
J Fourier Anal Appl (2019) 25:751–784
https://doi.org/10.1007/s00041-018-9616-4

A New Class of Fully Discrete Sparse Fourier
Transforms: Faster Stable Implementations with
Guarantees

Sami Merhi1 · Ruochuan Zhang1 ·
Mark A. Iwen1,2 · Andrew Christlieb2

Received: 8 June 2017 / Revised: 1 March 2018 / Published online: 3 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper we consider sparse Fourier transform (SFT) algorithms for
approximately computing the best s-term approximation of the discrete Fourier trans-
form (DFT) f̂ ∈ C

N of any given input vector f ∈ CN in just (s log N)O(1)-time using
only a similarly small number of entries of f . In particular, we present a deterministic
SFT algorithmwhich is guaranteed to always recover a near best s-term approximation

of the DFT of any given input vector f ∈ CN inO
(
s2 log

11
2 (N)

)
-time. Unlike previ-

ous deterministic results of this kind, our deterministic result holds for both arbitrary
vectors f ∈ CN and vector lengths N . In addition to these deterministic SFT results,
we also develop several new publicly available randomized SFT implementations for
approximately computing f̂ from f using the same general techniques. The best of
these new implementations is shown to outperform existing discrete sparse Fourier
transform methods with respect to both runtime and noise robustness for large vector
lengths N .

Communicated by Hans G. Feichtinger.

B Sami Merhi
merhisam@math.msu.edu

Ruochuan Zhang
zhangr12@msu.edu

Mark A. Iwen
markiwen@math.msu.edu

Andrew Christlieb
andrewc@msu.edu

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

2 Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan State
University, East Lansing, MI 48824, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-018-9616-4&domain=pdf

752 J Fourier Anal Appl (2019) 25:751–784

Keywords Fast Fourier transforms · Discrete Fourier transforms · Sparse Fourier
transforms · Nonequispaced Fourier transforms · Compressive sensing · Sparse
approximation

Mathematics Subject Classification 65T50 · 65T40 · 42A15 · 68W20 · 68W25

1 Introduction

Hereinwe are concernedwith the rapid approximation of the discrete Fourier transform
f̂ ∈ C

N of a given vector f ∈ C
N for large values of N . Though standard Fast Fourier

Transform (FFT) algorithms [5,8,28] can accomplish this task in O (N log N)-time
for arbitrary N ∈ N, this runtime complexity may still be unnecessarily computation-
ally taxing when N is extremely large. This is particularly true when the vector f̂ is
approximately s-sparse (i.e., contains only s � N nonzero entries) as in compres-
sive sensing [11] and certain wideband signal processing applications (see, e.g. [24]).
Such applications have therefore motivated the development of discrete sparse Fourier
transform (DSFT) techniques [13,14] which are capable of accurately approximating
s-sparse DFT vectors f̂ ∈ C

N in just s · logO(1) N -time. When s � N these meth-
ods are significantly faster than standard O (N log N)-time FFT methods, effectively
achieving sublinear o(N) runtime complexities in such cases.

Currently, the most widely used s · logO(1) N -time DSFT methods [12,15,22] are
randomized algorithms which accurately compute f̂ with high probability when given
sampling access to f .Many existing sparse Fourier transformswhich are entirely deter-
ministic [6,19,21,25,29], on the other hand, are perhaps best described as unequally
spaced sparse Fourier transform (USSFT) methods in that they approximately com-
pute f̂ , with its entries f̂ω indexed by the set B := (− ⌈ N

2

⌉
,
⌊ N
2

⌋] ∩ Z, by sampling
its associated trigonometric polynomial

f (x) =
∑
ω∈B

f̂ωe
iωx

at a collection of m � N specially constructed unequally spaced points x1, . . . , xm ∈
[−π, π]. These methods have no probability of failing to recover s-sparse f̂ , but can
not accurately compute the DFT f̂ of an arbitrary given vector f ∈ C

N due to their
need for unequally spaced function evaluations from f of the form { f (xk)}mk=1.

1

This state of affairs has left a gap in the theory of DSFT methods. Existing deter-
ministic sparse Fourier transform algorithms currently can efficiently compute the
s-sparse DFT f̂ of a given vector f ∈ C

N only if either (i) N is a power of a small
prime [26], or else (ii) f̂ω = 0 for allω ∈ B with |ω| > N/4 [19,20]. In this paper this
gap is filled by the development of a new entirely deterministic DSFT algorithmwhich
is always guaranteed to accurately approximate any (nearly) s-sparse f̂ ∈ C

N of any
size N when given access only to f ∈ C

N . In addition, the method used to develop

1 Note that methods which compute the DFT f̂ of a given vector f implicitly assume that f contains equally
spaced samples from the trigonometric polynomial f above.

J Fourier Anal Appl (2019) 25:751–784 753

this new deterministic DSFT algorithm is general enough that it can be applied to
any fast and noise robust USSFT method of the type mentioned above (be it deter-
ministic, or randomized) in order to yield a new fast and robust DSFT algorithm. As
a result, we are also able to use the fastest of the currently existing USSFT methods
[4,6,17,19,21,25,29] in order to create new publicly available DSFT implementations
herein which are both faster and more robust to noise than currently existing noise
robust DSFT methods for large N .

More generally, we emphasize that the techniques utilized below free developers of
SFTmethods to developmore general USSFTmethods which utilize samples from the
trigonometric polynomial f above at any points {xk}mk=1 ⊂ [−π, π] they like when
attempting to create better DSFT algorithms in the future. Indeed, the techniques
herein provide a relatively simple means of translating any future fast and robust
USSFT algorithms into (still fast) DSFT algorithms.

1.1 Theoretical Results

Herein we focus on rapidly producing near best s-term approximations of f̂ of the
type usually considered in compressive sensing [7]. Let f̂opts ∈ C

N denote an optimal
s-term approximation to f̂ ∈ C

N . That is, let f̂opts preserve s of the largest magnitude
entries of f̂ while setting the rest of its N − s smallest magnitude entires to 0.2 The
following DSFT theorem is proven below.3

Theorem 1 Let N ∈ N, s ∈ [2, N] ∩ N, 1 ≤ r ≤ N
36 , and f ∈ C

N . There exists
an algorithm that will always deterministically return an s-sparse vector v ∈ C

N

satisfying

∥∥∥f̂ − v
∥∥∥
2

≤
∥∥∥f̂ − f̂opts

∥∥∥
2
+ 33√

s
·
∥∥∥f̂ − f̂opts

∥∥∥
1
+ 198

√
s ‖f‖∞ N−r (1)

in just O
(

s2·r 3
2 ·log 11

2 (N)
log(s)

)
-time when given access to f . If returning an s-sparse

vector v ∈ C
N that satisfies (1) for each f with probability at least (1 − p) ∈

[2/3, 1) is sufficient, a Monte Carlo algorithm also exists which will do so in just

O
(
s · r 3

2 · log 9
2 (N) · log

(
N
p

))
-time.

Note the quadratic-in-s runtime dependence of the deterministic algorithm men-
tioned by Theorem 1. It turns out that there is a close relationship between the sampling
points {xk}mk=1 used by the deterministic USSFT methods [21] employed as part of
the proof of Theorem 1 and the construction of explicit (deterministic) RIP matrices
(see [1,18] for details). As a result, reducing the quadratic dependence on s of the
s2 logO(1) N -runtime complexity of the deterministic DSFT algorithms referred to by

2 Note that f̂opts may not be unique as there can be ties for the sth largest entry in magnitude of f . This
trivial ambiguity turns out not to matter.
3 Theorem 1 is a slightly simplified version of Theorem 5 proven in Sect. 4.

754 J Fourier Anal Appl (2019) 25:751–784

Theorem 1 while still satisfying the error guarantee (1) is likely at least as difficult as
constructing explicit deterministic RIP matrices with fewer than s2 logO(1) N rows by
subsampling rows from an N × N DFT matrix. Unfortunately, explicitly constructing
RIP matrices of this type is known to be a very difficult problem [11]. This means
that constructing an entirely deterministic DSFT algorithm which is both guaranteed
to always satisfy (1), and which also always runs in s logO(1) N -time, is also likely to
be extremely difficult to achieve at present.4

The remainder of this paper is organized as follows: In Sect. 2we set up notation and
establish necessary background results. Then, in Sect. 3, we describe our method for
converting noise robust USSFT methods into DSFT methods. The resulting approach
is summarized in Algorithm 1 therein. Next, Theorem 1 is proven in Sect. 4 using the
intermediary results of Sects. 2 and 3. An empirical evaluation of several new DSFT
algorithms resulting from our proposed approach is then performed in Sect. 5. The
paper is finally concluded with a few additional comments in Sect. 6.

2 Notation and Setup

The Fourier series representation of a 2π -periodic function f : [−π, π] → C will be
denoted by

f (x) =
∑
ω∈Z

f̂ωe
iωx

with its Fourier coefficients, f̂ω, given by

f̂ω = 1

2π

∫ π

−π

f (x) e−iωx dx .

We let f̂ := {
f̂ω
}
ω∈Z

represent the infinite sequence of all Fourier coefficients of f
below. Given two 2π -periodic functions f and g we define the convolution of f and
g at x ∈ R to be

(f ∗ g) (x) = (g ∗ f) (x) := 1

2π

∫ π

−π

g (x − y) f (y) dy.

This definition, coupled with the definition of the Fourier transform, yields the well-
known equality

f̂ ∗ gω = f̂ω ĝω ∀ω ∈ Z.

4 Of course deterministic algorithms with error guarantees of the type of (1) do exist for more restricted
classes of periodic functions f . See, e.g. [3,4,27] for some examples. These include USSFT methods
developed for periodic functions with structured Fourier support [3] which are of use for, among other
things, the fast approximation of functions which exhibit sparsity with respect to other bounded orthonormal
basis functions [16].

J Fourier Anal Appl (2019) 25:751–784 755

We may also write f̂ ∗ g = f̂ ◦ ĝ where ◦ denotes the Hadamard product.
For any N ∈ N, define the discrete Fourier transform (DFT) matrix F ∈ C

N×N by

Fω, j := (−1)ω

N
e− 2πi·ω· j

N ,

and let B := (− ⌈ N
2

⌉
,
⌊ N
2

⌋] ∩ Z be a set of N integer frequencies centered at 0.
Furthermore, let f ∈ C

N denote the vector of equally spaced samples from f whose
entries are given by

f j := f

(
−π + 2π j

N

)

for j = 0, . . . , N − 1. One can now see that if

f (x) =
∑
ω∈B

f̂ωe
iωx ,

then
Ff =: f̂ (2)

where f̂ ∈ C
N denotes the subset of f̂ with indices in B, and in vector form.5 More

generally, bolded lower case letters will always represent vectors in C
N below.

