
Journal of Fourier Analysis and Applications (2019) 25:1026–1052
https://doi.org/10.1007/s00041-018-9619-1

The Generalized k-Resultant Modulus Set Problem in Finite
Fields

David Covert1 · Doowon Koh2 · Youngjin Pi2

Received: 13 July 2017 / Revised: 11 March 2018 / Published online: 26 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Let F

d
q be the d-dimensional vector space over the finite field Fq with q elements.

Given k sets E j ⊂ F
d
q for j = 1, 2, . . . , k, the generalized k-resultant modulus set,

denoted by �k(E1, E2, . . . , Ek), is defined by �k(E1, E2, . . . , Ek) = {‖x1 + x2 +
· · · + xk‖ ∈ Fq : x j ∈ E j , j = 1, 2, . . . , k}, where ‖y‖ = y21 + · · · + y2d for

y = (y1, . . . , yd) ∈ F
d
q . We prove that if

∏3
j=1 |E j | ≥ Cq

3
(
d+1
2 − 1

6d+2

)

for d = 4, 6
with a sufficiently large constant C > 0, then |�3(E1, E2, E3)| ≥ cq for some

constant 0 < c ≤ 1, and if
∏4

j=1 |E j | ≥ Cq
4
(
d+1
2 − 1

6d+2

)

for even d ≥ 8, then
|�4(E1, E2, E3, E4)| ≥ cq. This generalizes the previous result in [3]. We also show

that if
∏3

j=1 |E j | ≥ Cq
3
(
d+1
2 − 1

9d−18

)

for even d ≥ 8, then |�3(E1, E2, E3)| ≥ cq.

This result improves the previous work in [3] by removing ε > 0 from the exponent.
The new ingredient in our proof is an improved L3-restriction estimate for spheres.
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1 Introduction

The Erdős distance problem asks us to determine the minimal number of distinct
distances between any N points inR

d . This problemwas initially posed by Paul Erdős
[5] who conjectured that g2(N ) � N/

√
log N , and gd(N ) � N 2/d for d ≥ 3, where

gd(N ) denotes the minimal number of distinct distances between N distinct points
of R

d , and X � Y for X ,Y > 0 means that there is a constant C > 0 independent
of N such that CX ≥ Y . This conjecture in two dimension was resolved up to the
logarithmic factor by Guth and Katz [7]. However, the problem is still open in higher
dimensions.

In [1] Bourgain, Katz, and Tao studied the finite field analog of the Erdős distance
problem. Let F

d
q be the d-dimensional vector space over the finite field Fq with q

elements. Throughout this paper we always assume that the characteristic of Fq is
strictly greater than two. For a set E ⊂ F

d
q , the distance set, denoted by �2(E), is

defined as

�2(E) = {‖x − y‖ ∈ Fq : x, y ∈ E},

where ‖α‖ = α2
1 + · · · + α2

d for α = (α1, . . . , αd) ∈ F
d
q . With this definition of the

distance set, Bourgain, Katz, and Tao [1] proved that if q ≡ 3 (mod 4) is prime and
E ⊂ F

2
q with qδ � |E | � q2−δ for δ > 0, then there exists ε = ε(δ) such that

|�2(E)| ≥ |E |1/2+ε . Here we recall that A � B for A, B > 0 means that there exists
a constant C > 0 independent of q such that A ≤ CB, and we write B � A for
A � B. We also use A ∼ B if limq→∞ A/B = 1. This result was obtained by finding
the connection between incidence geometry in F

2
q and the distance set. Unfortunately,

it is not simple to find the relationship between δ and ε from their proof. Furthermore,
if E = F

2
q , then |�2(E)| = √|E |, which shows that the exponent 1/2 can not be

generically improved. If −1 is a square in Fq , another unpleasant example exists with
the finite field Erdős distance problem. For instance, let E = {(t, i t) ∈ F

2
q : t ∈ Fq},

where i denotes an element of Fq such that i2 = −1. Then it is straightforward to
see that |E | = q and |�2(E)| = |{0}| = 1. In view of aforementioned examples,
Iosevich and Rudnev [12] reformulated the Erdős distance problem in general finite
field setting as follows.

Question 1.1 Let E ⊂ F
d
q .What is the smallest exponentβ > 0 such that if |E | ≥ Cqβ

for a sufficiently large constant C > 0 then |�(E)| ≥ cq for some 0 < c ≤ 1?

The problem in this question is called the Erdős-Falconer distance problem in the
finite field setting. In [12], it was shown that β ≤ (d + 1)/2 for all dimensions d ≥ 2.
The authors in [9] proved that β = (d + 1)/2 for general odd dimensions d ≥ 3.
On the other hand, they conjectured that if the dimension d ≥ 2 is even, then β can
be improved to d/2. In dimension two, the authors in [2] applied the sharp finite
field restriction estimate for the circle on the plane so that they show β ≤ 4/3 which
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improves the exponent (d + 1)/2, a sharp exponent in general odd dimensions d.

Considering the perpendicular bisector of two points in a set of F
2
q , the authors in [8]

proved that the exponent 4/3 holds for the pinned distance problem case. However,
in higher even dimensions d ≥ 4, the exponent (d + 1)/2 has not been improved.
To demonstrate some possibility that the exponent (d + 1)/2 could be improved for
even dimensions d ≥ 4, the authors in [3] introduced a k-resultant modulus set which
generalizes the distance set in the sense that any k points can be selected from a set
E ⊂ F

d
q to determine an object similar to a distance. More precisely, for a set E ⊂ F

d
q

we define a k-resultant modulus set �k(E) as

�k(E) =
{
‖ ± x1 ± x2 + · · · ± xk‖ ∈ Fq : x j ∈ E

}
,

where ‖y‖ = y21 + · · · + y2d ∈ Fq for y = (y1, . . . , yd) ∈ F
d
q . Since the sign “±′′ does

not affect on our results in this paper, we shall simply takes “+′′ signs. That is, we
will use the definition

�k(E) =
{
‖x1 + x2 + · · · + xk‖ ∈ Fq : x j ∈ E

}

for consistency. With this definition of the k-resultant modulus set, the following
question was proposed in [3].

Question 1.2 Let E ⊂ F
d
q and k ≥ 2 be an integer.What is the smallest exponentγ > 0

such that if |E | ≥ Cqγ for a sufficiently large constant C > 0, then |�k(E)| ≥ cq
for some 0 < c ≤ 1.

This problem is called the k-resultant modulus problem. When k = 2, this question is
simply thefinite fieldErdős-Falconer distance problem, and in this sense the k-resultant
modulus problem is a direct generalization of the distance problem. It is obvious that
the smallest exponent β > 0 in Question 1.1 is greater than or equal to the smallest
exponent γ > 0 in Question 1.2. However, authors in [3] conjectured that γ must be
equal to β. This conjecture means that the solution γ of Question 1.2 is independent
of the integer k ≥ 2. Namely, it is conjectured that the solution of the Erdős-Falconer
distance problem is the same as that of the k-resultant modulus problem. In fact,
authors in [4] provided a simple example which shows that γ = β = (d + 1)/2 for
any integer k ≥ 2 in odd dimensions d ≥ 3 provided that −1 is a square number in Fq

and the conclusion of Question 1.2 is replaced by |�k(E)| = q. On the other hand,
authors in [3] conjectured that the smallest exponent γ in Question 1.2 is d/2 for even
dimensions d ≥ 2 and all integers k ≥ 2. As a partial credence to this conjecture, they
showed that if k ≥ 3 and the dimension d is even, then one can improve the exponent
(d+1)/2which is sharp in odd dimensional case.More precisely, the following results
were proved.

