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Abstract
In this paper we show that there exist two different critical exponents for global small
data solutions to the semilinear fractional diffusive equation

⎧
⎪⎨

⎪⎩

∂1+α
t u − �u = |u|p, t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), x ∈ R
n,

ut (0, x) = u1(x) x ∈ R
n,

where α ∈ (0, 1), and ∂1+α
t u is the Caputo fractional derivative in time. The second

critical exponent appears if the second data is assumed to be zero. This peculiarity is
related to the fact that the order of the equation is fractional, and so the role played by
the second data u1 becomes “unnatural” as α decreases to zero. To prove our result, we
first derive Lr − Lq estimates, 1 ≤ r ≤ q ≤ ∞, for the solution to the linear Cauchy
problem, where |u|p is replaced by f (t, x), and then we apply a contraction argument.
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1 Introduction

Weconsider the “Cauchy type” problem for the semilinear fractional diffusive equation

⎧
⎪⎨

⎪⎩

∂1+α
t u − �u = |u|p, t > 0, x ∈ R

n,

u(0, x) = u0(x),

ut (0, x) = u1(x),

(1)

where α ∈ (0, 1) and p > 1. Here ∂1+α
t u is the Caputo fractional derivative of order

1 + α with respect to t of u(t, x), defined by

∂
j+α
t u(t, x) := J 1−α(∂

j+1
t u)(t, x) (2)

for any j ∈ N and α ∈ (0, 1), where

Jβ f (t) := 1

�(β)

∫ t

0
(t − s)β−1 f (s) ds, t > 0, (3)

is the Riemann–Liouville fractional integral operator [41], defined for �(β) > 0.
Here � is the Euler Gamma function. In this paper, we write Cauchy problem instead
of “Cauchy type” problem, for the sake of brevity.

The semilinear fractional diffusive equation given in (1) interpolates the semilinear
heat equation formally obtained at α = 0 and the semilinear wave equation obtained
at α = 1. However, as one may expect, the role played by the second data u1 quickly
becomes “unnatural” as α decreases to zero.

The fundamental role played by the second data in influencing the critical exponent
for global small data solutions to (1) is a very peculiar effect, which is related to the
fact that the order of the equation is fractional. One of the main motivations of our
paper is to show and discuss this peculiarity.

By global small data solutions, wemean that for sufficiently small data with respect
to some norm, the (unique) solution to (1) is global in time. By critical exponent we
mean the power p̄ such that small data global solutions exist in the supercritical
range p > p̄ (possibly with a bound from above on p), and no global solution exists
in the subcritical range p ∈ (1, p̄), under suitable sign assumption on the data.

Assuming small data in L1 ∩ L p, we will prove global existence of the solution
to (1), if p ≥ p̄, where

p̄ := 1 + 2

n − 2(1 + α)−1 . (4)

On the other hand, if the second data u1 is assumed to be zero and u0 is small in L1∩L p,
then global existence of the solution to (1) holds if p > p̃, where

p̃ := 1 + 2

n − 2 + 2(1 + α)−1 . (5)
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For these two critical exponents, we discuss scaling arguments, whereas the nonexis-
tence counterpart result is proved in [10] (see Sect. 1.3).

Even if our interest in (1) is mainly motivated by the mathematical effect on the
critical exponent appearing for an equation with fractional order, fractional integrals
and derivatives are not just a pure mathematical tool, chosen to study new effects
which do not appear in equations with integer order. Fractional integrals and deriva-
tives appear in several models in different areas of science as Biology, Engineering,
Mathematical Physics, Medicine with current and unsaturated field survey. The prob-
ably most charming aspect of fractional differentiation for the real-world applications
is that systems containing fractional derivatives “keep memory of the past”, and this
is a highly desirable property.

We refer to [30] for an introduction on the theory of fractional derivatives and to
[1,17,32,34–36] to illustrate some applications.

If u1 ≡ 0 then the solution to (1) may be found solving an integrodifferential
equation that is a particular type of Volterra integral equations [5] (see Sect. 1.4).
This problem, that represents the heat conductor model with memory [23,37], was
originally studied by Y. Fujita [19] for n = 1 (see also [43]). Fujita’s method produces
an handle representation of solution via multiplier operators and it has been used to
study (1) in several directions, see [2,3,7,25].

1.1 A Brief Story of Critical Exponents for Heat andWave Equations

In his pioneering paper [18], H. Fujita consider the Cauchy problem for the semilinear
heat equation {

∂t u − �u = |u|p, t ≥ 0, x ∈ R
n,

u(0, x) = u0(x),
(6)

and proved that the power exponent p̃ = 1 + 2/n is critical. In particular, he derived
global existence of small data classical solutions in the supercritical range p > p̃,
and a finite time blow-up behavior of solutions in the subcritical range p ∈ (1, p̃). A
blow-up result for p = p̃ has been proved in [24,31]. In presence of nonlinear memory
terms, that is, when the power nonlinearity |u|p is replaced by Jβ(|u|p) in (6) (here Jβ

is as in (3)), the critical exponent has been obtained in [6] (see later, Sect. 1.3).
On the other hand, the nonexistence of global generalized solutions to the Cauchy

problem for the semilinear wave equation

⎧
⎪⎨

⎪⎩

∂2t u − �u = |u|p, t ≥ 0, x ∈ R
n,

u(0, x) = u0(x),

ut (0, x) = u1(x),

(7)

has been proved for 1 < p < p̄, where p̄ = 1 + 2/(n − 1) (and for any p > 1
if n = 1) by Kato [29]. However, the critical exponent for (7) is known to be p0(n),
the positive root of the quadratic equation

(n − 1)p2 − (n + 1)p − 2 = 0, (8)
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as conjectured by Strauss [45,46], after that John [28] proved it in space dimension n =
3. Several authors studied the problem in different space dimension, finding blow-up in
finite time for a suitable choice of initial data in the subcritical range [21,27,42,44,51]),
and global existence of small data solutions in the supercritical range [20,22,47,53].

The critical exponent of the Cauchy problem for the semilinear wave equation
becomes Fujita exponent 1 + 2/n if a damping term ut is added to the equation
in (7) (see [26,38,48,52]). This effect is a consequence of the diffusion phenomenon:
the asymptotic profile as t → ∞ of the solution to the damped wave is described
by the solution to a heat equation. The situation remains the same if the damping
term b(t)ut is added to the equation in (7), for a quite large class of coefficients b(t)
(see [12,14,33,50]). However, an interesting transition model has been found and
studied in [8,15]: if b(t) = 2/(1 + t), the critical exponent is given by 1 + 2/n
if n = 1, 2 and by p0(n + 2) if n ≥ 3, is odd (here p0 is as in (8)).

1.2 Results

Having in mind our plan to apply a contraction argument to prove the global existence
of small data solutions to (1), we first derive sharp Lr − Lq estimates, with 1 ≤ r ≤
q ≤ ∞, for the solution to the linear problem:

⎧
⎪⎨

⎪⎩

∂1+α
t u − �u = f (t, x), t > 0, x ∈ R

n,

u(0, x) = u0(x),

ut (0, x) = u1(x).

(9)

Therefore, our first result is the following.

Theorem 1 Let n ≥ 1 and q ∈ [1,∞]. Assume that u0 ∈ Lr0 , u1 ∈ Lr1 , and
that f (t, ·) ∈ Lr2 , with r j ∈ [1, q], satisfying

n

2

(
1

r j
− 1

q

)

< 1, (10)

for j = 0, 1, 2. Assume that

‖ f (t, ·)‖Lr2 ≤ K (1 + t)−η, ∀t ≥ 0, (11)

for some K > 0 and η ∈ R. Then the solution to (9) verifies the following estimate:

‖u(t, ·)‖Lq ≤C t
− n(1+α)

2

(
1
r0

− 1
q

)

‖u0‖Lr0 + C t
1− n(1+α)

2

(
1
r1

− 1
q

)

‖u1‖Lr1

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CK (1 + t)
α− n(1+α)

2

(
1
r2

− 1
q

)

if η > 1,

CK (1 + t)
α− n(1+α)

2

(
1
r2

− 1
q

)

log(1 + t) if η = 1,

CK (1 + t)
1−η+α− n(1+α)

2

(
1
r2

− 1
q

)

if η < 1,
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for any t > 0, where C does not depend on the data.

Remark 1.1 In particular, problem (9) is well-posed in Lq if f (t, ·) ∈ Lq , and (11)
holds for some η and for r2 = q, since

‖u(t, ·)‖Lq ≤ C
(‖u0‖Lq + t‖u1‖Lq

) + CT K , (12)

for any t ∈ [0, T ], for some CT > 0.

Using (12) for T = 1, and applying Theorem 1 for any t ≥ 1, with r j = 1
if q < 1 + 2/(n − 2), or r j defined by

n

2

(
1

r j
− 1

q

)

= 1 − δ

1 + α
,

otherwise, for j = 0, 1, 2, and for some δ > 0, one derives the following, immediate
corollary of Theorem 1, by standard contraction and prolongation arguments for linear
problems.