As mentioned above, f̂ := {
f̂ω
}
ω∈Z

is the infinite sequence of all Fourier coeffi-
cients of f . For any subset S ⊆ Z we let f̂ |S ∈ C

Z be the sequence f̂ restricted to
the subset S, so that f̂ |S has terms

(
f̂ |S
)
ω

= f̂ω for all ω ∈ S, and
(
f̂ |S
)
ω

= 0 for

all ω ∈ Sc := Z \ S. Note that f̂ above is exactly f̂ |B excluding its zero terms for all
ω /∈ B. Thus, given any subset S ⊆ B, we let f̂ |S ∈ C

N be the vector f̂ restricted to

the set S in an analogous fashion. That is, for S ⊆ B we will have
(
f̂ |S
)

ω
= f̂ω for

all ω ∈ S, and
(
f̂|S
)

ω
= 0 for all ω ∈ B \ S.

Given the sequence f̂ ∈ C
Z and s ≤ N , we denote by Ropt

s
(
f̂
)
a subset of B

containing s of the most energetic frequencies of f ; that is

Ropt
s
(
f̂
) := {ω1, . . . , ωs} ⊆ B ⊂ Z

where the frequencies ω j ∈ B are ordered such that

∣∣ f̂ω1

∣∣ ≥ ∣∣ f̂ω2

∣∣ ≥ · · · ≥ ∣∣ f̂ωs

∣∣ ≥ · · · ≥ ∣∣ f̂ωN

∣∣ .

5 The interested reader may refer to Appendix A for the proof of (2).

756 J Fourier Anal Appl (2019) 25:751–784

Here, if desired, one may break ties by also requiring, e.g., that ω j < ωk for all j < k

with
∣∣ f̂ω j

∣∣ = ∣∣ f̂ωk

∣∣. We will then define f opts : [−π, π] → C based on Ropt
s
(
f̂
)
by

f opts (x) :=
∑

ω∈Ropt
s (f̂)

f̂ωe
iωx .

Any such 2π -periodic function f opts will be referred to as an optimal s-term approxi-
mation to f . Similarly, we also define both f̂ opts ∈ C

Z and f̂opts ∈ C
N to be f̂ |Ropt

s (f̂)

and f̂ |Ropt
s (f̂)

, respectively.

2.1 Periodized Gaussians

In the sections that follow the 2π -periodic Gaussian g : [−π, π] → R
+ defined by

g (x) = 1

c1

∞∑
n=−∞

e
− (x−2nπ)2

2c21 (3)

with c1 ∈ R
+ will play a special role. The following lemmas recall several useful facts

concerning both its decay, and its Fourier series coefficients.

Lemma 1 The 2π -periodic Gaussian g : [−π, π] → R
+ has

g (x) ≤
(
3

c1
+ 1√

2π

)
e

− x2

2c21

for all x ∈ [−π, π].

Lemma 2 The 2π -periodic Gaussian g : [−π, π] → R
+ has

ĝω = 1√
2π

e− c21ω2

2

for all ω ∈ Z. Thus, ĝ = {ĝω}ω∈Z ∈ �2 decreases monotonically as |ω| increases, and
also has ‖ĝ‖∞ = 1√

2π
.

Lemma 3 Chooseany τ ∈
(
0, 1√

2π

)
,α ∈

[
1, N√

ln N

]
, andβ ∈

⎛
⎝0, α

√
ln
(
1/τ

√
2π
)

2

⎤
⎦.

Let c1 = β
√
ln N
N in the definition of the periodic Gaussian g from (3). Then

ĝω ∈
[
τ, 1√

2π

]
for all ω ∈ Z with |ω| ≤

⌈
N

α
√
ln N

⌉
.

The proofs of Lemmas 1, 2, and 3 are included in Appendix B for the sake of
completeness. Intuitively, wewill utilize the periodic function g from (3) as a bandpass

J Fourier Anal Appl (2019) 25:751–784 757

filter below. Looking at Lemma 3 in this context we can see that its parameter τ will
control the effect of ĝ on the frequency passband defined by its parameter α. Deciding
on the two parameters τ, α then constrains β which, in turn, fixes the periodic Gaussian
g by determining its constant coefficient c1. As we shall see, the parameter β will also
determine the speed and accuracy with which we can approximately sample (i.e.,
evaluate) the function f ∗ g. For this reason it will become important to properly
balance these parameters against one another in subsequent sections.

2.2 On the Robustness of the SFTs Proposed in [21]

The sparse Fourier transforms presented in [21] include both deterministic and ran-
domized methods for approximately computing the Fourier series coefficients of a
given 2π -periodic function f from its evaluations at m-points {xk}mk=1 ⊂ [−π, π].
The following results describe how accurate these algorithms will be when they are
only given approximate evaluations of f at these points instead. These results are nec-
essary because we will want to execute the SFTs developed in [21] on convolutions
of the form f ∗ g below, but will only be able to approximately compute their values
at each of the required points x1, . . . , xm ∈ [−π, π].

Lemma 4 Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and n ∈ C
m be an arbitrary noise

vector. There exists a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on
page 72 of [21], when given access to the corrupted samples { f (xk) + nk}mk=1, will
identify a subset S ⊆ B which is guaranteed to contain all ω ∈ B with

∣∣ f̂ω
∣∣ > 4

⎛
⎜⎝

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+ ∥∥ f̂ − f̂ |B

∥∥
1 + ‖n‖∞

⎞
⎟⎠ . (4)

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated
Fourier series coefficient estimate zω ∈ C which is guaranteed to have

∣∣ f̂ω − zω
∣∣ ≤ √

2

⎛
⎜⎝

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+ ∥∥ f̂ − f̂ |B

∥∥
1 + ‖n‖∞

⎞
⎟⎠ . (5)

Both the number of required samples, m, and Algorithm 3’s operation count are

O
(
s2 · log4(N)

log
(s

ε

) · ε2

)
. (6)

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, the
Monte Carlo variant of Algorithm 3 referred to by Corollary 4 on page 74 of [21]may
be used. This Monte Carlo variant reads only a randomly chosen subset of the noisy

758 J Fourier Anal Appl (2019) 25:751–784

samples utilized by the deterministic algorithm,

{ f (x̃k) + ñk}m̃k=1 ⊆ { f (xk) + nk}mk=1 ,

yet it still outputs a subset S ⊆ B which is guaranteed to simultaneously satisfy both
of the following properties with probability at least 1 − δ:

(i) S will contain all ω ∈ B satisfying (4), and
(ii) all ω ∈ S will have an associated coefficient estimate zω ∈ C satisfying (5).

Finally, both this Monte Carlo variant’s number of required samples, m̃, as well as its
operation count will also always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (7)

Using the preceding lemma one can easily prove the following noise robust variant
of Theorem 7 (and Corollary 4) from §5 of [21]. The proofs of both results are outlined
in Appendix C for the sake of completeness.

Theorem 2 Suppose f : [−π, π] → C has f̂ ∈ �1 ∩ �2. Let s, ε−1 ∈ N \ {1} with
(s/ε) ≥ 2, and n ∈ C

m be an arbitrary noise vector. Then, there exists a set of m points
{xk}mk=1 ⊂ [−π, π] together with a simple deterministic algorithm A : C

m → C
4s

such thatA ({ f (xk) + nk}mk=1

)
is always guaranteed to output (the nonzero coefficients

of) a degree ≤ N/2 trigonometric polynomial ys : [−π, π] → C satisfying

‖ f − ys‖2 ≤
∥∥∥f̂ − f̂opts

∥∥∥
2
+

22ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1√

s
+ 22

√
s
(∥∥ f̂ − f̂ |B

∥∥
1 + ‖n‖∞

)
.

(8)
Both the number of required samples, m, and the algorithm’s operation count are
always

O
(
s2 · log4(N)

log
(s

ε

) · ε2

)
. (9)

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, a
Monte Carlo variant of the deterministic algorithm may be used. This Monte Carlo
variant reads only a randomly chosen subset of the noisy samples utilized by the
deterministic algorithm,

{ f (x̃k) + ñk}m̃k=1 ⊆ { f (xk) + nk}mk=1 ,

yet it still outputs (the nonzero coefficients of) a degree ≤ N/2 trigonometric poly-
nomial, ys : [−π, π] → C, that satisfies (8) with probability at least 1 − δ. Both its
number of required samples, m̃, as well as its operation count will always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (10)

J Fourier Anal Appl (2019) 25:751–784 759

We now have the necessary prerequisites in order to discuss our general strategy
for constructing several new fully discrete SFTs.

3 Description of the Proposed Approach

In this section we assume that we have access to an SFT algorithm A which requires
m function evaluations of a 2π -periodic function f : [−π, π] → C in order to
produce an s-sparse approximation to f̂ . For any non-adaptive SFT algorithm A the
m points {xk}mk=1 ⊂ [−π, π] at whichA needs to evaluate f can be determined before
A is actually executed. As a result, the function evaluations { f (xk)}mk=1 required
by A can also be evaluated before A is ever run. Indeed, if the SFT algorithm A
is nonadaptive, stable, and robust to noise it suffices to approximate the function
evaluations { f (xk)}mk=1 required byA before it is executed.6 These simple ideas form
the basis for the proposed computational approach outlined in Algorithm 1.

