in this case.

Another open problem relies to the problem, how to derive an efficient algorithm to
compute an (almost) adaptive Fourier sum from the function f (or function samples)
instead of the classical Fourier coefficients.
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