Corollary 1.1 Assume that u0, u1 ∈ L1 ∩ L p, for some p ∈ [1,∞], and that (11)
holds for any r2 ∈ [1, p], for some η > 1. Then there exists a unique solution u ∈
C([0,∞), L1 ∩ L p) to (9), and, for any δ > 0, it satisfies the following estimate:

‖u(t, ·)‖Lq ≤ Cδ (1 + t)−βq
(‖u0‖L1 + ‖u0‖Lq

+t ‖u1‖L1 + t ‖u1‖Lq + (1 + t)α K
)
, ∀ q ∈ [1, p], ∀t ≥ 0,

(13)

where

βq := min

{
n

2
(1 + α)

(

1 − 1

q

)

, 1 + α − δ

}

. (14)

Remark 1.2 Taking a sufficiently small δ > 0, one may choose

βq = n

2
(1 + α)

(

1 − 1

q

)

(15)

in (14), provided that q �= ∞ if n = 2 and q < 1 + 2/(n − 2) if n ≥ 3.

Remark 1.3 The decay rate for ‖u(t, ·)‖Lq in (13) is given by (1 + t)1−βq , provided
that u1 is nontrivial. If u1 identically vanishes, and f is nontrivial in (11) with η > 1,
then the decay rate is given by (1 + t)α−βq . This latter is worse than the decay rate
for (9), in the case in which both u1 and f identically vanish. This phenomenon is
related once again to the fractional order of integration.

Theorem 1 is the key tool to prove the following small data global existence results.
For the sake of simplicity, we will assume p < 1 + 2/(n − 2), so that one may
assume βq as in (15) for any q ∈ [1, p] (see later, Sect. 4.1).
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Theorem 2 Let n ≥ 2 and p ≥ p̄, in (1), with p̄ as in (4). Moreover, let p <

1 + 2/(n − 2) if n ≥ 3. Then there exists ε > 0 such that for any u0, u1 ∈ L1 ∩ L p,
satisfying

‖u0‖L1∩L p := ‖u0‖L1 + ‖u0‖L p ≤ ε, (16)

‖u1‖L1∩L p := ‖u1‖L1 + ‖u1‖L p ≤ ε, (17)

there exists a unique global solution

u ∈ C([0,∞), L1 ∩ L p) (18)

to (1). Moreover, the solution satisfies the following estimate:

‖u(t, ·)‖Lq ≤ C (1 + t)
1− n

2 (1+α)
(
1− 1

q

)
(‖u0‖L1∩L p + ‖u1‖L1∩L p

)
,

∀ q ∈ [1, p], ∀t ≥ 0, (19)

where C > 0 does not depend on the data.

Remark 1.4 The decay rate in (19) is the same as the decay rate of the linear problem,
in (13), provided that u1 is non-trivial (see Remark 1.3).

If the second data u1 is zero, then the statement of Theorem 2 may be improved.

Theorem 3 Let n ≥ 1, u1 = 0 and p > p̃ in (1), with p̃ as in (5). Moreover,
let p < 1+2/(n−2) if n ≥ 3. Then there exists ε > 0 such that for any u0 ∈ L1∩L p,
satisfying (16), there exists a unique global solution as in (18), to (1). Moreover, the
solution satisfies the following estimate:

‖u(t, ·)‖Lq ≤ C (1 + t)
α− n

2 (1+α)
(
1− 1

q

)

‖u0‖L1∩L p , ∀ q ∈ [1, p], ∀t ≥ 0, (20)

where C > 0 does not depend on the data.

Remark 1.5 The decay rate in (20) is the same of the decay rate of the linear problem,
in (13), when K > 0 and u1 ≡ 0. However, the decay rate in (20) is worse than the
decay rate of the homogeneous linear problem, which corresponds to take K = 0,
when u1 ≡ 0 (see Remark 1.3).

Remark 1.6 The critical exponents p̃ and p̄ verify

1 + 2

n
< p̃ < 1 + 2

n − 1
< p̄ < 1 + 2

n − 2
.

We notice that p̃ is increasing with respect to α, whereas p̄ is decreasing with respect
to α.
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Remark 1.7 If α → 0, then p̃ in (5) tends to Fujita exponent 1 + 2/n, the critical
exponent for the semilinear heat equation. On the other hand, p̄ tends to 1+2/(n−2)
as α → 0. This latter fact is less surprising than what may appear. Indeed, if u solves
the linear Cauchy problem for the heat equation, then

ut (0, x) = �u0(x).

In particular, having in mind the properties of Riesz potential (Hardy-Littlewood-
Sobolev theorem), assuming ut (0, ·) ∈ L1 ∩ L∞, only implies, that u0 ∈ Lr ∩ L∞,
for any r > n/(n−2), in (6) in space dimension n ≥ 3. The limit of our exponent p̄ is
then justified noticing that global solutions to (6) exist when u0 ∈ Lr ∩ L∞ is small,
for any r > n/(n − 2), if p > 1 + 2r/n > 1 + 2/(n − 2).

Remark 1.8 As α → 1, both the critical exponents p̃ and p̄ tend to the exponent 1 +
2/(n−1) found byKato [29]. However, this latter is different from the critical exponent
in (8) for the semilinearwave equation. The reason for this “lack of continuity atα = 1”
is that the influence of oscillations is neglected in the kernels for the fractional diffusive
equation, for any α ∈ (0, 1), whereas it becomes relevant for the wave equation. The
critical exponent 1 + 2/(n − 1) is the same found for the semilinear wave equation

with structural damping (−�)
1
2 ut (see [9,13,39]). Indeed, the influence of oscillations

is also neglected for this latter model, due to the presence of this special structural
damping term, even if no diffusion phenomenon comes into play.

1.3 Discussion About the Critical Exponents in Theorems 2 and 3

Quite often, critical exponents for semilinear equations may be found by using scaling
arguments. If λ ∈ (0,+∞), then

∂1+α
t ( f (λt)) = λ1+α (∂1+α

t f )(λt).

Therefore, given a solution u to the equation in (1), the function λ
2

p−1 u(λ
2

1+α t, λx) is
a solution to (1) for any λ ∈ (0,+∞). Due to

∂t
(
u(λ

2
1+α t, λx)

)∣
∣
t=0 = λ

2
1+α u1(λx),

and
∥
∥
∥λ

2
p−1+ 2

1+α u1(λ·)
∥
∥
∥
Lq

= λ
2

p−1+ 2
1+α

− n
q ‖u1‖Lq ,

the scaling exponent for (1) is

qsc = n(p − 1)

2

1 + α

p + α
.

Indeed, as one hopefully expects, our critical exponent p̄ in (4), obtained for non-
trivial u1, is the solution to qsc = 1.
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When u1 is zero, we may try to apply the scaling arguments to u0, and see if the
critical exponent p̃ in (5) comes out, but this is not the case. Indeed, due to

∥
∥
∥λ

2
p−1 u0(λ·)

∥
∥
∥
Lq

= λ
2

p−1− n
q ‖u0‖Lq ,

the scaling exponent is qsc = n(p−1)/2, the same of the heat equation. Themotivation
for this apparent inconsistency is that a loss of decay rate (1 + t)α appears for the
solution to (1) with u1 ≡ 0, with respect to the homogeneous problem with u1 ≡ 0
(Theorem 1 with u1 ≡ 0 and f ≡ 0, see Remark 1.5). Indeed, for any q ∈ [1,∞]
if n = 1, and q < 1 + 2/(n − 2) if n ≥ 2, the decay rate for the solution to (1) in
Theorem 3 is given by

‖u(t, ·)‖Lq � (1 + t)
α− n

2 (1+α)
(
1− 1

q

)

‖u0‖L1∩L p .

The effect of having a critical exponent different from the solution to qsc = 1, as
related to the presence of fractional integration, has been already observed for the heat
equation with nonlinear memory [6], namely, for

⎧
⎨

⎩

∂t u − u = 1

�(α)

∫ t

0
(t − s)−(1−α) |u(s, x)|p ds ,

u(0, x) = u0(x) .

(21)

In this case, the critical exponent is

max

{

p̂(n, α) ,
1

1 − α

}

, p̂(n, α) := 1 + 2(1 + α)

n − 2α
. (22)

In particular, small data global solutions exist for p > max{ p̂(n, α), 1/(1 − α)}, and
any solution blows up in finite time if 1 < p ≤ max{ p̂(n, α), 1/(1 − α)}, provided
that u0 ≥ 0 is non-trivial. The same critical exponent remains valid for damped waves
with nonlinear memory [11].

We notice that p̂(n, α) > p̃(n, α) for any α ∈ (0, 1). Indeed, one has p̃(n, α) =
p̂(n(1+α), α). The relation between problem (1) with u1 ≡ 0 and problem (21), and
their critical exponents, becomes more clear in view of Remark 1.10 in Sect. 1.4.

1.4 Caputo and Riemann–Liouville Fractional Derivatives

Caputo fractional derivative (2) may be written by means of the Riemann–Liouville
fractional derivative, using the following relation (Theorem 2.1 in [30]):

∂
j+α
t g(t) = D j+αg j (t), g j (s) = g(s) −

j∑

k=0

g(k)(0)

k! sk,
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where
D j+αh(t) = ∂

j+1
t (J 1−αh)(t), (23)

for j ∈ N and α ∈ (0, 1), is the Riemann–Liouville fractional derivative. Under
suitable assumptions on g, some Caputo fractional derivatives commute with ordinary
derivatives, when applied to g.

