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Abstract

We study the Cauchy problem for Hartree equation with cubic convolution nonlinearity
F(u) = (Kx|u |2k )u under a specified condition on potential K with Cauchy data in
modulation spaces M P4 (R™). We establish global well-posedness resultsin M 11 (R"),
when K (x) = ﬁ A eR, 0 <v<min{2,5}), fork < %; and local well-

posedness results in MULRY), when K (x) = ﬁ AeR,0<v<n)fork e N;

in MPAR") with 1 < p <4, 1 <q < 27—, k € N, when K € M (R").

Moreover, we also consider the Cauchy problem for the non-linear higher order Hartree
equations on modulation spaces MP-Y(R"), when K € M (R") and show the
existence of a unique global solution by using integrability of time decay factors of
Strichartz estimates. As a consequence, we are able to deal with wider classes of a
nonlinearity and a solution space.
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1 Introduction

In this paper, we study the existence of global solutions to the Cauchy problem for the
Hartree type equation in modulation space:

iu + Au = (K*u®u, ux,0) =uo(x), k € N; (1.1)

where u(x, t) is a complex valued function on R” x R, A is the Laplacian in R", ug
is a complex valued function on R”, K is some suitable potential (function) on R",
time fy € R, and » denotes the convolution in R”.

The modulation spaces play a significant role in the study of harmonic analysis.
These spaces include L> = M?? and are defined by their phase-space distribution
(instead of their Littlewood-Paley decomposition). Modulation spaces provide quanti-
tative information about time-frequency concentration of functions and distributions.
It was originally introduced by Feichtinger [10], where its definition is based on the
short-time Fourier transform. The short-time Fourier transform of a function is defined
as inner product of the function with respect to a time-frequency shift of another func-
tion, known as a window function (for precise definition see §2). Feichtinger’s initial
motivation was to use a space different from that of the L? space to measure smooth-
ness of functions and to analyze local properties of frequency space. Since then, it
is found that this space is a good working frame to study the time-frequency analy-
sis, signal analysis, the formulation of uncertainty principles and Cauchy problems
of nonlinear partial differential equations. Nowadays, these spaces also play a useful
role in the theory of pseudo-differential operators [25].

Ginibre and Velo [12] have studied the Schrodinger equation with cubic convolution
nonlinearity due to both their strong physical background and theoretical importance,
which was inspired by the work of Chadam—Glassey [7]. This kind of nonlinearity
appears in quantum theory of boson stars, atomic and nuclear physics, describing
superfluids, etc.. Nonlinear Schrodinger equations (NLS) in the most common mean-
ing contains a local nonlinearity given by a power of the local density, in particular
the (de)focusing “cubic” NLS which arises in nonlinear optics or for Bose Einstein
condensates. A class of NLS with a “non-local” nonlinearity that we call Hartree type
occur in the modeling of quantum semiconductor devices.

The local and global well-posedness, regularity, and scattering theory for Eq. (1.1)
have been extensively studied in the last decade by many mathematicians. Almost
exclusively, the techniques developed so far restrict to Cauchy problems with initial
data in a Sobolev space. This is because of the crucial role played by the Fourier trans-
form in the analysis of partial differential operators, see [5,6,12]. For instance, Hayashi
and Naumkin [16] have studied the Cauchy problem (1.1) with Hartree potential in
the space dimensions n > 2 under the conditions that the initial data

uo € H”' N H®Y, withv > n/2

Birkhauser



Journal of Fourier Analysis and Applications (2019) 25:1319-1349 1321

and the norm |[|uo|,.0 + [lu0llo,v is sufficiently small, where H*" is the usual weighted
Sobolev space defined by

H*Y ={f € L% || flluw = 101+ [xD*> (T = A2 < 00}, u,v €R.

In subsequent years, Cauchy data in modulation spaces M?-9(R") for nonlinear
dispersive equations have attracted a lot of attention by many mathematicians. This is
because these spaces are rougher than any given one in a fractional Bessel potential
space and this low-regularity is desirable in many situations. For instance, the local
well-posedness result of Schrodinger equation with power type nonlinearity F(u) =
|u|**u (k € N) are obtained in [2,8,27] with Cauchy data from M?-1(R") and a global
existence result in [15,26] with small initial data from M”- 1 (R")(1 < p < 2), see also
[9,20]. However, the global well-posedness result for the large initial data (without
any restriction to initial data) in modulation space is not yet clear. In fact, there are
several hard challenges still open [see, [22], p. 280]. Recently, Ru and Chen [21] has
shown the global well-posedness result to the Cauchy problem for the Schrodinger
equations with F(u) = |u|*u! (k,1 € N) for any initial data ug € M?"'(R") with
lullyypra < Cn(1/2—=1/p) — 1), nzT"l < p <2k+I1+1, n >3, for some constant
C independent of p, n.

Note that, if the solution to the Cauchy problem (1.1) does not satisfy the energy
conservation law, then we can not obtain the global solution by extending local results.
So people mainly focus on the local well-posedness and global well-posedness with
small rough data. On the other hand, Lin and Strauss [18] construct a complete theory
of scattering for the NLS equation in the space

> =H'NnFH',

where H' is the usual Sobolev space and  is the Fourier transform. Later, asymptotic
completeness is proved by the use of the approximate conservation law associated with
the approximate pseudo-conformal invariance of the NLS and Hartree equations. The
class of interactions thereby covered includes the potential k(x) = ﬁ with C > 0
and4/3 < v < Min(4, n) for the Hartree equation (1.1). In subsequent years, Ginibre
and Velo develop a complete theory of scattering for the Hartree equation (1.1) in the
energy space, which is again the Sobolev space H'.

Taking these considerations into our account, in this article, we shall investigate
Hartree type equation (1.1) with potentials are of the following type:

K(X):W’ AeR, v>0, xeRY, (1.2)
X

K € M (R"), (1.3)
K € MV R"). (1.4)

The homogeneous kernel of the form (1.2) is known as Hartree potential. The kernel
of the form (1.3) is sometimes called the Sjostrand class. Sjostrand introduced this
class and later it was discovered that Sjostrand’s class M°! is a special case of a so
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called modulation space. Since 1980s, the family of modulation spaces have become
canonical for both time-frequency and phase-space analysis. Their many applications
are surveyed (see, [14]) in the theory of pseudo-differential operators; for the special
case of M1,

Note that the solutions to Cauchy problem (1.1) enjoy (see, Proposition 2.10) the
mass conservation law:

lu@llz2 = lluoll2 (2 € R).

Exploiting this mass conservation law and techniques from time-frequency analysis
we prove local and global existence result (Theorem 1.1) for Eq. (1.1) in the space
M1 (R™) for K of the form (1.2); the proofis based on some suitable decomposition of
Fourier transform of Hartree potential into Lebesgue spaces (Eq. (3.1)). We prove local
existence result (Theorem 1.2) in the space M 79 (R") when potential K € M (R"),
via uniform estimates for the Schrodinger propagator in modulation spaces M”49 (IR™)
and algebraic properties of the space M”74 (R").