Theorem 1.3 ([3]) Let E ⊂ F
d
q . Suppose that C is a sufficiently large constant. Then

the following statements hold:

(1) If d = 4 or 6, and |E | ≥ Cq
d+1
2 − 1

6d+2 , then |�3(E)| ≥ cq for some 0 < c ≤ 1.
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(2) If d ≥ 8 is even and |E | ≥ Cq
d+1
2 − 1

6d+2 , then |�4(E)| ≥ cq for some 0 < c ≤ 1.
(3) If d ≥ 8 is even, then for any ε > 0, there exists Cε > 0 such that if |E | ≥
Cεq

d+1
2 − 1

9d−18+ε, then |�3(E)| ≥ cq for some 0 < c ≤ 1.

The purpose of this paper is to generalize Theorem 1.3. In particular, in the general
setting, we improve the third conclusion of Theorem 1.3 by removing the ε > 0 in the
exponent.

The generalized Erdős-Falconer distance problem has been recently studied by
considering the distances between any two sets E1, E2 ⊂ F

d
q (see, for example, [10,13–

15,17–19]). Given two sets E1, E2 ⊂ F
d
q , the generalized distance set �2(E1, E2) is

defined by

�2(E1, E2) =
{
‖x1 − x2‖ ∈ Fq : x1 ∈ E1, x2 ∈ E2

}
.

The generalized Erdős-Falconer distance problem is to determine the smallest expo-
nent γ2 > 0 such that if E1, E2 ⊂ F

d
q with |E1||E2| ≥ Cqγ2 for a sufficiently large

constant C > 0, then |�2(E1, E2)| ≥ cq for some 0 < c ≤ 1. From the Erdős-
Falconer distance conjecture, it is natural to conjecture that the smallest exponent γ2
is d + 1 for odd dimension d ≥ 3 and d for even dimension d ≥ 2. Shparlinski
[17] obtained the exponent d + 1 for all dimensions d ≥ 2. Thus, the generalized
Erdős-Falconer distance conjecture was established in odd dimensions. On the other
hand, the conjectured exponent d in even dimensions has not been obtained. The cur-
rently best known result is the exponent d + 1 for even dimensions d except for two
dimensions. In dimension two the best known result is the exponent 8/3 due to Koh
and Shen [13].

We now consider a problem which extends both the generalized Erdős-Falconer
distance problem and the k-resultant modulus set problem. For k sets E j ⊂ F

d
q , j =

1, 2, . . . , k, we define the generalized k-resultant set �k(E1, . . . , Ek) as

�k(E1, . . . , Ek) =
{
‖x1 + x2 + · · · + xk‖ ∈ Fq : x j ∈ E j , j = 1, 2, . . . , k

}
.

Problem 1.4 Let k ≥ 2 be an integer. Suppose that E j ⊂ F
d
q , j = 1, 2, . . . , k. Deter-

mine the smallest exponent γk > 0 such that if
∏k

j=1 |E j | ≥ Cqγk for a sufficiently
large constant C > 0, then |�k(E1, E2, . . . , Ek)| ≥ cq for some 0 < c ≤ 1.

Wecall this problem the generalized k-resultantmodulus problem.As in the k-resultant
modulus problem, we are only interested in studying this problem in even dimensions
d ≥ 2. If q = p2 for some odd prime p, thenFq contains the subfieldFp . In this case, if
the dimension d is even and E j = F

d
p for all j = 1, 2, . . . , k, then

∏k
j=1 |E j | = qdk/2

and |�k(E1, E2, . . . , Ek)| = |Fp| = p = √
q. This example proposes the following

conjecture.

Conjecture 1.5 Suppose that d ≥ 2 is even and k ≥ 2 is an integer. Then the smallest
exponent γk in Problem 1.4 must be kd

2 .
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1.1 Statement of theMain Result

As mentioned before, the known results on the generalized Erdős-Falconer distance
problem says that if k = 2, then 2 ≤ γk ≤ 8/3 for d = 2, and d ≤ γk ≤ d + 1 for
even dimensions d ≥ 4, where γk denotes the smallest exponent in Problem 1.4. In
this paper we study the generalized k-resultant modulus problem for k ≥ 3. Our main
result is as follows.

Theorem 1.6 Let k ≥ 3 be an integer and E j ⊂ F
d
q for j = 1, 2, . . . , k. Assume that

C is a sufficiently large constant. Then the following statements hold:

(1) If d = 4 or 6, and
∏3

j=1 |E j | ≥ Cq
3
(
d+1
2 − 1

6d+2

)

then |�3(E1, E2, E3)| � q.

(2) If d ≥ 8 is even and
∏4

j=1 |E j | ≥ Cq
4
(
d+1
2 − 1

6d+2

)

then |�4(E1, E2, E3, E4)| � q.

(3) If d ≥ 8 is even, and
∏3

j=1 |E j | ≥ Cq
3
(
d+1
2 − 1

9d−18

)

, then |�3(E1, E2, E3)| � q.

Taking E j = E ⊂ F
d
q for all j = 1, 2, . . . , k, the first and second conclusions of

Theorem1.3 follow immediately from (1), (2)ofTheorem1.6, respectively.Moreover,
the third conclusion of Theorem 1.6 implies that the ε in the statement (3) of Theorem
1.3 is not necessary.

Theorem 1.6 also implies the following result.

Corollary 1.7 For any integer k ≥ 4, let E j ⊂ F
d
q for j = 1, 2, . . . , k. Assume that

C > 0 is a sufficiently large constant. Then if d ≥ 4 is even, and
∏k

j=1 |E j | ≥
Cq

k
(
d+1
2 − 1

6d+2

)

, we have |�k(E1, E2, . . . , Ek)| � q.

Proof Without loss of generality, we may assume that |E1| ≥ |E2| ≥ · · · ≥ |Ek |.
Notice that if

∏k
j=1 |E j | ≥ Cq

k
(
d+1
2 − 1

6d+2

)

, then
∏k−1

j=1 |E j | � q
(k−1)

(
d+1
2 − 1

6d+2

)

,

and we have |�k−1(E1, . . . , Ek−1)| ≤ |�k(E1, . . . , Ek)|. Then the statement follows
by induction argument with conclusions (1), (2) of Theorem 1.6. 
�

2 Discrete Fourier Analysis

We shall use the discrete Fourier analysis to deduce the result of our main theorem,
Theorem 1.6. In this section, we recall notation and basic concept in the discrete
Fourier analysis. Throughout this paper, we shall denote by χ a nontrivial additive
character of Fq . Since our result is independent of the choice of the character χ, we
assume that χ is always a fixed nontrivial additive character of Fq . The orthogonality
relation of χ states that

∑

x∈Fdq
χ(m · x) =

{
0 if m �= (0, . . . , 0)
qd if m = (0, . . . , 0),

where m · x := ∑d
j=1m jx j for m = (m1, . . . ,md), x = (x1, . . . , xd) ∈ F

d
q . Given

a function g : F
d
q → C, we shall denote by g̃ the Fourier transform of g which is

defined by
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g̃(x) =
∑

m∈Fdq
g(m) χ(−x · m) for x ∈ F

d
q . (2.1)

On the other hand, we shall denote by f̂ the normalized Fourier transform of the
function f : F

d
q → C. Namely we define that

f̂ (m) = 1

qd
∑

x∈Fdq
f (x) χ(−x · m) for m ∈ F

d
q .

