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Abstract
We prove that for almost every (1,3) configuration, there is no linear dependence
between the associated time-frequency translates of any f ∈ L2(R)\{0}.
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1 Introduction

For a measurable function f : R → C and a subset � ⊂ R
2, the associated Gabor

system is given by
G( f ,�) = {MbTa f : (a, b) ∈ �},

where
MbTa f (x) = e2π ibx f (x − a).

We call MbTa f a time-frequency translate of f .
The Heil–Ramanathan–Topiwala (HRT) conjecture [10] asserts that finite Gabor

systems in L2(R) are linearly independent (also see [8]). That is
TheHRTConjecture Let� ⊂ R

2 be a finite set. Then there is no non-trivial func-
tion f ∈ L2(R) such that the associated Gabor system G( f ,�) is linearly dependent
in L2(R).

Here are some examples to show that the L2(R) property of function f is essential.

1 For any trigonometric polynomial f , there exists a finite subset � ⊂ R
2 such that

the associated Gabor system G( f ,�) is linearly dependent.
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2 Let f (x) = 1
2n for x ∈ [n − 1, n). Then f ∈ L2(R+) but f /∈ L2(R). It is easy to

see that { f (x + 1), f (x)} is linearly dependent.
Since the formulation of the HRT conjecture, some results were obtained (see [9]

and references therein) under further restrictions on the behavior of function f (x) at
x = ∞ [1,3,4,10] or the structure of the time-frequency translates � [2,5,6,10,12].
Recall that we call � an (n,m) configuration if there exist 2 distinct parallel lines
containing � such that one of them contains exactly n points of �, and the other
one contains exactly m points of �. The following results hold without restriction on
f ∈ L2(R)\{0}.
• G( f ,�) is linearly independent if #� ≤ 3 or � is colinear [10].
• G( f ,�) is linearly independent if � is a finite subset of a translate of a lattice in
R
2 [12]. See [2,6] for alternative proofs.

• G( f ,�) is linearly independent if � is a (2,2) configuration [5,7].
• G( f ,�) is linearly independent if� is a (1,3) configurationwith certain arithmetic
restriction [5]. See Theorem 1.1.

In this paper, we consider (1, 3) configurations. In [5], Demeter proved

Theorem 1.1 The HRT conjecture holds for special (1, 3) configurations

� = {(0, 0), (α, 0), (β, 0), (0, 1)},

(a) if there exists γ > 1 such that

lim inf
n→∞ nγ min

{∥∥∥nβ

α

∥∥∥,

∥∥∥n α

β

∥∥∥
}

< ∞, (1)

(b) if at least one of α, β is rational.

It is known that {x ∈ R : there exists some γ > 1 such that lim infn→∞ nγ ||nx ||
< ∞} is a set of zero Lebesgue measure (e.g., [11, Theorem 32]). Thus Theorem 1.1
holds for a measure zero subset of parameters, and it has been an open problem to
extend it to other (1, 3) configurations.

Our main result is

Theorem 1.2 The HRT conjecture holds for special (1, 3) configurations

� = {(0, 0), (α, 0), (β, 0), (0, 1)},

(a) if

lim inf
n→∞ n ln nmin

{∥∥∥nβ

α

∥∥∥,

∥∥∥n α

β

∥∥∥
}

< ∞, (2)

(b) if at least one of α, β is rational.

Remark 1.3 (b) of Theorem 1.2 is the same statement as (b) in Theorem 1.1. We list
here for completeness.
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It is well known that {x ∈ R : lim infn→∞ n ln n||nx || < ∞} is a set of full Lebesgue
measure (e.g., [11, Theorem 32]). Then using metaplectic transformations, we have
the following theorem

Theorem 1.4 Given any line l inR2, let (a2, b2) and (a3, b3) be any two points lying in
l. Let (a1, b1) be an any point not lying in l. Then for almost every point (a4, b4) in l, the
HRTconjecture holds for the configuration� = {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}.
Proof By metaplectic transformations (see [10] for details), we can assume l is
x-axis, and (a1, b1) = (0, 1), (a2, b2) = (0, 0) and (a3, b3) = (α, 0). By The-
orem 1.2 and the fact that {x ∈ R : lim infn→∞ n ln n||nx || < ∞} is a set of
full Lebesgue measure, we have for almost every β, the HRT conjecture holds for
� = {(0, 1), (0, 0), (α, 0), (β, 0)}. We finish the proof. ��

2 The Framework of the Proof of Theorem 1.2

If α
β
is a rational number, it reduces to the lattice case, which has been proved [12].