We state our main results:

Theorem 1.1 Assume that uy € M“'(R"), k € N and K is of the form (1.2)
with . € R, 0 < v < n. Then, there exists T* = T*(lluollpn1) > to and
T, = T.(lluollpp1) < to such that the Cauchy problem (1.1) has a unique solu-
tionu € C([T,, T*], M“1(RM). Moreover, ifk < "2 and 0 < v < min{2, 4},
then there exists a unique global solution u of (1.1) such that u € C (R, MULLRY).

Theorem 1.2 Let K € M\ (R"). Then, for any ug € MP4(R") with 1 < p <
4, 1 < g < 222,{21(—;2_1 1 < k € N, there exists T* = T*(|lugllpra) > to and
Ty = Tu(lluollpra) < to such that the Cauchy problem (1.1) has a unique solution

ueC(T., T*], MP-1(R™)).

1.1 Higher Order Hartree Type Equations

In this paper, we also consider the following Cauchy problems for nonlinear higher
order Hartree type equations:

iy + (—A)"*u = (KxGw)u, u(x,t9) = uop(x), k € N, (1.5)

where the differential operator (—A)™/ 2 — F~lg"F is a Fourier multiplier with
m > 2, and G(u) = |u|*. In a recent article [17], Kato has shown the global well-
posedness result to the Cauchy problem for the higher order Schrodinger equations
on modulation spaces M?'!(R"). Here, we use Duhamel’s principle to express the
solution to the Cauchy problem (1.5) as the following equivalent integral equation

t
ut) = Sug — i/ St — 1) (K*|u|*)u dr,
0
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; m/2 .. . .
where S(t) = e/(=%) " We solve this integral equation by a fixed point argument. In
order to solve this problem, we have used time decay estimates on modulation spaces:

2n (1

(11
IS@Ouollpra S (A +12]) ™ (+-5) ol pgp.a

forp >2,1/p+1/p' =1, 1 < g < oo. Note that there is no singular point at
t = 0 in the above estimate and hence we are able to extend k as far as infinity. In
the following, as a most important example of (1.5), we state the Cauchy problem for
the nonlinear Hartree type equation, that is, m = 2, k = 1. In this context, recently,
Bhimani [4], and Ramesh [19] have shown the global well-posedness result to the
Cauchy problem for the Hartree type equations with ug € MPP(R"), 1 < p <
2.0 < v < min{2,n/2}.

In this work, using the integrability of the time decay terms (1 + |¢])~?, we have
the following theorem.

Theorem 1.3 Let K € M'[R") and ug € MP-'(R")(C MPY), where p' is the
Holder conjugate of p € (nz_'ﬁn, 1+2k], k €N, n > m. Then, fork > 2&*_’% there

exists M > O such that if |uoll ;7.1 < M, then the Cauchy problem (1.5) has a unique
global solution u € C(R, MP-'(R")).

Theorem 1.4 Let K € M (R") and k > "’zﬁ”, k € N. There exists M > 0 such

that if ug € M@ FD2ELRMY (c MPK+LY) satisfies [luol pyeesnzna < M, then the
Cauchy problem (1.5) has a unique global solution

ue L2k+l(R, M2k+1’1(Rn)).

Remark 1.1 In the statement of Theorems 1.3 and 1.4, the persistency of solutions
(that is, a solution u € C(R, MP-Yy N LZ+(R, M?**+1.1y if an initial data ug €
MP-' A MPR+1TY does not holds strictly since an initial data uo € mrtc Ml
Also, there is no change of regularity between the initial data class and the solution
class. Therefore, the initial data belong to the frame of the solution space in R"-space
and we can say that the persistency holds in this sense.

In order to prove Theorems 1.3 and 1.4, we use the integrability of time decay
terms (1 + |¢))~?, @ > 0, which is the specific characteristic of modulation spaces.
Moreover, in the following theorem, we also show the existence of global solution for
an exponential growth nonlinearity.

Theorem 1.5 Let

2
Juu| 2K

A > 0), k0>n+—m, koeN, n>m

Gu) = Ml — Z A=
k! 2(n —m)

k<ko
and p € 2n/(n —m), 1 4 2ko]. There exists M > O such that if uy € Mp/’l(R”)(C
MPYy satisfies luoll ;1 < M, then the Cauchy problem (1.5) has a unique global
solution u € C(R, MP-L(R")).
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Theorem 1.6 Let G be as in Theorem 1.5 and p € [2,1 + 2kol, ko € N.
There exists M > 0 such that if ug € M@ o+TD/2ko. LRy p2Rot+L 1y sarisfies
luoll pperg+1r260.1 < M, then the Cauchy problem (1.5) has a unique global solution
u € C(R, MP-1yn Lo (R, M2ko+t1.1(R")). Here, ko € N is the smallest integer such
that ky > k and k is the positive root of4nk2 —(m+n)2k—m=0.

Remark 1.2 In the Theorems 1.5 and 1.6, we remove the lower terms Zk <ko Ak |”k|!2k
from an exponential growth non linearity. since, we assume that k > ko in Theorems
1.3 and 1.4 to get a global solution. For instance, we have for the Hartree type equation

(1.1)

Gu) = (&'“‘2 — 11— |u|2), ifn=1,

n+24+/n2+12n4+4
4n '

since k =

2 Notation and Preliminaries

Throughout this paper R, N, and Z denote the sets of real numbers, positive integers,
and integers, respectively. The notation A < B means A < ¢B for a some constant
¢ > 0, whereas A ~ B means ¢ !A < B < cA, for some ¢ > 1. The symbol
A1 — Aj denotes the continuous embedding of the topological linear space A
into A,. We use some function spaces; Lebesgue spaces L? := LT (R") with the
norm || fllzr = (fgn | £0)I? dx)""? | Schwartz space .7 := . (R"), and its dual
space . := '(R"). Notice that the set of all compactly supported C* functions,
C(R"), is contained in ..
The mixed L?-9(R" x R") norm is defined by

1 FllLre = (/ (/ |f<x,s)|”dx) ’ d&) (1< p.q <oo),
Rn Rn

with the usual modification if p or ¢ is infinite. Given f € L'(R"), we define its
Fourier transform by setting

E .

FfE) :=fE) = fR eT2TINE> £ (x)dx. (2.1

The inverse Fourier formula (for appropriate f') is given by
r = [ e e de. 22)
Rn

The Fourier transform ¢ —> ¢ is an isomorphism of . into . whose inverse is
given by Fourier’s inversion formula (2.2), and extends to the tempered distributions
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by duality. Hence for every tempered distribution f, we have
N\ V —
( f) =f=(r)
Let f be a complex-valued function defined on R”. Consider the operations of trans-

lation, modulation, and dilation defined as follows:

(1) Translation operator : 7y f (x) = f(x - forx,y e R",
(2) Modulation operator : Mg f(x) = e2mixE £(x), for x, £ € R,
(3) Dilation : D, f(x) = f(ix), for A > 0, x € R".

The modulation spaces are defined in terms of the short time Fourier transform.