In particular, ifm = (0, . . . , 0) andwe take f as an indicator function of a set E ⊂ F
d
q ,

then we see that

Ê(0, . . . , 0) = |E |
qd

.

Here, and throughout this paper, we write E(x) for the indicator function 1E (x) of a
set E ⊂ F

d
q . We define the normalized inverse Fourier transform of f , denoted by

f ∨, as f ∨(m) = f̂ (−m) for m ∈ F
d
q . It is not hard to see that (̃ f ∨)(x) = f (x) for

x ∈ F
d
q . Namely, we obtain the Fourier inversion theorem:

f (x) =
∑

m∈Fdq
f̂ (m) χ(m · x) for x ∈ F

d
q .

Using the orthogonality relation of the character χ, we see that

∑

m∈Fdq
| f̂ (m)|2 = 1

qd
∑

x∈Fdq
| f (x)|2.

We shall call this formula the Plancherel theorem. Notice that if we take f as an
indicator function of a set E ⊂ F

d
q , then the Plancherel theorem yields that
∑

m∈Fdq
|Ê(m)|2 = |E |

qd
.

Recall from Hölder’s inequality that if f1, f2 : F
d
q → C, then we have

∑

m∈Fdq
| f1(m)|| f2(m)| ≤

⎛

⎜
⎝
∑

m∈Fdq
| f1(m)|p1

⎞

⎟
⎠

1
p1
⎛

⎜
⎝
∑

m∈Fdq
| f2(m)|p2

⎞

⎟
⎠

1
p2

,

where 1 < p1, p2 < ∞ and 1/p1 + 1/p2 = 1. Applying Hölder’s inequality repeat-
edly, we obtain that if fi : D ⊂ F

d
q → C and 1 ≤ pi < ∞ for i = 1, 2, . . . , k with

k∑

i=1

1
pi

= 1, then
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∑

m∈D

(
k∏

i=1

| fi (m)|
)

≤
k∏

i=1

(
∑

m∈D
| fi (m)|pi

) 1
pi

. (2.2)

We refer to this formula as the generalized Hölder’s inequality.

Lemma 2.1 Let k ≥ 2 be an integer. If E j ⊂ F
d
q for all j = 1, 2, . . . , k, then we have

∑

m∈Fdq

⎛

⎝
k∏

j=1

|Ê j (m)|
⎞

⎠ ≤ q−dk+d

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k

.

Proof Notice that if E ⊂ F
d
q andm ∈ F

d
q , then |Ê(m)| ≤ |Ê(0, . . . , 0)| = |E |

qd
. Since

k∑

j=1

1
k = 1, applying generalized Hölder’s inequality yields the desirable result:

∑

m∈Fdq

⎛

⎝
k∏

j=1

|Ê j (m)|
⎞

⎠ ≤
k∏

j=1

⎛

⎜
⎝
∑

m∈Fdq
|Ê j (m)|k

⎞

⎟
⎠

1
k

≤
k∏

j=1

⎛

⎜
⎜
⎝|Ê j (0, . . . , 0)| k−2

k

⎛

⎜
⎝
∑

m∈Fdq
|Ê j (m)|2

⎞

⎟
⎠

1
k
⎞

⎟
⎟
⎠

=
k∏

j=1

(( |E j |
qd

) k−2
k
( |E j |

qd

) 1
k
)

= q−dk+d

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k


�
To estimate a lower bound of |�k(E1, . . . , Ek)|, we shall utilize the Fourier decay

estimate on spheres. Recall that the sphere St ⊂ F
d
q for t ∈ Fq is defined by

St = {x ∈ F
d
q : x21 + · · · + x2d = t}. (2.3)

It is not hard to see that |St | = qd−1(1+o(1)) for d ≥ 3 and t ∈ Fq (see Theorem 6.26
and Theorem 6.27 in [16]). It is well known that the value of Ŝt (m) can be written in
terms of the Gauss sum and the Kloosterman sum. In particular, when the dimension
d is even, the following result can be obtained from Lemma 4 in [11].

Lemma 2.2 Let d ≥ 2 be even. If t ∈ Fq and m ∈ F
d
q , then we have

Ŝt (m) = q−1δ0(m) + q−d−1 Gd
∑


∈F∗
q

χ
(
t
 + ‖m‖

4


)
,
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where δ0(m) = 1 for m = (0, . . . , 0) and δ0(m) = 0 otherwise, and G denotes the
Gauss sum

G =
∑

s∈F∗
q

η(s) χ(s),

where η is the quadratic character of Fq , and F
∗
q = Fq \ {0}. In particular, we have

Ŝ0(m) = q−1δ0(m) + q−d−1 Gd
∑


∈F∗
q

χ(‖m‖
) for m ∈ F
d
q . (2.4)

We shall invoke the following result which was given in Proposition 2.2 in [15].

Lemma 2.3 If m, v ∈ F
d
q , then we have

∑

t∈Fq
Ŝt (m) Ŝt (v) = q−1δ0(m) δ0(v) + q−d−1

∑

s∈F∗
q

χ(s(‖m‖ − ‖v‖)).

3 Formula for a Lower Bound of |1k(E1, . . . , Ek)|
This section devotes to proving the following result which is useful to deduce a lower
bound of |�k(E1, . . . , Ek)|.
Theorem 3.1 Let d ≥ 2 be even and k ≥ 2 be an integer. If E j ⊂ F

d
q for j =

1, 2, . . . , k and
∏k

j=1 |E j | ≥ 3kq
dk
2 , then we have

|�k(E1, . . . , Ek)| � min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q,

(∏k
j=1 |E j |

) k+1
k

qdk

(

max
r∈F∗

q

∏k
j=1

(∑
v∈Sr |Ê j (v)|k

) 1
k

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Proof For each t ∈ Fq , we define a counting function νk(t) by

νk(t) =
∣
∣
∣{(x1, x2, . . . , xk) ∈ E1 × · · · × Ek : ‖x1 + · · · + xk‖ = t}

∣
∣
∣ .

Since
∏k

j=1 |E j | = ∑

t∈Fq
νk(t), and νk(t) = 0 if t /∈ �k(E1, . . . , Ek), we see that

k∏

j=1

|E j | − νk(0) =
∑

0 �=t∈�k (E1,...,Ek )

νk(t).
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Square both sides of this equation and use the Cauchy-Schwarz inequality. Then we
see that

⎛

⎝
k∏

j=1

|E j | − νk(0)

⎞

⎠

2

=
⎛

⎝
∑

0 �=t∈�k (E1,...,Ek )

νk(t)

⎞

⎠

2

≤ |�k(E1, . . . , Ek)|
⎛

⎜
⎝
∑

t∈F∗
q

ν2k (t)

⎞

⎟
⎠ .

Thus, we obtain

|�k(E1, . . . , Ek)| ≥
(∏k

j=1 |E j | − νk(0)
)2

∑

t∈F∗
q

ν2k (t)
. (3.1)

Now, we claim three facts below.

