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Abstract

Let Fg be the d-dimensional vector space over the finite field IF;, with g elements.
Given k sets E; C Fg for j = 1,2,...,k, the generalized k-resultant modulus set,
denoted by Ay (Ey, Ea, ..., Ey), is defined by Ay (Ey, Ea, ..., Ex) = {||x1 +x2+
o+ xf e Fy i x/ € Ej, j = 1,2,...,k}, where ||yl = y2 + --- +y3 for

d+1 1

y=(1,..-,¥4) € IFZ. Weprovethatifﬂ?=1 |Ej| > Cq3( : —m) ford = 4,6

with a sufficiently large constant C > 0, then |A3(E1, E», E3)| > cq for some
d+l 1
constant 0 < ¢ < 1, and if ]_[‘;:1 |Ej| > Cq4< 2 6d+2) for even d > 8, then

|A4(E1, Ea, E3, E4)| > cq. This generalizes the previous result in [3]. We also show
del 1

that if Hi-:l |E;| > Cq3( 2 9""8) for even d > 8, then |A3(E], E2, E3)| > cq.

This result improves the previous work in [3] by removing ¢ > 0 from the exponent.

The new ingredient in our proof is an improved L3-restriction estimate for spheres.

Keywords ErdGs distance problem - k-Resultant modulus set - Restriction theorems -
Finite fields
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1 Introduction

The Erdds distance problem asks us to determine the minimal number of distinct
distances between any N points in R?. This problem was initially posed by Paul Erdés
[5] who conjectured that g>(N) > N/ /log N, and gg(N) > N/ for d > 3, where
g4(N) denotes the minimal number of distinct distances between N distinct points
of R4, and X > Y for X,Y > 0 means that there is a constant C > 0 independent
of N such that CX > Y. This conjecture in two dimension was resolved up to the
logarithmic factor by Guth and Katz [7]. However, the problem is still open in higher
dimensions.

In [1] Bourgain, Katz, and Tao studied the finite field analog of the Erdés distance
problem. Let Fg be the d-dimensional vector space over the finite field IF, with ¢
elements. Throughout this paper we always assume that the characteristic of F is
strictly greater than two. For a set E C F4, the distance set, denoted by Ax(E), is
defined as

A2(E) ={lIx—yll € Fg :x,y € E},

where |a| = a% + -+ aﬁ fora = (aq,...,aq) € Ff]’. With this definition of the
distance set, Bourgain, Katz, and Tao [1] proved that if g = 3 (mod 4) is prime and
E C Fg with ¢® < |E| < ¢>7% for 8 > 0, then there exists € = €(8) such that
|A>(E)| > |E|'/?*€. Here we recall that A < B for A, B > 0 means that there exists
a constant C > 0 independent of ¢ such that A < CB, and we write B 2 A for
A < B.Wealsouse A ~ Biflim, .o A/B = 1. This result was obtained by finding
the connection between incidence geometry in Fé and the distance set. Unfortunately,
it is not simple to find the relationship between § and € from their proof. Furthermore,
if E = F(QI, then |A>(E)| = 4/[E], which shows that the exponent 1/2 can not be
generically improved. If —1 is a square in IF;, another unpleasant example exists with
the finite field Erd6s distance problem. For instance, let E = {(¢, it) € ]Fé (t ey,
where i denotes an element of I, such that i 2 = —1. Then it is straightforward to
see that |[E| = ¢ and |A2(E)| = |{0}| = 1. In view of aforementioned examples,
Tosevich and Rudnev [12] reformulated the Erd8s distance problem in general finite
field setting as follows.

Question 1.1 Let E C IFZ. What is the smallest exponent B > 0 suchthat if |[E| > Cq®
for a sufficiently large constant C > 0 then |A(E)| > cq for some 0 < ¢ < 1?

The problem in this question is called the Erd6s-Falconer distance problem in the
finite field setting. In [12], it was shown that 8 < (d + 1)/2 for all dimensions d > 2.
The authors in [9] proved that § = (d + 1)/2 for general odd dimensions d > 3.
On the other hand, they conjectured that if the dimension d > 2 is even, then  can
be improved to d/2. In dimension two, the authors in [2] applied the sharp finite
field restriction estimate for the circle on the plane so that they show B < 4/3 which
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improves the exponent (d + 1)/2, a sharp exponent in general odd dimensions d.
Considering the perpendicular bisector of two points in a set of ]Fz, the authors in [8]
proved that the exponent 4/3 holds for the pinned distance problem case. However,
in higher even dimensions d > 4, the exponent (d + 1)/2 has not been improved.
To demonstrate some possibility that the exponent (d + 1)/2 could be improved for
even dimensions d > 4, the authors in [3] introduced a k-resultant modulus set which
generalizes the distance set in the sense that any k points can be selected from a set
E C IFZ to determine an object similar to a distance. More precisely, for a set E C Fg
we define a k-resultant modulus set Ay (E) as

AL(E) = {||j:x1j:x2+---:|:xk|| eF, :x/ GE},

where [ly|| = y? + - -- +y[2, eF, fory = (yi,...,ya) € IFfI’. Since the sign “+” does
not affect on our results in this paper, we shall simply takes “+” signs. That is, we
will use the definition

AR(E) = {||x1 +x2 4 x| eFy, i x eE}

for consistency. With this definition of the k-resultant modulus set, the following
question was proposed in [3].

Question 1.2 Let E C ]Fg andk > 2 be an integer. What is the smallest exponent y > (0
such that if |E| > Cq" for a sufficiently large constant C > 0, then |Ar(E)| > cq
for some 0 < ¢ < 1.