Definition 2.1 (Short-time Fourier Transform (STFT)) Let g € . (R") be a non-zero
function. The short-time Fourier transform of f € ./ (R") with respect to g is defined
as:

Ve(f)(x,8) = (f, Metxg), 2.3)

where (f, g) denotes the inner product for L? function, or the action of the tempered
distribution f on the Schwartz class function g.
Observe that if in addition f is a nice function, then

Ve(f)(x, &) = f e g (t — x) f(1)dt. (2.4)

Rn

We also say that V,(f) is the short-time Fourier transform of f with respect to the
window g.

For x,& € R", Mgty g is said to be the time-frequency shift of g by (x, &). Thus
the short-time Fourier transform V, f is the inner product of f with respect to time-
frequency shift of g. Thus,

Vilf.8) — Ve()

extends to a bilinear form on ./ (R") x ./(R") and V,(f) defines a uniformly con-
tinuous function on R” x R” whenever f € ./ (R") and g € .7 (R"). A different
form of Vy f is given below. Since,

M%’Txg — e—ZJTl‘xETxMSg*

with g*(y) = g(—y), from (2.3), we see that the STFT can also be expressed as a
convolution:

Vo f(x, 8) = e 28 (faMe g*)(x). 2.5)

We shall now define modulation spaces.
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Definition 2.2 (Modulation Spaces) Let 1 < p,q < oo, s € Rand g € .(R") be a
window function. Then the weighted modulation space MY (R") is the space of all
tempered distributions f € ./(R") for which the following mixed norm is finite:

1
1/ lagps = (/R (/Mvg(f)(x,snpdx)p<1+|5|2)Sz‘1d5) e

with the usual modifications when p or g is infinite.

The definition of modulation spaces is independent of choice of the window function
g (see, [11]) in the sense of equivalent norms (cf. [13, Proposition 11.3.2 (c), p. 233]),
and in what follows, we will use it freely without mentioning it. When s = 0, we
simply write

METR") = MP4R").

Proposition 2.3 The following are some of the important properties of modulation
spaces:

(1) The modulation space MP-41(R™), 1 < p,q < o0 is a Banach space;
(2) The space of Schwartz class functions . (R™) is dense in MP1(R") for all
1 <p,g<oo;
(3) The Fourier transform F : MPP(R") — MPP(R"), 1 < p < oo is an
isomorphism;
(4) The modulation spaces are invariant under the operations of translation, modu-
lation, and dilation;
(5) The modulation space MP9(R"), 1 < p,q < oo is invariant under complex
conjugation;
(6) The dual of MP9(R"), 1 < p,q < 0o is MP 4 (R") where % + pl =1and
it7=1
(7) SR < MP4R") — ' (R"), 1 < p,q < oo;
8) MPLILY(R™) — MP292(R™) whenever p; < prand q1 < q2 1 < pi,qi
oo (i =1,2);
(9) MPP(R") € LP(R") © MPP'(R") if 1 < p <2and MPP' (R") € LP(R") C
MPP(R") if2 < p < o0;
(10) The space MP-4(R") is an L' (R")-module with respect to convolution, that is,
it satisfies ||hx f | mpa@ny S RN L1l fllmpaqgey, 1< p,q < 00,
Proof All these statements are well-known and the interested reader may find a proof

in [13,23]. In particular, the proof for the statement (3) can be derived from the
fundamental identity of time—frequency analysis:

IA

Vo f (x,8) = e 0V, (&, —);
which is easy to obtain. The proof of the statement (5) is trivial, indeed, we have

I fllaszr-a = || £l spa. The proof of the statement (9) can be found in [24]. The state-
ment (10) can be proved using (2.5) and Young’s inequality. O
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We denote by F LY (R™) the space of all Fourier transforms of L' (R™), that is,
FL'R") ={f eL®: feL' ®R"). 2.7

The space FL!(R") is a Banach algebra under pointwise addition and multiplication,
with respect to the norm:

£l i= I fll (f € FLYR™Y),

and we call FL!(R") the Fourier algebra.
The following product relation between modulation spaces is well known and whose
proofs are available in [2].

Theorem 2.4 Let p, q, pi,qi € [1,00] (i =0, 1,2).1f% + # =Land L +1L =

1 Po a "
1+ w0 then
MPULA(RYY - MP292(R?) < MPO90(R™);
with norm inequality
I fgllmroao ey SN f larrar ey 1g 1l pp2az ey -
In particular, the space MP4(R") is a pointwise F L' (R")-module, that is, it satisfies
I fellmpany S NF N ppi @y 181mpa ey (2.8)

The space M P 4(R"™) has the following M 1.00(R")-module with respect to convo-
lution and whose proofs are available in [4].

Proposition 2.5 Let p, g € [1, oo]. Then
MB®RY*MP4(RY) < MP9(RY) (2.9)
with norm inequality

I K fllmpawny S MK pproony I 1 mara ey

Some of the modulation spaces M 79 are multiplicative algebras. To be more spe-
cific, we state the following result.

Proposition2.6 Let0 < p < p; <oo, i =1,...,Nand1/p = YN 1/p;. Then,
we have the inequality

N
[1

i=1

STl

Mp:1 i=1
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The proof of the above proposition follows from [27, Corollary 4.2]. By Propositions
2.3 and 2.6, one can obtain that for all f,g € MP'(R"), 1 < p < oo

IS - glart S WS Nagrrllgllage-

For f € .7 (R"), we define the Schrodinger propagator ¢/’® for t € R as follows:
e f(x) 1= / oTIEE f(6) TN dg = Gixf (1), (xR, (2.10)
Rn

where o, (£) 1= e (& € RM).
~ The next proposition shows the uniform boundedness of the Schrédinger propagator
¢/ in modulation spaces.

Proposition 2.7 [3] Lett € R, p,q € [1, o0]. Then

e fllmrageny < Co (6 + DE| fllpgracan),
where C,, is some constant depending on n.
Proof In view of (2.10), and Proposition 2.5, we get

e fllmra@ny S 167N aroo gy L f llagra ey

and note that
15 | pg1.00 ey & N0t oot gy s

with W1 (IR") is the Wiener amalgam space and by exploiting calculation as in [3,
Theorem 14] one can obtain

67 [l = Cu(l +1%)7.

O
In the following proposition, we have the time decay estimates on modulation space:

Proposition 2.8 (Strichartz estimate) [17,26] Lett € R, p € [2,00] and 1/p +
1/p’ = 1. Then

it(—A)y"/2 —2n(1/2—1
e T fllypagny S 1+ D7 w 2TIDYE L .

In addition to the above Strichartz estimate, we use
it(—A)m/2

||€ uO“MPvl(R”) g ”M()”Mp’.l(Rn)’

where2 < p <oo, 1/p+1/p' = 1.
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Finally, the modulation spaces have various equivalent definitions. For example,
the norm ||.|| pr.a (v has the following equivalent formulation (also see [10]). Let ¢ be
a smooth function defined on R” such that supp ¢ € [1, 11" and D ; 7n ¢ (€ —k) =1
forall £ € R". Set ¢y (§) = ¢ (& — k). For k € Z", we define operators:

Dy :=F ' F.

where Dy are called frequency-uniform decomposition operators. For 1 < p, g < oo,
we denote modulation spaces M?-4 as follows:

MPARY) :={f € S R") : || fllmra < 00},

where

1

£ llsra ey == (Z ||Dkf||‘1p) . .11

keZ

The above definition turns out to be very useful in order to study Fourier multipliers on
modulation spaces. For a brief survey of modulation spaces and nonlinear evolution
equations, we refer the interested reader to [22] and for further reading from the PDE’s
viewpoint we refer to [28] and the references therein.