Thus we also assume α
β
is irrational.

Assume Theorem 1.2 does not hold. Then there exists some function f satisfying

lim|n|→∞ | f (x + n)| = 0 a.e. x ∈ [0, 1) (3)

and nonzero Ci ∈ C such that

f (x + 1) = f (x)
(
C0 + C1e

2π iαx + C2e
2π iβx

)
a.e. x ∈ R. (4)

(Theorem 1.2 is covered by the known results if Ci = 0 for some i = 0, 1, 2)
Let

P(x) = C0 + C1e
2π iαx + C2e

2π iβx .

For n > 0, define

Pn(x) =
n∏
j=0

P(x + j),

P−n(x) =
−1∏

j=−n

P(x + j).

Notice that P(x + n) is an almost periodic function. Thus for almost every x ∈ [0, 1),

P(x + n) 	= 0 for any n ∈ Z.

Iterating (4) n times on both sides (positive and negative), we have for n > 0,

f (x + n) = Pn(x) f (x) a.e. x ∈ [0, 1), (5)
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and
f (x − n) = P−n(x)

−1 f (x) a.e. x ∈ [0, 1). (6)

This implies that the value of function f onR can be determined uniquely by its value
on [0, 1) and function P(x).

By Egoroff’s theorem and conditions (3), (5) and (6), there exists some positive
Lebesgue measure set S ⊂ [0, 1) and d > 0, such that

lim|n|→∞ f (x + n) = 0 uniformly for x ∈ S, (7)

d < | f (x)| < d−1 for all x ∈ S, (8)

f (x + n) = Pn(x) f (x) for all x ∈ S, (9)

and
f (x − n) = P−n(x)

−1 f (x) for all x ∈ S. (10)

Demeter constructed a sequence {nk} ⊂ Z
+, such that

|Pnk (xk)P−nk (x
′
k)

−1| ≥ C (11)

for some xk, x ′
k ∈ S. This contradicts (7)–(10).

In order to complete the construction of (11), growth condition (1) was necessary
in [5]. In the present paper, we follow the approach of [5]. The novelty of our work is
in the subtler Diophantine analysis. This allows to make the restriction weak enough
to obtain the result for a full Lebesgue measure set of parameters, and significantly
simplifies the proof.

The rest of the paper is organized as follows. In Sect. 3, we will give some basic
facts. In Sect. 4, we give the proof of Theorem 1.2.

3 Preliminaries

We start with some basic notations. Denote by [x], {x}, ‖x‖ the integer part, the
fractional part and the distance to the nearest integer of x . Let 〈x〉 be the unique
number in [−1/2, 1/2) such that x − 〈x〉 is an integer. For a measurable set A ⊂ R,
denote by |A| its Lebesgue measure.

For any irrational number α ∈ R, we define

a0 = [α], α0 = α,

and inductively for k > 0,

ak = [
α−1
k−1

]
, αk = α−1

k−1 − ak . (12)

We define

p0 = a0, q0 = 1,



1354 Journal of Fourier Analysis and Applications (2019) 25:1350–1360

p1 = a0a1 + 1, q1 = a1,

and inductively,

pk = ak pk−1 + pk−2,

qk = akqk−1 + qk−2. (13)

Recall that {qn}n∈N is the sequence of denominators of best approximations of irra-
tional number α, since it satisfies

∀1 ≤ k < qn+1, ‖kα‖ ≥ ||qnα||. (14)

Moreover, we also have the following estimate,

1

2qn+1
≤ ‖qnα‖ ≤ 1

qn+1
. (15)

Lemma 3.1 Let k1 < k2 < k3 < · · · < km be a monotone integer sequence such that
km − k1 < qn. Suppose for some x ∈ R

min
j=1,2··· ,m ||k jα − x || ≥ 1

4qn
. (16)

Then ∑
j=1,2··· ,m

1

||k jα − x || ≤ Cqn ln qn .