Claim 3.2 Suppose that d ≥ 2 is even and k ≥ 2 is an integer. If E j ⊂ F
d
q for

j = 1, 2, . . . , k with
∏k

j=1 |E j | ≥ 3kq
dk
2 , then we have

⎛

⎝
k∏

j=1

|E j | − νk(0)

⎞

⎠

2

≥ 1

9

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

.

Claim 3.3 Let d ≥ 2 and k ≥ 2 be integers. If E j ⊂ F
d
q for j = 1, 2, . . . , k, then we

have

∑

t∈Fq
ν2k (t) ≤ 1

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ q2dk−d
∑

r∈Fq

∣
∣
∣
∣
∣
∣

∑

v∈Sr

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

.

Claim 3.4 Assume that d ≥ 2 is even and k ≥ 2 is an integer. If E j ⊂ F
d
q for

j = 1, 2, . . . , k with
∏k

j=1 |E j | ≥ q
dk
2 , then we have

q2dk−d

∣
∣
∣
∣
∣
∣

∑

m∈S0

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

− ν2k (0) ≤ 4

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

.

For a moment, let us accept Claims 3.2, 3.3, and 3.4 which shall be proved in the
following subsections (see Sects. 3.1, 3.2, and 3.3). From (3.1) and Claim 3.2, we see

that if
∏k

j=1 |E j | ≥ 3kq
dk
2 , then

|�k(E1, . . . , Ek)| �

(∏k
j=1 |E j |

)2

∑
t∈F∗

q
ν2k (t)

. (3.2)
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Observe from Claims 3.3 and 3.4 that if
∏k

j=1 |E j | ≥ 3kq
dk
2 , then

∑

t∈F∗
q

ν2k (t) =
∑

t∈Fq
ν2k (t) − ν2k (0) ≤ 5

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ q2dk−d
∑

r �=0

∣
∣
∣
∣
∣
∣

∑

v∈Sr

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

� 1

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ q2dk−d
∑

r �=0

⎛

⎝
∑

v∈Sr

⎛

⎝
k∏

j=1

|Ê j (v)|
⎞

⎠

⎞

⎠

2

≤ 1

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ q2dk−d

⎛

⎝max
r �=0

∑

v∈Sr

⎛

⎝
k∏

j=1

|Ê j (v)|
⎞

⎠

⎞

⎠

⎛

⎜
⎝
∑

v∈Fdq

⎛

⎝
k∏

j=1

|Ê j (v)|
⎞

⎠

⎞

⎟
⎠

≤ 1

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ qdk

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k
⎛

⎝max
r �=0

∑

v∈Sr

⎛

⎝
k∏

j=1

|Ê j (v)|
⎞

⎠

⎞

⎠ ,

where Lemma 2.1 was used to obtain the last inequality. From this estimate and (3.2),
it follows that

|�k(E1, . . . , Ek)| �

(∏k
j=1 |E j |

)2

1
q

(∏k
j=1 |E j |

)2 + qdk
(∏k

j=1 |E j |
) k−1

k

(

max
r∈F∗

q

∑
v∈Sr

(∏k
j=1 |Ê j (v)|

)
)

� min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q,

(∏k
j=1 |E j |

) k+1
k

qdk

(

max
r∈F∗

q

∑
v∈Sr

(∏k
j=1 |Ê j (v)|

)
)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Then the statement of Theorem 3.1 follows by applying generalized Hölder’s inequal-
ity (2.2):

max
r∈F∗

q

∑

v∈Sr

⎛

⎝
k∏

j=1

|Ê j (v)|
⎞

⎠ ≤ max
r∈F∗

q

k∏

j=1

⎛

⎝
∑

v∈Sr
|Ê j (v)|k

⎞

⎠

1
k

.


�

3.1 Proof of Claim 3.2

Suppose that d ≥ 2 is even and k ≥ 2 is an integer. Let E j ⊂ F
d
q for j = 1, 2, . . . , k

with
k∏

j=1
|E j | ≥ 3kq

dk
2 . We aim to show that
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⎛

⎝
k∏

j=1

|E j | − νk(0)

⎞

⎠

2

≥ 1

9

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

. (3.3)

To prove this, we begin by estimating the counting function νk(t) for t ∈ Fq . For each
t ∈ Fq , it follows that

νk(t) =
∣
∣
∣{(x1, x2, . . . , xk) ∈ E1 × . . . × Ek : ‖x1 + · · · + xk‖ = t}

∣
∣
∣

=
∑

(x1,x2,...,xk )∈E1×E2×···×Ek

St (x1 + x2 + · · · + xk).

Applying the Fourier inversion theorem to the indicate function St (x1+x2+· · ·+xk),
it follows that

νk(t) =
∑

(x1,x2,...,xk )∈Fdq×···×Fdq

E1(x1) · · · Ek(xk)
∑

m∈Fdq
Ŝt (m) χ(m · (x1 + · · · + xk)).

By the definition of the normalized Fourier transform, we can write

νk(t) = qdk
∑

m∈Fdq
Ŝt (m)

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠ . (3.4)

Toprove (3.3),wefirst find anupper boundof νk(0) = qdk
∑

m∈Fdq
Ŝ0(m)

(
k∏

j=1
Ê j (m)

)

.

By (2.4) of Lemma 2.2, we can write

νk(0) = qdk
∑

m∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝q−1δ0(m) + q−d−1 Gd
∑


∈F∗
q

χ(‖m‖
)
⎞

⎠

= qdk−1

⎛

⎝
k∏

j=1

Ê j (0, . . . , 0)

⎞

⎠+ qdk−d−1 Gd
∑

m∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠
∑


∈F∗
q

χ(‖m‖
) (3.5)

Since Ê j (0, . . . , 0) = |E j |
qd

, |G| = q1/2 and |∑
∈F∗
q
χ(‖m‖
)| ≤ q,

νk(0) ≤ q−1
k∏

j=1

|E j | + qdk−d/2
∑

m∈Fdq

k∏

j=1

|Ê j (m)|
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Applying Lemma 2.1,

νk(0) ≤ q−1
k∏

j=1

|E j | + q
d
2

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k

.

Since q ≥ 3, it follows that

k∏

j=1

|E j | − νk(0) ≥
k∏

j=1

|E j | − q−1
k∏

j=1

|E j | − q
d
2

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k

≥ 1

3

k∏

j=1

|E j | +
⎛

⎜
⎝
1

3

∏k

j=1
|E j | − q

d
2

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k
⎞

⎟
⎠ .

Note that if
∏k

j=1 |E j | ≥ 3kq
dk
2 , then the second term above is nonnegative. Thus we

obtain that

k∏

j=1

|E j | − νk(0) ≥ 1

3

k∏

j=1

|E j |.

Squaring the both sizes, we complete the proof of Claim 3.2.

3.2 Proof of Claim 3.3

We want to prove the following L2 estimate of the counting function ν(t) :

∑

t∈Fq
ν2k (t) ≤ 1

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ q2dk−d
∑

r∈Fq

∣
∣
∣
∣
∣
∣

∑

v∈Sr

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

. (3.6)

By (3.4), we see that

∑

t∈Fq
ν2k (t) =

∑

t∈Fq
νk(t) νk(t)

= q2dk
∑

m,v∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠
∑

t∈Fq
Ŝt (m) Ŝt (v).
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Using Lemma 2.3, we see that

∑

t∈Fq
ν2k (t) = q2dk−1

∑

m,v∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠ δ0(m) δ0(v)

+ q2dk−d−1
∑

m,v∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

⎛

⎝
∑

s∈Fq
χ (s(‖m‖ − ‖v‖)) − 1

⎞

⎠

= q2dk−1

⎛

⎝
k∏

j=1

Ê j (0, . . . , 0)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (0, . . . , 0)

⎞

⎠

+ q2dk−d−1
∑

m,v∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠
∑

s∈Fq
χ (s(‖m‖ − ‖v‖))

− q2dk−d−1
∑

m,v∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠ .

