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Abstract We give a simple example of an n-tuple of orthonormal elements in L2
(actually martingale differences) bounded by a fixed constant, and hence subgaussian
with a fixed constant but that are Sidon only with constant ≈ √

n. This is optimal.
The first example of this kind was given by Bourgain and Lewko, but with constant
≈ √

log n. We also include the analogous n × n-matrix valued example, for which
the optimal constant is ≈ n. We deduce from our example that there are two n-tuples
each Sidon with constant 1, lying in orthogonal linear subspaces and such that their
union is Sidon only with constant ≈ √

n. This is again asymptotically optimal. We
show that any martingale difference sequence with values in [−1, 1] is “dominated”
in a natural sense (related to our results) by any sequence of independent, identically
distributed, symmetric {−1, 1}-valued variables (e.g. the Rademacher functions). We
include a self-contained proof that any sequence (ϕn) that is the union of two Sidon
sequences lying in orthogonal subspaces is such that (ϕn ⊗ ϕn ⊗ ϕn ⊗ ϕn) is Sidon.

Mathematics Subject Classification Primary: 43A46 · 42C05; Secondary: 60642 ·
60646

One of the most celebrated results in the theory of Sidon sets in the trigonometric
systemon the circle (or on a compactAbelian group) isDrury’s union theorem that says
that the union of two (disjoint) Sidon sets is still a Sidon set. In a recent paper Bourgain
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and Lewko [2] considered Sidon sets for a general uniformly bounded orthonormal
system (ϕn) in L2 over an arbitrary probability space (T,m). They extended some
of the classical results known for systems of characters on compact Abelian groups.
We continued on the same theme in [6]. Let us recall the basic definitions. We say
that (ϕn) is Sidon if there is a constant C such that for any finitely supported scalar
sequence n �→ xn ∑

|xn| ≤ C‖
∑

xnϕn‖∞. (1)

The smallest such C is called the Sidon constant of (ϕn). The system (ϕn) is called
⊗k-Sidon if the system (ϕn(t1)ϕn(t2) · · · ϕn(tk)) is Sidon in L2(T k,m × · · · × m).
We say that (ϕn) is subgaussian if there is a constant β such that for any finite scalar
sequence (xn) such that

∑ |xn|2 ≤ 1 we have

∫
e| ∑ xnϕn |2/β2

dm ≤ e.

When this holds we say that (ϕn) is β-subgaussian.
Bourgain and Lewko [2] proved that subgaussian does not imply Sidon but does

imply ⊗5-Sidon, and the author [6] improved this to ⊗2-Sidon.
Let (gn) be an i.i.d. sequence of standard Gaussian random variables. We say that

(ϕn) is randomly Sidon if there is a constant C such that for any finite scalar sequence
(xn) we have

∑
|xn| ≤ CE‖

∑
gnxnϕn‖∞.

In [6], we proved that randomly Sidon implies ⊗4-Sidon. It follows as an immediate
corollary that the union of two mutually orthogonal Sidon systems is ⊗4-Sidon (see
Theorem 15 for a quick outline of a direct proof). This generalizes Drury’s celebrated
union theorem for sets of characters. Naturally, this last result raises the question
whether ⊗4-Sidon can be replaced by ⊗k-Sidon for k < 4. While we cannot decide
this for k = 2 or k = 3, the goal of the present note is to settle the question at least
for k = 1.

Wefirst improveBourgain and Lewko’s example from [2] showing that subgaussian
does not imply Sidon for uniformly bounded orthonormal systems. Our example is a
(very simple) martingale difference sequence and the constant is asymptotically sharp.
As a corollary we show that, not surprisingly, Drury’s union theorem does not extend
to two mutually orthogonal uniformly bounded orthonormal systems.

Theorem 1 Fix ε > 0. There is a uniformly bounded real valued orthonormal system
(ϕn) with ‖ϕn‖∞ ≤ 1 + ε for all n that is subgaussian and actually satisfies

Ee
∑

xnϕn ≤ e(1+ε)2
∑

x2n/2 (2)

for any finite sequence of real numbers (xn), but (ϕn) is not a Sidon system.
More precisely, the smallest constant Cn such that for any scalar coefficients (xk)

we have
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∑n

1
|xk | ≤ Cn‖

∑n

1
xkϕk‖∞

satisfies
∀n ≥ 1 Cn ≥ δε

√
n, (3)

where δε > 0 depends only on ε. In addition, (ϕn) is a martingale difference sequence.