Proof Recall that 〈x〉 is the unique number in [−1/2, 1/2) such that x − 〈x〉 is an
integer. Thus ||x || = |〈x〉|. In order to prove the Lemma, it suffices to show that

∑
j=1,2··· ,m

1

|〈k jα − x〉| ≤ Cqn ln qn . (17)

Let S+ = { j : j = 1, 2, · · · ,m, 〈k jα − x〉 > 0}. Let j+0 be such that j+0 ∈ S+, and

〈k j+0 α − x〉 = min
j∈S+〈k jα − x〉. (18)

By (14) and (15), one has for i 	= j and i, j ∈ S+,

|〈kiα − x〉 − 〈k jα − x〉| = ||(kiα − x) − (k jα − x)|| ≥ 1

2qn
.

It implies the gap between any two points 〈kiα − x〉 and 〈k jα − x〉 with i, j ∈ S+ is
larger than 1

2qn
. See the following figure.
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〈k j+0 − α〉
≥ 1

2qn
≥ 1

2qn
≥ 1

2qn
≥ 1

2qn
≥ 1

2qn
0

〈k j2 − α〉〈k j1 − α〉

It easy to see that the upper bound of
∑

j∈S+ 1
||k jα−x || is achieved if all the gaps

are exactly 1
2qn

. In this case, the gap between the i th closest points of 〈k jα − x〉 with
j ∈ S+ to 〈k j+0 α − x〉 is exactly i

2qn
. Thus by (16), we have

∑
j∈S+

1

||k jα − x || = 1

||k j+0 α − x || +
∑

j∈S+, j 	= j+0

1

||k jα − x ||

= 1

〈k j0α − x〉 +
∑

j∈S+, j 	= j+0

1

〈k jα − x〉

≤ 4qn +
∑

1≤ j≤qn

2qn
j

≤ Cqn ln qn . (19)

Similarly, letting S− = { j : j = 1, 2, · · · ,m, 〈k jα − x〉 < 0}, one has
∑
j∈S−

1

||k jα − x || ≤ Cqn ln qn . (20)

By (19) and (20), we finish the proof. ��
Now we give two lemmas which can be found in [5].

Lemma 3.2 ([5, Lemma 2.1]) Let C0,C1,C2 ∈ C\{0}. The polynomial p(x, y) =
C0 + C1e2π i x + C2e2π iy has at most two real zeros (γ

( j)
1 , γ

( j)
2 ) ∈ [0, 1)2, j ∈ {1, 2}

and there exists t = t(C0,C1,C2) ∈ R \ {0} such that

|p(x, y)| ≥ C(C0,C1,C2) min
j=1,2

(‖x−γ
j
1 +t〈y−γ

j
2 〉‖+‖x−γ

j
1 ‖2+‖y−γ

j
2 ‖2), (21)

for each x, y ∈ R.

Remark 3.3 In (21), we assume p(x, y) has two zeros. If p(x, y) has one or no zeros,
we can proceed with our proof by replacing (21) with

|p(x, y)| ≥ C(C0,C1,C2)(‖x − γ1 + t〈y − γ2〉‖ + ‖x − γ1‖2 + ‖y − γ2‖2),

or
|p(x, y)| ≥ C(C0,C1,C2).
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Lemma 3.4 ([5, Lemma 4.1]) Let x1, x2, . . . , xN be N not necessarily distinct real
numbers. Then for each N ∈ Z

+ and each δ > 0, there exists a set EN ,δ ⊂ [0, 1) with
|EN ,δ| ≤ δ, such that

N∑
n=1

1

‖x − xn‖ ≤ C(δ)N log N , (22)

and
N∑

n=1

1

‖x − xn‖2 ≤ C(δ)N 2, (23)

for each x ∈ [0, 1) \ EN ,δ .