Proposition2.9 [1] Letn > 1 and 0 < v < n. There exists ¢ = c(n, v) such that the
Fourier transform of K defined by (1.2) is

Ac
g

Definition 2.1 A pair (p, g) # (2, 00) is admissible if p > 2, ¢ > 2, and

K(E) =

Proposition 2.10 [S] Let n > 1, and K be given by (1.2) with A € Rand 0 < v <
min{2, 5}. If ug € L>(R™), then (1.1) has a unique global solution

8 .
we CR LHNL, (R, L7).
In addition,

lu@llp2 = lluoliz2, Vi € R,

and for all admissible pairs (p,q), u € L’

loc

R, L1(R™)).

Now, we state the Gronwall inequality in integral form which, we shall use to
establish the global well-posedness result.
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Proposition 2.11 Let A : [ty, 11] —> [0, 00) be continuous and non-negative, and
suppose that A obeys the integral inequality

1
A(t) < c+/ B(s) A(s)ds, Yt € [1g, t1],

]

where ¢ > 0 and B : [ty, t1] —> [0, 00) is continuous and non-negative. Then, we
have

t
Alt) <c exp([ B(s)ds), V1 € [to, 1].
1

0

3 Proof of Theorem 1.1

Global well-posedness in M !, for the Hartree potential: In this section, we prove
local and global existence result (Theorem 1.1) for (1.1) with the Hartree potential
(1.2). We start with decomposing Fourier transform of Hartree potential into Lebesgue
spaces: indeed, in view of Proposition 2.9, we have

K=K +K,e LP(R") + LI(R"), (3.1)

where K1 := xgj<1K € LP(R") forall p € [1, 2] and K3 := yz~1K € LY(R")

> n—v
forall g € (;%;, 00].

Lemma3.1 LetO <v <nandk e N; Forany f, g € M]’I(R"), we have
IR+ F1) f — (K*Ig*)g i@y S
(||f||§’;1,1 F LIS g + -+ UL gl + ||g||i§1,l) Lf = gllp-

Proof By (2.8), (3.1), Holder’s inequality, Propositions 2.3 (2, 3,5,9) and 2.6, we
obtain

IR F 1PV = g SN N o 1 = @) llag
S (KL PRI + IR 17 PRI ) G = @)l

< (WK I PR + WKl TP ) 1S = 8)llagns
< (AP + I ) 1 = @)llans

S (1P + 1 PRl ) 1CF = @l
SHFIEKL I = @)l (3.2)

and,
I > = 18PN gl S NE*AFI— 18PN ppr gl
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< (P = 18Pl + 1177 = TP ) gy
SMAP = 18P N gl S = 1Pl

X [LFPED 1 fPED IR 4 P PED 4 gPED| gl

S (||f||§;‘a1 lgllprns + ILF I gl + -+ 1 F gl + gl )
< [Lf = gl (33)

In the fourth inequality we have used the fact that ak—bk = (a—b)(@ " +a* b+
4 ab¥ 2 4 bk 1), a,b >0, k € N, which can be proved by induction argument.
Now taking the identity

(Kl 1) f — (K*lgl*)g = (K« fIP)(f — &) + (Kx(1f1** = g1 ).

into our account, (3.2) and (3.3) give the desired result. O

Lemma 3.2 Ler K be given by (1.2) with .. € R, 0 < v < n and k € N. Then for any
f e MVY(RM), we have

2k 2k+1
ICK AL 1) flaar ey S g geny -

Proof By (2.8), (3.1), Holder’s inequality, Propositions 2.3(2, 3, 5,9) and 2.6, we
obtain

ICK*L LI Fllgn S UKL p 1 g
< (KPR + UK PR ) 1

S (KL I PR + DKl 1 PHI) 1l
S (NP0 + PRI ) 1 o
Sy 1 arna S F IR (34

O

Proof of Theorem 1.1 By Duhamel’s formula, we note that (1.1) can be written in the
equivalent form

u(.,t) =8 —to)ug — i AF (u), (3.5)

where,
. t
S@t) =", (Av)(r, x) :/ S —t)v(t, x)dr. 3.6)
0]
For simplicity, we assume that #y = 0 and prove the local existence on [0, T']. Similar
arguments also apply to interval of the form [—7", 0] for proving local solutions.
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We consider now the mapping

t
T ) = S(t)(ug) — i / S(t — ) [(Kxu|* (0)u(r)]dr. (3.7
0
By Proposition 2.7,

IS@uollpmpr®ey < Cy >+ 1)7 ol pp-r (rry, (3.8)

for t € R and where C,, is a universal constant depending only on 7.
By Minkowski’s inequality for integrals, Proposition 2.7 and Lemma 3.2, we obtain

t
H f S(t — ) [(K*ul* (0)u(r)]dt
0

13
5/
0

t
< / (6 = P+ D [(KxluP (@) g1 de

Ml,l

S =0 (Kslu @] | de

< T Cr |(KluYullcqommny < T Cr gy pypny: B9

where Cr = C, (T2 + 1)1,
By (3.8) and (3.9), we have

ITulleqo,ry.mrty = Cr (||M0||M1 iwny +cT ||M||12‘,];?,L11(Rn)> , (3.10)

for some universal constant c.
For M > 0, put

Bry = f{ue C0,TL, M" ' ®R") : lullcqo. )i @y < M),

which is closed ball of radius M and centred at origin in C ([0, T'], M LI(R™)). Next,
we show that the mapping J takes Br s into itself for suitable choice of M and small
T > 0. Indeed, if we let M = 2C7 |lugllp1.1 gy and u € Br ym, from (3.10) we
obtain

M 2Ue+1
HJMHC([O,T],M“) < ?+CCTTM .
We choose a T such that ¢ Cr TM?* < %, that is, 7 < f(||u0||M|,1, . v) and as a
consequence we have

M M
ITullcqo.ry.mrty < 5 + 5 = M,
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that is, Ju € Br y. By Lemma 3.1, and the arguments as before, we obtain

1
ITu—Tvlcqo,r,mny = 3 llu = vllcqo,ry,m11-

Therefore, using the Banach’s contraction mapping principle, we conclude that 7 has
a fixed point in Br_ps which is a solution of (3.5).

Now if k < "_nﬂ and 0 < v < min{2, 5}, we shall see that the solution con-
structed before is global in time. In fact, in view of Proposition 2.10, to prove Theorem
1.1, it suffices to prove that the modulation space norm of u, that is, ||u|| ;1.1 cannot

become unbounded in finite time.
In view of (3.1) and to use the Hausdorff-Young inequality welet 1 < -*= < g <2,
and we obtain

lu@®llpnr < Cr ||”0||M11(]R")+/ Il (K xfu| (f))u(f)l\M11d1>

(
<Cr (||uo||Mu(Rn)+/ LKl ()l 1 ||u<r>\|Mndr)
Scr (nuonMu + [ (1K @ P L+ 1Kz @ A ) (o) g dr)
Scr (nuouMl (I @IS+ TR o @ P ) () g dr)
S cr (uuonMn @y + ’ (||1<1 o e 125 + NP0 ) el dr)

A

Cr (IIMOIIMll +/ IIM(T)IIszIIM(f)IIMlldf+/ ()15 IIM(T)IIMHdT)

where we have used (2.8), Holder’s inequality.

