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Abstract In this paper, we study the mean value property for both the harmonic
functions and the functions in the domain of the Laplacian on the tetrahedral Sierpinski
gasket. This paper is a continuation of the work of Strichartz and the first author (Qiu
and Strichartz, J Fourier Anal Appl 19:943–966, 2013)where the same property on
p.c.f. self-similar sets with Dihedral-3 symmetry was considered.
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1 Introduction

The analysis on the post critically finite (p.c.f.) self-similar sets has been studied exten-
sively since Kigami’s analytic construction of the fractal Laplacian on the Sierpinski
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gasket [9,10] (see [6,15,17–21,23] and the reference therein). Various problems have
been studied including the spectral analysis of the Laplacian [3,7,11,13,16,24], the
gradient and derivatives [5,19,25] and the energy measures [1,2,4,8], etc.

Recently, Strichartz and thefirst author [14] studied themeanvalue property for both
the harmonic functions and some general functions in the domain of the Laplacian on
p.c.f. self-similar sets with Dihedral-3 symmetry. Theymainly deal with the Sierpinski
gasket SG. Let μ be the normalized Hausdorff measure on SG and � be the standard
Laplacian with respect to μ. Then for each point x ∈ SG \ V0 (V0 is the boundary of
SG), they proved that there is a contracting sequence of neighborhoods of x , denoted
by {Bk(x)}k , called the mean value neighborhoods of x , such that

⋂
k Bk(x) = {x}

and

1

μ(Bk(x))

∫

Bk (x)
h(y)dμ(y) = h(x) (1.1)

holds for every harmonic function h and k ≥ 1.More generally, by introducing suitable
constant cBk (x) for each neighborhood Bk(x), they showed that for any function u in
the domain of the Laplacian such that �u is a continuous,

lim
k→∞

1

cBk (x)

(
1

μ(Bk(x))

∫

Bk (x)
u(y)dμ(y) − u(x)

)

= �u(x). (1.2)

The proof depends strongly on the Dihedral-3 symmetry, and the proof of (1.2) for
general functions is quite technical and could not be extended to other Dihedral-3 p.c.f.
self-similar sets. It is interesting to know to what extent these results can be extended
to other p.c.f. self-similar sets.

In this paper, we continue to consider the tetrahedral Sierpinski gasket, denoted by
SG4, which possesses fully symmetry, but not Dihedral-3 symmetry. We will prove
that the analogous mean value property holds for both the harmonic functions and the
general functions in the domain of the Laplacian.

Recall that a tetrahedral Sierpinski gasket SG4 is the unique nonempty compact set
in R

3 satisfying SG4 = ⋃3
i=0 Fi (SG4) for an iterated function system (IFS) {Fi }3i=0

on R
3 with Fi (x) = 1

2 (x − qi ) + qi , where {qi }3i=0 are the four vertices of a regular
tetrahedron, see Fig. 1.

We call the sets Fi (SG4) the cells of level 1, and by iterating the IFS we obtain cells
of higher level. For a word w = w1w2 · · ·wm of length m with wi ∈ {0, 1, 2, 3}, let
Fw = Fw1 ◦ Fw2 ◦ · · · Fwm . Call the cell Fw(SG4) a m-cell. Denote by V0 = {qi }3i=0

the boundary of SG4. Inductively, write Vm = ⋃3
i=0 FiVm−1 and V∗ = ⋃

m≥0 Vm .
The standard energy form (E, domE) on SG4 is given by

E(u, v) = lim
m→∞

(3

2

)m ∑

x∼m y

(
u(x) − u(y)

)(
v(x) − v(y)

)
,

and

dom(E) = {u ∈ C(SG4) : E(u) := E(u, u) < ∞},
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Fig. 1 The tetrahedral
Sierpinski gasket

where x ∼m y means x 	= y and x, y belong to a same Fw(V0) for some word w of
length m. Here 3

2 is the reciprocal of the renormalization factor of the energy form.
A function h is called harmonic if it minimize the graph energy

∑
x∼m y

(
h(x) −

h(y)
)2 for each m. It is direct to check that for any x ∈ V∗ \ V0,

h(x) = 1

6

∑

y∼mx

h(y), (1.3)

which can be viewed as a mean value property of harmonic functions at points in
V∗ \ V0. The space of harmonic functions is 4-dimensional and the values at points
in V0 may be freely assigned. There is a harmonic extension algorithm, the “13 − 1

6
rule” (similar to the “15 − 2

5 rule” in the SG case) for computing the values of a
harmonic function at all points in V∗ in terms of the boundary values. That is h(q01) =
1
3h(q0) + 1

3h(q1) + 1
6h(q2) + 1

6h(q3) and the symmetric alternates, where q01 is the
midpoint in the line segment joining q0 and q1. Any function u defined on Vm can be
extended harmonically on V∗, then continuously on SG4. We call it an m-piecewise
harmonic function on SG4.