This problem is called the k-resultant modulus problem. When k& = 2, this question is
simply the finite field Erd6s-Falconer distance problem, and in this sense the k-resultant
modulus problem is a direct generalization of the distance problem. It is obvious that
the smallest exponent 8 > 0 in Question 1.1 is greater than or equal to the smallest
exponent y > 0 in Question 1.2. However, authors in [3] conjectured that y must be
equal to 8. This conjecture means that the solution y of Question 1.2 is independent
of the integer k > 2. Namely, it is conjectured that the solution of the Erd&s-Falconer
distance problem is the same as that of the k-resultant modulus problem. In fact,
authors in [4] provided a simple example which shows that y = 8 = (d 4 1)/2 for
any integer k > 2 in odd dimensions d > 3 provided that —1 is a square number in [,
and the conclusion of Question 1.2 is replaced by |A;(E)| = g. On the other hand,
authors in [3] conjectured that the smallest exponent y in Question 1.2 is d /2 for even
dimensions d > 2 and all integers k > 2. As a partial credence to this conjecture, they
showed that if £ > 3 and the dimension d is even, then one can improve the exponent
(d+1)/2 which is sharp in odd dimensional case. More precisely, the following results
were proved.

Theorem 1.3 ([3]) Let E C IP’Z. Suppose that C is a sufficiently large constant. Then
the following statements hold:

() Ifd = 4 0r 6, and |E| > Cq"“T =572, then | A3(E)| > cq for some 0 < ¢ < 1.
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) Ifd > 8iseven and |E| > Cq%fﬁdgd, then |A4(E)| > cq for some 0 < ¢ < 1.

) If d = 8 is even, then for any ¢ > 0, there exists C; > 0 such that if |E| >
d+1 1

ng%779d—18+€’ then |A3(E)| > cq for some 0 < ¢ < 1.

The purpose of this paper is to generalize Theorem 1.3. In particular, in the general
setting, we improve the third conclusion of Theorem 1.3 by removing the ¢ > 0 in the
exponent.

The generalized Erd6s-Falconer distance problem has been recently studied by
considering the distances between any two sets E1, Ey C Fg (see, forexample, [10,13—
15,17-19]). Given two sets E1, Eo C Fﬁ;, the generalized distance set A>(E1, E3) is
defined by

As(Ey, Eq) = H||x1 x| eF, :x' e Ey, X e Ez}.

The generalized Erd6s-Falconer distance problem is to determine the smallest expo-
nent y» > 0 such that if £y, E; C IE‘Z with |E|||E2| = Cq"? for a sufficiently large
constant C > 0, then |A>(E7, E)| > cq for some 0 < ¢ < 1. From the Erd&s-
Falconer distance conjecture, it is natural to conjecture that the smallest exponent y»
is d + 1 for odd dimension d > 3 and d for even dimension d > 2. Shparlinski
[17] obtained the exponent d + 1 for all dimensions d > 2. Thus, the generalized
Erd&s-Falconer distance conjecture was established in odd dimensions. On the other
hand, the conjectured exponent d in even dimensions has not been obtained. The cur-
rently best known result is the exponent d + 1 for even dimensions d except for two
dimensions. In dimension two the best known result is the exponent 8/3 due to Koh
and Shen [13].

We now consider a problem which extends both the generalized Erdés-Falconer
distance problem and the k-resultant modulus set problem. For k sets E; C Fe,j =
1,2, ..., k, we define the generalized k-resultant set Ag(Eq, ..., Ex) as

Ak(El,...,Ek):{||X1+X2+-~-+xk||eIE‘q:xjeEj, j:1,2,...,k}.

Problem 1.4 Let k > 2 be an integer. Suppose that E; C 4, j=12,..., k. Deter-

mine the smallest exponent y; > 0 such that if 1—11;:1 |Ej| = Cq"* for a sufficiently
large constant C > 0, then |Ax(Eq, Ea, ..., Ex)| > cq forsome 0 < ¢ < 1.

We call this problem the generalized k-resultant modulus problem. As in the k-resultant
modulus problem, we are only interested in studying this problem in even dimensions
d>21fg = p2 for some odd prime p, then I, contains the subfield IF ,. In this case, if
the dimensiond isevenand E; = ]F‘l’7 forallj =1,2,...,k, then 1—11;:1 |Ej| = qdk/2
and |[Ag(E1, Ea, ..., Ep)| = |Fp| = p = /q. This example proposes the following
conjecture.

Conjecture 1.5 Suppose that d > 2 is even and k > 2 is an integer. Then the smallest
exponent vy in Problem 1.4 must be %.
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1.1 Statement of the Main Result

As mentioned before, the known results on the generalized Erdés-Falconer distance
problem says that if k = 2, then 2 < y, < 8/3ford =2,andd < y, <d + 1 for
even dimensions d > 4, where y; denotes the smallest exponent in Problem 1.4. In
this paper we study the generalized k-resultant modulus problem for £ > 3. Our main
result is as follows.

Theorem 1.6 Let k > 3 be an integer and E; C Fgforj =1,2,..., k. Assume that

C is a sufficiently large constant. Then the following statements hold:
d+1

d+l 1
() Ifd =40r6,and [T;_; |E;| = g’ (T %) then |A3(Er, Ea. E3)| 2 q.

d+1

1
) Ifd > 8isevenandl—[j=] |Ej| > Cq4( 2 6d+2) then |A4(E1, Ez, E3, E4)| 2 q.
d+

11
(3)Ifd > 8 is even, and I—H:l |Ej| > Cq3( 2 9“‘]8), then |A3(Ey, Ez, E3)| 2 q.

Taking E; = E C Fg forall j = 1,2,...,k, the first and second conclusions of
Theorem 1.3 follow immediately from (1), (2) of Theorem 1.6, respectively. Moreover,
the third conclusion of Theorem 1.6 implies that the ¢ in the statement (3) of Theorem
1.3 is not necessary.

Theorem 1.6 also implies the following result.

Corollary 1.7 For any integer k > 4, let E; C IE“ql forj =1,2,..., k. Assume that

C > 0 is a sufficiently large constant. Then if d > 4 is even, and 1—[1;:1 |Ej| >
d+l_ 1 _
qu< H522) e have |AK(EL, Ea, ... ED)| 2 4.