Algorithm 1: A Generic Method for Discretizing a Given SFT Algorithm A
Input : Pointer to vector f ∈ C

N , sparsity s ≤ N , nodes {xk }mk=1 ⊂ [−π, π] at which the given
SFT algorithm A needs function evaluations, and α, β satisfying Lemma 3

Output: R̂s , a sparse approximation of f̂ ∈ C
N

1 Initialize R̂, R̂s ← ∅
2 Set c1 = β

√
ln N
N in the definition of periodic Gaussian g from (3), and c2 = α

√
ln N
2

3 for j from 1 to �c2� do
4 q = −⌈ N2

⌉+ 1 + (2 j − 1)
⌈

N
α
√
ln N

⌉

5 Modulate g to be g̃q (x) := e−iqx g(x)
6 for each point x ∈ {xk }mk=1 do
7 Use f to approximately compute (g̃q ∗ f)(x) as per §3.1
8 end
9 Run given SFT algorithm A using the approximate function evaluations {(g̃q ∗ f)(xk)}mk=1 in

order to find an s-sparse Fourier approximation, R̂temp ⊂ Z × C, of ˜̂gq ∗ f .
10 for each (frequency,Fourier coefficient) pair (ω, cω) ∈ R̂temp do

11 if ω ∈
[
q −

⌈
N

α
√
ln N

⌉
, q +

⌈
N

α
√
ln N

⌉)
∩ B then

12 R̂ = R̂ ∪
{(

ω, cω
/ (̂̃gq

)
ω

)}

13 end
14 end
15 end
16 Choose the s frequencies ω with (ω, c̃ω) ∈ R̂ having the largest |c̃ω|, and put those (ω, c̃ω) in R̂s

17 Return R̂s

The objective ofAlgorithm 1 is to use a nonadaptive and noise robust SFT algorithm
Awhich requires off-grid function evaluations in order to approximately compute the
DFT of a given vector f ∈ C

N , f̂ = Ff . Note that computing f̂ is equivalent to

6 We hasten to point out, moreover, that similar ideas can also be employed for adaptive and noise robust
SFT algorithms in order to approximately evaluate f in an “on demand” fashion as well. We leave the
details to the interested reader.

760 J Fourier Anal Appl (2019) 25:751–784

computing the Fourier series coefficients of the degree N trigonometric interpolant
of f . Hereafter the 2π -periodic function f : [−π, π] → C under consideration will
always be this degree N trigonometric interpolant of f . Our objective then becomes
to approximately compute f̂ using A. Unfortunately, our given input vector f only
contains equally spaced function evaluations of f , and so does not actually contain
the function evaluations { f (xk)}mk=1 required by A. As a consequence, we are forced
to try to interpolate these required function evaluations { f (xk)}mk=1 from the available
equally spaced function evaluations f .

Directly interpolating the required function evaluations { f (xk)}mk=1 from f for an
arbitrary degree N trigonometric polynomial f using classical techniques appears to
be either too inaccurate, or else too slow to work well in our setting.7 As a result,
Algorithm 1 follows the example of successful nonequispaced fast Fourier transform
(NFFT) methods (see, e.g. [2,9,10,23,30]) and instead uses f to rapidly approxi-
mate samples from the convolution of the unknown trigonometric polynomial f with
(several modulations of) a known filter function g. Thankfully, all of the evaluations
{(g ∗ f)(xk)}mk=1 can be approximated very accurately using only the data in f in just
O(m log N)-time when g is chosen carefully enough (see Sect. 3.1 below). The given
SFT algorithmA is then used to approximate the Fourier coefficients of g ∗ f for each
modulation of g using these approximate evaluations. Finally, f̂ is then approximated
using the recovered sparse approximation for each ĝ ∗ f combined with our a priori
knowledge of ĝ.

Next, in Sect. 3.1, explicit bounds will be developed which characterize the runtime
required in order to accurately approximate arbitrary samples from f ∗ g using only a
few entries from f . The attentive reader may notice there that the main theorem in that
section (Theorem 4) bares some resemblance to state of the art NFFT error bounds
(see, e.g., Steidl’s Theorem 3.1 in [30]) in that it utilizes the properties of truncated
convolutions with periodized Gaussians in order to obtain error bounds which decay
exponentially with the number of truncated convolution terms utilized per function
evaluation. It is important to note, however, that the SFT methods considered herein
have several crucial complicating constraints which require such NFFT techniques
to be substantially overhauled before they may be fruitfully employed in our setting.
Chief among these complications are that
(N)-timeNFFTmethods for the evaluation
of trigonometric polynomials at nonequispaced points along with their attending error
analysis effectively assume that f̂ is already known (or, at least, that computing it in
FFT-time is an acceptable computational cost). In the case of SFTs this is not true
since our main objective is exactly to approximate f̂ much more quickly than an FFT
can by only reading a tiny sublinear-in-N fraction of the entries in f . As a result, unlike
NFFTmethods our analysis needs to focus on rapidly approximating values from f ∗g
instead of from f itself, and with a Gaussian g whose Fourier transform ĝ still allows
the rapid and accurate application of SFT techniques in Sect. 4 as we continue therein
to prove the main result of the paper (Theorem 1).

7 Each function evaluation f (xk) needs to be accurately computed in justO(logc N)-time in order to allow
us to achieve our overall desired runtime for Algorithm 1.

J Fourier Anal Appl (2019) 25:751–784 761

3.1 Rapidly and Accurately Evaluating f ∗ g

In this sectionwewill carefully consider the approximation of (f ∗ g) (x) by a severely
truncated version of the semi-discrete convolution sum

1

N

N−1∑
j=0

f

(
−π + 2π j

N

)
g

(
x + π − 2π j

N

)
(11)

for any given value of x ∈ [−π, π]. Our goal is to determine exactly how many terms
of this finite sum we actually need in order to obtain an accurate approximation of
f ∗ g at an arbitrary x-value. More specifically, we aim to use as few terms from
this sum as absolutely possible in order to ensure, e.g., an approximation error of size
O(N−2).

Without loss of generality, let us assume that N = 2M + 1 is odd – this allows us
to express B, the set of N Fourier modes about zero, as

B :=
(

−
⌈
N

2

⌉
,

⌊
N

2

⌋]
∩ Z = [−M, M] ∩ Z.

In the lemmas and theorems below the function f : [−π, π] → C will always denote
a degree-N trigonometric polynomial of the form

f (x) =
∑
ω∈B

f̂ωe
iωx .

Furthermore, g will always denote the periodic Gaussian as defined above in (3).
Finally, we will also make use of the Dirichlet kernel DM : R → C, defined by

DM (y) = 1

2π

M∑
n=−M

einy = 1

2π

∑
n∈B

einy .

The relationship between trigonometric polynomials such as f and the Dirichlet
kernel DM is the subject of the following lemma.

Lemma 5 Let h : [−π, π] → C have ĥω = 0 for all ω /∈ B, and define the set of

points
{
y j
}2M
j=0 =

{
−π + 2π j

N

}2M
j=0

. Then,

2π (h ∗ DM) (x) = h (x) = 2π

N

2M∑
j=0

h
(
y j
)
DM

(
x − y j

)

holds for all x ∈ [−π, π].

762 J Fourier Anal Appl (2019) 25:751–784

Proof By the definition of DM , we trivially have 2π
(̂
DM

)
ω

= χB (ω) ∀ω ∈ Z.

Thus,

ĥ = 2π · ĥ ◦ D̂M = 2π · ĥ ∗ DM

where, as before, ◦ denotes the Hadamard product, and ∗ denotes convolution. This
yields h (x) = 2π (h ∗ DM) (x) and so establishes the first equality above. To establish
the second equality above, recall from (2) that for any ω ∈ B we will have

ĥω = (−1)ω

N

2M∑
j=0

h

(
−π + 2π j

N

)
e

−2πi jω
N = 1

N

2M∑
j=0

h
(
y j
)
e−iωy j ,

since h is a trigonometric polynomial. Thus, given x ∈ [−π, π] one has

h (x)=
∑
ω∈B

ĥωe
iωx = 1

N

2M∑
j=0

(
h
(
y j
)∑

ω∈B
eiω(x−y j)

)
= 2π

N

2M∑
j=0

h
(
y j
)
DM

(
x − y j

)
.

We now have the desired result. ��
We can now write a formula for g ∗ f which only depends on N evaluations of f

in [−π, π].
Lemma 6 Given the set of equally spaced points

{
y j
}2M
j=0 =

{
−π + 2π j

N

}2M
j=0

one

has that

(g ∗ f) (x) = 1

N

2M∑
j=0

f
(
y j
) ∫ π

−π

g
(
x − u − y j

)
DM (u) du

for all x ∈ [−π, π].

Proof By Lemma 5, we have

(g ∗ f) (x) = 1

2π

∫ π

−π

g (x − y) f (y) dy = 1

N

∫ π

−π

g (x − y)
2M∑
j=0

f
(
y j
)
DM

(
y − y j

)
dy

= 1

N

2M∑
j=0

f
(
y j
) ∫ π

−π

g
(
x − u − y j

)
DM (u) du.

The last equality holds after a change of variables since g and DM are both 2π -periodic.
��

The next two lemmas will help us bound the error produced by discretizing the
integral weights present in the finite sum provided by Lemma 6 above. More specif-
ically, they will ultimately allow us to approximate the sum in Lemma 6 by the sum
in (11).

J Fourier Anal Appl (2019) 25:751–784 763

Lemma 7 Let x ∈ [−π, π] and y j = −π + 2π j
N for some j = 0, . . . , 2M. Then,

∫ π

−π

g
(
x − u − y j

)
DM (u) du =

∑
n∈B

ĝne
in(x−y j).

Proof Recalling that 2π
(̂
DM

)
ω

= χB (ω) for all ω ∈ Z we have that

∫ π

−π

g
(
x − u − y j

)
DM (u) du = 2π (DM ∗ g)

(
x − y j

)

=
∑
n∈Z

ĝnχB (n) ein(x−y j) =
∑
n∈B

ĝne
in(x−y j).

��
Lemma 8 Denote I (a) := ∫ a−a e

−x2dx for a > 0; then

π
(
1 − e−a2

)
< I 2 (a) < π

(
1 − e−2a2

)
.

Proof Let a > 0 and observe that

I 2 (a) =
∫ a

−a

∫ a

−a
e−x2−y2dxdy >

∫∫

{x2+y2≤a2}
e−(x2+y2

)
dxdy = π

(
1 − e−a2

)
.

The first equality holds by Fubini’s theorem, and the inequality follows simply by
integrating a positive function over a disk of radius a as opposed to a square of
sidelength 2a. A similar argument yields the upper bound. ��

We are now ready to bound the difference between the integral weights present in
the finite sum provided by Lemma 6, and the g

(
x − y j

)
-weights present in the sum

(11).

Lemma 9 Chooseany τ ∈
(
0, 1√

2π

)
,α ∈

[
1, N√

ln N

]
, andβ ∈

⎛
⎝0, α

√
ln
(
1/τ

√
2π
)

2

⎤
⎦.

Let c1 = β
√
ln N
N in the definition of the periodic Gaussian g so that

g (x) = N

β
√
ln N

∞∑
n=−∞

e
− (x−2nπ)2N2

2β2 ln N .

Then for all x ∈ [−π, π] and y j = −π + 2π j
N ,

∣∣∣∣g
(
x − y j

)−
∫ π

−π

g
(
x − u − y j

)
DM (u) du

∣∣∣∣ <
N 1− β2

18

β
√
ln N

.