Letμ be the normalizedHausdorff measure onSG4, write� the standard Laplacian
associated with μ via the weak formulation

E(u, v) = −
∫

v�udμ

for all v ∈ domE vanishing on V0. The Laplacian � satisfies the scaling property

�(u ◦ Fw) = 1

6m
(�u) ◦ Fw,



788 J Fourier Anal Appl (2019) 25:785–803

where 1
6 is the product of the measure scaling factor 1

4 and the energy renormalization
factor 2

3 .
The Dirichlet problem for the Laplacian, i.e., the unique solution vanishing on the

boundary V0 of −�u = f for given continuous function f , can be solved by inte-
grating against the Green’s function G(x, y), which is the uniform limit of GM (x, y),
defined by

GM (x, y) =
M∑

m=0

∑

z,z′∈Vm+1\Vm

(
2

3

)m

g(z, z′)ψ(m+1)
z (x)ψ(m+1)

z′ (y), (1.4)

as M goes to the infinity, where g(z, z′) = 5
36 when z = z′, g(z, z′) = 1

24 when
z ∼m+1 z′ and g(z, z′) = 1

36 elsewhere (this can be calculated by finding the inverse

of an appropriate matrix); and ψ
(m)
z (x) denotes the m-piecewise harmonic function

satisfying ψ
(m)
z (x) = δz(x) for x ∈ Vm .

The reader is referred to the books [12] and [22] for exact definitions and any
unexplained notations.

In this paper, we will prove the mean value property for the tetrahedral Sierpinski
gasket SG4 analogous to (1.1) and (1.2) for SG.
Theorem 1.1 For each x in SG4 \ V0, there exists a natural system of mean value
neighborhoods {Bk(x)}k with ⋂

k Bk(x) = {x} such that for any harmonic function h
and k ≥ 1, we have

1

μ(Bk(x))

∫

Bk (x)
h(y)dμ(y) = h(x).

For x ∈ SG4 \ V0 and k ≥ 1, we introduce that

cBk (x) = 1

μ(Bk(x))

∫

Bk (x)
v(y)dμ(y) − v(x),

where v is a function satisfying �v = 1. Then

Theorem 1.2 The coefficient cBk (x) is bounded above and below by a multiple of 1
6k
.

Moreover, for any function u ∈ dom� with g = �u satisfying the Hölder condition
that |g(y) − g(z)| ≤ cγ k for all y, z belonging to a same k-cell, for some constant
0 < γ < 1, c > 0, we have

lim
k→∞

1

cBk (x)

(
1

μ(Bk(x))

∫

Bk (x)
u(y)dμ(y) − u(x)

)

= �u(x). (1.5)

The paper is organized as follows. In Sect. 2, we will explain how to define the
mean value neighborhoods for any point x in SG4 \ V0 and prove Theorem 1.1. In
Sect. 3, we will deal with the mean value property for general functions in the domain
of the Laplacian and then prove Theorem 1.2. The purpose of this paper is to work
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out the details for one specific example other than the Sierpinski gasket. We hope it
will bring insights which inspire future work on a more general theory. The problem
on how to extend Theorem 1.2 to other fully symmetric p.c.f. self-similar sets remains
open.

2 Mean Value Property of Harmonic Functions on SG4

We write MB(u) = 1
μ(B)

∫
B udμ for any Borel set B contained in SG4 and function

u defined on B, for simplicity.

Lemma 2.1 (a) Let C be any cell with boundary points p0, p1, p2, p3, and h be any
harmonic function. Then MC (h) = 1

4

∑3
i=0 h(pi ).

(b) Let p be any point in V∗ \V0, and C1, C2 be the two m-cells meeting at p. Then
MC (h) = h(p).