Proof Let (εn) be a sequence of independent choices of signs, i.e. independent ±-
valued random variables on a probability space (�,P) taking the values ±1 with
probabilility 1/2. Let An be the σ -algebra generated by {εk | 0 ≤ k ≤ n}. Let
0 = a0 ≤ · · · ≤ an−1 ≤ an ≤ · · · be a fixed non-decreasing sequence for the
moment. Consider A0 = �, S0 = 0, and define inductively An ∈ An and Sn as
follows:

Sn = Sn−1 + εn1An−1 and An = {|Sn| ≤ an}.

Assume that P(An) ≥ δ for some fixed δ > 0. Then let

fn = εn1An−1 . (4)

This is a martingale difference sequence with ‖ fn‖∞ ≤ 1, therefore an orthogonal
system such that

Sn = f1 + · · · + fn

and moreover

‖ fn‖22 ≥ δ.

We claim that the Sidon constant of { f1, . . . , fn} is ≥ n/(1 + an−1). This follows
from the observation that

∀n ‖Sn‖∞ ≤ 1 + an−1. (5)

Indeed, this is immediate by induction on n (since either ‖Sn‖∞ ≤ an−1 + 1 or
‖Sn‖∞ ≤ ‖Sn−1‖∞ depending whether ‖Sn‖∞ is attained on An−1 or on its comple-
ment).

Now by Azuma’s inequality (see e.g. [5, p. 501]) we know that ( fn) is subgaussian
with a good constant. In fact for any real numbers t and xn with (xn) in �2

Eet
∑

xn fn ≤ et
2 ∑ |xn |2/2. (6)

In particular

P({|Sn| > t}) ≤ 2e−t2/2n . (7)

Fix ε > 0. Taking an = c
√
n, this gives us

P({|Sn| > an}) ≤ 2e−c2/2,
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so we can choose a numerical value of c, namely c = cε, large enough so that

P({|Sn| > an}) ≤ 1 − (1 + ε)−2.

Then we have by what precedes ‖Sn‖∞ ≤ an−1 + 1 = cε

√
n − 1 + 1 and

‖ fn‖2 = P({|Sn−1| ≤ an−1})1/2 ≥ (1 + ε)−1

for all n. Therefore the Sidon constant of { f1, . . . , fn} is ≥ n/(1 + an−1). Letting

ϕn = fn‖ fn‖−1
2

we find ‖ϕn‖∞ ≤ 1 + ε for all n, (ϕn) is orthonormal and (3) holds. By Azuma’s
inequality (6) we also have (2). �
Remark 2 I am grateful to B. Maurey for suggesting the following neater example
(S′

k). Let us first fix n ≥ 1, and hence an > 0 is fixed. Let Mk = ε1 + · · · + εk for all
k ≥ 1. Define the stopping time Tn by Tn = inf{k ≥ 0 | |Mk | > an} and Tn = ∞ if
|Mk | ≤ an for all k ≥ 0. Recall the classical inequalities

∀t > 0 P({ sup
1≤k≤n

|Mk | > t}) ≤ 2P({|Mn| > t}) ≤ 4e−t2/2n .

The first one goes back to Paul Lévy (see e.g. [5, p. 28]), it is closely related to Désiré
André’s reflection principle for Brownian motion (see e.g. [4, p. 558]) and the second
one follows from (7). We then set for k ≥ 1 S′

k = Mk∧Tn and

f ′
k = S′

k − S′
k−1 = εk1{Tn≥k}.

In the previous example this corresponds to sets A′
k−1 = {Tn ≥ k} = {Tn ≤ k − 1}c ∈

Ak−1. We have clearly ‖S′
k‖∞ ≤ an + 1 for all k, and it is easy to check, since

A′
k−1 = {sup j<k |Mj | ≤ an}, that we again can choose an = cε

√
n so that for any

1 ≤ k ≤ n we have

P(A′
k−1) ≥ P(A′

n) = P({ sup
1≤k≤n

|Mk | ≤ an})

= 1 − P({ sup
1≤k≤n

|Mk | > an}) ≥ (1 + ε)−2.