We note that the requirement on g can be fulfilled if and only if 0 < v < 7. To
apply Proposition 2. 10 we let B > 1 and (2kf, 2kq) be admissible. This is possible
provided thatg < =" whenn > 3; this condition is compatible with the requirement

+2
q > ;= if and only if k < *==. We also see that (2kf, 2k) is admissible if and

only if k < "’—fz Using the Holder’s inequality for the last integral, we obtain for

n—v+2
k < ===

lu@llar S Crlluollar e + Crluhes o,y 1405 qo.r1p01)

+CT||M||L2k;‘3([0 T1,L%a) ”u”Lﬂ/([(),T],Ml,l)a

where 8’ is the Holder conjugate exponent of 8. Now, put

h(t) := sup |lu(T)|p11-

0<t<t
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For a given T > 0, h satisfies an estimate of the form

=

t

h(t) < Cr lluoll 1.1 ey + Cr Co(T) (/ O(h(r»ﬁ’dr) ,

provided that 0 < ¢ < T, and where we have used the fact that 8’ is finite. Raising
the above estimate to the power 8, we find that

t
(h()? < C(T) (1+ / (h(r))ﬂ’dr>.
=0

In view of Gronwall inequality 2.11, one may conclude that 7 € L°°([0, T']). Since

T > 0 is arbitrary, h € L;’;’C (R), and the proof of Theorem 1.1 follows. O
Remark 3.1 In fact, the restriction k < "_nﬂ in Theorem 1.1 gives the unique global

solution of (1.1) fork =1 and 0 < v < min {2, %} for all dimensions n > 1.

4 Proof of Theorem 1.2

Local well-posedness in M P-4 for potential in M°>!: In this section, we will prove
local existence result (Theorem 1.2) for (1.1) with the potential in modulation space
M (RM).

Lemma4.1 Let K € M1 (R"). For any f,g € MPIR") with1 < p <4;1 <
g <qo=2%2/2%2_1), k > 1, we have
ICK*Lf 1) f = Gexlg gl mra )
< (113600 + WA Igams + - N f Naara I 3md + g 3hoa ) 1f =8l

Proof By Theorem 2.4, Proposition 2.3 (2, 5, 8), and using the fact that

I F %8l pgoc gy S F lagroo ey 1811 agoct ey
by Proposition 2.5, we obtain
ICK | FIPYCE = llmra S UK 1 N pgoer 1CF — @)l pra

S UK Npgoot L1 N pgroo 1CF = @) llmars
SMFP 22 WA 2 a2 1CF = @lagra S NF I35

2
X (||f||M4»4/3||f||M23,23/(2371) ”f||M22k—2,22k—2/(22k—2,1)) IS — &)lmra

S i ica ) NCF = D wara S F I3fna 1CF = D llara @D
In the last step, we_have used the fact that p <4 and g < 22k=2 / (22"’2 — 1). Writing
[f1?7—1g1> = f(f — &)+ (f — g)&, as before and by Theorem 2.4, Propositions 2.3

and 2.5, we obtain
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ICK*(£1% = 11N glara S UK FIP — 1817 pgent Igllarra
S K pgoor IF12 = 181 N pg1.00 gl arra
SHALP = 1eDAL 1P+ 1 P22+ + 18P D) 0o Nl

S (11 =D 1P ygioe + 4 1 = 9Z 18PV lygie ) ghaana
S (11 = D2l P o+ 41 = 9&lare2 NP a2 ) lgharna
S = Dl (||f||ﬁ§;;0 Igllagtar + -+ 1 g g1 + llgl%, )

S = lra (L I3f7aNglana + -+ 1 Naaralglifrd +1813hna ) - (42)
In the second last step, we have used the fact that
MPl’lil C Mpz,qz if Pl < P2, q1 < q2,
and
AP D 22 < (Welagssrs 1l s 3,0y - VI k2 2 k2 )

where i = f or g. In the last step, we have used the fact that p < 4 and g < qo =
22k=2/(2%=2 — 1). Now taking the identity

(K fIP) f — (Kxlgl*)g = (K+| FIP)(f — &) + (K#(I fI* = 1g1P))e,
into our account, (4.1) and (4.2) give the desired result. O

Lemma4.2 Let K € M (R"). Then for any f € MP4(R") with 1 < p < 4; 1
g <2%k=2/0%=2_ 1), k > 1, we have

IA

2k+1
ICK* L) flmrany S U I3E gy

Proof By Theorem 2.4, Proposition 2.3 (2, 5, 8), and using the fact that

||f*g||Mooyl(Rn) S ||f||Ml,<><>(]R") ||g||Moo,1(Rn),

by Proposition 2.5, we obtain

2 2k
ICK*F17) fllagra S UK*LF 17 pgoen LS agra
2k 2 2%k—2
S K pgoot NI Magroo 1f Imra S WA Nag22 NLAIT5 7 Mag22 1 f lvapa

2 2
S Bgaars (17 agsss N Wyt sy < W12 i sy ) 1 lar

S NFIR. (4.3)
O
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Proof of Theorem 1.2 By Duhamel’s formula, we note that (1.1) can be written in the
equivalent form

u(., 1) =8t —to)ug — i AF (u), 4.4

where,

t
S(t) = "2, (Av)(t,x):/ St — 1) v(t, x) dr. 4.5)

fo

For simplicity, we assume that 7o = 0 and prove the local existence on [0, T]. Sim-
ilar arguments also apply to interval of the form [—7", 0] for proving local solutions.
We consider now the mapping

t
T @) = S(t)(ug) — i / S(t — ) [(Kxu* (0)u(r)]dr. (4.6)
0
By Proposition 2.7,

IS(0)uollpra gny < Co (12 4 1) [lug |l agra en)» 4.7)

for t € R and where C,, is a universal constant depending only on .
By Minkowski’s inequality for integrals, Proposition 2.7 and Lemma 4.2, we obtain

t
H f S(t — ) [(K*ul* (0)u(r)]dr
0

t
<f

t
< / (It — 21> + DF [[(Kx|ul* (2)u(z) | pra dT
0

MPa (R

St = o) [(Kxlul* (@)u(o)]]

MPa(R)

< T Cr [(K#lu™ulicqo.rimray < T Cr lulldfo rypray:  (48)

where C7 = C, (T2 + 1)4.
By (4.7) and (4.8), we have

| Tullcqormra < Cr (Nuolluragn + ¢ ThulfEd en) 4.9)

for some universal constant c.