Proof Without loss of generality, we may assume that |Ej| > |Ep| > --- > |Eg]|.
Noi ek (4 -at) g s SO )
otice that if Hj:l |E;| = Cq , then Hj:l lE;jl 2 ¢ ,
and we have |Ar_1(Eq, ..., Ex—1)| < |Ax(E}, ..., Er)|. Then the statement follows
by induction argument with conclusions (1), (2) of Theorem 1.6. O

2 Discrete Fourier Analysis

We shall use the discrete Fourier analysis to deduce the result of our main theorem,
Theorem 1.6. In this section, we recall notation and basic concept in the discrete
Fourier analysis. Throughout this paper, we shall denote by x a nontrivial additive
character of IF,. Since our result is independent of the choice of the character x, we
assume that x is always a fixed nontrivial additive character of IF,. The orthogonality
relation of y states that

_JO0 if m#(0,...,0)
2 xm-x) = {qd if m=(,...,0),
xeFd
where m - X 1= Z?:l m;x; form = (mj,...,my), X = (X1,...,Xqg) € ]FZ. Given
a function g : IFZ — C, we shall denote by g the Fourier transform of g which is
defined by
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gx) = > gm)yx(-x-m) for x e FY. (2.1)

d
meIFq

On the other hand, we shall denote by fthe normalized Fourier transform of the
function f : ]Fg — C. Namely we define that

-~ 1
f(m) = — Z f(x) x(—x-m) for m € IFZ.

xeFd
Inparticular, if m = (0, ..., 0) and we take f as anindicator functionofaset E C F4,
then we see that
= __|E|
EQ©,...,0) = —-
q

Here, and throughout this paper, we write E(x) for the indicator function 1g(x) of a
set £ C F‘ql. We define the normalized inverse Fourier transform of f, denoted by

fY,as f¥(m) = f(—m) form e Fg. It is not hard to see that (/J_‘\v/)(x) = f(x) for
X € Fg. Namely, we obtain the Fourier inversion theorem:

fx) = Z f(m)x(mx) for XE]FZ.

d
meIFq

Using the orthogonality relation of the character x, we see that

> 1fm)? = qid RV

d d
mqu xqu

We shall call this formula the Plancherel theorem. Notice that if we take f as an
indicator function of a set E C IFZ, then the Plancherel theorem yields that

~ |E|
D IEm))? = —.
meIF;'[l 4

Recall from Holder’s inequality that if f1, f> : IE‘Z — C, then we have

S-

o LAm) Am) < | D | fim)” > 1L

9
d
me]Fq

d d
mqu mqu

where 1 < p1, p2» < ooand 1/p; + 1/p> = 1. Applying Holder’s inequality repeat-

edly,weobtainthatifﬁ:DC]FZ—>(Candl < pi<oofori=1,2,...,k with
k

Y. L =1, then
£ pj
i=1
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1

> <H|ﬁ(m)|> < ]_[ (Z Iﬁ(m)l”'> " 2.2)

meD i=1 \meD
We refer to this formula as the generalized Holder’s inequality.
Lemma2.1 Letk > 2 be aninteger. If E; C IE‘Zfor all j =1,2,...,k, then we have

k=1
k

k k
Y ATTE @ | <q < []1E;1

merd \j=I j=1

Proof Notice that if E C ¢ andm € F¢, then |E(m)| < |E(0. ..., 0)| = £ Since

k
> % = 1, applying generalized Holder’s inequality yields the desirable result:
j=1

k k
[TE @] <]]| D IEjm
meFd \j=1 j=1 \ meF¢
1
k
k —_ k=2 —_
<[1DE©. . ...0F | > IE;mP
Jj=1 meFd
k=2 1 kk;l
k =2 B k
lE;I\ © (1EjI\F -
=H<G% o) )= e
j=1 1 a j=1
O
To estimate a lower bound of |Ax(ETq, ..., Ei)|, we shall utilize the Fourier decay
estimate on spheres. Recall that the sphere S; C IE‘Z for t € IF, is defined by
={xeF:xj+ - +x5=1). (2.3)

Itis not hard to see that |S;| = qd L(1+o0(1)) ford > 3and ¢ €. ¥, (see Theorem 6.26
and Theorem 6.27 in [16]). It is well known that the value of St (m) can be written in
terms of the Gauss sum and the Kloosterman sum. In particular, when the dimension
d is even, the following result can be obtained from Lemma 4 in [11].

Lemma2.2 Letd > 2 be even. Ift € F, andm € F9, then we have

~ _ d— [lm|
Si0m) = g~ So(m) +47471 G Y « (ze+—),
EeIF;

Birkhauser



Journal of Fourier Analysis and Applications (2019) 25:1026-1052 1033

where 5o(m) = 1 form = (0, ...,0) and §o(m) = 0 otherwise, and G denotes the
Gauss sum

G=> n) x),

%
squ

where 1) is the quadratic character of Fy, and IF;; = Fy, \ {0}. In particular, we have

So(m) = g~ 'So(m) + g~ G* Y x(Imll6) for m € F. (2.4)
ZEF;

We shall invoke the following result which was given in Proposition 2.2 in [15].
Lemma23 Ifm,v € F4, then we have

3" Sim) 5,0) = g7 80m) Sov) + 71> x(s(llmll — [v])).

«
tel, seFy

3 Formula for a Lower Bound of |Ay (Eq, ..., Ex)|

This section devotes to proving the following result which is useful to deduce a lower
bound of |Ax(Eq, ..., Er)|.