Proof Choose a basis {h0, h1, h2, h3} of the harmonic functions on C by taking
hi (p j ) = δi j . Noticing that

∑3
i=0 hi is identically 1 on C ,

∫
C hidμ = 1

4μ(C) for
each i by symmetry. Thus we get (a) since any harmonic function h can be written
into h = ∑3

i=0 h(pi )hi . Combing (a) for C = C1 and C = C2 and the formula (1.3)
at p, we get (b). �

Obviously, (b) gives a trivial solution to the problem of finding mean value neigh-
borhoods for points in V∗ \V0. So wemainly focus on general points x ∈ SG4\V0. Let
Cw = Fw(SG4) be any cell containing x , which is small enough so that Cw does not
intersect V0. Write p0, p1, p2, p3 the 4 boundary points of Cw and denote Ci the cell
of the same level asCw meeting at pi . Let Dw = Cw ∪⋃3

i=0 Ci . See Fig. 2. Similar to
the SG case [14], we will find a mean value neighborhood B so that Cw ⊂ B ⊂ Dw.
If we can do so, then by letting Cw shrink to x , we could get a contacting sequence

Fig. 2 Cw and its neighboring
cells
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Fig. 3 The relative geometry of
B(c) and Cw

of mean value neighborhoods of x . On the other hand, since mean value neighbor-
hoods are just balls in Euclidean case, it is reasonable to require the set B as simple
as possible.

Definition 2.2 Let c = (c0, c1, c2, c3) be a 4-dimensional vector with all 0 ≤ ci ≤ 1,
and denote

B(c) = Cw ∪
3⋃

i=0

Ei

where each Ei is a sub-tetrahedral domain in Ci obtained by cutting Ci with a plane
away from pi symmetrically so that μ(Ei ) = ciμ(Ci ), see Fig. 3. Denote by

B = {B(c) : 0 ≤ ci ≤ 1, 0 ≤ i ≤ 3}

the 4-parameter family of all such sets.

Obviously, B(0, 0, 0, 0) = Cw, B(1, 1, 1, 1) = Dw and for each set B(c) ∈ B,
Cw ⊂ B(c) ⊂ Dw. We have two more observations for harmonic functions defined
on B(c).

Firstly, for any harmonic function h, by linearity, the value h(x) is a linear combi-
nation of {h(pi )}3i=0,

h(x) =
3∑

i=0

αi (x)h(pi ), (2.1)

where the coefficient vector α(x) = (
α0(x), α1(x), α2(x), α3(x)

)
depends only on

the location of x in Cw. Furthermore, considering h ≡ 1, we have
∑3

i=0 αi (x) = 1
and by the maximum principle all αi (x) ≥ 0.



J Fourier Anal Appl (2019) 25:785–803 791

Secondly, still by linearity, we have

MB(c)(h) =
3∑

i=0

βi (c)h(pi ), (2.2)

for some coefficient vector β(c) = (
β0(c), β1(c), β2(c), β3(c)

)
, which depends only

on the relative geometry between B(c) and Cw. Again we have
∑3

i=0 βi (c) = 1 by
considering h ≡ 1. Later we will show that βi (c)’s may not all greater than 0.

Proposition 2.3 β(c) is independent on the location of Cw in SG4.

Proof Let h be a harmonic function. For 0 ≤ i ≤ 3, denote by {pi , ri , si , ti } the
boundary points of Ci . By linearity and symmetry, 1

μ(Ci )

∫
Ei
hdμ must be a linear

combination of
(
h(pi ), h(ri ), h(si ), h(ti )

)
such that

1

μ(Ci )

∫

Ei

hdμ = mih(pi ) + ni
(
h(ri ) + h(si ) + h(ti )

)

for some non-negative coefficients mi , ni with mi + 3ni = ci . Notice that the coef-
ficients mi , ni are independent on the location of Ci in SG4, and depend only on the
relative position of Ei in Ci , i.e., depend only on ci .

By using formula (1.3), we then have

∫

Ei

hdμ =
(

(mi + 6ni )h(pi ) − ni
∑

j 	=i

h(p j )

)

μ(Ci ), 0 ≤ i ≤ 3. (2.3)

Since μ(Ei ) = ciμ(Ci ) and μ(Ci ) = μ(Cw), combing the above equality with
Lemma 2.1, we see that β(c) depends only on c and is independent of the location of
Cw in SG4. �

Define πα the range of the vector-valued function α by varying x in Cw, and πβ the
range of the vector-valued function β by varying cwith all 0 ≤ ci ≤ 1. For x ∈ Cw, to
ensure that there exists a set B(c) ∈ B so that B(c) is a mean value neighborhood of x ,
i.e., MB(c)(h) = h(x) holds for all harmonic functions, in view of formula (2.1) and
(2.2), we only need to verify that πα ⊂ πβ . Let S denote the simplex in R

4 defined
by

S =
{

c = (c0, c1, c2, c3) :
3∑

i=0

ci = 1, 0 ≤ ci ≤ 1

}

.