For M > 0, put By yy = {u € C([0, T], MP9(R")) : |lullcqo,71,mpra®ny < M},
which is closed ball of radius M, and centred at origin in C ([0, T'], MP-4(R")). Next,
we show that the mapping 7 takes Br s into itself for suitable choice of M and small
T > 0.Indeed, if welet, M = 2Cr |lugll pp.arr) and u € By, from (4.9) we obtain

M
| Tullcqo,r,mray < 5 +cCr TM*F!,
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We choose a T such that ¢c C7TM* < %, that is, T < f(lluollMp,q, n) and as a
consequence we have

M

=M,
2+

M
| Tullcqo,r1,mpray < )

thatis, Ju € Br y. By Lemma 4.1, and the arguments as before, we obtain

1
| Tu— Tvlcqo,r),mray < 3 lu — vllcqo,r1,mpa)-

Therefore, using the Banach’s contraction mapping principle, we conclude that 7 has
afixed pointin Br s which s a solution of (4.4) and the proof of Theorem 1.2 follows.
O

Remark 4.1 Note that for k = 1 and K € M*!, we prove that (see [19]) for any
ug € M?9 with 1 < p,q < 2, there exists a unique global solution u of (1.1) such
thatu € C(R, M?4(R")). In fact, we use the mass conservation law i.e, [|u(?)| ;2 =
lluoll;2, (¢t € R) to conclude that the solution constructed before is global in time.
In view of Lemmas 4.1 and 4.2, we can also prove that for any ug € M7 9(R")
withl < p<2m 1 <g < %,whereﬂ”_l <k <2" m e Nand
271 <k < 2! 1 e NU{0}, k € N, there exists T* = T*(|lug|lprra) > to and
T, = Tw(|lugllmra) < ty such that the Cauchy problem (1.1) has a unique solution
u € C(T,, T*], MP-9(R")). The range of p and g can be proved by induction

argument on m and / respectively.

5 Proof of Theorem 1.3 and 1.4

Global well-posedness in MP-! for potential in M'-°°: In this section, we will prove
global existence result (Theorem 1.3) for (1.5) with the potential in modulation space
Ml,oo (Rn).

Lemma5.1 Let K € MM (R"). Forany f,g € MP'(R") with2 < p <2k+1, k €
N, we have

ICK*1f 1) f = (K*l817)8pgr1 ey S

(W13 P12t g g + = 1 F g N3kt + N2 ) 1F =8l

Proof By Theorem 2.4, Propositions 2.3 (2, 5, 8), 2.5 and 2.6, we obtain for2 < p <
2k +1

ICK LI = Myt SINER LIyt 1CF = )l pgoct
SUK Npgroe ANy 1CF = @)l pgoen
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SK N prroe 1F1 N prrenzin [ — €)1l ygoen
SN i 1CF = Myt < Wk 1CF = @) llaga- (5.1)

In the last step, we have used th_e factthat p <2k +1 <o00.
Writing | f|> — |g]*> = f(f — &) + (f — g)g. as before and by Theorem 2.4,
Propositions 2.3, 2.5 and 2.6, we obtain for 2 < p < pg =2k + 1

ICK*(F12 = 181D gl yymra S UK LI = 1817yt gl pgoen
S UK Nppreo A1 = 121101 gl pgon
SHALPE = 1gPALPED 41 1PE2 1612 4o 1gPED) 1y 18 g

S (1 =D 1P Dy + -+ 10 = 8 18P“ Dl ) gllagen
S (=D 1PN s+ + 1 = D3 18PV o) I8l
S = Dlror (LFIZ0 o 1 o 181252 + 12124520 ) gz

S = laar (113 Igagrs + -+ Uf gt g 2hod + %) -

(5.2)
In the second last step, we have used the fact that
M 213 PEDT ey < el ygot Th2llygot A3 110
where hy, ho, h3 are either f, g or f — g. Now taking the identity
(K« f17) f = (Kxg1*)g = (Kl fP)(f — &) + (Kx(| f1* = [gI"))g.
into our account, (5.1) and (5.2) give the desired result. O

Lemma5.2 Let K € MV (R"). Then for any f € MP'(R") with2 < p < 2k +
1, k € N, we have

2k 2k+1
”(K*'f' )f“M[’/al(R”) SJ ”f”Mp,l(Rn)'

Proof By Theorem 2.4, Propositions 2.3(2, 5, 8), 2.5 and 2.6, we obtain for 2 < p <
2k + 1

2% 2%
ICE* LI fll o S NEXFI N o 1l agoe.t
2%
S K pgroo AT M ppra 1 Nagoa
2%
S MK Magroe AT N ppexenszea Lf e

2k 2k+1
S Igzerna 1 f Lo < I - (5.3)
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Proof of Theorem 1.3 By Duhamel’s formula, we note that (1.5) can be written in the
equivalent form

u(., 1) =8t —to)ug — i AF (u), 54)

where,
t
S@t) = 1" Ay, x) :/ St —t) v, x)dt, m>2.  (55)

fo

For simplicity, we assume that 7o = 0.
We consider now the mapping

t
T @) = S(t)(ug) — i / S(t — ) [(K*ul* (0)u()]dr. (5.6)
0
By Proposition 2.8 (Strichartz estimate) for p > 2,

_2n _
1S @0l prp ey < Co (121 + D7 27PN ug sy (5.7)

for ¢t € R and where C,, is a universal constant depending only on .
By Minkowski’s inequality for integrals, Proposition 2.8 and Lemma 5.2, we obtain

for 2"m<p§2k+1,n>m

t
” / S(t — ) [(K*ul* (0)u(r)]dt

C(R,MP-1(R"))

< [ st = o 1ckepPrepucen|

MP-1(R")

< /R(u ol 1RO KuPR ()] d

2n
< / (It — ol 4+ 7w W27VP (Ko K (2))u () || prasesn ona d
R
C

= ||(K*|M|2k)u||c R. M Ck+1)/2k,1
212 —1/p) — 1 . )
Z(jp—1/p -1 CERMLY
< lul 2650 (5.8)

2 C(R,MP!
2(1/2-1/p)—1 ( )

By (5.7) and (5.8), we have

C 2k+1
”jl/l”C(R,Mﬂvl) =< (”u()”MI)’{l(Ril) + %n_n(l/z — 1/ ) || ||MPI(R"

S Mol gyt oy + Nl oy (5.9)
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for some universal constant C.

For M > 0, put By = {u € C(R, M”4(R")) : |lullcw pr1wny < M}, which is
closed ball of radius M, and centred at origin in C (R, M? 1(R™)). Next, we show that
the mapping J takes B), into itself for suitable choice of M. Now, if we assume that
M > 0 is sufficiently small and [luol ;.1 ®ny = M /2, then from (5.9) we obtain for
u € By

M 2k+1
I Tulc@unny S 5 +M L

We choose a M such that M2 < %, and as a consequence we have

M M
+_:M7

<
||u7M||c(R,Mp11) ~ B

that is, Ju € Bjy. By Lemma 5.1, and the arguments as before, we obtain

1
|JTu — jv||C(R’M,,,1) =3 flu — U||C(R,Mp,1)-

Therefore, using the Banach’s contraction mapping principle, we conclude that 7 has
a fixed point in By which is a solution of (5.4). O