Remark 1.9 Let j ∈ N \ {0} and assume g(k)(0) = 0, for any k = 1, . . . , j . Then

∂
j+α
t g = ∂

j
t (∂α

t g), (24)

for any α ∈ (0, 1). Indeed, due to

g j (t) = g(t) − g(0) = g0(t),

we get

∂
j+α
t g(t) = D j+αg j (t) = D j+αg0(t) = ∂

j
t (Dαg0)(t) = ∂

j
t (∂α

t g).

We notice that
∂
j
t (∂α

t g) = D j−1+α(g′). (25)

Between fractional integration and fractional differentiation it holds the following
relation (see Lemma 2.4 in [30]):

Dα Jα f = f , (26)

for any f ∈ L p([0, T ]), for some p ∈ [1,∞].
Remark 1.10 As a consequence of Remark 1.9 and (25), (26), any solution to the
following integro-differential problem:

{
ut = Jα

(
�u + |u|p), t > 0, x ∈ R

n,

u(0, x) = u0(x),
(27)

also solves the Cauchy problem (1) with u1 = 0. Indeed, applying Dα to both sides
of the equation in (27), one obtains the equation in (1), and evaluating the equation
in (27) at t = 0, one gets ut (0, x) = 0. Problem (27) has been recently studied in [3,7].
In space dimension n = 1 it was first studied by Y. Fujita [19].

1.5 Representation of the Solution to the Linear Problem

The following result for the Cauchy problem for Caputo fractional differential equa-
tions allows us to study (9) by using the Fourier transform with respect to x .
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Theorem 4 [Theorem 4.3, Example 4.10 in [30]] Let α ∈ (0, 1), b0, b1, λ ∈ R. Then
the unique solution to

⎧
⎪⎨

⎪⎩

∂1+α
t g = λg + f (t) t > 0,

g(0) = b0,

g′(0) = b1,

is given by

g(t) = b0 E1+α,1
(
λ t1+α

) + b1 t E1+α,2
(
λ t1+α

)

+
∫ t

0
(t − s)α E1+α,1+α

(
λ (t − s)1+α

)
f (s) ds, (28)

where E1+α,β are the Mittag-Leffler functions:

E1+α,β(z) =
∞∑

k=0

zk

�(k + αk + β)
.

To manage the Mittag-Leffler functions in Theorem 4, we will use the following
representation.

Theorem 5 [Theorem 1.1.3 in [40]] Let ρ ∈ (1/3, 1), β ∈ R, and m ∈ N, with m ≥
ρβ − 1. Then, for any z > 0 it holds:

E1/ρ,β(−z1/ρ) =2ρ z1−β ez cos(πρ) cos(z sin(πρ) − πρ(β − 1))

+
m∑

k=1

(−1)k−1

�(β − k/ρ)
z−k/ρ + m(z),

where

m(z) = (−1)m z1−β

π

(
I1,m sin

(
π(β − (m + 1)/ρ)

) + I2,m sin
(
π(β − m/ρ)

))
,

and

I j,m(z) =
∫ ∞

0

s(m+ j)/ρ−β

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
e−zs ds.

Notation 1 In Theorem 5 and in all the paper, we will use the notation ρ = 1/(1+α).
In particular, ρ ∈ (1/2, 1), due to α ∈ (0, 1).

Remark 1.11 We notice that I j,m(z) is uniformly bounded with respect to z ∈ (0,∞),
that is,

∫ ∞

0

s(m+ j)/ρ−β

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds < ∞,
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if, and only if,
− 1 < m + j − 1 + ρ(1 − β) < 1. (29)

In particular, condition (29) holds for β = 1 and m + j = 1, and for β = 1/ρ
and m + j = 2. On the other hand, it does not hold for β = 2 and m + j = 3.

2 Linear Estimates

We first consider linear problem (9). After performing the Fourier transform with
respect to x , û = Fxu(t, ξ), we obtain

⎧
⎪⎨

⎪⎩

∂1+α
t û + |ξ |2û = f̂ (t, ξ), t > 0, x ∈ R

n,

û(0, ξ) = û0(ξ),

ût (0, ξ) = û1(ξ).

(30)

Therefore, thanks to Theorem 4, the solution to (9) is given by

u(t, ·) = uhom(t, ·) +
∫ t

0
(t − s)α G1+α,1+α(t − s, ·) ∗(x) f ((s, ·)) ds, (31)

where the homogeneous part of the solution is given by (see also [49])

uhom(t, ·) = G1+α,1(t, ·) ∗(x) u0 + t G1+α,2(t, ·) ∗(x) u1, (32)

and
G1+α,β(t, x) = F−1

(
E1+α,β

(−t1+α |ξ |2)
)
. (33)

We will derive the Lr − Lq mapping properties, 1 ≤ r ≤ q ≤ ∞, of the opera-
tor G1+α,β(t, x)∗(x), applying Theorem 5 with ρ = 1/(1 + α) and z = t |ξ |2ρ . We
directly estimate the fundamental solution G1/ρ,β(1, ·) in L p norms, having in mind
Young inequality. By virtue of the scaling property

∥
∥F−1(m(t

1
ρ | · |2))∥∥L p = t

− n
2ρ

(
1− 1

p

)
∥
∥F−1(m(| · |2))∥∥L p , (34)

it will be sufficient to consider G1/ρ,β(1, ·). We will distinguish the three cases, β =
1, 1/ρ, 2.

2.1 Estimate for G1/�,1

Having in mind the representation in Theorem 5, we define

K1/ρ,d = F−1(|ξ |d e|ξ |2ρ cos(πρ) cos(|ξ |2ρ sin(πρ))
)
, (35)

H1/ρ,d(s, ·) = F−1(|ξ |d e−s|ξ |2ρ ), ∀s > 0, (36)
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where d ∈ R. We first consider (36). By scaling property (34), we get

‖H1/ρ,d(s, ·)‖L p = s
− n

2ρ

(
1− 1

p

)
− d

2ρ ‖H1/ρ,d(1, ·)‖L p , (37)

for any p ∈ [1,∞], so it is sufficient to study in which cases the right-hand side is
finite.

Lemma 2.1 Let ρ > 0 and d > −n. Then we may distinguish two cases.

• If d ≥ 0, then H1/ρ,d(1, ·) ∈ L p, for any p ∈ [1,∞].
• If d ∈ (−n, 0), then H1/ρ,d(1, ·) ∈ L p, for any p ∈ (1,∞], such that

n

(

1 − 1

p

)

> −d. (38)

Remark 2.1 The result in Lemma 2.1 is probably well-known to the reader, possibly
with slight modifications and/or in a more general formulation. However, the scheme
we used to prove it, will appear again, later in this paper, so we provide the reader
with a self-contained proof of Lemma 2.1.

Proof It is clear that H1/ρ,d(1, ·) ∈ L∞ by Riemann-Lebesgue theorem, since

|ξ |d e−|ξ |2ρ is in L1, for any d > −n.
First, let d = 0. It holds (see [4])

lim|x |→∞ |x |n+2ρ F−1(e−|ξ |2ρ )(x) = Cn,ρ,

for any ρ > 0, so that H1/ρ,0(1, ·) ∈ L1, as well. Therefore, H1/ρ,0(1, ·) ∈ L p, for
any p ∈ [1,∞].

Now, let d ∈ (−n, 0), and p ∈ (1,∞), verifying (38). Setting p∗ ∈ (1,−n/d) as

1

p∗ − 1

p
= −d

n
,

we get

‖H1/ρ,d(1, ·)‖L p =
∥
∥
∥(−�)

d
2 H1/ρ,0(1, ·)

∥
∥
∥
L p

� ‖H1/ρ,0(1, ·)‖L p∗ ,

by Riesz potential mapping properties. Therefore, H1/ρ,d(1, ·) ∈ L p.
Finally, let d > 0 and p = 1. By using the property

eixξ =
n∑

j=1

(−i x j )

|x |2 ∂ξ j e
i xξ ,
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and integrating by parts, we may write

H1/ρ,d(1, x) = |x |−k (2π)−n
∑

|γ |=k

(
i x

|x |
)γ ∫

Rn
eixξ ∂

γ
ξ

(
|ξ |d e−|ξ |2ρ ) dξ,

for any k ∈ N. We notice that, in general,

∣
∣
∣∂

γ
ξ

(
|ξ |d e−|ξ |2ρ )

∣
∣
∣ � |ξ |d−|γ | (1 + |ξ |2ρ)|γ | e−|ξ |2ρ � |ξ |d−|γ | e−c|ξ |2ρ , (39)

for some c ∈ (0, 1).
If d > 1, then, taking k = n + 1, we may trivially estimate

|H1/ρ,d(1, x)| � |x |−(n+1)
∫

Rn
|ξ |d−(n+1) e−c|ξ |2ρdξ � |x |−(n+1).