Remark 3 Since (ϕn) is formed of mean zero variables (2) holds iff there is β ′ such
that

∀p ≥ 2 ∀(xn) ∈ �2 ‖
∑

xnϕn‖p ≤ β ′√p(
∑

|xn|2)1/2 (8)

Remark 4 Let (ϕn) be any orthonormal system. Then for any scalar coefficients (xk)
we have obviously

∑n

1
|xk | ≤ √

n(
∑n

1
|xk |2)1/2 ≤ √

n‖
∑n

1
xkϕk‖∞.
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Thus the order of growth of the Sidon constant in (3) and the next statement are both
sharp.

Corollary 5 There are two orthonormal martingale difference sequences (ϕ+
n ) and

(ϕ−
n ) with orthogonal linear spans such that each has the same distribution as the

Rademacher functions (i.e. each is formed of independent±-valued random variables
with mean zero) but their union is not a Sidon system. More precisely the union of
{ϕ+

k | k ≤ n} and {ϕ−
k | k ≤ n} has a Sidon constant Cn growing like

√
n.

Proof Let will modify slightly the preceding proof and construct by induction a
sequence S′

n . We wish to choose by induction a set Bn ⊂ � in An (just like An

was) and we again set S′
n = S′

n−1 + εn1Bn−1 . but we choose Bn satisfying

Bn ⊂ {|S′
n| ≤ an

}
and P(Bn) = 1/2. (9)

To be able to make this choice all we need to know is that P({|S′
n| ≤ an}) ≥ 1/2. Then

the preceding argument, associated to ε = √
2 − 1 still guarantees that P({|S′

n−1| ≤
an−1}) ≥ 1/2. Thus we clearly can select Bn for which (9) holds and we again obtain
‖S′

n‖∞ ≤ 1 + √
n − 1 for all n.

Then let

ϕ±
n = εn(1Bn−1 ± 1�\Bn−1).

Note that since P(Bn−1) = 1/2 we have ϕ+
n ⊥ ϕ−

n for any n and hence ϕ+
n ⊥ ϕ−

k for
any n, k. Then each of the sequences {ϕ±

k | k ≤ n} is a martingale difference sequence
with values in {±1}. It is a well known fact (proved by induction as a simple exercise)
that this forces each to be distributed uniformly over all choices of signs. Now let
{ψk | k ≤ 2n} denote the union of the two systems {ϕ+

k | k ≤ n} and {ϕ−
k | k ≤ n}.

Clearly the Sidon constant of {ψk | k ≤ 2n} dominates that of {(ϕ+
k +ϕ−

k )/2 | k ≤ n}.
But the latter is the system {εk1Bk−1 | k ≤ n} as in the preceding proof but with Bk

replacing Ak . Since ‖S′
n‖∞ ≤ 1 + √

n − 1, (3) still holds for this system, so the
corollary follows. �
Remark 6 We may clearly replace (εn) by an i.i.d. sequence of complex valued vari-
ables (zn) uniformly distributed over the unit circle of C. For those it is still true that
for any unimodular sequence (wn) that is adapted (i.e. wn is An-measurable for each
n) the sequence (znwn−1) is independent and uniformly distributed over the unit cir-
cle. Then the corresponding two sequences (ϕ±

n ) are Sidon with constant 1, and their
union is not Sidon for the same reason as in the preceding corollary.

Problem: In [2] Bourgain and Lewko show that any n-tuple forming a β-subgaussian
orthonormal systemuniformly boundedby a constantC contains a subset of cardinality
≥ θn with θ = θ(β,C) > 0 that is Sidon with Sidon constant at most f (β,C). They
ask whether any such system is actually the union of k(β,C) Sidon sequences with
Sidon constant at most f (β,C).

Is this true for uniformly bounded martingale difference sequences normalized in
L2 ?
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Although for the example appearing in the proof of Theorem 1 the answer is affir-
mative (consider e.g. a partition into odd and even k’s), we believe that amore involved
one with values in {−1, 0, 1} as in (4) but with a more subtle choice of the predictable
sets An−1, should yield a counterexample.

Let Mn be the space of n × n-matrices with complex entries, equipped with the
usual operator norm on the n-dimensional Hilbert space. In [6] we consider a non-
commutative analogue involving a n × n-matrix valued function ϕ(t) = [ϕ(t)i j ] on
a probability space (T,m) for which the uniform boundedness condition is replaced
by

‖ϕ(t)‖Mn ≤ C

and we assume that {√nϕ(t)i j | 1 ≤ i, j ≤ n} is β-subgaussian and orthonormal.
The prototypical example is when ϕ is uniformly distributed over the unitary group.
In this situation we prove in [6, Prop. 5.4] that there is a constant α = α(C, β) such
that

∀a ∈ Mn tr|a| ≤ α sup
t1,t2∈T

|tr(aϕ(t1)ϕ(t2))|.