Since it is easy to check that πα ⊂ S, it suffices to prove S ⊂ πβ .
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Fig. 4 The regular tetrahedron
M(S)

Lemma 2.4 Let M be a 4 × 3 matrix defined by M =

⎛

⎜
⎜
⎝

0 0 2
√
2

1 −√
3 0

1
√
3 0

−2 0 0

⎞

⎟
⎟
⎠ . Then the

linear transform c → cM, still denoted by M, is homeomorphic from S onto M(S),
and M(S) is a regular tetrahedron in R3.

Proof It can be directly checked since the rank of the matrix M is 3. �
Denote the boundary vertices of M(S) by {P0, P1, P2, P3} corresponding to

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) in S accordingly. By establishing a
(u, v, w)-Cartesian coordinate system, we could require the coordinate of Pi to be the
i-th row of M , 0 ≤ i ≤ 3, see Fig. 4.

From Lemma 2.4, to prove S ⊂ πβ is equivalent to prove M(S) ⊂ M(πβ).

Proposition 2.5 M(S) ⊂ M(πβ).

Let B0 = {B(c) ∈ B : c0 = 0 ≤ c1 ≤ c2 ≤ c3 ≤ 1} and B∗ = {B(c) ∈ B :∏3
i=0 ci = 0}. Obviously, by symmetry, B0 is a 1

24 part of B∗ and B∗ is a subfamily of
B. To prove Proposition 2.5, we will restrict to consider the range of the vector-valued
function β over the vectors c such that B(c) ∈ B0.

Denote O the center of the regular tetrahedron M(S), O ′ the planar center of the
triangle face �P1P2P3 of M(S), and T the midpoint of the line segment joining P2
and P3, see Fig. 5. Obivously, the (u, v, w)-coordinates of O, O ′, T are (0, 0,

√
2
2 ),

(0, 0, 0), (− 1
2 ,

√
3
2 , 0), respectively. Let 0 ≤ c ≤ 1, write P(c) = M

(
β(0, 0, 0, c)

)
,

Q(c) = M
(
β(0, 0, c, c)

)
and R(c) = M

(
β(0, c, c, c)

)
. We need some lemmas.

Lemma 2.6 Varying 0 ≤ c ≤ 1, we have

(a) the trace of P(c) is a line segment joining O and P3;
(b) the trace of Q(c) is a line segment lying in the line lOT with endpoint Q(1) locating

below the (u, v)-plane;
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Fig. 5 A 1
24 part of M(S)

(c) the trace of R(c) is a line segment lying in the line lOO ′ with endpoint R(1) locating
below the (u, v)-plane, see Fig. 5.

Proof (a) Let 0 ≤ c ≤ 1, consider the set B = B(0, 0, 0, c). Write B = Cw ∪ E3
with μ(E3) = cμ(Cw). For any harmonic function h, by Lemma 2.1 and the identity
(2.3), we have

∫

Cw

hdμ = 1

4

3∑

i=0

h(pi )μ(Cw)

and
∫

E3

hdμ = (
(m + 6n)h(p3) − n

∑

j 	=3

h(p j )
)
μ(Cw),

where m, n are the same as that in (2.3) depending only on c.
An easy calculation yields that

MB(h) = 1

1 + c

((
1

4
− n

) ∑

j 	=3

h(p j ) +
(
1

4
+ m + 6n

)

h(p3)

)

.

So β(0, 0, 0, c) = 1
1+c (

1
4 − n, 1

4 − n, 1
4 − n, 1

4 +m + 6n). Then right multiplying
by the matrix M , we get

P(c) = M
(
β(0, 0, 0, c)

) = 1

1 + c

(

− 2m − 14n, 0,

√
2

2
− 2

√
2n

)

.

By using m + 3n = c, it is easy to verify that the (u, v, w)-coordinate of P(c)
satisfies
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u

−2
+ √

2w = 1, and v = 0,

which is exactly the equation of the line segment joining O and P3. Then (a) follows
by verifying that P(0) = O and P(1) = P3 and letting c vary continuously from 0 to
1.

(b) Now we consider the set B = B(0, 0, c, c). Write B = Cw ∪ E2 ∪ E3 with
μ(E2) = μ(E3) = cμ(Cw).A similar calculationyields thatβ(0, 0, c, c) = 1

1+2c (
1
4−

2n, 1
4 − 2n, 1

4 +m + 5n, 1
4 +m + 5n), where m, n are same as in (2.3) depending on

c. Right multiplying by the matrix M , we get

Q(c) = M
(
β(0, 0, c, c)

) = 1

1 + 2c

(

− 7n − m, 7
√
3n + √

3m,

√
2

2
− 4

√
2n

)

.