764 J Fourier Anal Appl (2019) 25:751–784

Proof Using Lemma 7 we calculate

∣∣∣∣g
(
x−y j

)−
∫ π

−π

g
(
x−u−y j

)
DM (u) du

∣∣∣∣ =
∣∣∣∣∣g
(
x − y j

)−
∑
n∈B

ĝne
in(x−y j)

∣∣∣∣∣

=
∣∣∣∣∣
∑
n∈Bc

ĝne
in(x−y j)

∣∣∣∣∣

≤ 1√
2π

∑
|n|>M

e− c21n
2

2 (Using Lemma 2)

≤ 2√
2π

∫ ∞

M
e− c21n

2

2 dn

=
√

2

π

∫ ∞

M
e

− β2n2 ln N
2N2 dn.

Upon the change of variable v = βn
√
ln N√
2N

, we get that

∣∣∣∣g
(
x − y j

)−
∫ π

−π

g
(
x − u − y j

)
DM (u) du

∣∣∣∣

≤
√

2

π

√
2N

β
√
ln N

∫ ∞
βM

√
ln N√

2N

e−v2dv

= 2N

β
√

π ln N

1

2

⎛
⎝
∫ ∞

−∞
e−v2dv −

∫ βM
√
ln N√

2N

− βM
√
ln N√

2N

e−v2dv

⎞
⎠

<
N

β
√

π ln N

⎛
⎝√

π −
√

π

(
1 − e

− β2M2 ln N
2N2

)⎞
⎠

= N

β
√
ln N

(
1 −

√
1 − N

− β2M2

2N2

)

where the last inequality follows from Lemma 8. Noting now that

y ∈ [0, 1] �⇒ 1 −√1 − y ≤ y,

and that N
M = 2 + 1

M ∈ (2, 3] for all M ∈ Z
+, we can further see that

N

β
√
ln N

(
1 −

√
1 − N

− β2M2

2N2

)
≤ N

β
√
ln N

N
− β2M2

2N2 ≤ N 1− β2

18

β
√
ln N

also always holds. ��

J Fourier Anal Appl (2019) 25:751–784 765

With the lemmas above we can now prove that (11) can be used to approximate
(g ∗ f) (x) for all x ∈ [−π, π] with controllable error.
Theorem 3 Let p ≥ 1. Using the same values of the parameters from Lemma 9 above,
one has

∣∣∣∣∣∣
(g ∗ f) (x) − 1

N

2M∑
j=0

f
(
y j
)
g
(
x − y j

)
∣∣∣∣∣∣
≤ ‖f‖p

β
√
ln N

N 1− β2

18 − 1
p

for all x ∈ [−π, π].

Proof Using Lemmas 6 and 9 followed by Holder’s inequality, we have

∣∣∣∣∣∣
(g ∗ f) (x) − 1

N

2M∑
j=0

f
(
y j
)
g
(
x − y j

)
∣∣∣∣∣∣

=
∣∣∣∣∣∣
1

N

2M∑
j=0

f
(
y j
) (

g
(
x − y j

)−
∫ π

−π

g
(
x − u − y j

)
DM (u) du

)∣∣∣∣∣∣

≤ 1

N

2M∑
j=0

∣∣ f (y j
)∣∣ N 1− β2

18

β
√
ln N

≤ N
−β2

18

β
√
ln N

‖f‖p N
1− 1

p .

��
To summarize, Theorem 3 tells us that (g ∗ f) (x) can be approximately computed

inO (N)-time for any x ∈ [−π, π] using (11). This linear runtime costmay be reduced
significantly, however, if one is willing to accept an additional trade-off between accu-
racy and the number of terms needed in the sum (11). This trade-off is characterized
in the next lemma.

Lemma 10 Let x ∈ [−π, π], p ≥ 1, γ ∈ R
+, and κ := �γ ln N� + 1. Set j ′ :=

argmin j
∣∣x − y j

∣∣. Using the same values of the other parameters fromLemma 9 above,
one has

∣∣∣∣∣∣
1

N

2M∑
j=0

f
(
y j
)
g
(
x − y j

)− 1

N

j ′+κ∑
j= j ′−κ

f
(
y j
)
g
(
x − y j

)
∣∣∣∣∣∣
≤ 2‖f‖p N

− 2π2γ 2

β2

for all β ≥ 4 and N ≥ β2.

Proof Appealing to Lemma 1 and recalling that c1 = β
√
ln N
N we can see that

g (x) ≤
(

3N

β
√
ln N

+ 1√
2π

)
e

− x2N2

2β2 ln N .

766 J Fourier Anal Appl (2019) 25:751–784

Using this fact we have that

g
(
x − y j ′±k

) ≤
(

3N

β
√
ln N

+ 1√
2π

)
e

−
(
x−y j ′±k

)2
N2

2β2 ln N

≤
(

3N

β
√
ln N

+ 1√
2π

)
e

− (2k−1)2π2

2β2 ln N

for all k ∈ ZN . As a result, one can now bound

∣∣∣∣∣∣
1

N

2M∑
j=0

f
(
y j
)
g
(
x − y j

)− 1

N

j ′+κ∑
j= j ′−κ

f
(
y j
)
g
(
x − y j

)
∣∣∣∣∣∣

above by

(
3

β
√
ln N

+ 1

N
√
2π

) N−2κ−1∑
k=κ+1

(∣∣ f (y j ′−k
)∣∣+ ∣∣ f (y j ′+k

)∣∣) e− (2k−1)2π2

2β2 ln N , (12)

where the y j -indexes are considered modulo N as appropriate.
Our goal is now to employ Holder’s inequality on (12). Toward that end, we will

now bound the q-norm of the vector h :=
⎧⎨
⎩e

−
(
κ+�− 1

2

)2
2π2

β2 ln N

⎫⎬
⎭

N−2κ−1

�=1

. Letting a :=

q
(

4
β2 ln N

)
we have that

‖h‖qq =
N−2κ−1∑

�=1

e
− π2

2

(
κ+�− 1

2

)2
a

<

∞∑
�=κ

e− π2
2 �2a ≤

∫ ∞

κ−1
e− π2x2

2 a dx

≤
√

1

2πa
− 1

π
√
2a

∫ π(κ−1)
√

a
2

−π(κ−1)
√

a
2

e−u2 du ≤
√

1

2πa
e− aπ2

2 (κ−1)2

≤ β

2

√
ln N

2πq
N

− 2qπ2γ 2

β2 ,

where we have used Lemma 8 once again. As a result we have that

‖h‖q ≤
(

β2 ln N

8π

) 1
2q

q− 1
2q N

− 2π2γ 2

β2 ≤
(

β2 ln N

8π

) 1
2q

N
− 2π2γ 2

β2

J Fourier Anal Appl (2019) 25:751–784 767

for all q ≥ 1. Applying Holder’s inequality on (12) we can now see that (12) is
bounded above by

2

(
3

β
√
ln N

+ 1

N
√
2π

)
‖f‖p

(
β2 ln N

8π

) 1
2− 1

2p

N
− 2π2γ 2

β2 .

The result now follows. ��

We may now finally combine the truncation and estimation errors in Theorem 3
and Lemma 10 above in order to bound the total error one incurs by approximating
(g ∗ f) (x) via a truncated portion of (11) for any given x ∈ [−π, π].

Theorem 4 Fix x ∈ [−π, π], p ≥ 1 (or p = ∞), N
36 ≥ r ≥ 1, and g :

[−π, π] → R
+ to be the 2π -periodic Gaussian (3) with c1 := 6

√
ln(Nr)
N . Set

j ′ := argmin j
∣∣x − y j

∣∣ where y j = −π + 2π j
N for all j = 0, . . . , 2M. Then,

∣∣∣∣∣∣∣∣
(g ∗ f) (x) − 1

N

j ′+
⌈

6r√
2π

ln N
⌉
+1∑

j= j ′−
⌈

6r√
2π

ln N
⌉
−1

f
(
y j
)
g
(
x − y j

)
∣∣∣∣∣∣∣∣
≤ 3

‖f‖p

Nr
.

As a consequence, we can see that (g ∗ f) (x) can always be computed to within
O (‖f‖∞N−r

)
-error in just O (r log N)-time for any given f ∈ C

N once the

{
g
(
x − y j

) } j ′+⌈ 6r√
2π

ln N
⌉
+1

j= j ′−
⌈

6r√
2π

ln N
⌉
−1

have been precomputed.

Proof Combining Theorem 3 and Lemma 10 we can see that

∣∣∣∣∣∣∣∣
(g ∗ f) (x) − 1

N

j ′+
⌈

6r√
2π

ln N
⌉
+1∑

j= j ′−
⌈

6r√
2π

ln N
⌉
−1

f
(
y j
)
g
(
x − y j

)
∣∣∣∣∣∣∣∣

≤ ‖f‖p

(
1

β
√
ln N

N 1− β2

18 − 1
p + 2 N

− 2π2γ 2

β2

)

where β = 6
√
r ≥ 6, N ≥ 36r = β2, and γ = 6r√

2π
= β

√
r√

2π
. ��

We are now prepared to bound the error of the proposed approach when utilizing
the SFTs developed in [21].

768 J Fourier Anal Appl (2019) 25:751–784

4 An Error Guarantee for Algorithm 1 When Using the SFTs Proposed
in [21]

Given the 2π -periodic Gaussian g : [−π, π] → R
+ (3), consider the periodic modu-

lation of g, g̃q : [−π, π] → C, for any q ∈ Z defined by

g̃q (x) = e−iqx g (x) .

One can see that

g̃q (x) = e−iqx
∞∑

ω=−∞
ĝωe

iωx =
∞∑

ω=−∞
ĝωe

i(ω−q)x =
∞∑

ω̃=−∞
ĝω̃+qe

iω̃x ,

so that the Fourier series coefficients of g̃q are those of g, shifted by q; that is,

(̂̃gq
)

ω
= ĝω+q .

In line 9 of Algorithm 1, we provide the SFT Algorithm in [21] with the approxi-
mate evaluations of

{(
g̃q ∗ f

)
(xk)

}m
k=1 , namely,

{(
g̃q ∗ f

)
(xk) + nk

}m
k=1, where, by

Theorem 4, the perturbations nk are bounded, for instance, by

|nk | ≤ 3
‖ f ‖∞
Nr

∀ k = 1, . . . ,m.