In analogy with Theorem 1 it is natural to wonder what is the best constant C ′
n such

that in the same situation

∀a ∈ Mn tr|a| ≤ C ′
n sup
t∈T

|tr(aϕ(t))|.

Clearly the orthonormality assumption yields

∀a ∈ Mn n−1tr|a| ≤ (n−1tr|a|2)1/2 = ‖tr(aϕ(t)‖2 ≤ ‖tr(aϕ(t)‖∞
= sup

t∈T
|tr(aϕ(t)|.

and hence C ′
n ≤ n.

It is easy to see that this is asymptotically optimal. Indeed, consider the following
example. Let x �→ D(x) be themapping taking an n×nmatrix to its diagonal part. Let
u denote a random n × n unitary matrix uniformly distributed over the unitary group.
Let (ϕ1, . . . , ϕn) be the orthonormal n-tuple constructed in the proof of Theorem
1, of which we keep the notation, namely ϕk = fk‖ fk‖−1

2 . Assuming (T,m) large
enough, we define ϕ : T → Mn so that ϕ − D(ϕ) and D(ϕ) are independent random
variables; we make sure that ϕ − D(ϕ) and u − D(u) have the same distribution
and we adjust the diagonal entries of D(ϕ) so that they have the same distribution
as (ϕ1/

√
n, . . . , ϕn/

√
n). Then for a suitable β (independent of n) {√nϕ(t)i j | 1 ≤

i, j ≤ n} is β-subgaussian and orthonormal. However, if a is the diagonal matrix with
entries (‖ f1‖2, . . . , ‖ fn‖2) we have on one hand by (5) ‖tr(aϕ)‖∞ = ‖( f1 + · · · +
fn)/

√
n‖∞ ≤ cε, and on the other hand tr|a| ≥ n(1 + ε)−1. Therefore

C ′
n ≥ n(1 + ε)−1c−1

ε .
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Definition 7 Let I be an index set. Let L1(m′), L1(m′′) be arbitrary L1-spaces. We
say that a family ( fn)n∈I in L1(m′′) is c-dominated by another one (ψn)n∈I in L1(m′)
if there is a linear map u : L1(m′) → L1(m′′) with ‖u‖ ≤ c such that u(ψn) = fn
for all n ∈ I .

The following criterion due to M. Lévy (see [3] and [6, Prop.1.5]) is very useful:
a linear map v : E → L1(m′′) on a subspace E ⊂ L1(m′) admits an extension
u : L1(m′) → L1(m′′) with ‖u‖ ≤ 1 iff for any finite sequence (ηn) in E we have

‖ sup |v(ηn)|‖L1(m′′) ≤ ‖ sup |ηn|‖L1(m′). (10)

If we apply this to E = span[ψn] with v defined by v(ψn) = fn , this gives us
the following criterion: a sequence ( fn)n∈I in L1(m′′) is c-dominated by a sequence
(ψn)n∈I in L1(m′) iff for any Banach space B and any finite sequence (xn) in B we
have

‖
∑

fnxn‖L1(B) ≤ c‖
∑

ψnxn‖L1(B). (11)

Indeed, it is easy to see that we may restrict consideration to the single space B = �∞,
in which case (10) and (11) are identical.

Remark 8 The key fact used in [6] is that, for some numerical constant K , any β-
subgaussian sequence (ϕn)n∈N in X = L1(T,m) is Kβ-dominated by a standard
i.i.d. sequence of Gaussian normal variables (on a probability space (�′,P′)), denoted
by (gn)n∈N. This is essentially due to Talagrand; see [6] for detailed references and
comments. It would be interesting to have a direct simple proof of this fact.

If we assume moreover that the β-subgaussian sequence (ϕn)n∈N is uniformly
bounded, i.e. that ‖ϕn‖∞ ≤ α for all n, then, for some numerical constant K ′, the
sequence (ϕn)n∈N is K ′(β +α)-dominated by (εn). This follows from the solution by
Bednorz and Latała [1] of Talagrand’s Bernoulli conjecture.