By the definition of the normalized Fourier transform, the orthogonality relation of χ ,
and basic property of summation, it follows that

∑

t∈Fq
ν2k (t) = q2dk−1

⎛

⎝
k∏

j=1

|E j |
qd

⎞

⎠

2

+ q2dk−d
∑

m,v∈Fdq :‖m‖=‖v‖

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

− q2dk−d−1

∣
∣
∣
∣
∣
∣
∣

∑

v∈Fdq

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

∣
∣
∣
∣
∣
∣
∣

2

Since the third term above is not positive, we obtain that

∑

t∈Fq
ν2k (t) ≤ q2dk−1

⎛

⎝
k∏

j=1

|E j |
qd

⎞

⎠

2

+ q2dk−d
∑

m,v∈Fdq :‖m‖=‖v‖

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

= q−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

+ q2dk−d
∑

r∈Fq

∣
∣
∣
∣
∣
∣
∣

∑

v∈Fdq :‖v‖=r

⎛

⎝
k∏

j=1

Ê j (v)

⎞

⎠

∣
∣
∣
∣
∣
∣
∣

2

,

which completes the proof of Claim 3.3.
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3.3 Proof of Claim 3.4

For even d ≥ 2 and an integer k ≥ 2, let E j ⊂ F
d
q for j = 1, 2, . . . , k with

∏k
j=1 |E j | ≥ q

dk
2 . We must show that

q2dk−d

∣
∣
∣
∣
∣
∣

∑

m∈S0

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

− ν2k (0) ≤ 4

q

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

. (3.7)

We begin by recalling from (3.5) that if d ≥ 2 is even, then

νk(0) = qdk−1

⎛

⎝
k∏

j=1

Ê j (0, . . . , 0)

⎞

⎠+ qdk−d−1 Gd
∑

m∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠
∑


∈F∗
q

χ(‖m‖
).

It follows that

νk(0) = q−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠+ qdk−d−1 Gd
∑

m∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎛

⎝−1 +
∑


∈Fq
χ(‖m‖
)

⎞

⎠

=
⎡

⎢
⎣q−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠− qdk−d−1 Gd
∑

m∈Fdq

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

⎤

⎥
⎦

+ qdk−d Gd
∑

m∈S0

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠ := A + B.

Thus we can write

ν2k (0) = νk(0) νk(0) = (A + B)(A + B) = |A|2 + |B|2 + AB + AB

Since the absolute value of the Gauss sum G is
√
q , we have

ν2k (0) = q2dk−d

∣
∣
∣
∣
∣
∣

∑

m∈S0

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

+ |A|2 + AB + AB.

It follows that

q2dk−d

∣
∣
∣
∣
∣
∣

∑

m∈S0

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

− ν2k (0) ≤ −AB − AB ≤ 2|A||B|. (3.8)
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Now, notice that

|A| ≤ q−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠+ qdk−d−1 |G|d
∑

m∈Fdq

⎛

⎝
k∏

j=1

|Ê j (m)|
⎞

⎠

and

|B| ≤ qdk−d |G|d
∑

m∈Fdq

⎛

⎝
k∏

j=1

|Ê j (m)|
⎞

⎠ .

Since |G| = √
q, using Lemma 2.1 yields the following two estimates:

|A| ≤ q−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠+ q
d
2 −1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k

and

|B| ≤ q
d
2

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

k−1
k

.

From these estimates and (3.8), we have

q2dk−d

∣
∣
∣
∣
∣
∣

∑

m∈S0

⎛

⎝
k∏

j=1

Ê j (m)

⎞

⎠

∣
∣
∣
∣
∣
∣

2

− ν2k (0)

≤ 2

⎛

⎜
⎝q

d
2 −1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2k−1
k

+ qd−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2k−2
k
⎞

⎟
⎠ .

Finally, we obtain the estimate (3.7) by observing that if
∏k

j=1 |E j | ≥ q
dk
2 , then

max

⎧
⎪⎨

⎪⎩
q

d
2 −1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2k−1
k

, qd−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2k−2
k

⎫
⎪⎬

⎪⎭
≤ q−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

2

.

Thus the proof of Claim 3.4 is complete.
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4 Connection Between Restriction Estimates for Spheres and
|1k(E1, . . . , Ek)|

Theorem 3.1 shows that a good lower bound of |�k(E1, E2, . . . , Ek)| can be obtained
by estimating an upper bound of the quantity

max
r∈F∗

q

k∏

j=1

⎛

⎝
∑

v∈Sr
|Ê j (v)|k

⎞

⎠

1
k

. (4.1)

This quantity is closely related to the restriction estimates for spheres with non-zero
radius. In this section, we introduce the restriction problem for spheres and we restate
Theorem 3.1 in terms of the restriction estimates for spheres. We begin by reviewing
the extension problem for spheres which is also called the dual restriction problem
for spheres. We shall use the notation (Fd

q , dx) to denote the d-dimensional vector
space over the finite field Fq where a normalized counting measure dx is given. On
the other hand, we denote by (Fd

q , dm) the dual space of the vector space (Fd
q , dx),

where we endow the dual space (Fd
q , dm) with the counting measure dm. Since the

space (Fd
q , dx) can be identified with its dual space (Fd

q , dm) as an abstract group, we
shall use the notation F

d
q to indicate both the space and its dual space. To distinguish

the space with its dual space, we always use the variable x for the element of the space
(Fd

q , dx) with the normalized counting measure dx. On the other hand, the variable
m will be used to denote the element of the dual space (Fd

q , dm) with the counting
measure dm. For example, we write x ∈ F

d
q and m ∈ F

d
q for x ∈ (Fd

q , dx) and
m ∈ (Fd

q , dm), respectively. With these notations, the classical norm notation can be
used to indicate the following sums: for 1 ≤ r < ∞,

‖g‖rLr (Fdq ,dm)
=
∑

m∈Fdq
|g(m)|r ,

‖ f ‖rLr (Fdq ,dx) = q−d
∑

x∈Fdq
| f (x)|r ,

and
‖g‖L∞(Fdq ,dm) = max

m∈Fdq
|g(m)|.

where g is a function on (Fd
q , dm) and f is a function on (Fd

q , dx). For each t ∈ F
∗
q ,

let St ⊂ (Fd
q , dx) be the sphere defined as in (2.3). We endow the sphere St with the

normalized surface measure dσ which is defined by measuring the mass of each point
on St as 1/|St |. Notice that the total mass of St is 1 and we have

‖ f ‖rLr (St ,dσ) = 1

|St |
∑

x∈St
| f (x)|r for 1 ≤ r < ∞,

‖ f ‖L∞(St ,dσ) = max
x∈St

| f (x)|. (4.2)
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We also recall that if f : (St , dσ) → C, then the inverse Fourier transform of f dσ

is defined by

( f dσ)∨(m) = 1

|St |
∑

x∈St
f (x)χ(m · x) for m ∈ (Fd

q , dm).