With this in mind, let us apply Lemma 4 to the function g̃q ∗ f . We have the
following lemma.

Lemma 11 Let s ∈ [2, N] ∩ N, and n ∈ C
m be the vector containing the total errors

incurred by approximating g̃q ∗ f via a truncated version of (11), as per Theorem 4.
There exists a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72
of [21], when given access to the corrupted samples

{(
g̃q ∗ f

)
(xk) + nk

}m
k=1 , will

identify a subset S ⊆ B which is guaranteed to contain all ω ∈ B with

∣∣∣
(

˜̂gq ∗ f
)

ω

∣∣∣ > 4

(
1

s
·
∥∥∥∥ ˜̂gq ∗ f −

(
˜̂gq ∗ f

)opt
s

∥∥∥∥
1
+ 3 ‖f‖∞ N−r

)
=: 4δ̃.

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated
Fourier series coefficient estimate zω ∈ C which is guaranteed to have

∣∣∣
(

˜̂gq ∗ f
)

ω
− zω

∣∣∣ ≤
√
2δ̃.

Next, we need to guarantee that the estimates of ˜̂gq ∗ f returned by Algorithm 3 of
[21] will yield good estimates of f̂ itself. We have the following.

J Fourier Anal Appl (2019) 25:751–784 769

Lemma 12 Let s ∈ [2, N] ∩ N. Given a 2π -periodic function f : [−π, π] → C, the
periodic Gaussian g, and any of its modulations g̃q (x) = e−iqx g (x), one has

∥∥∥∥ ˜̂gq ∗ f −
(

˜̂gq ∗ f
)opt
s

∥∥∥∥
1

≤ 1

2

∥∥∥ f̂ − f̂ opts

∥∥∥
1
.

Proof Recall the definition of Ropt
s
(
f̂
)
as the subset of B containing the s most

energetic frequencies of f̂ , and observe that

1

2

∥∥∥ f̂ − f̂ opts

∥∥∥
1

= 1

2

∑

ω∈B\Ropt
s (f̂)

∣∣ f̂ω
∣∣ ≥

∑

ω∈B\Ropt
s (f̂)

∣∣∣
(̂̃gq
)

ω
· f̂ω

∣∣∣

since, by Lemma 2, ĝω < 1
2 for all ω, and consequently,

(̂̃gq
)

ω
= ĝω+q < 1

2 for all

ω. Moreover,

∑

ω∈B\Ropt
s (f̂)

∣∣∣
(̂̃gq
)

ω
· f̂ω

∣∣∣ ≥
∑

ω∈B\Ropt
s

(
̂̃gq∗ f

)

∣∣∣
(̂̃gq
)

ω
· f̂ω

∣∣∣ =
∥∥∥∥ ˜̂gq ∗ f −

(
˜̂gq ∗ f

)opt
s

∥∥∥∥
1
.

Let us combine the guarantees above into the following lemma.

Lemma 13 Let s ∈ [2, N] ∩ N, and n ∈ C
m be the vector containing the total errors

incurred by approximating g̃q ∗ f via a truncated version of (11), as per Theorem 4.
There exists a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72
of [21], when given access to the corrupted samples

{(
g̃q ∗ f

)
(xk) + nk

}m
k=1 , will

identify a subset S ⊆ B which is guaranteed to contain all ω ∈ B with

∣∣∣
(

˜̂gq ∗ f
)

ω

∣∣∣ > 4

(
1

2s
·
∥∥∥ f̂ − f̂ opts

∥∥∥
1
+ 3 ‖f‖∞ N−r

)
=: 4δ.

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated
Fourier series coefficient estimate zω ∈ C which is guaranteed to have

∣∣∣
(̂̃gq
)

ω
· f̂ω − zω

∣∣∣ ≤
√
2δ.

The lemma above implies that for any choice of q in line 4 of Algorithm 1, we are

guaranteed to find all ω ∈
[
q −

⌈
N

α
√
ln N

⌉
, q +

⌈
N

α
√
ln N

⌉)
∩ B with

∣∣ f̂ω
∣∣ > max

ω̃

4δ(̂̃gq
)

ω̃

≥ 4δ

τ

770 J Fourier Anal Appl (2019) 25:751–784

where α and τ are as defined in Lemma 3. Moreover, the Fourier series coefficient
estimates zω returned by Algorithm 3 will satisfy

∣∣∣∣∣∣∣
f̂ω − zω(̂̃gq

)
ω

∣∣∣∣∣∣∣
≤ max

ω̃

√
2δ(̂̃gq
)

ω̃

≤
√
2δ

τ
.

Following Theorem 3, which guarantees a decay of N−r in the total approximation
error, let us set β = 6

√
r for 1 ≤ r ≤ N

36 . Recall from Lemma 3 the choice of

β ∈
⎛
⎝0, α

√
ln
(
1/τ

√
2π
)

2

⎤
⎦ where τ is to be chosen from

(
0, 1√

2π

)
. Thus, we must

choose α ∈
[
1, N√

ln N

]
so that

6
√
r ≤ α

√√√√ ln
(
1/τ

√
2π
)

2
⇐⇒ α ≥ 6

√
2r

ln
(
1/τ

√
2π
) .

Wemay remove the dependence on τ simply by setting, e.g., τ = 1
3 . Thenα = O (√r

)
.

We are now ready to state the recovery guarantee of Algorithm 1 and its operation
count.

Theorem 5 Let N ∈ N, s ∈ [2, N]∩N, and 1 ≤ r ≤ N
36 as in Theorem 4. If Algorithm

3 of [21] is used in Algorithm 1 then Algorithm 1 will always deterministically identify
a subset S ⊆ B and a sparse vector v|S ∈ C

N satisfying

∥∥∥f̂ − v|S
∥∥∥
2

≤
∥∥∥f̂ − f̂opts

∥∥∥
2
+ 33√

s
·
∥∥∥f̂ − f̂opts

∥∥∥
1
+ 198

√
s ‖f‖∞ N−r . (13)

Algorithm 1’s operation count is then

O
(
s2 · r 3

2 · log 11
2 (N)

log(s)

)
.

If returning a sparse vector v|S ∈ C
N that satisfies (13) with probability at least

(1− p) ∈ [2/3, 1) is sufficient, a Monte Carlo variant of the deterministic Algorithm
3 in [21] may be used in line 9 of Algorithm 1. In this case Algorithm 1’s operation
count is

O
(
s · r 3

2 · log 9
2 (N) · log

(
N

p

))
.

J Fourier Anal Appl (2019) 25:751–784 771

Proof Redefine δ in the proof of Theorem 7 in [21] as

δ = 1

τ

(
1

2s
·
∥∥∥ f̂ − f̂ opts

∥∥∥
1
+ 3 ‖f‖∞ N−r

)
= 3

(
1

2s
·
∥∥∥f̂ − f̂opts

∥∥∥
1
+ 3 ‖f‖∞ N−r

)
,

and observe that anyω ∈ B = (− ⌈ N
2

⌉
,
⌊ N
2

⌋]∩Z that is reconstructed byAlgorithm1
will have a Fourier series coefficient estimate vω that satisfies

∣∣∣vω − f̂ω
∣∣∣ = ∣∣vω − f̂ω

∣∣ ≤ √
2 · δ.

We can thus bound the approximation error by

∥∥∥f̂ − v|S
∥∥∥
2

≤
∥∥∥f̂ − f̂ |S

∥∥∥
2
+
∥∥∥f̂ |S − v|S

∥∥∥
2

≤
∥∥∥f̂ − f̂|S

∥∥∥
2
+ 2

√
s · δ

=
√√√√
∥∥∥f̂ − f̂opts

∥∥∥
2

2
+

∑

ω∈Ropt
s (f̂)\S

∣∣ f̂ω
∣∣2 −

∑

ω̃∈S\Ropt
s (f̂)

∣∣ f̂ω̃
∣∣2 + 2

√
s · δ.

(14)

In order tomake additional progress on (14) wemust consider the possible magnitudes
of f̂ entries at indices in S\Ropt

s
(
f̂
)
and Ropt

s
(
f̂
) \S. Careful analysis (in line with

the techniques employed in the proof of Theorem 7 of [21]) indicates that

∑

ω∈Ropt
s (f̂)\S

∣∣ f̂ω
∣∣2 −

∑

ω̃∈S\Ropt
s (f̂)

∣∣ f̂ω̃
∣∣2 ≤ s ·

(
8
√
2 + 8

)2 · δ2.

Therefore, in the worst possible case equation (14) will remain bounded by

∥∥∥f̂ − v|S
∥∥∥
2

≤
√∥∥∥f̂ − f̂opts

∥∥∥
2

2
+ s ·

(
8
√
2 + 8

)2 · δ2 + 2
√
s · δ ≤

∥∥∥f̂ − f̂opts

∥∥∥
2
+ 22

√
s · δ.

The error bound stated in (13) follows.

The runtimes followbyobserving that c2 = O
(
α · log 1

2 (N)
)

= O
(
r

1
2 · log 1

2 (N)
)

as chosen in line 2 of Algorithm 1, and for every choise of q in line 4 of Algorithm
1, all of the evaluations

{
(g̃q ∗ f)(xk)

}m
k=1 can be approximated very accurately in

just O(mr log N)-time, where the number of samples m is on the orders described in
Theorem 2. ��

We are now ready to empirically evaluate Algorithm 1 with several different SFT
algorithms A used in its line 9.

772 J Fourier Anal Appl (2019) 25:751–784

5 Numerical Evaluation

In this section we evaluate the performance of three new discrete SFT Algorithms
resulting from Algorithm 1: DMSFT-4, DMSFT-6,8 and CLW-DSFT.9 All of them
were developed by utilizing different SFT algorithms in line 9 of Algorithm 1. Here
DMSFT stands for the Discrete Michigan State Fourier Transform algorithm. Both
DMSFT-4 and DMSFT-6 are implementations of Algorithm 1 that use a randomized
version of the SFT algorithm GFFT [29] in their line 9.10 The only difference between
DMSFT-4 and DMSFT-6 is how accurately each one estimates the convolution in line
7 of Algorithm 1: for DMSFT-4 we use κ = 4 in the partial discrete convolution in
Lemma 10 when approximating g̃q ∗ f at each xk , while for DMSFT-6 we always
use κ = 6. The CLW-DSFT stands for the Christlieb Lawlor Wang Discrete Sparse
Fourier Transform algorithm. It is an implementation of Algorithm 1 that uses the SFT
developed in [6] in its line 9, and κ varying between 12 and 20 for its line 7 convolution
estimates (depending on each input vector’s Fourier sparsity, etc.). All of DMSFT-4,
DMSFT-6 and CLW-DSFT were implemented in C++ in order to empirically evaluate
their runtime and noise robustness characteristics.