4 Proof of Theorems 1.2

In this section, qk, pk, ak are always the coefficients of the continued fraction expan-
sion of α

β
as given in (12) and (13). Then condition (2) holds iff

lim sup
k

ak
ln qk

> 0, (24)

and also iff
lim sup

k

qk+1

qk ln qk
> 0.

Lemma 4.1 Suppose α
β
is irrational and satisfies condition (2). Then for any s ∈ (0, 1),

there exists a sequence Nk such that

(i)
Nk = mnkqnk ,mnk ≤ C(s), (25)

(ii) ∥∥∥Nk
α

β

∥∥∥ ≤ C(s)

Nk ln Nk
, (26)

and
(iii) {Nk

β

}
≤ s. (27)

Proof By (24), there exists a sequence nk such that ank ≥ c ln qnk . For any s ∈ (0, 1),
let mnk ∈ Z

+ be such that 1 ≤ mnk ≤ 1/s + 1 and Nk = mnkqnk satisfies (iii) (this
can be done by the pigeonhole principle). It is easy to check that Nk satisfies condition
(ii) by the fact ank ≥ c ln qnk . ��
Lemma 4.2 Let C0,C1,C2 ∈ C\{0} and α, β be such that α

β
is irrational. Let Qk be a

sequence such that γ qnk ≤ Qk ≤ γ̂ qnk , where qn is the continued fraction expansion
of α

β
and γ, γ̂ are constants. Define

P(x) = C0 + C1e
2π iαx + C2e

2π iβx .
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Then for each δ > 0, there exists a set EQk ,δ ⊂ [0, 1) such that

|EQk ,δ| < δ

and

Qk−1∑
n=0

1

|P(x + n)| ≤ C(γ, γ̂ , δ,C0,C1,C2, α, β)Qk ln Qk

for each x ∈ [0, 1) \ EQk ,δ .

Proof In order to make the proof simpler, we will use C for constants depending on
γ, γ̂ , δ,C0,C1,C2, α, β.

Let (γ1, γ2) be a zero of the polynomial p(x, y) = C0 + C1e2π i x + C2e2π iy , and
let t be the real number given by Lemma 3.2. Define

An(x) := ‖α(x + n) − γ1 + t〈β(x + n) − γ2〉‖
+‖α(x + n) − γ1‖2 + ‖β(x + n) − γ2‖2.

By Lemma 3.2, it suffices to find a set with |EQk ,δ| ≤ δ, such that

Qk−1∑
n=0

1

An(x)
≤ CQk ln Qk, (28)

for each x ∈ [0, 1) \ EQk ,δ .
We distinguish between two cases.

Case 1 α + tβ 	= 0
In this case, one has

‖α(x + n) − γ1 + t〈β(x + n) − γ2〉‖
= ‖(α + tβ)x + (α + tβ)n − γ1 − tγ2 − t[β(x + n) − γ2] + mt‖,

where m = −1 if {β(x + n) − γ2} > 1/2 and m = 0 otherwise. We remind that
[β(x + n) − γ2] is the integer part of β(x + n) − γ2.

Note that the set

S :={(α + tβ)n − γ1 − tγ2 − t[β(x + n) − γ2]
+mt : x ∈ [0, 1), 0 ≤ n ≤ Qk − 1, m ∈ {0,−1}}

has O(Qk) elements. By (22) there exists some E1
Qk ,δ

with |E1
Qk ,δ

| < δ/2 such that

∑
y∈S

1

‖(α + tβ)x + y‖ ≤ CQk ln Qk

for each x ∈ [0, 1) \ E1
Qk ,δ

. This implies (28).
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Case 2 α + tβ = 0.
In this case, one has