Since the sphere St is symmetric about the origin, we can write

(dσ)∨(m) = qd

|St | Ŝt (m) for m ∈ (Fd
q , dm).

With the above notation, the extension problem for the sphere St asks us to determine
1 ≤ p, r ≤ ∞ such that there existsC > 0 satisfying the following extension estimate:

‖( f dσ)∨‖Lr (Fdq ,dm) ≤ C‖ f ‖L p(St ,dσ) for all f : St → C, (4.3)

where the constant C > 0 may depend on p, r , d, St , but it must be independent of
the functions f and the size of the underlying finite field Fq . By duality, this extension
estimate is the same as the following restriction estimate (see [?,?]) :

‖g̃‖L p′ (St ,dσ)
≤ C‖g‖Lr ′ (Fdq ,dm)

for all g : F
d
q → C, (4.4)

where g̃ is defined as in (2.1), and p′, r ′ denote the Hölder conjugates of p and r ,
respectively (namely, 1/p + 1/p′ = 1 and 1/r + 1/r ′ = 1).

Now, we address the relation between the restriction estimates for spheres with
non-zero radius and a lower bound of |�k(E1, . . . , Ek)|. By Theorem 3.1 and the
definition of the restriction estimates for spheres in (4.4), we obtain the following
result.

Lemma 4.1 For even d ≥ 2 and an integer k ≥ 2, let E j ⊂ F
d
q for j = 1, 2, . . . , k.

Assume that
∏k

j=1 |E j | ≥ 3kq
dk
2 and the following restriction estimate holds for some

1 ≤ 
 < ∞ and α ∈ R:

‖Ẽ j‖Lk (Sr ,dσ) � qα‖E j‖L
(Fdq ,dm) for all r ∈ F
∗
q , j = 1, 2, . . . , k. (4.5)

Then we have

|�k(E1, . . . , Ek)| � min

⎧
⎪⎪⎨

⎪⎪⎩

q,

(∏k
j=1 |E j |

) k+1
k − 1




qkα+d−1

⎫
⎪⎪⎬

⎪⎪⎭

.
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Proof By Theorem 3.1, it suffices to prove that

qdk

⎛

⎜
⎝max

r∈F∗
q

k∏

j=1

⎛

⎝
∑

v∈Sr
|Ê j (v)|k

⎞

⎠

1
k
⎞

⎟
⎠ � qkα+d−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

1



. (4.6)

Since Ê j (v) = q−d Ẽ j (v) for j = 1, . . . , k, we see that

qdk

⎛

⎜
⎝max

r∈F∗
q

k∏

j=1

⎛

⎝
∑

v∈Sr
|Ê j (v)|k

⎞

⎠

1
k
⎞

⎟
⎠ =

⎛

⎜
⎝max

r∈F∗
q

k∏

j=1

⎛

⎝
∑

v∈Sr
|Ẽ j (v)|k

⎞

⎠

1
k
⎞

⎟
⎠ .

Using the definition of ‖Ẽ j‖Lk (Sr ,dσ) in (4.2) and the fact that |Sr | ∼ qd−1, the above
quantity is similar to the following value:

qd−1

⎛

⎝max
r∈F∗

q

k∏

j=1

‖Ẽ j‖Lk (Sr ,dσ)

⎞

⎠ .

By assumption (4.5), this can be dominated by

qd−1

⎛

⎝
k∏

j=1

(
qα‖E j‖L
(Fdq ,dm)

)
⎞

⎠ = qkα+d−1

⎛

⎝
k∏

j=1

|E j |
1



⎞

⎠ = qkα+d−1

⎛

⎝
k∏

j=1

|E j |
⎞

⎠

1



.

Putting all estimates together yields the inequality (4.6), which completes the proof.

�

5 Restriction Theorems for Spheres

We see from Lemma 4.1 that the restriction estimates for spheres play an important
role in determining lower bounds of the cardinality of the generalized k-resultant set
�k(E1, . . . , Ek). In particular, ourmain result (Theorem1.6)will be proved bymaking
an effort on finding possibly large exponent 
 ≥ 1 such that the restriction inequality
(4.5) holds for k = 3or k = 4. In this section,we shall obtain such restriction estimates.
To this end, we shall apply the following dual restriction estimate for spheres with
non-zero radius due to the authors in [11].

Lemma 5.1 ([11], Theorem 1) If d ≥ 4 is even, then

‖(Fdσ)∨‖L4(Fdq ,dm) � ‖F‖L(12d−8)/(9d−12)(St ,dσ) for all F ⊂ St , t �= 0. (5.1)

To obtain a restriction estimate for spheres, we shall use the dual estimate of (5.1).
To this end, it is useful to review Lorentz spaces in our setting. For a function f :
(St , dσ) → C, we denote by d f the distribution function on [0,∞):



1044 Journal of Fourier Analysis and Applications (2019) 25:1026–1052

d f (a) := 1

|St | |{x ∈ St : | f (x)| > a}| .

We see that for 1 ≤ r ≤ ∞,

‖ f ‖rLr (St ,dσ) = r
∫ ∞

0
sr−1d f (s) ds.

The function f ∗ is defined on [0,∞) by

f ∗(s) := inf{a > 0 : d f (a) ≤ s}.

For 1 ≤ p, r ≤ ∞ and a function f : (St , dσ) → C, define

‖ f ‖L p,r (St ,dσ) :=

⎧
⎪⎪⎨

⎪⎪⎩

(∞∫

0

(
s1/p f ∗(s)

)r ds
s

)1/r

for 1 ≤ r < ∞
sup
s>0

s1/p f ∗(s) for r = ∞.

In particular, we see that

‖ f ‖L p,1(St ,dσ) =
∫ ∞

0
s1/p−1 f ∗(s) ds.

It is not hard to see that for 1 ≤ p ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞,

‖ f ‖L p,r2 (St ,dσ) � ‖ f ‖L p,r1 (St ,dσ) and ‖ f ‖L p,p(St ,dσ) = ‖ f ‖L p(St ,dσ).

See [6] for further information about Lorentz spaces. With the above notation, the
following fact can be deduced.

Lemma 5.2 Let dσ be the normalized surface measure on the sphere St ⊂ (Fd
q , dx).

Assume that the estimate

‖(Fdσ)∨‖Lr (Fdq ,dm) � ‖F‖L p(St ,dσ) (5.2)

holds for all subsets F of St . Then we have

‖( f dσ)∨‖Lr (Fdq ,dm) � ‖ f ‖L p,1(St ,dσ)

for all functions f : (St , dσ) → C.

Proof Without loss of generality, we may assume that f is a nonnegative simple
function given by the form

f =
N∑

j=1

a j1Fj (5.3)
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where FN ⊂ FN−1 ⊂ · · · ⊂ F2 ⊂ F1 and a j > 0 for all j = 1, 2, . . . , N . Notice
that

f ∗(s) =
N∑

j=1

a j 1[
0,

|Fj |
|St |
](s).

It follows that

∫ ∞

0
s

1
p −1 f ∗(s) ds =

∫ ∞

0
s

1
p −1

N∑

j=1

a j 1[
0,

|Fj |
|St |
](s) ds

=
N∑

j=1

a j

∫ |Fj |
|St |

0
s

1
p−1 ds = p

N∑

j=1

a j

( |Fj |
|St |

) 1
p = p

N∑

j=1

a j‖Fj‖L p(St ,dσ).