We also compare these new implementations’ runtime and robustness charac-
teristics with FFTW 3.3.411 and sFFT 2.0.12 FFTW is a highly optimized FFT
implementation which runs in O(N log N)-time for input vectors of length N . All
the standard discrete Fourier transforms in the numerical experiments are performed
using FFTW 3.3.4 with FFTW_MEASURE plan. The sFFT 2.0 is a randomized dis-
crete sparseFourierTransformalgorithmwritten inC++which is both stable and robust
to noise. It was developed by Hassanieh et al. in [15]. Note that DMSFT-4, DMSFT-6,
CLW-DSFT, and sFFT 2.0 are all randomized algorithms designed to approximate
discrete DFTs that are approximately s-sparse. This means that all of them take both
sparsity s and size N of the DFT’s f̂ ∈ CN they aim to recover as parameters. In con-
trast, FFTW cannot utilize existing sparsity to its advantage. Finally, all experiments
are run on a Linux CentOS machine with 2.50GHz CPU and 16GB of RAM.

5.1 Experiment Setup

For the execution time experiments each trial input vector f ∈ CN was generated as
follows: First s frequencies were independently selected uniformly at random from
[0, N) ∩ Z, and then each of these frequencies was assigned a uniform random phase
with magnitude 1 as its Fourier coefficient. The remaining frequencies’ Fourier coef-
ficients were then set to zero to form f̂ ∈ CN . Finally, the trial input vector f was then
formed via an inverse DFT.

8 The code for both DMSFT variants is available at https://sourceforge.net/projects/aafftannarborfa/.
9 The CLW-DSFT code is available at www.math.msu.edu/~markiwen/Code.html.
10 Code for GFFT is also available at www.math.msu.edu/~markiwen/Code.html.
11 This code is available at http://www.fftw.org/.
12 This code is available at https://groups.csail.mit.edu/netmit/sFFT/.

https://sourceforge.net/projects/aafftannarborfa/
www.math.msu.edu/~markiwen/Code.html
www.math.msu.edu/~markiwen/Code.html
http://www.fftw.org/
https://groups.csail.mit.edu/netmit/sFFT/

J Fourier Anal Appl (2019) 25:751–784 773

Fig. 1 Runtime comparison at sparsity (s) fixed at 50

For each pair of s and N the parameters in each randomized algorithm were chosen
so that the probability of correctly recovering all s energetic frequencies was at least
0.9 per trial input. Every data point in a figure below corresponds to an average over
100 runs on 100 different trial input vectors of this kind. It is worth mentioning that
the parameter tuning process for DMSFT-4 and DMSFT-6 requires significantly less
effort than for both CLW-DSFT and sFFT 2.0 since the DMSFT variants only have
two parameters (whose default values are generally near-optimal).

5.2 Runtime as Input Vector Size Varies

In Fig. 1 we fixed the sparsity to s = 50 and ran numerical experiments on 8 different
input vector lengths N : 216, 218, . . ., 230. We then plotted the running time (averaged
over 100 runs) for DMSFT-4, DMSFT-6, CLW-DSFT, sFFT 2.0, and FFTW.

As expected, the runtime slope of all the SFT algorithms (i.e. DMSFT-4, DMSFT-6,
CLW-DSFT, and sFFT 2.0) is less than the slope of FFTW as N increases. Although
FFTW is fastest for vectors of small size, it becomes the slowest algorithm when the
vector size N is greater than 220. Among the randomized algorithms, sFFT 2.0 is the
fastest one when N is less than 222, but DMSFT-4, DMSFT-6, and CLW-DSFT all
outperform sFFT 2.0 with respect to runtime when the input vector’s sizes are large
enough. The CLW-DSFT implementation becomes faster than sFFT 2.0 when N is
approximately 221 while DMSFT-4 and DMSFT-6 have better runtime performance
than sFFT 2.0 when N is greater than 223.

5.3 Runtime as Sparsity Varies

In Fig. 2 we fix the input vector lengths to N = 226 and run the numerical experiments
on 7 different values of sparsity s: 50, 100, 200, 400, 1000, 2000, and 4000. As

774 J Fourier Anal Appl (2019) 25:751–784

Fig. 2 Runtime comparison at bandwidth (N) fixed at 226

expected, the FFTW’s runtime is constant as we increase the sparsity. The runtimes of
DMSFT-4, CLW-DSFT, and sFFT 2.0 are all essentially linear in s. Here DMSFT-6
has been excluded for ease of viewing/reference – its runtimes lie directly above those
of DMSFT-4 when included in the plot. Looking at Fig. 2 we can see the CLW-DSFT’s
runtime increasesmore rapidlywith s than that ofDMSFT-4 and sFFT2.0. The runtime
of CLW-DSFT becomes the slowest one when sparsity is around 1000. DMSFT-4 and
sFFT 2.0 have approximately the same runtime slope as s increases, and they both
have good performance when the sparsity is large. However, DMSFT-4 maintains
consistently better runtime performance than sFFT 2.0 for all sparsity values, and is
the only algorithm in the plot that still faster than FFTW when the sparsity is 4000.
Indeed, when the sparsity is 4000 the average runtime of DMSFT-4 is 2.68 s and the
average runtime of DMSFT-6 is 2.9 s. Both of them remain faster than FFTW (3.47 s)
and sFFT 2.0 (3.96 s) for this large sparsity (though only DMSFT-4 has been included
in the plot above).

5.4 Robustness to Noise

In our final set of experiments we test the noise robustness of DMSFT-4, DMSFT-6,
CLW-DSFT, sFFT 2.0, and FFTW for different levels of Gaussian noise. Here the size
of each input vector is N = 222 and sparsity is fixed at s = 50. The test signals are then
generated as before, except that Gaussian noise is added to f after it is constructed.
More specifically, we first generate f and then set f = f +n where each entry of n, n j ,
is an i.i.d. mean 0 random complex Gaussian value. The noise vector n is then rescaled
to achieve each desired signal-to-noise ratio (SNR) considered in the experiments.13

13 The SNR is defined as SN R = 20 log ‖f‖2‖n‖2 , where f is the length N input vector and n is the length N
noise vector.

J Fourier Anal Appl (2019) 25:751–784 775

Fig. 3 Robustness to noise (bandwidth (N) = 222, sparsity (s) = 50)

Recall that the the randomized algorithms compared herein (DMSFT-4, DMSFT-
6, CLW-DSFT, and sFFT 2.0) are all tuned to guarantee exact recovery of s-sparse
functions with probability at least 0.9 in all experiments. For our noise robustness
experiments this ensures that the correct frequency support, S, is found for at least 90
of the 100 trial signals used to generate each point plotted in Fig. 3. We use average
L1 error to measure the noise robustness of each algorithm for each of these at least
90 trial runs. The average L1 error is defined as

Average L1 Error = 1

s

∑
ω∈S

∣∣ f̂ω − zω
∣∣

where S is the true frequency support of the input vector f , f̂ω are the true input Fourier
coefficients for all frequencies ω ∈ S, and zω are their recovered approximations from
each algorithm. Figure 3 graphs the averaged average L1 error over the at least 90 trial
signals where each method correctly identified S.

It can be seen in Fig. 3 that DMSFT-4, DMSFT-6, sFFT 2.0, and FFTW are all
robust to noise. As expected, FFTW has the best performance in this test. DMSFT-4
and DMSFT-6 are both more robust to noise when compared to sFFT 2.0. As for
CLW-DSFT, it cannot guarantee a 0.9 probability of correctly recovering S when the
SNR is less than 40 and so is not plotted for those SNR values. This is due to the base
energetic frequency identification methods of [6,25] being inherently ill conditioned,
though the CLW-DSFT results look better when compared to the true f̂ with respect
to, e.g., earth mover’s distance. Frequencies are often estimated incorrectly by CLW-
DSFT at higher noise levels, but when they are they are usually at least close enough
to the true frequencies to be informative.

776 J Fourier Anal Appl (2019) 25:751–784

6 Conclusion

Let A be a sublinear-time sparse FFT algorithm which utilizes unequally spaced
samples from a given periodic function f : [−π, π] → C in order to rapidly approx-
imate its sequence of Fourier series coefficients f̂ ∈ �2. In this paper we propose a
generic method of transforming any such algorithm A into a sublinear-time sparse
DFT algorithm which rapidly approximates f̂ from a given input vector f ∈ CN . As
a result we are able to construct several new sublinear-time sparse DFT algorithms
from existing sparse Fourier algorithms which utilize unequally spaced function sam-
ples [6,21,25,29]. The best of these new algorithms is shown to outperform existing
discrete sparse Fourier transform methods with respect to both runtime and noise
robustness for large vector lengths N . In addition, we also present several new theo-
retical discrete sparse FFT robust recovery guarantees. These include the first known
theoretical guarantees for entirely deterministic and discrete sparse DFT algorithms
which hold for arbitrary input vectors f ∈ CN .

Acknowledgements M.A. Iwen, R. Zhang, and S.Merhi were all supported in part byNSFDMS-1416752.
The authors would like to thank Aditya Viswanathan for helpful comments and feedback on the first draft
of the paper.

Appendix A: Fourier Basics: Continuous versus Discrete Fourier Trans-
forms for Trigonometric Polynomials

Our objective in this appendix is to provide additional details regarding (2) and its
relationship to the continuous sparse Fourier transformmethods for periodic functions
that we employ herein. Our starting point will be to assume only that we have been
provided with a vector of data f ∈ C

N . Our goal is to rapidly approximate the matrix
vector product f̂ = Ff where F ∈ C

N×N is the DFT matrix whose entries are given
by

Fω, j := (−1)ω

N
e− 2πi·ω· j

N

for ω ∈ (− ⌈ N
2

⌉
,
⌊ N
2

⌋] ∩ Z and j = 0, . . . , N − 1.
Beginning from this starting point, one may choose to regard the given vector of

data f as having been generated by sampling a 2π -periodic trigonometric polynomial
f : [−π, π] → C of the form

f (x) =
∑
ω∈B

f̂ωe
iωx

where B := (− ⌈ N
2

⌉
,
⌊ N
2

⌋] ∩ Z. In particular, herein we will assume that f has its

j th entry generated by f j := f
(
−π + 2π j

N

)
for j = 0, . . . , N − 1. Note that there is

exactly one such f for the given data f since |B| = N (i.e., f is the unique interpolating
polynomial for f with ω ∈ B).