By using m + 3n = c, it is easy to verify that the (u, v, w)-coordinate of Q(c)
satisfies

√
3u + v = 0, and

2v√
3

+ √
2w = 1,

which is the equation of the line lOT . Furthermore, it is directly to check that Q(0) = O

and Q(1) = (− 1
12 ,− 1

12 ,
7
12 ,

7
12 )M = (− 2

3 ,
2√
3
,−

√
2
6 ). Thus (b) follows.

(c) Consider the set B = B(0, c, c, c) and write it into B = Cw ∪ ⋃3
i=1 Ei with

μ(Ei ) = cμ(Cw). Similar as before, we have β(0, c, c, c) = 1
1+3c (

1
4 − 3n, 1

4 + m +
4n, 1

4 + m + 4n, 1
4 + m + 4n), where m, n depending on c. Right multiplying by the

matrix M , we get

R(c) = M
(
β(0, c, c, c)

) = 1

1 + 3c

(

0, 0,

√
2

2
− 6

√
2n

)

.

Obviously, R(c) lies on the line lOO ′ . It is easy to check R(0) = O and R(1) =
(− 1

8 ,
3
8 ,

3
8 ,

3
8 )M = (0, 0,−

√
2
4 ). Then (c) follows. �

Lemma 2.7 For fixed 0 ≤ c ≤ 1, varying 0 ≤ c′ ≤ c, we have

(a) the trace of M
(
β(0, c′, c′, c)

)
, a continuous curve joining P(c) and R(c), is con-

tained in the (u, w)-plane;
(b) the trace of M

(
β(0, c′, c, c)

)
, a continuous curve joining Q(c) and R(c), is con-

tained in the plane containing the triangle �OO ′T ;
(c) the trace of M

(
β(0, 0, c′, c)

)
, a continuous curve joining P(c) and Q(c), is con-

tained in the plane containing the triangle �OP3T , see Fig. 6.

Proof (a) Consider the set B = B(0, c′, c′, c) with 0 ≤ c′ ≤ c ≤ 1, and write it into
B = Cw ∪ ⋃3

i=1 Ei with μ(E1) = μ(E2) = c′μ(Cw) and μ(E3) = cμ(Cw). Let
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Fig. 6 The traces in Lemma 2.7

m, n be associated with c and m′, n′ be associated with c′ as in (2.3). Then an easy
calculation yields that

β(0, c′, c′, c) = 1

1 + 2c′ + c

(
1

4
− 2n′ − n,

1

4
+ m′ + 5n′ − n,

1

4
+ m′

+ 5n′ − n,
1

4
− 2n′ + m + 6n

)

.

Right multiplying the matrix M , we get

M
(
β(0, c′, c′, c)

)

= 1

1 + 2c′ + c

(

2m′ + 14n′ − 2m − 14n, 0,

√
2

2
− 4

√
2n′ − 2

√
2n

)

.

Thus the v-coordinate of M
(
β(0, c′, c′, c)

)
always equals to 0, so (a) follows when

varying c′ continuously from 0 to c.
(b) Consider the set B = B(0, c′, c, c) with 0 ≤ c′ ≤ c ≤ 1, and write it into

B = Cw ∪ ⋃3
i=1 Ei with μ(E1) = c′μ(Cw) and μ(E2) = μ(E3) = cμ(Cw). Let

m, n be associated with c and m′, n′ be associated with c′ as before. Then

β(0, c′, c, c) = 1

1 + c′ + 2c

(
1

4
− n′ − 2n,

1

4
+ m′ + 6n′ − 2n,

1

4

− n′ + m + 5n,
1

4
− n′ + m + 5n

)

.
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Right multiplying the matrix M , we get

M
(
β(0, c′, c, c)

) = 1

1 + c′ + 2c

(

m′ + 7n′ − m − 7n,
√
3(−m′ − 7n′

+ m + 7n),

√
2

2
− 2

√
2n′ − 4

√
2n

)

.

It is directly to see that the (u, v)-coordinate ofM
(
β(0, c′, c, c)

)
satisfies

√
3u+v = 0.