If d ∈ (0, 1], we proceed in a different way. Let γ ∈ N
n , with |γ | = n. We may split

each integral into two parts:

∫

Rn
eixξ ∂

γ
ξ

(
|ξ |d e−|ξ |2ρ ) dξ = I0(x) + I1(x)

=
∫

|ξ |≤|x |−1
eixξ ∂

γ
ξ

(
|ξ |d e−|ξ |2ρ ) dξ +

∫

|ξ |≥|x |−1
eixξ ∂

γ
ξ

(
|ξ |d e−|ξ |2ρ ) dξ.

On the one hand, we trivially estimate

|I0(x)| �
∫

|ξ |≤|x |−1
|ξ |d−n e−c|ξ |2ρ dξ �

∫

|ξ |≤|x |−1
|ξ |d−n dξ � |x |−d .

On the other hand, we perform one additional step of integration by parts in I1. If d ∈
(0, 1), we obtain

|I1(x)| � |x |−1
∫

|ξ |=|x |−1
|ξ |d−n dσ + |x |−1

∫

|ξ |≥|x |−1
|ξ |d−(n+1) dξ � |x |−d ,

whereas, if d = 1, we split each integral into two parts (for large |x |):
∫

Rn
eixξ ∂ξ j ∂

γ
ξ

(
|ξ | e−|ξ |2ρ ) dξ = I1,1(x) + I1,2(x)

=
∫

|x |−1≤|ξ |≤1
. . . dξ +

∫

|ξ |≥1
. . . dξ,

directly estimating I1,1, and performing one additional step of integration by parts
in I1,2. This leads to

|I1,1(x)| � log(1 + |x |), |I1,2(x)| ≤ C .
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Summarizing, we proved that

|H1/ρ,d(1, x)| �

⎧
⎪⎨

⎪⎩

|x |−(n+1) if d > 1,

|x |−(n+1) log(1 + |x |) if d = 1,

|x |−(n+d) if d ∈ (0, 1).

Recalling that H1/ρ,d(1, ·) ∈ L∞, we obtained that H1/ρ,d(1, ·) ∈ L1 as well. There-
fore, H1/ρ,d(1, ·) ∈ L p, for any p ∈ [1,∞]. ��
Remark 2.2 An additional power |ξ |2ρ appears in (39), when d is positive and even,
and |γ | ≥ d + 1, so that at least one derivative is applied to the exponential term,
namely, one has

∣
∣
∣∂

γ
ξ

(
|ξ |d e−|ξ |2ρ )

∣
∣
∣ � |ξ |2ρ+d−|γ | (1 + |ξ |2ρ)|γ |−1 e−|ξ |2ρ � |ξ |2ρ+d−|γ | e−c|ξ |2ρ .

However, this improvement in this special case, is not necessary in the proof of
Lemma 2.1 for d > 0.

With the scheme used for H1/ρ,d(1, ·), we may deal with K1/d,ρ , defined in (35).

Lemma 2.2 Let ρ ∈ (1/2, 1) and d > −n. Then we may distinguish two cases.

• If d ≥ 0, then K1/ρ,d ∈ L p, for any p ∈ [1,∞].
• If d ∈ (−n, 0), then K1/ρ,d ∈ L p, for any p ∈ (1,∞], such that (38) holds.

Proof We notice that cos(πρ) < 0, due to ρ ∈ (1/2, 1). It is clear that K ∈ L∞,
since K̂ ∈ L1, due to d > −n.

First, let us consider the special case d = 0. Performing the integration by parts as
in the proof of Lemma 2.1, we obtain |K (x)| � |x |−(n+1) for large |x |, due to 2ρ > 1.
Indeed, after the first step of integration by parts, we have:

∂ξ j

(
e|ξ |2ρ cos(πρ) cos(|ξ |2ρ sin(πρ))

)

= 2ρ|ξ |2ρ−1 ξ j

|ξ | e
|ξ |2ρ cos(πρ) cos(πρ) cos(|ξ |2ρ sin(πρ))

− 2ρ|ξ |2ρ−1 ξ j

|ξ | e
|ξ |2ρ cos(πρ) sin(πρ) sin(|ξ |2ρ sin(πρ))

= 2ρ|ξ |2ρ−1 ξ j

|ξ | e
|ξ |2ρ cos(πρ) cos(πρ + |ξ |2ρ sin(πρ)),

so that ∣
∣∂

γ
ξ

(
e|ξ |2ρ cos(πρ) cos(|ξ |2ρ sin(πρ))

)∣
∣ � |ξ |2ρ−|γ | e−c|ξ |2ρ , (40)

for some c ∈ (0,− cos(πρ)), for any |γ | ≥ 1. We may now follow the steps of the
proof of Lemma 2.1 for d > 1, thanks to the presence of the term 2ρ > 1. Incidentally,
we notice that the argument may be also refined to prove that |K1/ρ,0(x)| � |x |−(n+2ρ)

for large |x |, see Remark 2.2.
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For d ∈ (−n, 0) and d > 0, the proof is analogous to the proof of Lemma 2.1
for H1/ρ,d(1, x). We notice that, for d �= 0, we only have, in general,

∣
∣∂

γ
ξ

(|ξ |d e|ξ |2ρ cos(πρ) cos(|ξ |2ρ sin(πρ))
)∣
∣ � |ξ |d−|γ | e−c|ξ |2ρ ,

as in (39), instead of estimate (40). ��
Recalling that ρ = 1/(1+α) ∈ (1/2, 1), we are now ready to estimateG1/ρ,1(1, ·).

Proposition 2.1 For any ρ ∈ (1/2, 1), it holds

G1/ρ,1(1, ·) ∈ L p,

for any p ∈ [1,∞] such that
n

2

(

1 − 1

p

)

< 1. (41)

Proof According to Theorem 5,

G1/ρ,1(1, ·) = 2ρ K1/ρ,0

+ 1

π
sin(π(1 − 1/ρ))

∫ ∞

0

s1/ρ−1

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H1/ρ,0(s, x) ds,

taking m = �ρ − 1� = 0, and by sin π = 0. Therefore, having in mind (37), the proof
follows from Lemmas 2.1 and 2.2 if the integral

∫ ∞

0

s
1/ρ−1− n

2ρ

(
1− 1

p

)

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds

converges, that is, if

−1 <
n

2

(

1 − 1

p

)

< 1.

This concludes the proof. ��

2.2 Estimate for G1/�,1/�

Proceeding as inProposition2.1,wehave the followingpreliminary result forG1/ρ,1/ρ .

Lemma 2.3 For any ρ ∈ (1/2, 1), it holds

G1/ρ,1/ρ(1, ·) ∈ L p,
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for any p ∈ (1,∞] such that

1 − ρ <
n

2

(

1 − 1

p

)

< 2. (42)

Proof According to Theorem 5,

G1/ρ,1/ρ(1, ·) = 2ρ K1/ρ,−2(1−ρ)

+ 1

π
sin(π/ρ)

∫ ∞

0

s1/ρ

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H1/ρ,−2(1−ρ)(s, x) ds,

taking m = 0, and by sin 0 = 0. We may apply Lemmas 2.1 and 2.2 if (38) holds
with d = −2(1 − ρ), i.e., if

n

2

(

1 − 1

p

)

> 1 − ρ, (43)

which is guaranteed by the left-hand side of (42).
Therefore, having in mind (37), the proof follows from Lemmas 2.1 and 2.2 if the

integral

∫ ∞

0

s
2/ρ−1− n

2ρ

(
1− 1

p

)

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds

converges, that is, if

0 <
n

2

(

1 − 1

p

)

< 2,

which is guaranteed by the right-hand side of (42). This concludes the proof. ��
In order to relax bound (43), we may modify our approach, relying on the use of

the representation in Theorem 5 only at large frequencies.

Remark 2.3 The function E1/ρ,β(−|ξ |2) is in C∞ (as a complex-valued function,
E1/ρ,β(z) is entire). Let χ be a C∞ radial function, vanishing in the ball {|ξ | ≤ 1}, sat-
isfying 0 ≤ χ ≤ 1, andχ = 1 out of some compact set. Then (1−χ(ξ))E1/ρ,β(−|ξ |2)
is in the Schwartz space S, in particular

F−1((1 − χ(ξ))E1/ρ,β(−|ξ |2))

is in L1 ∩ L∞. We define

K̃1/ρ,d = F−1(χ K̂1/ρ,d
)
, (44)

H̃1/ρ,d(s, ·) = F−1(χ Ĥ1/ρ,d(s, ·)
)
, ∀s > 0. (45)
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It is clear that K̃1/ρ,d ∈ L1 ∩ L∞ for any d ∈ R, since χ K̂1/ρ,d ∈ S. Similarly,
H̃1/ρ,d(s, ·) ∈ L1 ∩ L∞ for any d ∈ R and s > 0, but its norm depends, in general,
on s.

In view of Remark 2.3, we study H̃1/ρ,d(s, ·). We consider the range of exponents p
for which the L p norm of H̃1/ρ,d(s, ·) is uniformly bounded, with respect to s.

Lemma 2.4 Let ρ > 0 and d < 0. Let p ∈ [1,∞], be such that

n

(

1 − 1

p

)

< −d. (46)

Then

‖H̃1/ρ,d(s, ·)‖L p ≤ C,

uniformly with respect to s.