Namely, we see that

∫ ∞

0
s

1
p −1 f ∗(s) ds ∼

N∑

j=1

a j‖Fj‖L p(St ,dσ).

Using this estimate along with (5.3) and the hypothesis (5.2), we see that

‖( f dσ)∨‖Lr (Fdq ,dm) ≤
N∑

j=1

a j ‖(Fjdσ)∨‖Lr (Fdq ,dm)

�
N∑

j=1

a j ‖Fj‖L p(St ,dσ) ∼
∫ ∞

0
s

1
p −1 f ∗(s) ds = ‖ f ‖L p,1(St ,dσ).

Hence, the proof is complete. 
�
We shall invoke the following weak-type restriction estimate.

Lemma 5.3 If d ≥ 4 is even and we put r0 = (12d − 8)/(3d + 4), then the weak-type
restriction estimate

‖g̃‖Lr0,∞(St ,dσ) � ‖g‖
L

4
3 (Fdq ,dm)

(5.4)

holds for all t ∈ F
∗
q and for all functions g : (Fd

q , dm) → C.

Proof Since r0 = (12d − 8)/(3d + 4), its dual exponent r ′
0 is given by

r ′
0 = (12d − 8)/(9d − 12).

Combining Lemma 5.1 with Lemma 5.2, it follows that

‖( f dσ)∨‖L4(Fdq ,dm) � ‖ f ‖
Lr

′
0,1

(St ,dσ)
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for all functions f : (St , dσ) → C with t ∈ F
∗
q . By duality, this estimate is same as

(5.4), which completes the proof. 
�
The following restriction estimate will play an important role in proving the third

part of Theorem 1.6.

Lemma 5.4 If E ⊂ (Fd
q , dm) and |E | ≥ q

d−1
2 , then we have

‖Ẽ‖L2(St ,dσ) � |E |
q

d−1
4

for all t ∈ F
∗
q .

Proof Since ‖Ẽ‖2
L2(St ,dσ)

= 1
|St |

∑

x∈St
|Ẽ(x)|2 and |St | ∼ qd−1 for t ∈ F

∗
q , it is enough

to show that if E ⊂ F
d
q with |E | ≥ q

d−1
2 , then

∑

x∈St
|Ẽ(x)|2 � q

d−1
2 |E |2. (5.5)

Notice from the definition of the Fourier transforms that

∑

x∈St
|Ẽ(x)|2 =

∑

x∈St

∑

m,m′∈E
χ(−x · (m − m′)) =

∑

m,m′∈E
qd Ŝt (m − m′)

= qd |E |Ŝt (0, . . . , 0) +
∑

m,m′∈E :m �=m′
qd Ŝt (m − m′)

≤ |E ||St | +
(

max
n∈Fdq\{(0,...,0)}

|Ŝt (n)|
)

∑

m,m′∈E :m �=m′
qd

� |E |qd−1 + |E |2qd
(

max
n∈Fdq\{(0,...,0)}

|Ŝt (n)|
)

.

Now, we apply the well known fact (Lemma 2.2 in [12]) that if St ⊂ F
d
q for t ∈ F

∗
q

and d ≥ 2, then

(

max
n∈Fdq\{(0,...,0)}

|Ŝt (n)|
)

� q− d+1
2 .

Then we see that

∑

x∈St
|Ẽ(x)|2 � |E |qd−1 + q

d−1
2 |E |2 � q

d−1
2 |E |2,

where the last inequality follows from our assumption that |E | ≥ q
d−1
2 . Thus, (5.5)

holds and we complete the proof. 
�
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Now, we introduce the interpolation theorem which enables us to derive the restric-
tion estimates we need for the proof of our main results.

Theorem 5.5 Let� be a collection of subsets E of (Fd
q , dm).Assume that the following

two restriction estimates hold for all sets E ∈ � and 1 ≤ r0 < r1 ≤ ∞:

‖Ẽ‖Lr0,∞(St ,dσ) � A0(q, |E |) := A0

and

‖Ẽ‖Lr1,∞(St ,dσ) � A1(q, |E |) := A1.

Then for r0 < r < r1, we have

‖Ẽ‖Lr (St ,dσ) �
(

max

{
2r

r − r0
,

2r

r1 − r

}) 1
r

A
r0(r1−r)
r(r1−r0)

0 A
r1(r−r0)

r(r1−r0)

1 . (5.6)

Namely, if 1
r = 1−θ

r0
+ θ

r1
for some 0 < θ < 1, then we have

‖Ẽ‖Lr (St ,dσ) � A1−θ
0 Aθ

1. (5.7)

Proof Let δ > 0 which will be chosen later.

‖Ẽ‖rLr (St ,dσ) = r
∫ ∞

0
sr−1dẼ (s) ds

= r
∫ δ

0
sr−1dẼ (s) ds + r

∫ ∞

δ

sr−1dẼ (s) ds

= r
∫ δ

0
sr−r0−1sr0dẼ (s) ds + r

∫ ∞

δ

sr−r1−1sr1dẼ (s) ds

≤ r

(

sup
0<s<∞

sr0dẼ (s)

)∫ δ

0
sr−r0−1 ds

+ r

(

sup
0<s<∞

sr1dẼ (s)

)∫ ∞

δ

sr−r1−1 ds

= r

r − r0
‖Ẽ‖r0Lr0,∞(St ,dσ)

δr−r0 + r

r1 − r
‖Ẽ‖r1Lr1,∞(St ,dσ)

δr−r1

� max

{
r

r − r0
,

r

r1 − r

}
(
Ar0
0 δr−r0 + Ar1

1 δr−r1
)
.

Now we choose δ such that

Ar0
0 δr−r0 = Ar1

1 δr−r1 .



1048 Journal of Fourier Analysis and Applications (2019) 25:1026–1052

Namely, we choose

δ = A
r0

r0−r1
0 A

r1
r1−r0
1 .

It follows that

‖Ẽ‖rLr (St ,dσ) � max

{
2r

r − r0
,

2r

r1 − r

}

Ar0
0 δr−r0

� max

{
2r

r − r0
,

2r

r1 − r

}

Ar0
0 A

r0(r−r0)

r0−r1
0 A

r1(r−r0)

r1−r0
1

= max

{
2r

r − r0
,

2r

r1 − r

}

A
r0(r1−r)
r1−r0

0 A
r1(r−r0)

r1−r0
1 ,

which implies (5.6). By a direct computation, (5.7) follows from (5.6). 
�
Remark 5.6 The new ingredient of this paper is to eliminate the ε appearing in the
third part of Theorem 1.3 which was previously obtained in [3]. This can be done by
proceeding as follows. Combining Lemma 5.3 with Lemma 5.4, Theorem 5.5 yields
the improved strong L3-restriction estimate (see Lemma 6.3 in the next section).

6 Proof of Main Theorem (Theorem 1.6)

In this section, we shall give the complete proof of Theorem 1.6. Since ‖g̃‖L∞,∞(St ,dσ)

= ‖g̃‖L∞(St ,dσ) = max
x∈St

|̃g(x)| ≤ ‖g‖L1(Fdq ,dm), it is clear that

‖Ẽ‖L∞,∞(St ,dσ) � ‖E‖L1(Fdq ,dm) = |E | for all E ⊂ F
d
q , t �= 0. (6.1)

On the other hand, it follows from Lemma 5.3 that if d ≥ 4 is even, then

‖Ẽ‖
L

12d−8
3d+4 ,∞

(St ,dσ)
� ‖E‖

L
4
3 (Fdq ,dm)

= |E | 34 for all E ⊂ F
d
q , t �= 0. (6.2)

6.1 Proof of Statement (1)

We need the following lemma to prove the statement (1) of Theorem 1.6.