J Fourier Anal Appl (2019) 25:751–784 777

Considering f just above, we can now see that for any k ∈ Z the associated Fourier
series coefficient of f is

1

2π

∫ π

−π

f (x) e−ikx dx = 1

2π

∫ π

−π

(∑
ω∈B

f̂ωe
iωx

)
e−ikx dx

=
∑
ω∈B

f̂ω

(
1

2π

∫ π

−π

ei(ω−k)x dx

)

=
{
f̂k, k ∈ B

0, otherwise
.

Changing our focus now to the discrete Fourier transform of f considered as being
samples from f we can see that

Ff = F

⎛
⎜⎜⎜⎝

f (−π)

f
(−π + 2π

N

)
...

f
(
π − 2π

N

)

⎞
⎟⎟⎟⎠ = F

⎛
⎜⎜⎜⎜⎝

∑
ω∈B f̂ωe−iωπ

∑
ω∈B f̂ωe−iωπ+ 2πiω

N

...∑
ω∈B f̂ωe−iωπ+ 2πiω(N−1)

N

⎞
⎟⎟⎟⎟⎠

= F

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

e
2πi

(
1−
⌈
N
2

⌉)

N e
2πi

(
2−
⌈
N
2

⌉)

N . . . e
2πi

⌊
N
2

⌋

N

...

e
2πi

(
1−
⌈
N
2

⌉)
(N−1)

N e
2πi

(
2−
⌈
N
2

⌉)
(N−1)

N . . . e
2πi

⌊
N
2

⌋
(N−1)

N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)
1−
⌈
N
2

⌉
f̂
1−
⌈
N
2

⌉

(−1)
2−
⌈
N
2

⌉
f̂
2−
⌈
N
2

⌉

...

(−1)

⌊
N
2

⌋
f̂⌊ N

2

⌋

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

(−1)
1−
⌈
N
2

⌉
0 . . . 0

0 (−1)
2−
⌈
N
2

⌉
0 . . .

...

0 . . . 0 (−1)

⌊
N
2

⌋

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)
1−
⌈
N
2

⌉
f̂
1−
⌈
N
2

⌉

(−1)
2−
⌈
N
2

⌉
f̂
2−
⌈
N
2

⌉

...

(−1)

⌊
N
2

⌋
f̂⌊ N

2

⌋

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= f̂ .

Note that the line above establishes (2) where the vector f̂ ∈ C
N exactly contains

the nonzero Fourier series coefficients of f as its entries. As a result we can see that
computing the Fourier series coefficients of f is equivalent to computing the matrix
vector product f̂ = Ff for our given data f .

Appendix B: Proof of Lemmas 1, 2 and 3

We will restate each lemma before its proof for ease of reference.

778 J Fourier Anal Appl (2019) 25:751–784

Lemma 14 (Restatement ofLemma1)The2π -periodicGaussian g : [−π, π] → R
+

has

g (x) ≤
(
3

c1
+ 1√

2π

)
e

− x2

2c21

for all x ∈ [−π, π].

Proof Observe that

c1g (x) =
∞∑

n=−∞
e

− (x−2nπ)2

2c21 = e
− x2

2c21 + e
− (x−2π)2

2c21 + e
− (x+2π)2

2c21 +
∑
|n|≥2

e
− (x−2nπ)2

2c21

≤ 3e
− x2

2c21 +
∫ ∞

1
e

− (x−2nπ)2

2c21 dn +
∫ ∞

1
e

− (x+2nπ)2

2c21 dn

holds since the series above have monotonically decreasing positive terms, and x ∈
[−π, π].

Now, if x ∈ [0, π] and n ≥ 1, one has

e
− (2n+1)2π2

2c21 ≤ e
− (x+2nπ)2

2c21 ≤ e
− 4n2π2

2c21 ≤ e
− (x−2nπ)2

2c21 ≤ e
− (2n−1)2π2

2c21 ,

which yields

c1g (x) ≤ 3e
− x2

2c21 + 2
∫ ∞

1
e

− π2(2n−1)2

2c21 dn

= 3e
− x2

2c21 + 1

2

(∫ ∞

−∞
e

− π2m2

2c21 dm −
∫ 1

−1
e

− π2m2

2c21 dm

)

= 3e
− x2

2c21 + c1√
2π

− 1

2

∫ 1

−1
e

− π2m2

2c21 dm.

Using Lemma 8 to bound the last integral we can now get that

c1g (x) ≤ 3e
− x2

2c21 + c1√
2π

− 1

2

√
2c1
π

√√√√π

(
1 − e

− π2

2c21

)

= 3e
− x2

2c21 + c1√
2π

⎛
⎝1 −

√√√√
(
1 − e

− π2

2c21

)⎞
⎠

≤ 3e
− x2

2c21 + c1√
2π

e
− π2

2c21 ≤ 3e
− x2

2c21 + c1√
2π

e
− x2

2c21 .

J Fourier Anal Appl (2019) 25:751–784 779

Recalling now that g is even we can see that this inequality will also hold for all
x ∈ [−π, 0] as well. ��

Lemma 15 (Restatement ofLemma2)The2π -periodicGaussian g : [−π, π] → R
+

has

ĝω = 1√
2π

e− c21ω2

2

for all ω ∈ Z. Thus, ĝ = {ĝω}ω∈Z ∈ �2 decreases monotonically as |ω| increases, and
also has ‖ĝ‖∞ = 1√

2π
.

Proof Starting with the definition of the Fourier transform, we calculate

ĝω = 1

c1

∞∑
n=−∞

1

2π

∫ π

−π

e
− (x−2nπ)2

2c21 e−iωx dx

= 1

c1

∞∑
n=−∞

1

2π

∫ π

−π

e
− (x−2nπ)2

2c21 e−iω(x−2nπ) dx

= 1

c1

∞∑
n=−∞

1

2π

∫ π−2nπ

−π−2nπ

e
− u2

2c21 e−iωu du

= 1

2πc1

∫ ∞

−∞
e

− u2

2c21 e−iωu du

= c1
√
2π

2πc1
e− c21ω2

2

= e− c21ω2

2√
2π

.

The last two assertions now follow easily. ��

Lemma 16 (Restatement of Lemma 3) Choose any τ ∈
(
0, 1√

2π

)
, α ∈

[
1, N√

ln N

]
,

and β ∈
⎛
⎝0, α

√
ln
(
1/τ

√
2π
)

2

⎤
⎦. Let c1 = β

√
ln N
N in the definition of the periodic

Gaussian g from (3). Then ĝω ∈
[
τ, 1√

2π

]
for all ω ∈ Z with |ω| ≤

⌈
N

α
√
ln N

⌉
.

Proof By Lemma 2 above it suffices to show that

1√
2π

e−
c21

(⌈
N

α
√
ln N

⌉)2
2 ≥ τ,

780 J Fourier Anal Appl (2019) 25:751–784

which holds if and only if

c21

(⌈
N

α
√
ln N

⌉)2

≤ 2 ln

(
1

τ
√
2π

)

c1 ≤

√
2 ln

(
1

τ
√
2π

)

⌈
N

α
√
ln N

⌉ .

Thus, it is enough to have

c1 ≤

√
2 ln

(
1

τ
√
2π

)

N
α
√
ln N

+ 1
=

α

√
2 ln

(
1

τ
√
2π

)
ln N

N + α
√
ln N

,

or,

c1 = β
√
ln N

N
≤

α

√
2 ln

(
1

τ
√
2π

)
ln N

2N
≤

α

√
2 ln

(
1

τ
√
2π

)
ln N

N + α
√
ln N

.

This, in turn, is guaranteed by our choice of β. ��

Appendix C: Proof of Lemma 4 and Theorem 2

We will restate Lemma 4 before its proof for ease of reference.

Lemma 17 (Restatement of Lemma 4) Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and
n ∈ C

m be an arbitrary noise vector. There exists a set of m points {xk}mk=1 ⊂ [−π, π]
such that Algorithm 3 on page 72 of [21], when given access to the corrupted samples
{ f (xk) + nk}mk=1, will identify a subset S ⊆ B which is guaranteed to contain all
ω ∈ B with

∣∣ f̂ω
∣∣ > 4

⎛
⎜⎝

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+ ∥∥ f̂ − f̂ |B

∥∥
1 + ‖n‖∞

⎞
⎟⎠ . (15)

Furthermore, everyω ∈ S returned by Algorithm 3 will also have an associate Fourier
series coefficient estimate zω ∈ C which is guaranteed to have

∣∣ f̂ω − zω
∣∣ ≤ √

2

⎛
⎜⎝

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+ ∥∥ f̂ − f̂ |B

∥∥
1 + ‖n‖∞

⎞
⎟⎠ . (16)

J Fourier Anal Appl (2019) 25:751–784 781

Both the number of required samples, m, and Algorithm 3’s operation count are

O
(
s2 · log4(N)

log
(s

ε

) · ε2

)
. (17)

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, the
Monte Carlo variant of Algorithm 3 referred to by Corollary 4 on page 74 of [21]may
be used. This Monte Carlo variant reads only a randomly chosen subset of the noisy
samples utilized by the deterministic algorithm,

{ f (x̃k) + ñk}m̃k=1 ⊆ { f (xk) + nk}mk=1 ,

yet it still outputs a subset S ⊆ B which is guaranteed to simultaneously satisfy both
of the following properties with probability at least 1 − δ:

(i) S will contain all ω ∈ B satisfying (15), and
(ii) all ω ∈ S will have an associated coefficient estimate zω ∈ C satisfying (16).

Finally, both this Monte Carlo variant’s number of required samples, m̃, as well as its
operation count will also always be

O
(
s

ε
· log3(N) · log

(
N

δ

))
. (18)

Proof The proof of this lemma involves a somewhat tedious and uninspired series of
minor modifications to various results from [21]. In what follows we will outline the
portions of that paper which need to be changed in order to obtain the stated lemma.
Algorithm 3 on page 72 of [21] will provide the basis of our discussion.