Proof We use the scheme of integration by parts in the proof of Lemma 2.1. Due to

|∂γ
ξ e

−s|ξ |2ρ | ≤ C |ξ |−|γ |,

with C independent of s, we may estimate

|∂γ
ξ (χ(ξ)|ξ |d e−s|ξ |2ρ )| � |ξ |d−|γ |,

for any γ . For large |x |, after n + 1 steps of integration by parts, we derive

|H̃1/ρ,d(s, x)| � |x |−(n+1)
∫

|ξ |≥1
|ξ |d−(n+1) dξ � |x |−(n+1).

If d < −n, by Riemann-Lebesgue theorem, we directly obtain

‖H̃1/ρ,d(s, ·)‖L∞ �
∫

|ξ |≥1
|ξ |d dξ ≤ C,

and the thesis follows. Let d ∈ [−n, 0). We set κ = �n + d�, that is, κ ∈ (n + d −
1, n + d], integer. For small |x |, after κ steps of integration by parts, we split each
integral into two parts:

∫

|ξ |≥1
eixξ ∂

γ
ξ

(
χ(ξ)|ξ |d e−s|ξ |2ρ ) dξ =I0(s, x) + I1(s, x)

=
∫

1≤|ξ |≤|x |−1
eixξ ∂

γ
ξ

(
χ(ξ)|ξ |d e−s|ξ |2ρ ) dξ

+
∫

|ξ |≥|x |−1
eixξ ∂

γ
ξ

(
χ(ξ)|ξ |d e−s|ξ |2ρ ) dξ.
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On the one hand,

|I0(s, x)| �
∫

1≤|ξ |≤|x |−1
|ξ |d−κ dξ �

{
|x |−(d+n−κ) if d ∈ (κ − n, κ + 1 − n),

− log |x | if d = κ − n.

On the other hand, performing one additional step of integration by parts in I1, we
obtain

|I1(s, x)| � |x |−1
∫

|ξ |=|x |−1
|ξ |d−κ dσ + |x |−1

×
∫

|ξ |≥|x |−1
|ξ |d−κ−1 dξ � |x |−(d+n−κ).

Summarizing, we obtained, for small |x |,

|H̃1/ρ,d(s, x)| �
{

|x |−(n+d)(− log |x |) if d is integer,

|x |−(n+d) if d is not integer.

Together with the previous estimate for large |x |, this proves that

‖H̃1/ρ,d(s, ·)‖L p ≤ C,

uniformly with respect to s > 0, for any p such that (46) holds. ��
Proposition 2.2 For any ρ ∈ (1/2, 1), it holds

G1/ρ,1/ρ(1, ·) ∈ L p,

for any p ∈ [1,∞] such that
n

2

(

1 − 1

p

)

< 2. (47)

Proof In view of Lemma 2.3, G1/ρ,1/ρ(1, ·) ∈ L p for some p, verifying (42). Indeed,
such p exists, due to 1 − ρ < 1/2. Therefore, it is sufficient to prove our statement
for p = 1, so that, by interpolation, we conclude the proof.

Due to Remark 2.3 and to the representation in Theorem 5

F−1(χ(ξ) E1/ρ,1/ρ(1,−|ξ |2)) = 2ρ K̃1/ρ,−2(1−ρ)

+ 1

π
sin(π/ρ)

∫ ∞

0

s1/ρ

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H̃1/ρ,−2(1−ρ)(s, ·) ds,

the proof of our statement follows if

∫ ∞

0

s1/ρ

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H̃1/ρ,−2(1−ρ)(s, x) ds
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belongs to L1. Using Lemma 2.4 with p = 1, this latter property holds due to the
convergence of the integral (see Remark 1.11)

∫ ∞

0

s1/ρ

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds,

and this concludes the proof. ��

2.3 Estimate for G1/�,2

The estimate forG1/ρ,2 ismore difficult to be obtained, due to the fact that the represen-
tation of E1/ρ,2(−|ξ |2) given by Theorem 5 contains a Riesz potential term (−�)−1,
takingm = �2ρ −1� = 1. For this reason, it is more convenient to rely on Remark 2.3
for any p. Indeed, if we use the representation in Theorem 5 only for large |ξ |, the
Riesz potential behaves like a Bessel potential (1− �)−1, whose mapping properties
are better.

We conveniently modify Lemma 2.1.

Lemma 2.5 Let ρ ∈ (1/2, 1) and d > −n. Then we may distinguish two cases.

• If d > 0, then

‖H̃1/ρ,d(s, ·)‖L p ≤ C s
− d

2ρ − n
2ρ

(
1− 1

p

)

, (48)

for any p ∈ [1,∞], where C > 0 does not depend on s.
• If d ∈ (−n, 0], then (48) holds for any p ∈ (1,∞], such that (38) holds.

Proof We may follow the proof of Lemma 2.1 with two modifications. First of all,
we do no longer have a special representation when d = 0, so that this case shall be
treated together with d ∈ (−n, 0). Then, after applying (34), we get

‖H̃1/ρ,d(s, ·)‖L p = s
− d

2ρ − n
2ρ

(
1− 1

p

)

‖H†
1/ρ,d(s, ·)‖L p ,

where we defined

H†
1/ρ,d(s, ·) = F−1(χ(s− 1

2ρ ξ) Ĥ1/ρ,d(1, ·)
)
.

Therefore, we shall discuss what happens when derivatives are applied to χ(s− 1
2ρ ξ).

Due to the fact that

supp ∂
γ
ξ χ ⊂ {1 ≤ |ξ | ≤ K },

for any γ �= 0, for some K > 1 and that χ is smooth, we derive that:

∣
∣
∣∂

γ
ξ χ

(
s− 1

2ρ ξ
)∣
∣
∣ �

{

s− |γ |
2ρ if s

1
2ρ ≤ |ξ | ≤ Ks

1
2ρ ,

0 otherwise.
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In particular, |∂γ
ξ χ(s− 1

2ρ ξ)| � |ξ |−|γ |. Now, we are able to follow the proof of

Lemma 2.1 to estimate H†
1/ρ,d(s, ·), uniformly with respect to s.

It is clear that H†
1/ρ,d(s, ·) ∈ L∞ by Riemann-Lebesgue theorem, and

‖H†
1/ρ,d(s, ·)‖L∞ �

∫

Rn
|ξ |d e−|ξ |2ρ dξ ≤ C,

uniformly with respect to s, for any d > −n. For d > 0 and p = 1, we proceed as in
the proof of Lemma 2.1, in particular, replacing (39) by

∣
∣∂

γ
ξ

(
χ(s− 1

2ρ ξ)|ξ |d e−|ξ |2ρ )∣∣ � |ξ |d−|γ | (1 + |ξ |2ρ)|γ | e−|ξ |2ρ � |ξ |d−|γ | e−c|ξ |2ρ ,
(49)

for some c ∈ (0, 1). Finally, for d ∈ (−n, 0], and p ∈ (1,∞), verifying (38), we use
Riesz potential mapping properties, as in the proof of Lemma 2.1. ��

Lemmas 2.4 and 2.5 are valid for all s > 0, but, for large values of s, Lemma 2.4
is not useful, since the integral

∫ ∞

0

s3/ρ−2

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds,

does not converge (see Remark 1.11).

Lemma 2.6 Let ρ ∈ (1/2, 1) and d ∈ R. Then, for any s ≥ 1, it holds

‖H̃1/ρ,d(s, ·)‖L p ≤ C e−cs, (50)

for any c ∈ (0, 1), for some C > 0, independent of s, and for any p ∈ [1,∞].
Proof We use the scheme of integration by parts in the proof of Lemma 2.1, but now
we may restrict to consider |ξ | ≥ 1, due to the presence of χ(ξ), and we may use the
assumption s ≥ 1 to avoid singularity at s = 0. Due to

|∂γ
ξ e

−s|ξ |2ρ | ≤ C |ξ |−|γ | e−cs|ξ |2ρ ,

for any c ∈ (0, 1), for some C > 0 independent of s, we may estimate

|∂γ
ξ (χ(ξ)|ξ |d e−s|ξ |2ρ )| � |ξ |d−|γ | e−cs|ξ |2ρ ,

for any γ . After k steps of integration by parts, we derive

|H̃1/ρ,d(s, x)| � |x |−k
∫

|ξ |≥1
|ξ |d−k e−cs|ξ |2ρ dξ

� |x |−k e−c1s
∫

|ξ |≥1
|ξ |d−k e−(c−c1)|ξ |2ρ dξ � |x |−k e−c1s,
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for c1 ∈ (0, c), where we used s ≥ 1. Therefore,

‖H̃1/ρ,d(s, ·)‖L p ≤ C e−cs, ∀p ∈ [1,∞].

��
Proposition 2.3 For any ρ ∈ (1/2, 1), it holds

G1/ρ,2(1, ·) ∈ L p,

for any p ∈ [1,∞] such that
n

2

(

1 − 1

p

)

< 1. (51)

Proof According to Theorem 5,

F−1(χ(ξ)E1/ρ,2(−|ξ |2))

= 2ρ K̃1/ρ,−2ρ + 1

�(2 − 1/ρ)
F−1(χ(ξ) |ξ |−2)

+ 1

π
sin(π(2 − 2/ρ))

∫ ∞

0

s2/ρ−2

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H̃1/ρ,−2ρ(s, ·) ds

+ 1

π
sin(π(2 − 1/ρ))

∫ ∞

0

s3/ρ−2

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H̃1/ρ,−2ρ(s, ·) ds,

due to m = 1 (incidentally, we notice that in the special case ρ = 3/2, the first
integral in the representation given byTheorem5 disappears, due to sin(π(2−2/ρ)) =
− sin π = 0).