Proof of Theorem 1.4 Now, we shall prove global existence result (Theorem 1.4) for
(1.5) with the potential in modulation space M 1.oo Ry,
We set ¥ = {u; [lull pox+1 (g ppox+11) < M}. We consider now the mapping

t
T (u) = S(t)(uo) — i /0 S(t — 1) [(K*ul* ()u(0)]dr,

; m/2 . . .. .
where S(t) := /1= 2) " From Strichartz estimate (see, Proposition 2.8), we obtain

_n 2k—1
||S(t)u0||L2k+|(RMzk+1,|) < ”(1 + [£1) 7 ZFT (|ug | pyren/on

L2k+](R) :
Since k > (m + n)/2n, we have

nk a1

_— > 1.

m 2k + 1
Thus, we have

— 12kl 2k+1
(I + )" m2sT € L7TH(R),
and
S(Duoll Lox+1 (r, pr2r+11) S lluoll prertyze . (5.10)
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Next, we consider Duhamel terms.
By Minkowski’s inequality for integrals, Proposition 2.8 and Lemma 5.2, we obtain

t
H / S(t — ) [(K*lul* (0)u()]dr
0

L2k+l(R M?2k+1, l)

< f 8¢ = O [Kelu* @)uco)]|
M2+ L2+ (R)

_n 2k-1 2%

< (It =T+ D)7 m T [[(K*|ul™ (2)u(T) prektnona dT
L2k+1(R)
< /<|r—r|+ D=FE eI, de
L2k+l(R)
< s D= 3¥H H 12k ‘
= (el + 1 L (E) lleell g2 L®
2%k+1 2%+1

N ” lleell ppas11 ”szﬂ(R) = ||“||sz+1(R,M2k+1,1)- (5.11)

By (5.10) and (5.11), we have

2k+1
||JM||L2k+l(R’M2k+l.l) < (||M0||M(2k+l)/2k.](Rn) + ”u||L2k+1(R,M2"+1~1)>

On the other hand, by Lemma 5.1, and the arguments as before, we obtain

1
| Tu — Tl poxer g, p2x+1.1y < 3 lu — vl L2e1 (g p2eriny.

Now, if we assume that M > Ois sufficiently small and ||uo | yy@+1)/26.1 <M/2,
then J : Y — Y is a strict contraction. Therefore, 7 has a unique fixed-point and the
proof of Theorem 1.4 follows. O

Remark5.1 For k > " p € [2,2k 4+ 1] and M > 0, we can show that if
luoll pra+20/2 1 < M, then the Cauchy problem (1.5) has a unique global solution
ue CR, MPYy N L2KHI(R, pr2ktl Ty,

In fact, first we set Y = {u; ||ul|x,nx, < M}, where X| = L***1(R, M?*+11) and
X, = C(R, M”’l). By Proposition 2.8 (Strichartz estimate) for 2 < p < 2k + 1,

IS@uollprot ey S Nuollpyypa gy S lluollpesn /o gay.- (5.12)

Next, we consider Duhamel terms. By Minkowski’s inequality for integrals, Propo-
sition 2.8 and Lemma 5.2, we obtain for 2 < p <2k + 1

t
H / S(t — ) [(Kxu|* (0)u(r)]dT
0

[

L®(R,MP-1)

=

S =0 [(Kelu @] dr

L°(R)
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IA

/ (It — ol + RO (Kl (@) (o) d
R

L®(R)

IA

f I CK %l (0))u (0) | ygax121 dT
R

L (R)

IA

2k+1
@I |

2k+1
LIR) = || ”u”MZkJrl’l ||L2j+l(R)

2k+1
= lul 550 gy (5.13)

By (5.10)—(5.13) we have

2Ut1
I Tullx,nx, < luollyreesnn gy + ||M||Lzzr+1(RMzk+1,1)

2k+1
< luoll pyer+v2e ey + ”””XIFXZ‘

On the other hand, by Lemma 5.1, and the arguments as before, we obtain

1
|Tu—Tvlxinx, S 3 lu — vllx;nx,-

Now, if we assume that M > 0 is sufficiently small and ||ug|| pyx+1)/2¢,1 R <M/2,
then 7 : Y — Y is a strict contraction. Therefore, J has a unique fixed-point and
hence the result.

6 Proof of Theorems 1.5 and 1.6

Global well-posedness for an exponential growth nonlinearity: In this section, we will
prove global existence result (Theorem 1.5) for (1.5) with the potential in modulation
space M °°(R™). In the Theorem 1.5, we have by the Taylor expansion

M
G@u) = ZF'”' .

k=ko

Lemma6.1 Let K € MV(R"). For any f,g € MP'(R") with2 < p < 1+
2ko, ko € N, we have

2k
>0 T [P f = (Kalgg ] S NF = gl
k=ko M])’.I(Rn)
M 2% 2%—1 2%k—1 2%
x 0 27 LBk + U3 Mgt + - 1 Daawa N3t + NgI3E,) ] -
k>ko :
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Proof By Theorem 2.4, Propositions 2.3 (2, 5, 8), 2.5 and 2.6, we obtain for2 < p <
2ko + 1

I+ FPYCE = )y S UE*LF 1y 1 = @) pgocat
S UK pgreo NP pgmra 1CF = @) lagoe
SAK oo 11PN ygerorvton 1CF = @)llygoon
SR st 1CF = ) Magrt < 1 kot 1 = @) pgor- (6.1)

In the last step, we have used the fact that p = 2kp + 1 < oo and for p = 1 + 2k,
we have 1/p’ = 1/(2kp’) + --- + 1/(2kp’) (2k times). Since p < 1 + 2kg < p'2k
from p € [2,1 + 2ko] NN, the inclusion relation M?-! ¢ M2kl < MP'2%k1
holds. Writing | |2 — |g|?> = f(f — &) + (f — g)&, as before and by Theorem 2.4,
Propositions 2.3, 2.5 and 2.6, we obtain for 2 < p < pg = 2ko + 1

(K *(| f1%* — |g|2">)g||M,,u SUK*UFIP* = 1817 My 181 pgoon
S UK lagroo N1 = 1812501 gl pgr
SHALP = 1gPALPED 41 £2E2 1612 4o+ 1P D)y gy
S (1 =D 1Py + -+ 1 = @818 Dy ) glhagen
2(k—1 2(k—1
S (T =D UPEDN s+ 10 = 7 18P0 ) Ngharns
2k—2

SN = O llpgno (ufuj’;,,o‘l +o I ot gl + ||g||§’;,;jl) gl pzp.