In the first paragraph of our lemma we are provided with m-contaminated evalu-
ations of f , { f (xk) + nk}mk=1, at the set of m points {xk}mk=1 ⊂ [−π, π] required by
line 4 of Algorithm 1 on page 67 of [21]. These contaminated evaluations of f will
then be used to approximate the vector Gλ,K ψ̃A ∈ C

m in line 4 of Algorithm 3. More

specifically, using (18) on page 67 of [21] one can see that each
(
Gλ,K ψ̃A

)
j
∈ C is

effectively computed via a DFT

(
Gλ,K ψ̃A

)
j
= 1

s j

s j−1∑
k=0

f

(
−π + 2πk

s j

)
e

−2πikh j
s j (19)

for some integers 0 ≤ h j < s j . Note that we are guaranteed to have noisy evaluations
of f at each of these points by assumption. That is, we have f

(
x j,k
) + n j,k for all

x j,k := −π + 2πk
s j

, k = 0, . . . , s j − 1.

782 J Fourier Anal Appl (2019) 25:751–784

We therefore approximate each
(
Gλ,K ψ̃A

)
j
via an approximate DFT as per (19)

by

E j := 1

s j

s j−1∑
k=0

(
f
(
x j,k
)+ n j,k

)
e

−2πikh j
s j .

One can now see that

∣∣∣∣E j −
(
Gλ,K ψ̃A

)
j

∣∣∣∣ =
∣∣∣∣∣∣
1

s j

s j−1∑
k=0

n j,ke
−2πikh j

s j

∣∣∣∣∣∣
≤ 1

s j

s j−1∑
k=0

∣∣n j,k
∣∣ ≤ ‖n‖∞ (20)

holds for all j . Every entry of both Es1,K ψ̃A and Gλ,K ψ̃A referred to in Algorithm
3 will therefore be effectively replaced by its corresponding E j estimate. Thus, the
lemma we seek to prove is essentially obtained by simply incorporating the additional
error estimate (20) into the analysis of Algorithm 3 in [21] wherever an Es1,K ψ̃A or
Gλ,K ψ̃A currently appears.

To show that lines 6 – 14 of Algorithm 3 will identify all ω ∈ B satisfying (15)
we can adapt the proof of Lemma 6 on page 72 of [21]. Choose any ω ∈ B you like.
Lemmas 3 and 5 from [21] together with (20) above ensure that both

∣∣E j − f̂ω
∣∣ ≤

∣∣∣∣E j −
(
Gλ,K ψ̃A

)
j

∣∣∣∣+
∣∣∣∣
(
Gλ,K ψ̃A

)
j
− f̂ω

∣∣∣∣

≤ ‖n‖∞ +
ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+ ∥∥ f̂ − f̂ |B

∥∥
1 (21)

and

∣∣E j ′ − f̂ω
∣∣ ≤

∣∣∣∣E j ′ −
(
Es1,K ψ̃A

)
j ′

∣∣∣∣+
∣∣∣∣
(
Es1,K ψ̃A

)
j ′

− f̂ω

∣∣∣∣

≤ ‖n‖∞ +
ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+ ∥∥ f̂ − f̂ |B

∥∥
1 (22)

hold for more than half of the j and j ′-indexes that Algorithm 3 uses to approximate
f̂ω. The rest of the proof of Lemma 6 now follows exactly as in [21] after the δ at

the top of page 73 is redefined to be δ := ε·
∥∥∥f̂−f̂opt

(s/ε)

∥∥∥
1

s + ∥∥ f̂ − f̂ |B
∥∥
1 + ‖n‖∞, each(

Gλ,K ψ̃A
)
j
entry is replaced by E j , and each

(
Es1,K ψ̃A

)
j ′
entry is replaced by E j ′ .

Similarly, to show that lines 15 – 18 of Algorithm 3will produce an estimate zω ∈ C

satisfying (16) for every ω ∈ S one can simply modify the first few lines of the proof
of Theorem 7 in Appendix F of [21]. In particular, one can redefine δ as above, replace

the appearance of each
(
Gλ,K ψ̃A

)
j
entry by E j , and then use (21). The bounds on

J Fourier Anal Appl (2019) 25:751–784 783

the runtime follow from the last paragraph of the proof of Theorem 7 in Appendix
F of [21] with no required changes. To finish, we note that the second paragraph of
the lemma above follows from a completely analogous modification of the proof of
Corollary 4 in Appendix G of [21]. ��

Appendix C.1: Proof of Theorem 2

To get the first paragraph of Theorem 2 one can simply utilize the proof of Theorem
7 exactly as it is written in Appendix F of [21] after redefining δ as above, and then

replacing the appearance of each
(
Gλ,K ψ̃A

)
j
entry with its approximation E j . Once

this has been done, equation (42) in the proof of Theorem 7 can then be taken as a
consequence of Lemma 4 above. In addition, all references to Lemma 6 of [21] in the
proof can then also be replaced with appeals to Lemma 4 above. To finish, the proof
of Corollary 4 in Appendix G of [21] can now be modified in a completely analogous
fashion in order to prove the second paragraph of Theorem 2.

References

1. Bailey, J., Iwen, M.A., Spencer, C.V.: On the design of deterministic matrices for fast recovery of
Fourier compressible functions. SIAM J. Matrix Anal. Appl. 33(1), 263–289 (2012)

2. Beylkin, G.: On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon.
Anal. 2(4), 363–381 (1995)

3. Bittens, S.: Sparse FFT for FunctionswithShort FrequencySupport.University ofGöttingen,Göttingen
(2016)

4. Bittens, S., Zhang, R., Iwen, M.A.: A deterministic sparse FFT for functions with structured Fourier
sparsity. arXiv:1705.05256 (2017)

5. Bluestein, L.: A linear filtering approach to the computation of discrete Fourier transform. IEEE Trans.
Audio Electroacoust. 18(4), 451–455 (1970)

6. Christlieb, A., Lawlor, D., Wang, Y.: A multiscale sub-linear time Fourier algorithm for noisy data.
Appl. Comput. Harmon. Anal. 40, 553–574 (2016)

7. Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Am.
Math. Soc. 22(1), 211–231 (2009)

8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math.
Comput. 19(90), 297–301 (1965)

9. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14(6),
1368–1393 (1993)

10. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. ii. Appl. Comput. Harmon.
Anal. 2(1), 85–100 (1995)

11. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel
(2013)

12. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-optimal sparse Fourier
representations. In: Proceedings of the Optics & Photonics 2005, pp. 59141A–59141A. International
Society for Optics and Photonics (2005)

13. Gilbert, A.C., Strauss, M.J., Tropp, J.A.: A tutorial on fast Fourier sampling. IEEE Signal Process.
Mag. 25(2), 57–66 (2008)

14. Gilbert, A.C., Indyk, P., Iwen, M., Schmidt, L.: Recent developments in the sparse Fourier transform:
a compressed Fourier transform for big data. IEEE Signal Process. Mag. 31(5), 91–100 (2014)

15. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier
transform. In: Proceedings of the SODA (2012)

16. Hu, X., Iwen, M., Kim, H.: Rapidly computing sparse Legendre expansions via sparse Fourier trans-
forms. Numer. Algorithms 74(4), 1029–1059 (2017)

http://arxiv.org/abs/1705.05256

784 J Fourier Anal Appl (2019) 25:751–784

17. Iwen, M.A.: A deterministic sub-linear time sparse Fourier algorithm via non-adaptive compressed
sensing methods. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 20–29. Society for Industrial and Applied Mathematics (2008)

18. Iwen, M.A.: Simple deterministically constructible rip matrices with sublinear Fourier sampling
requirements. In: Proceedings of the CISS, pp. 870–875 (2009)

19. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10, 303–338
(2010)

20. Iwen, M.A.: Notes on lemma 6. Preprint at www.math.msu.edu/~markiwen/Papers/Lemma6_FOCM_
10.pdf (2012)

21. Iwen,M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput.
Harmon. Anal. 34, 57–82 (2013)

22. Iwen,M.,Gilbert,A., Strauss,M., et al.: Empirical evaluation of a sub-linear time sparseDFTalgorithm.
Commun. Math. Sci. 5(4), 981–998 (2007)

23. Keiner, J., Kunis, S., Potts, D.: UsingNFFT 3–a software library for various nonequispaced fast Fourier
transforms. ACM Trans. Math. Softw. 36(4), 19:1–19:30 (2009)

24. Laska, J., Kirolos, S., Massoud, Y., Baraniuk, R., Gilbert, A., Iwen, M., Strauss, M.: Random sam-
pling for analog-to-information conversion of wideband signals. In: Proceedings of the 2006 IEEE
Dallas/CAS Workshop on Design, Applications, Integration and Software, pp. 119–122. IEEE (2006)

25. Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data
Anal. 5(01), 1350003 (2013)

26. Morotti, L.: Explicit universal sampling sets in finite vector spaces. Appl. Comput. Harmonic Anal.
(2016) https://doi.org/10.1016/j.acha.2016.06.001

27. Plonka, G., Wannenwetsch, K.: A deterministic sparse FFT algorithm for vectors with small support.
Numer. Algorithms 71(4), 889–905 (2016)

28. Rabiner, L., Schafer, R., Rader, C.: The chirp z-transform algorithm. IEEE Trans. Audio Electroacoust.
17(2), 86–92 (1969)

29. Segal, I., Iwen, M.: Improved sparse Fourier approximation results: Faster implementations and
stronger guarantees. Numer. Algorithms 63, 239–263 (2013)

30. Steidl, G.: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9, 337–353
(1998)

www.math.msu.edu/~markiwen/Papers/Lemma6_FOCM_10.pdf
www.math.msu.edu/~markiwen/Papers/Lemma6_FOCM_10.pdf
https://doi.org/10.1016/j.acha.2016.06.001

	A New Class of Fully Discrete Sparse Fourier Transforms: Faster Stable Implementations with Guarantees
	Abstract
	1 Introduction
	1.1 Theoretical Results

	2 Notation and Setup
	2.1 Periodized Gaussians
	2.2 On the Robustness of the SFTs Proposed in Iwspsarxiv

	3 Description of the Proposed Approach
	3.1 Rapidly and Accurately Evaluating fastg

	4 An Error Guarantee for Algorithm 1 When Using the SFTs Proposed in Iwspsarxiv
	5 Numerical Evaluation
	5.1 Experiment Setup
	5.2 Runtime as Input Vector Size Varies
	5.3 Runtime as Sparsity Varies
	5.4 Robustness to Noise

	6 Conclusion
	Acknowledgements
	Appendix A: Fourier Basics: Continuous versus Discrete Fourier Transforms for Trigonometric Polynomials
	Appendix B: Proof of Lemmas 1, 2 and 3
	Appendix C: Proof of Lemma 4 and Theorem 2
	Appendix C.1: Proof of Theorem 2

	References