In view of Remark 2.3, we have to prove the statement for the localized Riesz
potential F−1(χ(ξ) |ξ |−2) and for the integral terms.

We notice that F−1(χ(ξ) |ξ |−2) behaves as the Bessel potential (1 − �)−1, due to
the presence of the cut-off function, in particular, it belongs to L p, for any p such
that (51) holds. To manage the two integrals, we split them into two parts:

I−
j (x) =

∫ 1

0

s(1+ j)/ρ−2

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H̃1/ρ,−2ρ(s, x) ds,

I+
j (x) =

∫ ∞

1

s(1+ j)/ρ−2

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
H̃1/ρ,−2ρ(s, x) ds,

for j = 1, 2. Then we use Lemmas 2.4 and 2.5 in I−
j , and Lemma 2.6 in I+

j .
Let p be as in (51) and assume that either (38) or (46) holds, with d = −2ρ. Indeed,

if p verifies the equality in (46) and (38), the proof will follow by interpolation.
If (46) holds with d = −2ρ, then we may apply Lemma 2.4, obtaining:

‖I−
j ‖L p �

∫ 1

0
s(1+ j)/ρ−2 ds,
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for j = 1, 2. Clearly, both the integrals converge. Let p be as in (51), and assume
that (38) holds with d = −2ρ. Then we may apply Lemma 2.5, obtaining:

‖I−
j ‖L p �

∫ 1

0

s
(1+ j)/ρ−1− n

2ρ

(
1− 1

p

)

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds,

for j = 1, 2. These integral converge, for any p ∈ (1,∞] such that

n

2

(

1 − 1

p

)

< 1 + j, j = 1, 2.

In particular, they converge, since p verifies (51).
On the other hand, by Lemma 2.6 with d = −2ρ, it follows that the integrals

∫ ∞

1

s(1+ j)/ρ e−cs

s2/ρ + 2 cos(π/ρ) s1/ρ + 1
ds, j = 1, 2,

converge, due to the exponential term e−cs . ��

2.4 Proof of Theorem 1

We are now ready to prove Theorem 1. As it is customary, we rely on the following
estimate.

Lemma 2.7 Let a < 1 and b ∈ R. Then:

∫ t

0
(t − s)−a (1 + s)−b ds �

⎧
⎪⎨

⎪⎩

(1 + t)−a, if a < 1 < b,

(1 + t)−1 log(1 + t), if a < 1 = b,

(1 + t)1−a−b, if a, b < 1.

(52)

For the ease of reading, we provide a proof of Lemma 2.7, even if it is standard and
well-known.

Proof For t ∈ [0, 1], it is sufficient to estimate

∫ t

0
(t − s)−a (1 + s)−b ds ≤

∫ t

0
(t − s)−a ds = t1−a

1 − a
≤ 1

1 − a
,

whereas, for t ≥ 1 we split the integration interval into [0, t/2] and [t/2, t], deriving
∫ t

0
(t − s)−a (1 + s)−b ds ≈ t−a

∫ t/2

0
(1 + s)−b ds + t−b

∫ t

t/2
(t − s)−a ds,
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thanks to t − s ∈ [t/2, t], for any s ∈ [0, t/2] and s ∈ [t/2, t] for any s ∈ [t/2, t].
The proof follows from:

∫ t

t/2
(t − s)−a ds = (t/2)1−a

1 − a
,

and

∫ t/2

0
(1 + s)−b ds �

⎧
⎪⎨

⎪⎩

1 if b > 1,

log(1 + t) if b = 1,

(1 + t)1−b if b < 1.

This concludes the proof of (52). ��
Proof of Theorem 1 By virtue of (34) and Young inequality, we have that:

‖G1/ρ,β(t, ·) ∗ h‖Lq � t
− n

2ρ

(
1
r − 1

q

)

‖h‖Lr , (53)

with β = 1, 1/ρ, 2, for any 1 ≤ r ≤ q ≤ ∞, such that

n

2

(
1

r
− 1

q

)

<

{
1 if β = 1, 2,

2 if β = 1/ρ.
(54)

The proof of the estimate for the homogeneous part of the solution uhom immediately
follows. For the inhomogeneous part of the solution related to the term f (t, x), it is
sufficient to apply Lemma 2.7, with

a = n(1 + α)

2

(
1

r2
− 1

q

)

− α,

and b = η. ��

3 Proof of the Global Existence Results

We are now ready to prove Theorems 2 and 3.
By (31), a function u ∈ X , where X is a suitable space, is a solution to (1) if, and

only if, it satisfies the equality

u(t, x) = ulin(t, x) + Nu(t, x), in X , (55)

where we set ulin = uhom, with uhom as in (32) and f (s, x) = |u(s, x)|p, so that

Nu(t, x) =
∫ t

0
(t − s)α G1+α,1+α(t − s, x) ∗(x) |u(s, x)|p ds.
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We will use the notation ulin instead of uhom in this section, since this is now the
linear part of the solution to the semilinear problem (1), whereas it was before the
homogeneous part of the solution to the linear problem (9).

The proof of our global existence results is based on the following scheme. We
define X as the subspace of C([0,∞), L1 ∩ L p) for which a suitable norm ‖ · ‖X
is finite. This norm is related to the desired decay rates for the solution to (1). In
particular, we show that ulin ∈ X , and that

‖ulin‖X ≤ C ‖u0‖L1∩L p , (56)

then we prove the estimates

‖Nu‖X ≤ C‖u‖p
X , (57)

‖Nu − Nv‖X ≤ C‖u − v‖X
(‖u‖p−1

X + ‖v‖p−1
X

)
. (58)

By standard arguments, since ulin ∈ X and p > 1, from (57) it follows that ulin + Nu
maps balls of X into balls of X , for small data in L1 ∩ L p, and that estimates (57)-(58)
lead to the existence of a unique solution u to (55). We simultaneously gain a local
and a global existence result.

Our starting point is the use of the linear estimates in Theorem 1. For both Theo-
rems 2 and 3, we prove (57), but we omit the proof of (58), since it is analogous to
the proof of (57). For the ease of reading, we first prove the simpler Theorem 3.

Proof of Theorem 3 We define

X = {u ∈ C([0,∞), L1 ∩ L p) : ‖u‖X < ∞},

with norm:

‖u‖X = sup
t≥0

(1 + t)−α
{‖u(t, ·)‖L1 + (1 + t)

n
2 (1+α)

(
1− 1

p

)

‖u(t, ·)‖L p
}
.

For any q ∈ [1, p], we define

βq = n

2
(1 + α)

(

1 − 1

q

)

,

as in (15). By interpolation, a function u ∈ X verifies

‖u(t, ·)‖Lq ≤ (1 + t)α−βq ‖u‖X , ∀q ∈ [1, p].

Thanks to Theorem 1, the linear part ulin of the solution is in X , and (56) holds. Indeed,
taking r0 = q = 1, it holds

‖ulin(t, ·)‖L1 � ‖u0‖L1 .
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On the other hand, if q = p then we take r0 = p for t ∈ [0, 1] and r0 = 1 for t ≥ 1,
so that

‖ulin(t, ·)‖L p �

⎧
⎨

⎩

‖u0‖L p t ∈ [0, 1],
t
− n

2 (1+α)
(
1− 1

p

)

‖u0‖L1 t ≥ 1,

and this leads to

‖ulin(t, ·)‖L p � (1 + t)
− n

2 (1+α)
(
1− 1

p

)
(‖u0‖L1 + ‖u0‖L p

)
, t ≥ 0.

Now we consider the nonlinear part of the solution. For any u ∈ X , we get

‖|u(t, ·)|p‖L1 � ‖u(t, ·)‖p
L p � (1 + t)−

n
2 (1+α)(p−1)+pα‖u‖p

X .

In particular,

η = n

2
(1 + α)(p − 1) − pα > 1,

if, and only if, p > p̃(n, α). We now apply Theorem 1 to the nonlinear part of
the solution, i.e., we set f (t, x) = |u(t, x)|p and K = c‖u‖p

X , for some c > 0.
Let q = 1, p. By taking r2 = 1, we derive

‖Nu(t, ·)‖L1 � (1 + t)α‖u‖p
X ,

‖Nu(t, ·)‖L p � (1 + t)
α− n

2 (1+α)
(
1− 1

p

)

‖u‖p
X ,

so that Nu ∈ X and ‖Nu‖X � ‖u‖p
X , i.e. we obtain (57). This concludes the proof. ��

We now prove Theorem 2.

Proof of Theorem 2 We now define

X = {u ∈ C([0,∞), L1 ∩ L p) : ‖u‖X < ∞},

with norm:

‖u‖X = sup
t≥0

(1 + t)−1 {‖u(t, ·)‖L1 + (1 + t)
n
2 (1+α)

(
1− 1

p

)

‖u(t, ·)‖L p
}
.