We would like to observe that if ( fn) is a martingale difference sequence then
a very simple proof is available (with an optimal constant). We start with a special
case of the form fn = εnϕn−1 with ϕn−1 depending only on ε1, . . . , εn−1 satisfying
‖ϕn−1‖∞ ≤ 1 (which is subgaussian by (6)). This is particularly easy. Indeed, for any
y ∈ [−1, 1] let

F(t, y) = (−1)1[0,(1−y)/2](t) + (1)1((1−y)/2,1](t),

so that
∫ 1
0 F(t, y)dt = y and F(t, y) = ±1. Let us consider the sequence of random

variables Fn defined on [0, 1]N × {−1, 1}N by setting

Fn((t j ), (ε j )) = εn F(tn−1, ϕn−1).

Let u be the conditional expectation onto the algebra of functions depending on the
second variable on [0, 1]N × {−1, 1}N. Then u(Fn) = fn . Moreover since (Fn) is a
martingale with values in ±1 it has the same distribution as (εn) itself. In other words,
there is an isometry v : L1(�,P) → L1([0, 1]N × {−1, 1}N) such that v(εn) = Fn
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for all n. Considering the composition uv, this shows that ( fn) is 1-dominated by
(εn), and the latter is easily shown to be c-dominated by (gn) (the latter being, say, in
L1(�

′,P′)) for some numerical constant c.
More generally, let (�′,A′,P′) be an arbitrary probability space. We have

Lemma 9 Let ϕ ∈ L1(�
′,A′,P′) be with values in [−1, 1] and such that Eϕ = 0.

Then for any Banach space B and any x0, x1 ∈ B

E
′‖x0 + ϕx1‖ ≤ E‖x0 + ε1x1‖. (12)

More generally, if B ⊂ A′ is any σ -subalgebra such that EBϕ = 0 we have for any
x0 ∈ L1(�

′,B,P′; B)

E
′‖x0 + ϕx1‖ ≤ E

′
E‖x0 + ε1x1‖. (13)

Proof We have

x0 + ϕx1 =
∫

x0 + F(t, ϕ)x1dt.

and hence by Jensen

‖x0 + ϕx1‖ ≤
∫

‖x0 + F(t, ϕ)x1‖dt = ‖x0 − x1‖(1 − ϕ)/2

+‖x0 + x1‖(1 + ϕ)/2.

After integration, we obtain (12). To prove (13) it suffices to show that

E
B‖x0 + ϕx1‖ ≤ E

B(‖x0 + x1‖ + ‖x0 − x1‖)/2, (14)

or equivalently that for any A ∈ B with P′(A) > 0 we have

P
′(A)−1

∫

A
‖x0 + ϕx1‖dP′ ≤ P

′(A)−1
∫

A
(‖x0 + x1‖ + ‖x0 − x1‖)/2dP′, (15)

Assume that A ∈ B is an atom of B. Then x0 is constant on A and EB when restricted
to A coincides with the average over A. Thus (15) reduces to (13) with P′ replaced by
P

′(A)−1
P

′|A. The case of a general A ∈ B can be proved by a routine approximation
argument left to the reader. �
We now show that any real valued martingale difference sequence with values in
[−1, 1] is 1-dominated by (εn).

Lemma 10 Let (dn) be a sequence of real valued martingale differences on
(�′,A′,P′), i.e. there are σ -subalgebras An ⊂ A (n ≥ 0) forming an increasing
filtration such that dn isAn-measurable for all n ≥ 0 and EAn−1dn = 0 for all n ≥ 1.
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We assume that A0 is trivial (so that d0 is constant). If |dn| ≤ 1 a.s. for any n, then
there is an operator u : L1(�,A,P) → L1(�

′,A′,P′) with ‖u‖ = 1 such that
u(1) = 1 and u(εn) = dn for all n ≥ 1.

Proof By the above criterion (11) it suffices to show that for any Banach space B and
any finite sequence (xn) in B we have for any k

‖d0x0 +
∑k

1
dnxn‖L1(B) ≤ ‖d0x0 +

∑k

1
εnxn‖L1(B). (16)

By (13) with B = Ak−1 and ϕ = dk we have

‖d0x0 +
∑k

1
dnxn‖L1(B) ≤ ‖d0x0 +

∑k−1

1
dnxn + εk xk‖L1(P′×P;B).