S = Dlanr (L1 Uglagma + -+ 1L g N2+ 113651 )

(6.2)
In the second last step, we have used the fact that for pg = 2kg + 1,
I 2l PED N < o W2 31205
where hy, ho, h3 are either f, g or f — g. Now taking the identity
(K1) f = (K#ll*)g = (K2l fP)(f = &) + (Kx(Lf 1P —1817))s.
into our account, (6.1) and (6.2) give the desired result. m]

Lemma6.2 Let K € MV (R"). Then for any f € MPV(R") with2 < p < 1 +
2ko, ko € N, we have

S X [k ] <Y R

k>k0 M.D/J(]R”) k>ko
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Proof By Theorem 2.4, Propositions 2.3(2, 5, 8), 2.5 and 2.6, we obtain for 2 < p <
2ko + 1

2k 2k
ICK*FIT) Sl pgera S NEHS T o 1S lagee
2%
S UK agree ILAT N ygera 1F Nl pgra

2%
S K pgros NLFI N pgerotnikon L 1l pge

SIS < WA 6.3)
The last inequality follows similarly as in Lemma 6.1. O

Proof of Theorem 1.5 By Duhamel’s formula, we note that (1.5) can be written in the
equivalent form

u(., 1) =8t —to)ug — i AF (u), 6.4)

where,

t
S(t) = A" (A @, x) =/ St -1ty x)dr, m>2. (6.5

fo

For simplicity, we assume that 7o = 0.
We consider now the mapping

J () = S(1)(uo) — i / St—1) ) —[(K*|u|2"(r>>u<r> dr.  (6.6)
k>k0

By Proposition 2.8 (Strichartz estimate) for p > 2,

_2n _
1S@uoll gy < C (121 + D77 Y27V gy (6.7)

for ¢t € R and where C,, is a universal constant depending only on .
By Minkowski’s inequality for integrals, Proposition 2.8 and Lemma 6.2, we obtain

fornz_”m<p§2k0+1, n>m

H/ S(t — 1) Z (K*|u|2k(t))u(r)]dr

k>k0 C(R,MP-1(RM))
< f St — 1) Z [(K*|u|2k<r))u<r)] dr
R k>k0 MP’I(R”)
2n )\.k
sf<|z—r|+1>‘ﬁ“/2—””) > g KxlulP @)u(o) dr
R k>ko M
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_1 /o 2k
sf(|t—r|+1) n WEEUP S 7 (K lu P (0)u(e) dr
R k>ko M Qko+1)/2ko. 1
C Ak
S T . > g Kxlulu
Z( / - /p) - k>ko

C (R, M@ko+D/2ko. 1y

= 2_7[ _ . z | C(R,M2k0+l’l)
C Ak
< 2k . (6.8)
2n _ _ Z ] C(R,MP:1)
(1/2—=1/p) =1 k=ko k!
By (6.7) and (6.8), we have
T ull < Jluol - ¢ > a |35
ulle@ mry = luoll ppprigny + 3 T Vg1 ey
a1/2—=1/p)—1 k=Ko k!
Z A
5 ||u()||M,,/41(Rn) + FHMHMP'I(R")’ (69)
k>ko ’

for some universal constant C.

For M > 0, put By = {u € C(R, M”4(R")) : |lullcw pri@ny < M}, which is
closed ball of radius M, and centred at origin in C (R, M?” 1(R™)). Next, we show that
the mapping J takes By, into itself for suitable choice of M. Now, if we assume that
M > 0 is sufficiently small and [Juol ;.1 ®ny = M /2, then from (6.9) we obtain for
u € By

| Tulequnn < 2+ 30 2 ke
cmMP) S i .
k>ko

k
We choose a M such that Zk>k0 %M 2%k < %, and as a consequence we have

<

SIS

M
2

+ :Mv

I Tullc®, pmp )

that is, Ju € By. By Lemma 6.1, and the arguments as before, we obtain

1Tu— Tvllcw mrty < 3 lu — vllc®, mpy-

Therefore, using the Banach’s contraction mapping principle, we conclude that 7 has
a fixed point in By which is a solution of (6.4). O
Proof of Theorem 1.6 Now, we shall prove global existence result (Theorem 1.6) for
(1.5) with the potential in modulation space M1 (R").
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We first set YV = {u; lullx,nx, < M}, where p € [2,1 + 2kol, X; =

L¥o(R, M*0+L1y and X, = L®(R, MP-!). We consider now the mapping

T (u) = S(t)(ug) — i f St =) Z (K*|u|2k(r>)u<r>]dr

k>k()
where S(¢) := ei(_A)"l/z. From Strichartz estimate (see Proposition 2.8), we obtain
_n 2kp—1
||S(Z)M0||L2k0(]R,M2ko+1,1) N H(l 1t ™ot ugll perg+1/260.1 .
L2k0 (R)
Since ko > k, we have
n 2ky —
(2k0) > 1.
m 2ko + 1
Thus, we have
_n 2kg=1
(L[]0 e L),
and
”S(I)MO||L2kO(R’M2kO+1,1) < 20|l g 2ro+1)/260.1 - (6.10)

Next, we consider Duhamel terms.
By Minkowski’s inequality for integrals, Proposition 2.8 and Lemma 6.2, we obtain

H / St —1) Z (K*|u|2k<r))u(r>]dr

k>k0 L2 (R, M2ko+1.1)
t
s\ [se-0 TG (K*|u|2k(r)>u(r>] dr
0 k>k0 M2ko+1.1 L%0 (R)
_n 2ot Ak 2%
< [ (1 = o1+ DR E Y Kl POy de
R kaO ’ L2k0
-8 2%+1
< | [ r=zl+ 1) Z ||u<r>||M2k0+.1 T
R
kaO szO(R)
n2o 2k+1
S CED Z—uun
2% k! M
LTOR) | k>k

L'(R)
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k
S [T N et
~ k! M2ko+1.1 M2ko+1.1 L'(R)
k>ko
Ao 2k+1-2k A i
0 —4K0
S D 1l B g prztorny 10 iy < D o lullX By, (611)
k>ko k=ko

By Proposition 2.8 (Strichartz estimate) for 2 < p < 2kg + 1,

||S(I)M0||Mpv'(R") S ||“O||Mp/,1(Rn) S ||140||M(2ko+1)/2k0~l(Rn)- (6.12)

Finally, we consider the Duhamel terms under X».
By Minkowski’s inequality for integrals, Proposition 2.8 and Lemma 6.2, we obtain
for2 < p <2ky+1

/ St—1) Y —[(K*|u|2’<(r)>u<r>]dr

k>’<0 LR, MP:1)

IA

t
/ S(r—r)Z—[(K*Wk(r))u(r)l dr
0

k>ko Mpl LOO(R)

_ — o (1/2=1/p) A 2%
/H;(n T+ 1) P Zk!(l(*|u| (O)u(r) dt

k>ko Mmp'1 L®(R)

2k
/ > o KxluP@)u() de
R k!

k=ko M @ko+1)/2kg. 1 L®(R)

IA

IA

)»k
< Z—nu(r)anW < | 22 @l dr

k>ko LI(R) k>ko LI(R)

)\'k
S

k>ko

Ao 2% Ak
0 +1—2ko 2k+1
< E 0 IIMIIszO(R)M,,,l)IIMIILOO(R’MM)S E Fllullxmxz- (6.13)
k>ko k>ko

2% 2k+1-2k
el Neellypps ™

LI (R)

By (6.10)—(6.13), we have

2k+1
1 Tullxinxs S luollyeroriot g + Y 27 Iu1% R,

k>ko
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On the other hand, by Lemma 6.1, and the arguments as before, we obtain

1
”jl/i - jv”X]ﬂXz =< E ”u - v||XlﬂX2~

Now, if we assume that M > 0 is sufficiently small and ||ug|| py2x+1)/2¢,1 &) < M)/2,

then J : ) — ) is a strict contraction. Therefore, 7 has a unique fixed-point and the
proof of Theorem 1.6 follows. O
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