Theorem 3.1 Let d > 2 be even and k > 2 be an integer. If E; C IFZ for j =
1,2,..., kand Hﬁ':l |E;| > 3kqd7k, then we have

k+1

(l_[l;zl |Ej|) ‘
q% (max M52t (Xves, |E;(V)|k)i>

%
rqu

|Ak(EL, ..., Ex)| 2 min{q,

Proof For each t € F,, we define a counting function vy (1) by
v (t) = {(xl,xz,...,xk) eE| x---xE: ||X1+-~-+Xk|| :t}’.

Since ]_[";:1 |Ejl = ) w(t), and v (r) = 0ift ¢ Ap(Eq, ..., Ey), we see that

telF,

k
[TEI-wO= 3  wo.

Jj=1 0#t€Ak(EN, ... Ey)
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Square both sides of this equation and use the Cauchy-Schwarz inequality. Then we
see that

X 2 2
(H|Ej|—vk(0)) =( > vw)) <|AKEL ... EDL| Y vim
)

j=1 0#£teAL(EY,..., Ex tefs
Thus, we obtain

2
(IT_ 1251 - @)
RO

K
teIFq

|Ak(EY, ... ED| = (3.1

Now, we claim three facts below.

Claim 3.2 Suppose that d > 2 is even and k > 2 is an integer. If E; C ]FZ for
j=1,2,... kwith Hl;:1 |Ej| > 3kq%, then we have

2 2

k k
[T1E/I-w© ] == [[]1E)
j=1

j=1

ol —

Claim3.3 Letd > 2 and k > 2 be integers. If E; C Fgforj =1,2,...,k, then we
have

x 2

2
k
[TEN] 2> 1D TTE®

j=1 refy |veS, \J=1

Yoo <

tel,

Q| =

Claim 3.4 Assume that d > 2 is even and k > 2 is an integer. If E; C IF‘Z for
j=1,2,..., kwith ]_[I;-=1 |Ej| > q%k, then we have

2 2

k k
qzdk—d Z na(m) —1)13(0) 53 l_[|Ej|

meSy \j=I j=1

For a moment, let us accept Claims 3.2, 3.3, and 3.4 which shall be proved in the
following subsections (see Sects. 3.1, 3.2, and 3.3). From (3.1) and Claim 3.2, we see

that if [T, |E;| = 3%¢7, then

(H];:l |Ej|>2

|Ak(EL, - EDN 2 =
ZteFé Ulg(l)

3.2)
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Observe from Claims 3.3 and 3.4 that if Hﬁ:l |Ej| > 3kq%, then

2 2
k k
5 _ —
Yo=Y o =i <= [TTIEJN| +* Y 1D | T]E™
tefy tely 4 j=1 r#0 |veS, \j=1
1 k 2 k 2
S—ATTE] @Y (X (TTIE ™I
4 j=1 r#0 \veS, \j=1
k 2 k
1 _ _ —
=\ TTiE )+ fmax 3 { TTIE 0 [TIEiwl
4\ j=i ves, \j=I verd \j=1
1 k 2 k k%l k
<—(TTiEA| +a®™ ] 1ES m;gz [TIEm] ],
7 \j=1 j=1 " ves, \J=1

where Lemma 2.1 was used to obtain the last inequality. From this estimate and (3.2),
it follows that

(1_[1;:1 |Ej|)2
(T 1)+ g (T 12) © (mF Tres, (T |ET-<v>|))

[Ak(EL, ..., ENl 2

o~
]

k+1

(M= 1E51) *
gk (max Sves, (TTi=i 1B (v)l))

*
re]Fq

2> min 1 ¢q,

Then the statement of Theorem 3.1 follows by applying generalized Holder’s inequal-
ity (2.2):

1
k k
max l_[ |
relf* I

9 vesS, \j=

k
Eiml| = max [T| X 1E;mI*

7 j=1 \veS,

3.1 Proof of Claim 3.2

Suppose that d > 2 is even and k > 2 is an integer. Let E; C IFZ forj=1,2,...,k

k
with [] |E;| = 3kq%. We aim to show that

Jj=1
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2 2

k k
[TIEE/I—w©) | == []]IEN] - (3.3)
Jj=1 j=I1

O | —

To prove this, we begin by estimating the counting function v (¢) for ¢ € . For each
t € Fy, it follows that

e (f) = ‘{(xl,x2,...,xk)eE1 X X Eg X Xk =1
= > Sixt x> 4 4 x5,

(x!,x2,... x5 eE|xEyx--xE}

Applying the Fourier inversion theorem to the indicate function S; (x' +x% +- - - +xX),
it follows that

(1) = > Erx) - Eex) Y Sim) x(m - x4+ xb)).

x!,x2,..., xk)eIFZx---x]Fg meIFg

By the definition of the normalized Fourier transform, we can write

k
() =g > Sim) [ []Ejm) | (3.4)

meFZ j=1

To prove (3.3), we first find an upper bound of v (0) = g% " Sp(m) (
j

d
me]Fq

k =

Ej (m) .
=1
By (2.4) of Lemma 2.2, we can write

k _
(0 = g% Y ( E,-(m)) (q‘lao<m>+q‘d“Gd > X(IImIIL’))
j=1

meF¢ LeFy

k —_— k =
— g1 (]‘[ Ej(O,...,O)) +qlkd-tgd 3 (]‘[ Ej(m)) > x(imlo) (3.5)
j=1

meFd \j=1 LeF;

. = E;
Since E;(0, ..., 0) = 'q_;‘ |G| = ¢/2 and | Y x(ImIO] < g,

k k
v ©0) < g ' [TIEj I +q% 2 " T]I1E;jm))|

j=1 meFd j=I
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Applying Lemma 2.1,

~
=1

k k
w© <q ' [TIEI+a> [T]1E/!

j=1 J=1

(ST

Since g > 3, it follows that

~
|

k k k k
—_ d
[TIE/=w@ = ]1E/I—a ' [TIE/I—q> [ ] IE
j=1 j=1 j=1 j=1
k=1
k

1 k 1k d k
31"[|E,-|+ s 1B =a® | TTIE
j=1 j=1

. dk . .
Note that if ]_[l;zl |Ej| > 3k q 2, then the second term above is nonnegative. Thus we
obtain that

k |k
[T1E1 =@ = 3 TT1Es1
j=l1 j=l1
Squaring the both sizes, we complete the proof of Claim 3.2.