So (b) follows by varying c′ continuously from 0 to c.
(c) Now we consider the set B = B(0, 0, c′, c) with 0 ≤ c′ ≤ c ≤ 1, and write it

into B = Cw ∪ E2 ∪ E3 with μ(E2) = c′μ(Cw) and μ(E3) = cμ(Cw). Let m, n be
associated with c and m′, n′ be associated with c′ as before. Then

β(0, 0, c′, c) = 1

1 + c′ + c

(
1

4
− n′ − n,

1

4

− n′ − n,
1

4
+ m′ + 6n′ − n,

1

4
− n′ + m + 6n

)

.

Right multiplying the matrix M , we get

M
(
β(0, 0, c′, c)

) = 1

1 + c′ + c

(

m′ + 7n′ − 2m − 14n,
√
3(m′

+ 7n′),
√
2

2
− 2

√
2n′ − 2

√
2n

)

.

Noticing that the normal vector of the plane containing �OP3T is n =
( 1
2
√
3
,− 1

2 ,− 2√
6
), it is easy to check that

n · P3M
(
β(0, 0, c′, c)

) = 0.

So (c) follows. �

Lemma 2.8 For 0 ≤ c1 ≤ c2 ≤ 1, M
(
β(0, c1, c2, 1)

)
always locates below the

(u, v)-plane.

Proof We need to consider the set B = B(0, c1, c2, 1), write it into B = Cw ∪ E1 ∪
E2 ∪ C3 with μ(E1) = c1μ(Cw), μ(E2) = c2μ(Cw) and μ(C3) = μ(Cw). Similar
as before, we can calculate that

β(0, c1, c2, 1) = 1

2 + c1 + c2
(−n1 − n2,m1 + 6n1 − n2,−n1 + m2 + 6n2,

2 − n1 − n2)
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where mi , ni are associated with ci , i = 1, 2, respectively. Right multiplying M , we
get

M
(
β(0, c1, c2, 1)

) = 1

2 + c1 + c2

(
m1 + 7n1 + m2 + 7n2 − 4,

√
3(−m1 − 7n1

+ m2 + 7n2),−2
√
2(n1 + n2)

)
.

Obviously, the w-coordinate of M
(
β(0, c1, c2, 1)

)
is always less than 0, which com-

pletes the proof. �
Proof of Proposition 2.5. By using Lemmas 2.6, 2.7 and 2.8, varying the parameter
c3 between 0 and 1 continuously, it is easy to find that the range of M

(
β(c)

)
over the

vectors {c = (c0, c1, c2, c3) : c0 = 0 ≤ c1 ≤ c2 ≤ c3 ≤ 1} contains the tetrahedron
whose vertices are O, O ′, T and P3. Then by symmetry, we haveM(S) ⊂ {M(

β(c)
) :

B(c) ∈ B∗}. Since B∗ is a subfamily of B, we then have M(S) ⊂ M(πβ), which
completes the proof. �

Now we have

Theorem 2.9 For x ∈ Cw, there exists a mean value neighborhood B ∈ B of x with
Cw ⊂ B ⊂ Dw. Moreover, if we denote by B∗ = {B(c) ∈ B : ∏3

i=0 ci = 0}, then
there exists a unique mean value neighborhood B ∈ B∗.

Proof The existence follows readily fromLemma2.4 andProposition 2.5. The unique-
ness follows since for and different c, c′ such that B(c), B(c′) ∈ B∗, we have obviously
M

(
β(c)

) 	= M
(
β(c′)

)
. �

In what follows, to make the mean value neighborhoods as simple as possible, we
always choose them from B∗.

Proof of Theorem 1.1. It follows by applyingTheorem2.9 to a sequence ofCw shrink-
ing to x . �

3 Mean Value Property of General Functions on SG4

In this section, we turn to consider themean value property for more general functions,
i.e., those functions in the domain of the Laplacian.

For x ∈ SG4\V0,motivated by theSG case [14], for eachmean value neighborhood
B of x , we define

cB = MB(v) − v(x)

for any function v satisfying �v = 1. We remark that the definition is independent of
the particular choice of v, since any two such functions differ by a harmonic function
and the equality MB(h) − h(x) = 0 always holds for harmonic functions. Here we
choose

v(·) = −
∫

G(·, y)dμ(y)



798 J Fourier Anal Appl (2019) 25:785–803

which vanishes on the boundary of SG4, where G(x, y) is the Green’s function we
mentioned in Sect. 1.