‖α(x + n) − γ1 + t〈β(x + n) − γ2〉‖ =
∥∥∥ − γ1 − tγ2 + mt + α

β
[β(x + n) − γ2]

∥∥∥,

where m is as before. Let ξ be either γ1 + tγ2 or γ1 + tγ2 + t , depending on whether
m = 0 or −1. From Lemma 3.1, we have that for each x ∈ [0, 1)

Qk−1∑
n=0

‖ α
β
[β(x+n)−γ2]−ξ‖≥ 1

4qnk

1

‖α
β
[β(x + n) − γ2] − ξ‖ ≤ C

CQk∑
n=0

‖ α
β
n−ξ‖≥ 1

4qnk

1

‖α
β
n − ξ‖

≤ CQk ln Qk . (29)

Let S(ξ) (not depending on x) be the set of those 0 ≤ n ≤ Qk − 1 such that
‖α

β
[β(x + n) − γ2] − ξ‖ ≤ 1

4qnk
for some x ∈ [0, 1). It is easy to see that #S(ξ) ≤ C

by (14) and (15). For n ∈ S(ξ), we will use an alternative estimate

An(x) ≥ ‖α(x + n) − γ1‖2.

By (23), there exists some set E2
Qk ,δ

⊂ [0, 1) such that |E2
Qk ,δ

| ≤ δ
2 and

Qk−1∑
n=0

‖ α
β
[β(x+n)−γ2]−ξ‖≤ 1

4qnk

1

An(x)
≤ C

Qk−1∑
n=0

‖ α
β
[β(x+n)−γ2]−ξ‖≤ 1

4qnk

1

‖α(x + n) − γ1‖2

≤ C(δ), (30)

for each x ∈ [0, 1) \ E2
Qk ,δ

. Thus in this case, (28) follows from (29) and (30). Putting
two cases together, we finish the proof. ��

Theorem 4.3 Under the conditions of Lemma 4.2, let Nk be a sequence such that (i),
(ii) and (iii) in Lemma 4.1 hold. Define Pk := Nk

β
for β > 0 and Pk := − Nk

β
for

β < 0. Given δ > 0, there exists Ek,δ ⊂ [0, 1) with |Ek,δ| ≤ δ such that for each x, y
satisfying x ∈ [0, 1) \ Ek,δ and x = y + Pk, we have

∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(y + n)

∣∣∣∣∣∣
≤ C(δ, s,C0,C1,C2, α, β)

∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(x + n)

∣∣∣∣∣∣
.

Proof We write C for C(δ, s,C0,C1,C2, α, β) again. Without loss of generality, we
only consider the case β > 0.

By (26) we have
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∣∣e2π iαx − e2π iαy
∣∣ = ∣∣e2π i Nk

α
β − 1

∣∣ ≤ C

Pk ln Pk

and

∣∣e2π iβx − e2π iβ y
∣∣ = 0.

Thus, for each n ∈ Z
+, one has

|P(y + n)| ≤ |P(x + n)| + C

Pk ln Pk
.

By the fact 1 + x ≤ ex for x > 0, we get

|P(y + n)| ≤ |P(x + n)|e C
Pk ln Pk |P(x+n)| ,

and thus
∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(y + n)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(x + n)

∣∣∣∣∣∣
e

C
Pk ln Pk

∑[Pk ]−1
n=0

1
|P(x+n)| .

Now Theorem 4.3 follows from Lemma 4.2. ��
Proof of Theorem 1.2 Suppose Theorem 1.2 is not true. As argued in Sect. 2, there there
exist some function f , a positive Lebesgue measure set S ⊂ [0, 1) and d > 0 such
that (7)–(10) hold. By the continuity of Lebesgue measure, there exists ε = ε(S) > 0
such that

|S ∪ ({Pk} + S)| ≤ 101

100
|S|,

for {Pk} ≤ ε. Let δ = |S|
100 . Then (S \ Ek,δ) ∩ ({Pk} + S) 	= ∅. Let s = ε. Applying