Lemma 6.1 If d = 4 or 6, then we have

‖Ẽ‖L3(St ,dσ) � ‖E‖
L

9d+12
6d+14 (Fdq ,dm)

for all E ⊂ F
d
q , t �= 0.

Proof Note that if d = 4 or 6, then 12d−8
3d+4 < 3 < ∞. Therefore, using Theorem 5.5,

we are able to interpolate (6.1) and (6.2) so that we obtain

‖Ẽ‖L3(St ,dσ) � |E |1−θ |E | 3θ4 with θ = 12d − 8

9d + 12
.
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Namely, we see that

‖Ẽ‖L3(St ,dσ) � |E | 6d+14
9d+12 = ‖E‖

L
9d+12
6d+14 (Fdq ,dm)

.

Thus, the proof is complete. 
�
We are ready to prove statement (1) of Theorem 1.6. We aim to prove that if

d = 4 or d = 6, and E1, E2, E3 ⊂ F
d
q with |E1||E2||E3| � q

3
(
d+1
2 − 1

6d+2

)

, then
|�3(E1, E2, E3)| � q. Combining Lemmas 4.1 and 6.1, we see that

|�3(E1, E2, E3)| � min

⎧
⎪⎪⎨

⎪⎪⎩
q,

(∏3
j=1 |E j |

) 4
3− 6d+14

9d+12

qd−1

⎫
⎪⎪⎬

⎪⎪⎭
.

Since |E1||E2||E3| ≥ Cq
3
(
d+1
2 − 1

6d+2

)

for a sufficiently large C > 0, we see from a
direct computation that

|�3(E1, E2, E3)| � q.

6.2 Proof of Statement (2) of Theorem 1.6

The following lemma shall be used to prove the statement (2) of Theorem 1.6.

Lemma 6.2 If d ≥ 4 is even, then we have

‖Ẽ‖L4(St ,dσ) � ‖E‖
L

12d+16
9d+18 (Fdq ,dm)

for all E ⊂ F
d
q , t �= 0.

Proof Since 12d−8
3d+4 < 4 < ∞ for all even d ≥ 4, interpolating (6.1) and (6.2) yields

‖Ẽ‖L4(St ,dσ) � |E |1−θ |E | 3θ4 with θ = 3d − 2

3d + 4
.

Since |E |1−θ |E | 3θ4 = |E | 9d+18
12d+16 = ‖E‖

L
12d+16
9d+18 (Fdq ,dm)

, the statement follows. 
�

Let us prove statement (2) of Theorem 1.6. Recall that we must show that if

d ≥ 8 is even and E1, E2, E3, E4 ⊂ F
d
q with

∏4
j=1 |E j | � q

4
(
d+1
2 − 1

6d+2

)

, then
|�4(E1, E2, E3, E4)| � q. Combining Lemmas 4.1 and 6.2, we obtain that

|�4(E1, E2, E3, E4)| � min

⎧
⎪⎪⎨

⎪⎪⎩
q,

(∏4
j=1 |E j |

) 5
4− 9d+18

12d+16

qd−1

⎫
⎪⎪⎬

⎪⎪⎭
.
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Since |E1||E2||E3||E4| ≥ Cq
4
(
d+1
2 − 1

6d+2

)

for a sufficiently large C > 0, it follows
from a direct computation that

|�4(E1, E2, E3, E4)| � q.

6.3 Proof of Statement (3) of Theorem 1.6

We begin by proving the following lemma.

Lemma 6.3 Let E ⊂ F
d
q . If d ≥ 8 is even and |E | ≥ q

d−1
2 , then we have

‖Ẽ‖L3(St ,dσ) � q
−3d2+23d−20

36d−96 ‖E‖
L

18d−48
15d−46 (Fdq ,dm)

for all t ∈ F
∗
q .

Proof Since ‖Ẽ‖L2,∞(St ,dσ) ≤ ‖Ẽ‖L2(St ,dσ), and |E | ≥ q
d−1
2 , we see from Lemma

5.4 that

‖Ẽ‖L2,∞(St ,dσ) � q− (d−1)
4 |E | for all t ∈ F

∗
q and E ⊂ F

d
q with |E | ≥ q

d−1
2 . (6.3)

As in (6.2), we also see that

‖Ẽ‖
L

12d−8
3d+4 ,∞

(St ,dσ)
� |E | 34 for all E ⊂ F

d
q , t ∈ F

∗
q . (6.4)

Since 2 < 3 < 12d−8
3d+4 for d ≥ 8, by using Theorem 5.5 we are able to interpolate

(6.3) and (6.4). Hence, if d ≥ 8 is even and |E | ≥ q
d−1
2 , then we have

‖Ẽ‖L3(St ,dσ) �
(
q− (d−1)

4 |E |
)1−θ |E | 3θ4 with θ = 6d − 4

9d − 24
.

By a direct computation, we conclude

‖Ẽ‖L3(St ,dσ) � q
−3d2+23d−20

36d−96 |E | 15d−46
18d−48 = q

−3d2+23d−20
36d−96 ‖E‖

L
18d−48
15d−46 (Fdq ,dm)

,

which completes the proof of the lemma. 
�

Let us prove the statement (3) of Theorem 1.6 which states that if d ≥ 8 is even,

and
∏3

j=1 |E j | � q
3
(
d+1
2 − 1

9d−18

)

, then |�3(E1, E2, E3)| � q. To prove this, let us

first assume that one of |E1|, |E2|, |E3| is less than q d−1
2 , say that |E3| < q

d−1
2 . Then

by our hypothesis that |E1||E2||E3| � q
3
(
d+1
2 − 1

9d−18

)

, it must follow that
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|E1||E2| � q− (d−1)
2 q

3
(
d+1
2 − 1

9d−18

)

= q(d+1)+ 3d−7
3d−6 > qd+1.

This implies that |�2(E1, E2)| � q, which was proved by Shparlinski [17]. Thus it
is clear that |�3(E1, E2, E3)| � q, because |�3(E1, E2, E3)| ≥ |�2(E1, E2)|. For
this reason, we may assume that all of |E1|, |E2|, |E3| are greater than or equal to

q
d−1
2 , and |E1||E2||E3| � q

3
(
d+1
2 − 1

9d−18

)

. Combining Lemma 4.1 with Lemma 6.3 ,
we obtain that

|�3(E1, E2, E3)| � min

⎧
⎪⎪⎨

⎪⎪⎩

q,

(∏3
j=1 |E j |

) 4
3− 1




q3α+d−1

⎫
⎪⎪⎬

⎪⎪⎭

,

where we take α = −3d2+23d−20
36d−96 and 
 = 18d−48

15d−46 . By a direct comparison, it is

not hard to see that if |E1||E2||E3| � q
3
(
d+1
2 − 1

9d−18

)

= q
9d2−9d−20

6d−12 , then we have
|�3(E1, E2, E3)| � q. We have finished the proof of the third part of Theorem 1.6.
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