Lemma 3.1 For x ∈ SG4 \ V0, let B be a mean value neighborhood of x, then

cB = − 1

24

∞∑

m=0

1

6m
(
MB(φm) − φm(x)

)
, (3.1)

where φm = ∑
z∈Vm+1\Vm ψ

(m+1)
z .

Proof Obviously, the function v is the uniform limit of vM = − ∫
GM (·, y)dμ(y)

where GM (x, y) is given in (1.4).
By interchanging the integral and summation, we have

vM = −
M∑

m=0

(2

3

)m ∑

z,z′∈Vm+1\Vm
g(z, z′)ψ(m+1)

z

∫

ψ
(m+1)
z′ (y)dμ(y).

Notice that by symmetry, for each z′ ∈ Vm+1 \ Vm ,
∫

ψ
(m+1)
z′ (y)dμ(y) = 2

4m+2 .
So

vM = −1

8

M∑

m=0

1

6m
∑

z,z′∈Vm+1\Vm
g(z, z′)ψ(m+1)

z .

Taking the value of g(z, z′) into the above equality, an easy calculation yields that
vM = − 1

24

∑M
m=0

1
6m φm, and thus

v = − 1

24

∞∑

m=0

1

6m
φm .

Thus by the definition of cB , (3.1) follows, which completes the proof. �
The following lemma is obvious by scaling argument, see Lemma 4.1 in [14] for

the analogous one in SG case.

Lemma 3.2 Let x, x ′ be two points in SG4 \ V0. Let B and B ′ be two k-th and k′-th
mean value neighborhood of x and x ′ respectively. If B and B ′ have the same shapes
(the same coefficient vector c such that B = B(c) and B ′ = B ′(c)), then

cB = 6k
′−kcB′ .

Proposition 3.3 There exists two constant c#, c# > 0 such that for any x ∈ SG4 \ V0
and any k, we have

c#
1

6k
≤ cBk (x) ≤ c#

1

6k
.
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Proof Assume Cw is a k-cell containing x , not intersecting V0, B = Bk(x) is the k-th
mean value neighborhood of x . Then Cw ⊂ B ⊂ Dw. From Lemma 3.2, since cB
depends only on the relative geometry of B and Cw, as well as k, we may assume that
Dw is contained in a (k − 2)-cell in SG4 without loss of generality.

Estimate of cB from above. By Lemma 3.1, we have

cB = − 1

24

∞∑

m=0

1

6m
(
MB(φm) − φm(x)

)
. (3.2)

Since when m + 1 ≤ k − 2, φm is harmonic in the (k − 2)-cell containing Dw, the
first k − 2 terms of (3.2) contribute 0 to cB . Thus

cB = − 1

24

∞∑

m=k−2

1

6m
(
MB(φm) − φm(x)

)
. (3.3)

From (3.3), we have

|cB | ≤ 1

24

∞∑

m=k−2

1

6m
1

μ(B)

∫

B
|φm(y) − φm(x)|dμ(y).

By using the maximum principle, we get

|cB | ≤ 1

24

∞∑

m=k−2

1

6m
= 9

5
· 1

6k
.

Estimate of cB from below. By symmetry, we may assume that x is located in the
1
4 region of Cw, the tetrahedron whose vertices are o, p1, p2, p3, where o is the center
point in the tetrahedron containing Cw, see Fig. 7.

By Theorem 2.9 and the proof of Proposition 2.5, we can write B = Cw ∪⋃3
i=1 Ei

where each Ei = B∩Ci withμ(Ei ) = ciμ(Cw) for some coefficients 0 ≤ c1, c2, c3 ≤
1. Let B̃ = F0(SG4) ∪ ⋃3

i=1 Ẽi , with Ẽi ⊂ Fi (SG4) and μ(Ẽi ) = ciμ
(
F0(SG4)

)
,

then by Lemma 3.2,

cB = 61−kcB̃ .

Thus we only need to prove that cB̃ has a positive lower bound. So for simplicity in
notation, from now on, we take Cw to be F0(SG4) and write

B = F0(SG4) ∪
3⋃

i=1

Ei .

In this setting, p0 = q0 and for 1 ≤ i ≤ 3, pi = F0qi ,Ci = Fi (SG4) and Ei = B∩Ci .
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Fig. 7 x in Cw

Write v∗ = ∑∞
m=0

1
6m φm and c∗

B = MB(v∗) − v∗(x), then cB = − 1
24c

∗
B . We only

need to prove c∗
B has a negative upper bound. This can be done using the following 3

claims.
Claim 1. 0 ≤ v∗ ≤ 1 on SG4 and v∗ takes constant 1 on

⋃3
i=0 Fi (SG4 ∩ Ti ),

where Ti denotes the triangle whose vertices are V0 \ {qi }.