3.2 Proof of Claim 3.3

We want to prove the following L estimate of the counting function v(z) :

2 2
k
1 - _
> i < - ]_[lE |+ S I (TTEm || - (3.6)
tely q refy |ves, \Jj=1
By (3.4), we see that
Y i =) w0
telFy telfy,
ko k
7 Y \T]Em 1'[ W | > Sim)5m.
m,veIFg j=1 j=1 tely,
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Using Lemma 2.3, we see that

ko k
Yo =4 Y (]‘[ Ej(m)) (]‘[ E?(v)) 80(m) 80 (v)
j=1

teF, m,veFd \j=1

k — k —_
+ gty (]'[ Ej(m>) (1'[ E,-(v)) (Z X (sl — [Ivll)) — 1)
j=1 self,
k —_—
[[Ei©.....0
Jj=1

k _ k e
§ g2dk—d-1 Z (l‘[ E;(m) ( Ej(v)) Z x Gs(m| —iviD)
1

selF,

By the definition of the normalized Fourier transform, the orthogonality relation of y,
and basic property of summation, it follows that

k

Z V2 (1) = g2k 1—[

tely j=1

|Ej|
P

k

x k —_
+g ety [TEim | |[[E®
j=1

m,veFd:lm|=|v] \/=!

k
_ k-1 Z HE;(V)

vng j=1
Since the third term above is not positive, we obtain that
k

N\’ ko k
> i) =g* ! (H 'E") +g2dhmd 3 (H E}(m)) (H E}(w)
j=1

LLogd .
1€Fy j=1 m,veFd:m|=|v| \j=I

=q1(j1i[l|Ej|)2+q2‘””’Z > (]ﬁlfj(v))z,

refy |veFd:|vl=r \j=1

which completes the proof of Claim 3.3.
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3.3 Proof of Claim 3.4

For even d > 2 and an integer k > 2, let E; C ]Fg for j = 1,2,...,k with
l_[];:l |Ej| > q%. We must show that

2 2

g2dk—d Z HE (m) _v]%(())fg H|Ej| . 3.7

meSy \j=1 j=1

We begin by recalling from (3.5) that if d > 2 is even, then

k — k —_—
v (0) = g% (1‘[ Ej(o,...,O)) +qdhmd=lgd Y- (1‘[ Ej<m>) > x(imle).
j=1

me]Fg Jj=1 LeFy

It follows that

k
v (0) =¢q~ H|E| +q% G N T Emy | [ -1+ xampe)
Jj=1

melF¢ LeF,

I
=
L
—~
=
)
S
4
L
Q
U
—~
)
&l

Thus we can write
vZ(0) = v (0) i (0) = (A + B)(A + B) = |A]> + |B|* + AB + AB

Since the absolute value of the Gauss sum G is ,/q, we have

2
k
vp(0) = g**=| > | T[] Ejam) || +|A* + AB + AB.
meSy \ j=1
It follows that
; 2
PN TTE —v7(0) < —AB — AB < 2|A||B|. (3.8)

meSy \j=1
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Now, notice that

k k
Al =g [TTIE |+ 161 Y | TTIE; @
Jj=1 meFd \Jj=I
and
k
1Bl <q™ 1611 Y [ T]IE @)
meF? \j=1

Since |G| = ,/q, using Lemma 2.1 yields the following two estimates:

k—1
k

k k
_ d__
Al<qg " [TEN |+ | []1ES]
j=1 j=1

and

k &
d
1Bl <q? | []I1E)l
j=1
From these estimates and (3.8), we have
‘ 2
quk—d Z HEj(m) —U]%(O)
meSy \ j=1
2k—1 2k=2
k k k K
d__ _
<2\ " |[L1EsI]  +a " | []I1ES
j=1 j=1

Finally, we obtain the estimate (3.7) by observing that if ]—[/jle |Ej| > q%, then

2k—1 2k=2 2

k k k k k
d_ _ _
max {¢> " | []1E;] a7 | TTIES! <q '[]]IEs!
j=I j=I j=1

Thus the proof of Claim 3.4 is complete.
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4 Connection Between Restriction Estimates for Spheres and
|Ak(E1, ) Ek)l

Theorem 3.1 shows that a good lower bound of |A;(E1, E3, ..., Ei)| can be obtained
by estimating an upper bound of the quantity

k k

max [T ( 2 1E;0i ) @.1)

4 j=1 \veS,

This quantity is closely related to the restriction estimates for spheres with non-zero
radius. In this section, we introduce the restriction problem for spheres and we restate
Theorem 3.1 in terms of the restriction estimates for spheres. We begin by reviewing
the extension problem for spheres which is also called the dual restriction problem
for spheres. We shall use the notation (]Fd, dx) to denote the d-dimensional vector
space over the finite field F;, where a normalized counting measure dx is given. On
the other hand, we denote by (IE‘Z, dm) the dual space of the vector space (Fd ,dx),

where we endow the dual space (F¢, dm) with the counting measure dm. Since the
space (F¢, dx) can be identified with its dual space (F¢, dm) as an abstract group, we

shall use the notation ]Fg to indicate both the space and its dual space. To distinguish
the space with its dual space, we always use the variable x for the element of the space
(]Fd, dx) with the normalized counting measure dx. On the other hand, the variable

m will be used to denote the element of the dual space (FZ, dm) with the counting
measure dm. For example, we write X € IE“ql and m € IE‘Z for x € (IE“Z ,dx) and

m e (]FZ, dm), respectively. With these notations, the classical norm notation can be
used to indicate the following sums: for 1 < r < oo,