For any q ∈ [1, p], we define

βq = n

2
(1 + α)

(

1 − 1

q

)

,
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as in (15). By interpolation, a function u ∈ X verifies

‖u(t, ·)‖Lq ≤ (1 + t)1−βq ‖u‖X , ∀q ∈ [1, p].

Thanks to Theorem 1, the linear part ulin of the solution is in X , and (56) holds. Indeed,
taking r0 = q = 1, it holds

‖ulin(t, ·)‖L1 � ‖u0‖L1 + t ‖u1‖L1 ,

in particular,

‖ulin(t, ·)‖L1 � (1 + t)
(‖u0‖L1 + ‖u1‖L1

)
.

On the other hand, if q = p then we take r0 = p for t ∈ [0, 1] and r0 = 1 for t ≥ 1,
so that

‖ulin(t, ·)‖L p �

⎧
⎨

⎩

‖u0‖L p + t‖u1‖L p t ∈ [0, 1],
t
− n

2 (1+α)
(
1− 1

p

)
(‖u0‖L1 + t‖u1‖L1

)
t ≥ 1,

and this leads to

‖ulin(t, ·)‖L p � (1 + t)
1− n

2 (1+α)
(
1− 1

p

)
(‖u0‖L1 + ‖u1‖L1 + ‖u0‖L p + ‖u1‖L p

)
, t ≥ 0.

Now we consider the nonlinear part of the solution. For any u ∈ X , we get

‖|u(t, ·)|p‖L1 � ‖u(t, ·)‖p
L p � (1 + t)−

n
2 (1+α)(p−1)+p‖u‖p

X .

In particular,

η = n

2
(1 + α)(p − 1) − p ≥ α,

if, and only if, p ≥ p̄(n, α). We now apply Theorem 1 to the nonlinear part of the
solution, i.e., we set f (t, x) = |u(t, x)|p and K = c‖u‖p

X , for some c > 0. By
taking r2 = 1, we derive

‖Nu(t, ·)‖L1 �

⎧
⎪⎨

⎪⎩

(1 + t)α‖u‖p
X if η > 1

(1 + t)α log(e + t)‖u‖p
X if η = 1

(1 + t)α+1−η‖u‖p
X if η < 1

In particular, the assumption η ≥ α guarantees that

‖Nu(t, ·)‖L1 � (1 + t)‖u‖p
X .
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We proceed similarly to derive

‖Nu(t, ·)‖L p � (1 + t)
1− n

2 (1+α)
(
1− 1

p

)

‖u‖p
X ,

so that Nu ∈ X and ‖Nu‖X � ‖u‖p
X , i.e. we obtain (57). This concludes the proof. ��

4 Concluding Remarks

In order to keep the structure of the paper as simple as possible, we postponed in
this section some additional results which are not essential to the main purpose of the
paper, but that can be of some interest for the reader.

4.1 Extending the Range for p Beyond 1+ 2/(n− 2)

If n ≥ 3 and p ≥ 1 + 2/(n − 2), then one may easily extend Theorems 2 and 3. To
avoid formal difficulties, it is convenient to state a result where data are assumed to
be small in L1 ∩ L∞.

Theorem 6 Let n ≥ 2 and p ≥ p̄, in (1), with p̄ as in (4). Then there exists ε > 0
such that for any u0, u1 ∈ L1 ∩ L∞, satisfying

‖u0‖L1∩L∞ := ‖u0‖L1 + ‖u0‖L∞ ≤ ε, (59)

‖u1‖L1∩L∞ := ‖u1‖L1 + ‖u1‖L∞ ≤ ε, (60)

there exists a unique global solution

u ∈ C([0,∞), L1 ∩ L∞) (61)

to (1). Moreover, for any δ > 0, the solution satisfies

‖u(t, ·)‖Lq ≤ C (1 + t)1−βq
(‖u0‖L1∩L∞ + ‖u1‖L1∩L∞

)
, ∀ q ∈ [1,∞], ∀t ≥ 0,

(62)
where βq is as in (14), and C > 0 does not depend on the data.

Theorem 7 Let n ≥ 1, u1 = 0 and p > p̃ in (1), with p̃ as in (5). Then there
exists ε > 0 such that for any u0 ∈ L1 ∩ L∞, satisfying (59), there exists a unique
global solution as in (61), to (1). Moreover, for any δ > 0, the solution satisfies the
following estimates:

‖u(t, ·)‖Lq ≤ C (1 + t)α−βq ‖u0‖L1∩L∞ , ∀ q ∈ [1,∞], ∀t ≥ 0, (63)

where βq is as in (14), and C > 0 does not depend on the data.
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In order to prove Theorems 6 and 7, it is sufficient to follow the proof of Theorems 2
and 3, with minor modifications. One may fix

X = {u ∈ C([0,∞), L1 ∩ L∞) : ‖u‖X < ∞},

with norm:

‖u‖X = sup
t≥0

{
(1 + t)−1 ‖u(t, ·)‖L1 + (1 + t)α−δ(‖u(t, ·)‖Lq0 + ‖u(t, ·)‖L∞)

}
,

in Theorem 6, and

‖u‖X = sup
t≥0

{
(1 + t)−α ‖u(t, ·)‖L1 + (1 + t)1−δ(‖u(t, ·)‖Lq0 + ‖u(t, ·)‖L∞)

}
,

in Theorem 7 (with n ≥ 2), where q0 = q0(δ) ∈ (1,∞) verifies

n

2

(

1 − 1

q0

)

= 1 − δ

1 + α
, (64)

for a sufficiently small δ > 0. Then one obtains the desired result applying Theo-
rem 1 to ulin and to the nonlinear part of the solution, by choosing, time by time,
suitable r0, r1, r2, so that (10) is verified.

4.2 Estimates for the Spatial Derivatives of the Solution

With minor modifications in Sect. 2, it is possible to prove that

(−�)
κ
2 G1/ρ,β(1, ·) ∈ L p,

where κ > 0, provided that

n

2

(

1 − 1

p

)

+ κ

2
<

{
1 if β = 1, 2,

2 if β = 1/ρ.

Indeed, it is sufficient to fix d = κ for β = 1 in (35) and (36), and d = κ − 2(1 −
ρ), κ − 2ρ, respectively, for β = 1/ρ, 2 in (44) and (45), and consequently modify
Propositions 2.1, 2.2 and 2.3. Indeed, one may easily prove that

∥
∥
∥(−�)

κ
2 ∂

γ
x G1/ρ,β(t, ·)

∥
∥
∥
L p

� t
− n

2ρ

(
1− 1

p

)
− κ+|γ |

2ρ ,

where κ > 0 and γ ∈ N
n , provided that

n

2

(

1 − 1

p

)

+ κ + |γ |
2

<

{
1 if β = 1, 2,

2 if β = 1/ρ.
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These results allow to obtain estimates for the spatial derivatives of the solution to (9)
and, therefore, to (1). Also, nonlinearities like |∇u|p, or �(|u|p) may be considered.
As a mere example, we provide a result for ∇u.

Theorem 8 Let n ≥ 1 and q ∈ [1,∞]. Assume that u0,∇u0 ∈ Lr0 , u1 ∈ Lr1 , and
that f (t, ·) ∈ Lr2 , with r j ∈ [1, q], satisfying

n

(
1

r j
− 1

q

)

< 1, (65)

for j = 0, 1, 2. Assume that (11) holds for some K > 0 and η ∈ R. Then the solution
to (9) verifies the following estimate:

‖∇u(t, ·)‖Lq ≤C t
− n(1+α)

2

(
1
r0

− 1
q

)

(1 + t)−
1+α
2

(‖u0‖Lr0 + ‖∇u0‖Lr0
)

+ C t
1−α
2 − n(1+α)

2

(
1
r1

− 1
q

)

‖u1‖Lr1

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CK (1 + t)
− 1−α

2 − n(1+α)
2

(
1
r2

− 1
q

)

if η > 1,

CK (1 + t)
− 1−α

2 − n(1+α)
2

(
1
r2

− 1
q

)

log(1 + t) if η = 1,

CK (1 + t)
1+α
2 −η− n(1+α)

2

(
1
r2

− 1
q

)

if η < 1,

for any t > 0, where C does not depend on the data.

Remark 4.1 The assumption∇u0 ∈ Lr0 is taken to give a non-singular estimate at t =
0, when q = r0, namely, to guarantee thewell-posedness of the homogeneous problem
in Lq . Indeed, for f ≡ 0, one has

‖∇u(t, ·)‖Lq ≤ C (1 + t)−
1+α
2

(‖u0‖Lq + ‖∇u0‖Lq
) + C t

1−α
2 ‖u1‖Lq .

Proof The proof is analogous to the proof of Theorem 1, but (53) is replaced by

‖∇G1/ρ,1(t, ·) ∗ f ‖Lq � t
− n

2ρ

(
1
r − 1

q

)
− 1

2ρ ‖ f ‖Lr .

However, in the estimate with respect to u0, for t ≤ 1, the gradient is applied to u0,
i.e., (53) is modified into

‖∇G1/ρ,1(t, ·) ∗ f ‖Lq � t
− n

2ρ

(
1
r0

− 1
q

)

‖∇ f ‖Lr0 .