Proof For M ≥ 0, write v∗
M = ∑M

m=0
1
6m φm . It is a (M + 1)-piecewise harmonic

function on SG4. We divide the points in VM+1 into three parts, V (1)
M+1, V

(2)
M+1 and

V (3)
M+1, where V (1)

M+1 consists of those points lying on
⋃3

i=0 Fi (SG4 ∩ Ti ), V
(2)
M+1

consists of those points at distance 2−(M+1) from
⋃3

i=0 Fi (SG4 ∩ Ti ), and V (3)
M+1

consists of the remain points. By using the “13 − 1
6” rule inductively, we have v∗

M ≡ 1

on V (1)
M+1, v∗

M ≡ 1 − 1
6M

on V (2)
M+1, and v∗

M ≤ 1 − 1
6M

on V (3)
M+1. Since v∗

M goes

uniformly to v∗ and V (1)
M+1 goes to

⋃3
i=0 Fi (SG4 ∩ Ti ) as M goes to infinity, the claim

follows. �

Claim 2. For x contained in the tetrahedron whose vertices are o, p1, p2, p3,
v∗(x) ≥ 215

216 .

Proof Observe that for each x in the tetrahedron whose vertices are o, p1, p2, p3, it
will be contained in one of the 27 4-cells lying along the face F0(SG4 ∩ T0). Then
since v∗

3 is harmonic in each such cell, by using the maximum principle and the proof
of Claim 1, we have

v∗(x) ≥ v∗
3(x) ≥ 1 − 1

63
.

�



J Fourier Anal Appl (2019) 25:785–803 801

Claim 3. MB(v∗) ≤ 39
40 .

Proof It is directly to calculate that for m ≥ 0,

∫

F0(SG4)

φmdμ = 1

4
· 
(Vm+1 \ Vm) · 2

4m+2 = 3

16
.

Thus

∫

F0(SG4)

v∗dμ = 3

16

∞∑

m=0

1

6m
= 9

40
.

So by Claim 1, we have

MB(v∗) = 1

μ(B)

( ∫

F0(SG4)

v∗dμ +
3∑

i=1

∫

Ei

v∗dμ

)

≤
9
40 + ∑3

i=1 μ(Ei )

μ(F0(SG4)) + ∑3
i=1 μ(Ei )

=
9
10 + ∑3

i=1 ci

1 + ∑3
i=1 ci

≤
9
10 + 3

1 + 3
= 39

40
,

which completes the proof. �
Combining Claim 2 and 3, we have proved that c∗

B ≤ 39
40 − 215

216 = − 11
540 . Hence

cB ≥ 1

24
· 11

540
> 0.

This completes the proof. �
Proof of Theorem 1.2 The estimation of cBk (x) follows from Proposition 3.3.

For x ∈ SG4 \ V0 and Cw a k-cell containing x , not intersecting V0. Then Cw ⊂
Bk(x) ⊂ Dw. Let u ∈ dom� satisfy the Hölder condition. We write

u = h(k) + (
�u(x)

)
v + r (k)

where h(k) is harmonic inCw and h(k) +(
�u(x)

)
v assumes the same boundary values

as u at the boundary of Cw.
We first prove that the remainder r (k) satisfies r (k) = O

(
(
γ
6 )k

)
on Bk(x). In fact, it

is easy to check that �r (k)(·) = �u(·) − �u(x) and the value of r (k) vanishes at the
boundary of Cw. So r (k) is given by the integral of �u(·) − �u(x) against a scaled
Green’s function onCw. Noticing that the scaling factor is ( 16 )

k and |�u(·)−�u(x)| ≤
cγ k on Cw, we then get r (k) = O

(
(
γ
6 )k

)
on Cw, and thus on Bk(x).
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Now we come to prove (1.5). Since MBk (x)(h
(k)) − h(k)(x) = 0 and MBk (x)(v) −

v(x) = cBk (x), we have

1

cBk (x)

(
MBk (x)(u) − u(x)

) − �u(x) = 1

cBk (x)

(
MBk (x)(r

(k)) − r (k)(x)
)
.

Noticing that r (k) = O
(
(
γ
6 )k

)
and by the estimation of cBk (x) in Proposition 3.3, we

then have

1

cBk (x)

(
MBk (x)(u) − u(x)

) − �u(x) = O(γ k).

Hence by letting k → ∞, we finally get (1.5). �
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