181y gt amy = D 18I,

d
me]Fq

Ve =4 22 1F I

d
xe]Fq

and
||g|| oo (Ted — max|g(m)|.
L (Fq,dm) d

where g is a function on (F¢, dm) and f is a function on (Fg, dx). Foreacht € F*,

let S; C (F?, dx) be the sphere defined as in (2.3). We endow the sphere S; with the
normalized surface measure do which is defined by measuring the mass of each point
on S; as 1/|S;|. Notice that the total mass of S; is 1 and we have

1
11 1ers,a0r = 57 STIF®I for 1 <7 < oo,
t

XeS;

I fllzeecs;.doy = max | f(X)]. (4.2)
xXeS;
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We also recall that if f : (S;, do) — C, then the inverse Fourier transform of fdo
is defined by

(fdo)¥(m) = ﬁ > f®xm-x) for me (FY, dm).
! xeS;

Since the sphere S; is symmetric about the origin, we can write

d

(do)Y (m) = é—|§,(m) for m € (F¢, dm).
t

With the above notation, the extension problem for the sphere S; asks us to determine
1 < p,r < oosuchthatthereexists C > 0 satisfying the following extension estimate:

1Cfdo) N et amy < CllfILe(sdoy forall f: 85 — C, 4.3)

where the constant C > 0 may depend on p, r, d, S;, but it must be independent of
the functions f and the size of the underlying finite field IF,. By duality, this extension
estimate is the same as the following restriction estimate (see [?,7]) :

5 . d
”g”LP’(S,,dU) = C“g”L”(]Fg,dm) forall g: Fq - C, 4.4)

where g is defined as in (2.1), and p’, r’ denote the Holder conjugates of p and r,
respectively (namely, 1/p +1/p’ =1land 1/r +1/r' = 1).

Now, we address the relation between the restriction estimates for spheres with
non-zero radius and a lower bound of |A;(Eq, ..., Ex)|. By Theorem 3.1 and the
definition of the restriction estimates for spheres in (4.4), we obtain the following
result.

Lemma 4.1 For evend > 2 and an integer k > 2, let E; C IFZforj =1,2,...,k.

dk
Assume that H§:1 |E;| > 3kqT and the following restriction estimate holds for some
1<l <ooanda € R:

”Ej”Lk(Sr,dO') S qa”E]“LZ(FZ,dm) fOrall r € F*, ] = 1, 2, ey k. (45)

Then we have

.
(1_[,:1 |Ej|)

qka+d—l

|Ak(EL, ..., Ex)| 2 min {q,
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Proof By Theorem 3.1, it suffices to prove that

=

1
13

k
dk k ka+d—1
E; < E; . 4.6
q m%" Z| ) Sq H| Jl (4.6)
= veS, =
Since E;(v) = q_dﬁj(v) for j =1,...,k, we see that
1 1
k k
dk k 28 k
E = E;
q m%X > 1B max [T 2 1E,m)
9 j=1 \veS, 9 j=1 \veSs,

Using the definition of || E; Lk (s, a0y In (4.2) and the fact that | S, | ~ qd_l, the above
quantity is similar to the following value:

k
d—1 =~
| [TIEi ks, a0
j=1

By assumption (4.5), this can be dominated by

1
k 7
P (1—[ <qa”Ej”L‘5(]Fg,dm))) gketd—1 (1—[ IE; If) gkotd=1 (1—[ IE; |) .

Putting all estimates together yields the inequality (4.6), which completes the proof.
O

5 Restriction Theorems for Spheres

We see from Lemma 4.1 that the restriction estimates for spheres play an important
role in determining lower bounds of the cardinality of the generalized k-resultant set
A (Eq, ..., Ex).Inparticular, our main result (Theorem 1.6) will be proved by making
an effort on finding possibly large exponent £ > 1 such that the restriction inequality
(4.5)holdsfork = 3 ork = 4. Inthis section, we shall obtain such restriction estimates.
To this end, we shall apply the following dual restriction estimate for spheres with
non-zero radius due to the authors in [11].

Lemma 5.1 ([11], Theorem 1) Ifd > 4 is even, then
||(Fd0)v||L4 Fd dm) > S F || 7 12d-8)/0a— 12)(5,.do) forall F C S, t #0. 5.1
To obtain a restriction estimate for spheres, we shall use the dual estimate of (5.1).
To this end, it is useful to review Lorentz spaces in our setting. For a function f :

(8¢, do) — C, we denote by d the distribution function on [0, 00):
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1
df(a) == ——{x €S : [f(X)] > a}l.
IS:]

We see that for 1 <r < oo,

o0
”f”rLr(s,,do) = "[) Sr_ldf(s) ds.

The function f* is defined on [0, co) by
f*(s) :==inf{a > 0:dy(a) <s}.
For 1 < p,r < oo and a function f : (S;, do) — C, define
o 1/r
f(sl/”f*(s))rds—s for 1 <r < oo
| fllLrr (s, do) = 0

sups!/? f*(s) for r = oo.
s>0

In particular, we see that

o0
I fllLpr(s,.doy = /() sYP=1r*(s) ds.

Itis not hard to see thatfor 1 < p <ocoand 1 <r; <ry < 00,

I fllzrras, doy S WFlLenis, doy and | flleercs, do) = 1f e (s, do)-

See [6] for further information about Lorentz spaces. With the above notation, the
following fact can be deduced.

Lemma 5.2 Let do be the normalized surface measure on the sphere S; C (F‘ql , dX).
Assume that the estimate

II(FdU)VllLr(Fg,dm) S WFlLees,.do) (5.2)
holds for all subsets F of S;. Then we have
||(fd0)v||u<]yg,dm) S lleeacs, do)

for all functions f : (S;,do) — C.