Theorem 4.3 with s and δ, we have
∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(y + n)

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(x + n)

∣∣∣∣∣∣
, (31)

for each x ∈ [0, 1) \ Ek,δ and x = y + Pk .
Now we can choose xk ∈ S \ Ek,δ such that xk − {Pk} ∈ S. Let yk = x ′

k − [Pk] =
xk − Pk . Then

[Pk ]−1∏
n=0

P(yk + n) =
[Pk ]∏
n=1

P(x ′
k − n). (32)

By (31) and (32), we get

∣∣∣∣∣∣
[Pk ]∏
n=1

P(x ′
k − n)

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣
[Pk ]−1∏
n=0

P(xk + n)

∣∣∣∣∣∣
.
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Applying (9) and (10) with xk, x ′
k ∈ S, one has

f (xk + [Pk]) = f (xk)
[Pk ]−1∏
n=0

P(xk + n), (33)

and

f (x ′
k − [Pk]) = f (x ′

k)

⎛
⎝

[Pk ]∏
n=1

P(x ′
k − n)

⎞
⎠

−1

. (34)

By (8), (33) and (34), we obtain that

| f (xk + [Pk]) f (x ′
k − [Pk])| ≥ d2

C
.

This is contradicted by (7), if we let k → ∞. ��
Acknowledgements I would like to thank Svetlana Jitomirskaya for introducing to me the HRT conjecture
and inspiring discussions on this subject. The author was supported by the AMS-Simons Travel Grant
2016–2018 and NSF DMS-1700314. This research was also partially supported by NSF DMS-1401204.

References

1. Benedetto, J.J., Bourouihiya, A.: Linear independence of finite Gabor systems determined by behavior
at infinity. J. Geom. Anal. 25(1), 226–254 (2015)

2. Bownik,M., Speegle, D.: Linear independence of Parsevalwavelets. Ill. J.Math. 54(2), 771–785 (2010)
3. Bownik, M., Speegle, D.: Linear independence of time-frequency translates of functions with faster

than exponential decay. Bull. Lond. Math. Soc. 45(3), 554–566 (2013)
4. Bownik, M., Speegle, D.: Linear independence of time-frequency translates in R

d . J. Geom. Anal.
26(3), 1678–1692 (2016)

5. Demeter, C.: Linear independence of time frequency translates for special configurations. Math. Res.
Lett. 17(4), 761–779 (2010)

6. Demeter, C., Gautam, S.Z.: On the finite linear independence of lattice Gabor systems. Proc. Am.
Math. Soc. 141(5), 1735–1747 (2013)

7. Demeter, C., Zaharescu, A.: Proof of the HRT conjecture for (2, 2) configurations. J. Math. Anal. Appl.
388(1), 151–159 (2012)

8. Heil, C.: Linear independence of finite Gabor systems. In: Heil, C. (ed.) Harmonic Analysis and
Applications, pp. 171–206. Springer, New York (2006)

9. Heil, C., Speegle, D.: The HRT conjecture and the zero divisor conjecture for the Heisenberg group.
In: Balan, R., et al. (eds.) Excursions in Harmonic Analysis. Appl. Numer. Harmon. Anal., vol. 3, pp.
159–176. Birkhäuser/Springer, Cham (2015)

10. Heil, C., Ramanathan, J., Topiwala, P.: Linear independence of time-frequency translates. Proc. Am.
Math. Soc. 124(9), 2787–2795 (1996)

11. Khinchin, A.Y.: Continued Fractions. Dover Publications, Inc., Mineola (1997)
12. Linnell, P.A.: von Neumann algebras and linear independence of translates. Proc. Am. Math. Soc.

127(11), 3269–3277 (1999)


	Letter to the Editor: Proof of the HRT Conjecture for Almost Every (1,3) Configuration
	Abstract
	1 Introduction
	2 The Framework of the Proof of Theorem 1.2 
	3 Preliminaries
	4 Proof of Theorems 1.2
	Acknowledgements
	References