��
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4.3 Estimates for the Time Derivatives of the Solution

By using the following formula for derivatives of the Mittag-Leffler functions (see
(1.10.7) in [30]):

∂nz
(
zβ−1Eα+1,β(λzα+1)

) = zβ−n−1 Eα+1,β−n(λz
α+1).

one may derive estimates for the time-derivatives of the solution to (9). In particular,
since u in (31) solves (9), then

ut (t, ·) = uhomt (t, ·) +
∫ t

0
(t − s)α−1 G1+α,α(t − s, ·) ∗(x) f (s, ·) ds, (66)

where
uhomt (t, ·) = t−1 G1+α,0(t, ·) ∗(x) u0 + G1+α,1(t, ·) ∗(x) u1. (67)

The mapping properties of G1+α,1(1, ·) are studied in Proposition 2.1, whereas the
mapping properties of G1+α,0(1, ·) and G1+α,α(1, ·)may be easily studied using once
again the representation in Theorem 5. In particular,

‖uhomt (t, ·)‖Lq �
∥
∥
∥(−�)

1
1+α u0

∥
∥
∥
Lq

+ ‖u1‖Lq .

Once linear estimates are obtained, they may be included in the statements of the
nonlinear results, and nonlinearities like |ut |p may also be studied.

4.4 Stronger Smallness Assumption on u1

The global existence exponent in Theorem 2 may be improved, if stronger smallness
assumption are taken for the second data u1. In particular, if (−�)− κ

2 u1 ∈ L1 for
some κ ∈ (0, 2), then

‖G1+α,2(t, ·) ∗(x) u1‖Lq � t
1− n

2 (1+α)
(
1− 1

q

)
− κ

2 (1+α)
∥
∥
∥(−�)−

κ
2 u1

∥
∥
∥
L1

.

for any q ≥ 1, such that

n

2

(

1 − 1

q

)

+ κ

2
< 1,

thanks to the mapping properties of (−�)
κ
2 G1+α,2 (see Sect. 4.2). We recall that

∥
∥
∥(−�)−

κ
2 u1

∥
∥
∥
L1

≤
∥
∥
∥(−�)−

κ
2 u1

∥
∥
∥
H1

� ‖u1‖Hr1 ,
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where r1 ∈ (0, 1) is defined as

n

(
1

r1
− 1

)

= κ,

and Hr is the real Hardy space of exponent r ∈ (0, 1).
In particular, taking κ = 2(1−α)/(1+α), the decay rate for the solution to (9), with

respect to the second data, becomes the same one obtained when u1 ≡ 0. In turn, this
leads to improve the critical exponent for (1) to p̃(n, α), by replacing assumption (17)
in Theorem 2 with

‖u1‖Hr1 + ‖u1‖L∞ ≤ ε.

This result does not contradict the nonexistence result in [10] since any function in a
real Hardy space Hr , with r ∈ (0, 1], verifies themoment condition, that is, its integral
is zero, so that no sign assumption on u1 is possible. We address the reader interested
in decay estimates in real Hardy spaces for damped evolution equations to [16].

4.5 Estimates for Higher Order Equations

If we consider the equation in (9) with

∂1+α
t u + (−�)mu = f (t, x),

where m ∈ N \ {0, 1} (or even m ∈ R, m > 0), then it is sufficient to modify the
definition of G1/ρ,β in (33), setting

G1/ρ,β(t, x) = F−1(E1/ρ,β(−t1/ρ |ξ |2m)
)
.

With minor modifications in Sect. 2, it is possible to prove that now

G1/ρ,β(1, ·) ∈ L p,

provided that

n

2m

(

1 − 1

p

)

<

{
1 if β = 1, 2,

2 if β = 1/ρ.

The statements of Theorems 1, 2 and 3 are consequently modified. In particular,
the global existence of small data solutions holds for p > p̃(n/m, α) if u1 ≡ 0,
and p > p̄(n/m, α) otherwise.
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4.6 The Cauchy Problemwith Riemann–Liouville Fractional Derivative

By using the mapping properties for G1/ρ,1/ρ derived in Proposition 2.2, it is possible
to study the easier problem of the Cauchy problem for the fractional diffusive equation

⎧
⎪⎨

⎪⎩

D1+αu − �u = f (t, x), t > 0, x ∈ R
n,

J 1−αu(0, x) = v1−α(x),

Dαu(0, x) = uα(x),

(68)

where Dβ is the Riemann–Liouville fractional derivative defined in (23). Indeed, the
solution to (68) is now given by (see Theorem 4.1 and Example 4.2 in [30]):

u(t, ·) = t−(1−α) G1+α,α(t, ·) ∗(x) v1−α + tα G1+α,1+α(t, ·) ∗(x) uα

+
∫ t

0
(t − s)α G1+α,1+α(t − s, ·) ∗(x) f (s, ·) ds,

where G1+α,β is as in (33). A result similar to Theorem 1 may then be easily obtained
when v1−α ≡ 0, and applied to study the problem with power nonlinearity |u|p. For
this problem, the critical exponent is the one given by scaling arguments (see Sect. 1.3),
i.e. p̃(n, α). Indeed,

Dα
(
u(λ

2
1+α t, λx)

)∣
∣
t=0 = λ

2α
1+α uα(λx),

so that the solution to qsc = 1 is given by p = p̃(n, α). The fact that the critical
exponent is the expected one from scaling arguments, is consistent with the fact that
the solution to the nonlinear problem suffers no loss of decay with respect to the
solution to the linear one.

4.7 An Extension of Theorem 1

As t → ∞, Lemma 2.7 may be extended to cover the case of different pairs of
coefficients a, b, in the integration ranges [0, t/2] and [t/2, t], in the following way.

Lemma 4.1 Let a1 < 1 and a0, b0, b1 ∈ R, and assume that k(t, s) is a nonnegative
function, such that

k(t, s) ≤ min{(t − s)−a0 (1 + s)−b0 , (t − s)−a1 (1 + s)−b1}.

Then, for any t ≥ 0, it holds:

∫ t

0
k(t, s) ds � (1 + t)1−a1−b1 +

⎧
⎪⎨

⎪⎩

(1 + t)−a0 , if b0 > 1,

(1 + t)−a0 log(1 + t), if b0 = 1,

(1 + t)1−a0−b0 , if b0 < 1.

(69)
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Proof The proof is analogous to the proof of Lemma 2.7. For t ≤ 1, we estimate

∫ t

0
k(t, s) ds �

∫ t

0
(t − s)−a1 ds ≤ C,

whereas, for t ≥ 1, we estimate:

∫ t/2

0
(t − s)−a0 (1 + s)−b0 ds ≈ t−a0

∫ t/2

0
(1 + s)−b0 ds

≈

⎧
⎪⎨

⎪⎩

t−a0 , if b0 > 1,

t−a0 log(1 + t), if b0 = 1,

t1−a0−b0 , if b0 < 1,
∫ t

t/2
(t − s)−a1 (1 + s)−b1 ds ≈ t−b1

∫ t

t/2
(t − s)−a1 ds ≈ t1−a1−b1 .

This concludes the proof. ��
Theorem 1 may then be consequently extended.

Theorem 9 Let n ≥ 1 and q ∈ [1,∞]. Assume that u0 ∈ Lr0 , u1 ∈ Lr1 , and
that f (t, ·) ∈ Lr3 ∩ Lr2 , with r j ∈ [1, q], satisfying (10) for j = 0, 1, 2, and

1 ≤ n

2

(
1

r3
− 1

q

)

< 2. (70)

Assume that
‖ f (t, ·)‖Lr j ≤ K (1 + t)−η j , ∀t ≥ 0, (71)

for j = 2, 3, for some K > 0 and η2, η3 > 1. Moreover, assume that

n

2
(1 + α)

(
1

r3
− 1

r2

)

≤ η2 − 1.

Then the solution to (9) verifies the following estimates:

‖u(t, ·)‖Lq ≤C t
− n(1+α)

2

(
1
r0

− 1
q

)

‖u0‖Lr0 + C t
1− n(1+α)

2

(
1
r1

− 1
q

)

‖u1‖Lr1
+ CK (1 + t)

α− n(1+α)
2

(
1
r3

− 1
q

)

,

for any t > 0, where C does not depend on the data.

Proof It is sufficient to follow the proof of Theorem 1, using Lemma 4.1 with

a0 = n(1 + α)

2

(
1

r3
− 1

q

)

− α,

a1 = n(1 + α)

2

(
1

r2
− 1

q

)

− α,



Journal of Fourier Analysis and Applications (2019) 25:696–731 729

and b0 = η3, b1 = η2. Indeed, a1 + b1 − 1 ≥ a0. ��

Remark 4.2 Thanks to Theorem 9, it is possible to improve the decay rate of the
solution in Theorem 3 in space dimension n ≥ 2, for q ≥ 1 + 2/(n − 2), namely, for
any small δ > 0, one may prove that

‖u(t, ·)‖Lq � (1 + t)
−min

{
n
2 (1+α)

(
1− 1

q

)
−α,1+α−δ

}

‖u0‖L1∩L∞ .

We avoid the details, for the sake of brevity.
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