Proof Without loss of generality, we may assume that f is a nonnegative simple
function given by the form

N
f=) ajlp (5.3)
j=1
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where Fy C Fy_y C --- C Fo C Fyandaj > Oforall j =1,2,..., N. Notice
that

1St

N
) = Zaj 1[0 m](s)
j=1 ’

It follows that

00 00 N
/0 s%_lf*(s)ds=/0 s%_lzajl[oij\](s)ds

TS
N il 1 N
ST 1 |[Fi|\ 7
ZZ“J‘/ spTds=p) a (ﬁ =p ) ajllFjllLr(s, do)-
0 j= ! j=1
Namely, we see that

o] 1 N
/ sTUfR(s) ds ~ Y ajIlFillLecs, do)-
0

j=1

Using this estimate along with (5.3) and the hypothesis (5.2), we see that

M=

||(fd5)v||L’(Fg,dm) <) aj ||(Fjd0)v||Lr(Fg,dm)

J=1
N ©
S Zdj I FillLr(s;.doy ~ / sP fR () ds = 1 fllLrics, doy-
j=1 0
Hence, the proof is complete. O

We shall invoke the following weak-type restriction estimate.

Lemma5.3 Ifd > 4 is even and we put ro = (12d — 8)/(3d + 4), then the weak-type
restriction estimate

_— - 5.4
1805000 SN 4 g i) ey

holds forallt € IF;; and for all functions g : (IFZ, dm) — C.

Proof Since ro = (12d — 8)/(3d + 4), its dual exponent r, is given by
ro = (12d — 8)/(9d — 12).
Combining Lemma 5.1 with Lemma 5.2, it follows that
1CFd) s geg am) S 1t o
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for all functions f : (S;,do) — C witht € ]FZ. By duality, this estimate is same as
(5.4), which completes the proof. O

The following restriction estimate will play an important role in proving the third
part of Theorem 1.6.

Lemma5.4 IfE C (F¢,dm) and |E| > g o , then we have

|E|

d—1
7

1EllL2(s, do) < forall t € FZ

q

Proof Since ||E|| E(x)l2 and |S,| ~ g% forr € IF;, itis enough

_ 1
L2(S;,do) — 1SM ;
>q

to show that if E C ]Fd with |E| , then

Y IE®P Sq T IER (5.5)
xeS;

Notice from the definition of the Fourier transforms that

YIE@P=)Y Y x(—x-m-m)= Y ¢‘Sm-m)

X€ES; XeS; mm'cE mm’'eE

=q"EI50,....0+ Y ¢'Sm-m)

m,m’ € E:m#m’

< |E||S] + max S (m) ¢
E||S:| (.,ng\{(o,...,o»'f | > q

m,m’€E:m#m’

S |Elg™ + |EPPq? max  |S,(n)|] .
nng\{(O ,,,,, 0)}

Now, we apply the well known fact (Lemma 2.2 in [12]) that if S, C IE‘Z for 1 € T
and d > 2, then

max S ) <q
neF?\((0.....0)}

Then we see that

Y IE®P S Il +4 T 1EP S ¢°T IEP,

xeS;

where the last inequality follows from our assumption that |E| > ¢ - . Thus, (5.5)
holds and we complete the proof. O
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Now, we introduce the interpolation theorem which enables us to derive the restric-
tion estimates we need for the proof of our main results.

Theorem 5.5 Let Q2 be a collection of subsets E of (F¢, dm). Assume that the following
two restriction estimates hold for all sets E € Q and 1 <rg < r; < 00:

IE | oo s,.d0) S Aolgs |E]) := Ag

and
IElLrooes,.do) S A1(q, |E|) := Ay.

Then forrog < r < ry1, we have

=~ 2r 2\ S A
||E||Lr(s,,da)§(max{ }) AT AT (5.6)

r—ro ri—r
Namely, lf% = % + %for some 0 < 6 < 1, then we have
IEN L (s,.d0) S Ay AS. 5.7
Proof Let § > 0 which will be chosen later.
- f I ldp(s) ds
0
8 oo
= rfo sr_ldg(s) ds + r/(S sr_ldg(s) ds

8 00
= rfo sr_ro_lsrodg(s) ds + r/a sr_”_ls”dg(s) ds

5
r( sup s’odg(s))f s"r0l g
0<s<oo 0

o
+r< sup s”dg(s))f sl g
O<s<oo )

__r =170 r—ro r ATl r—ri
- r—ro ”E”Lro’oo(S,,da') 6 + r—r ||E||L”’°°(S,,dt7) 8

IA

< max { } (Ap 870 + AT 8"

r— r07 ry—r
Now we choose § such that

ro or—ro _ Al gr—ri
Ay S =Al'¢ .
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Namely, we choose

0] 1

— 0"l rn=ro
s=ALTT AT,

It follows that

~ 2r 2r
r ro or—ro
”E”Lr(S/,dU) Smax r—ro’ P AO )

ro(r=rg) ry(r=rg)

< max 2r , 2r APATT AT

~ r—rog rA—r

ro(ry—r) r1(r=rg)
= max 2r 2 A0 AT
r—ro r—r| 0 1 ’
which implies (5.6). By a direct computation, (5.7) follows from (5.6). O

Remark 5.6 The new ingredient of this paper is to eliminate the & appearing in the
third part of Theorem 1.3 which was previously obtained in [3]. This can be done by
proceeding as follows. Combining Lemma 5.3 with Lemma 5.4, Theorem 5.5 yields
the improved strong L3-restriction estimate (see Lemma 6.3 in the next section).

6 Proof of Main Theorem (Theorem 1.6)

In this section, we shall give the complete proof of Theorem 1.6. Since || g || .o (s, .do)
= gl s, .do) = max 18I < 18l L1 (re amy- it is clear that
t

IE || Loooo(s,.do) S IEN| L1 gy am) = |E| forall E C Fd t#0.  (6.1)
On the other hand, it follows from Lemma 5.3 that if d > 4 is even, then

E 12d—8 < |E]|
I ||L3d+4 5y doy I ”Lé(]Fg,dm)

— |E|¥ forall ECFL 1#£0.  (62)

6.1 Proof of Statement (1)

We need the following lemma to prove the statement (1) of Theorem 1.6.
Lemma 6.1 Ifd = 4 or 6, then we have

d
4 am) forall E CF, t #0.

IEN L3¢s,.d0) S IIEIIL%(F‘{

Proof Note that if d = 4 or 6, then 1325’;48 < 3 < o0. Therefore, using Theorem 5.5,

we are able to interpolate (6.1) and (6.2) so that we obtain

12d — 8
9d + 12

~ _ 30 .
IENL3¢s,.d00 S1EI'"IEIT  with 0 =
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Namely, we see that

E <|E SHT — E
IENL3¢s,,d0) S IE] I ”Lol+14([Fdd)

Thus, the proof is complete. O

We are ready to prove statement (1) of Theorem 1.6. We aim to prove that if
d+1 1

d =4ord = 6,and Ey, Ey, E3 C F with |E\||E2||E3| 2 q3( ’ ’m), then
|A3(E1, E2, E3)| 2 g. Combining Lemmas 4.1 and 6.1, we see that

3-S7m
3 +
(l—ljzl |Ej|>

|A3(E1, Ez, E3)| 2 min {q, e

. k] (= —— .
Since |E|||E2||E3| > Cq ( 2 6‘”2) for a sufficiently large C > 0, we see from a
direct computation that

|A3(E1, Ez, E3)| 2 q.

6.2 Proof of Statement (2) of Theorem 1.6

The following lemma shall be used to prove the statement (2) of Theorem 1.6.

Lemma 6.2 Ifd > 4 is even, then we have

forall ECF 1 #£0.

<
||E||L4(S; do) ~ ”E”L ST (F4,

Proof Since ]32;+f < 4 < oo for all even d > 4, interpolating (6.1) and (6.2) yields
IEN 45,0y S TEI T IEI* with 60 = Y
Since |E|! 9|E| T = |E| D6 = = ||E| the statement follows. m]

L 9d+18 ( Fd . d

Let us prove statement (2) of Theorem 1.6. Recall that we must show that if

dl_ 1
d > 8iseven and E|, Ep, E3, E4 C ]Fj]l with Hj’:] |Ej| pe q4( 2 6d+2), then
|A4(Ey, Ea, E3, E4)| 2 g. Combining Lemmas 4.1 and 6.2, we obtain that

4 E Z 12d I]ﬁ
~T2d+
(I Ij_—l | J|>

|A4(E1, Ea, E3, E4)| 2 min { g, e
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1

del_ 1
Since |E1||Ez||E3||E4| > Cq4( 2 ""*2) for a sufficiently large C > 0, it follows
from a direct computation that

|A4(E1, E2, E3, Eg)| 2 q.

6.3 Proof of Statement (3) of Theorem 1.6
We begin by proving the following lemma.

Lemma 6.3 Let E C ]Fd Ifd > 8isevenand |E| > g o , then we have

~ 3424234
< 36d— 90 *
||E||L3(Shdg) 59 ”E”Llﬂ 46(]Fd forall t e ]Fq.

~ ~ d—1
Proof Since ||E||Lz‘oc(5“d(,) < ||E”L2(S,,dcr)’ and |E| > g 7, we see from Lemma
5.4 that

IEll2eeqs, o Sa™ F 1E| forall £ € F} and E C F with |E| = ¢*7 . (6.3)
As in (6.2), we also see that

IE| < |E|T forall E CFY, ¢ € F: (6.4)
L ?E+4 (S, do) q q

12d—8
Bd+4

(6.3) and (6.4). Hence, if d > 8 iseven and |E| > ¢ G , then we have

Since 2 < 3 < for d > 8, by using Theorem 5.5 we are able to interpolate

~ C@-n -0 3 6d — 4
1Bl S (a7 T 1EI) IEIT with 6= 5.

By a direct computation, we conclude

~ —3d2+423d—20 15d—46 —3d2+23d—20
||E”L3(S,,d<7) 5 q~ %d-9  |E|18d-8 =g~ 36d-9% ||E| ;

LlSd 46 (]Fd dm )

which completes the proof of the lemma. O

Let us prove the statement (3) of Theorem 1.6 which states that if d > 8 is even,

3(1]1 1
andl—[] VEjl 2 g

*18) then |A3(E, Eo, E3)| 2 ¢g. To prove this let us
first assume that one of |E |, | E3|, | E3]| is less than q , say that |[E3| < ¢ o . Then

d+1 1
by our hypothesis that |E||E2||E3| 2, q 2 9d"8), it must follow that
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_@d-n 3(dfl_ _1__ d+1)+34=1 d+1
|E1l|E2l 2 g7 2 q(2 9"*8>=q<“+w > gt

This implies that |A2(E1, E2)| 2 ¢, which was proved by Shparlinski [17]. Thus it
is clear that |A3(E1, E2, E3)| 2 ¢, because |A3(E1, Ez, E3)| > |A2(E}, E3)|. For

this reason, we may assume that all of |E|, |E2|, | E3| are greater than or equal to
_ d+l_ 1
dal, and |E1||E2||E3] 2 q3< 2 %=1/ Combining Lemma 4.1 with Lemma 6.3 ,

we obtain that

-4
. (1_[3:1 |Ej|) '
[A3(Ey, Ea, E3)| Z min 1 ¢, el [
_ —=3d?+23d-20 _ 18d4-48 : : i
where we take o = Teq0g  and { = s;—¢. By a direct comparison, it is
. (el _ 1 9d2-9d—20
not hard to see that if |E{||E2||E3| = ¢ ( 2 "d*‘S) = g o712 | then we have

|A3(E1, E2, E3)| 2 g. We have finished the proof of the third part of Theorem 1.6.
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