Nowworking on the product space (�,A,P)×(�′,A′,P′)withB equal to σ(Ak−2∪
εk) we find

‖d0x0 +
∑k−1

1
dnxn + εk xk‖L1(P′×P;B) ≤ ‖d0x0

+
∑k−2

1
dnxn + εk−1xk−1 + εk xk‖L1(P′×P;B).

Continuing in this way we obtain (16). �
Remark 11 (On the complex valued case in Lemma 10) Let T = R/2πZ be the (one
dimensional) torus. Consider the sequence (zn)n∈N formed of the coordinate functions
on T

N equipped with its normalized Haar measure μ. A priori the complex analogue
of the preceding proof, with (zn) replacing (εn), requires to assume that the martingale
under consideration is a Hardy martingale in the sense described e.g. in [5, p. 133].
Indeed, the Poisson kernel is the natural analogue of the barycentric argument we use
for Lemma 9. Using this, Lemma 10 remains valid, with (zn) replacing (εn), for a
martingale difference sequence (dn) adapted to the usual filtration on TN such that for
any n the variable z �→ dn(z0, . . . , zn−1, z) is either analytic or anti-analytic.
Note that without any additional assumption the complex valued case of Lemma 10
fails, simply because the system (1, ε1) is not 1-dominated by (1, z1). Indeed, by (10)
this would imply the inequality 2 = ∫

max{|1 + ε1|, |1 − ε1|}dP ≤ ∫
max{|1 +

z1|, |1 − z1|}dμ, which clearly fails.

The next two remarks will be used at the very end of this paper.

Remark 12 Let (zn)n∈N andμ onTN be as inRemark 11.Consider two sequences ( f 1n )

and ( f 2n ) in an L1-space X .We form their “disjoint union” ( fn)by setting f2k = f 2k and
f2k+1 = f 1k . We claim that if ( f 1n ) (resp. ( f 2n )) is c1-dominated (resp. c2-dominated)
by (zn), then ( fn) is (c1 +c2)-dominated by (zn). Actually, the same claim is valid for
the disjoint union of arbitrary families indexed by sets I1 and I2 (using (zn)n∈I1∪̇I2 on

T
I1∪̇I2 instead), but the idea is easier to describe with I = N. Indeed, since (zn), (z2n)

and (z2n+1) all have the same distribution, there is u j : L1(T
N, μ) → X ( j = 1, 2)

with ‖u j‖ ≤ c j such that u2(z2n) = f 2n and u1(z2n+1) = f 1n . Let E1 and E2 be
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the conditional expectations on L1(T
N, μ) with respect to the σ -algebras generated

respectively by (z2n+1) and (z2n). Then let u = u1E1 + u2E2. We have u(zn) = fn
for all n and ‖u‖ ≤ ‖u1E1‖ + ‖u2E2‖ ≤ c1 + c2. This proves our claim.

Remark 13 Let (zn) be as in Remark 12 on (TN, μ). Let (ϕn) be in L∞(T,m). We
claim that if ‖ϕn‖∞ ≤ 1 for all n, then (ϕn ⊗ zn) is dominated by (zn). Assume first
|ϕn| = 1 a.e. for all n. Then the translation invariance of the distribution of (zn) shows
that (ϕn ⊗ zn) has the same distribution as (zn), so the claim is obvious in this case.
Note that any number ϕ ∈ C with |ϕ| ≤ 1 is an average of two points on the unit
circle. Using this it is easy to verify the claim. It can also be checked easily using the
criterion in (11).

We end this paper by an outline of a proof that the union of two Sidon sequences is
⊗4-Sidon, more direct than the one in [6]. The route we use avoids the consideration
of randomly Sidon sequences, it is essentially the commutative analogue of the proof
in [7], with the free Abelian group replacing the free group. The key fact for the latter
route is still the following:

Lemma 14 Let (zn) be in L∞(TN, μ) as in Remark 12. Let (T,m) be a probability
space. Let ( fn)be a sequence in L1(T,m) that is dominated by (zn). Then any sequence
(ψn) in L∞(T,m) that is both uniformly bounded and biorthogonal to ( fn) is ⊗2-
Sidon. Here biorthogonal means

∀n,m
∫

ψn fm = δnm .

Proof Let u : L1(T
N, μ) → L1(T,m) such that u(zn) = fn . Elementary considera-

tions show that it suffices to show that the sequence (u∗(ψn)) is⊗2-Sidon. By another
elementary argument (u∗(ψn)) is biorthogonal to (zn). Therefore, it suffices to prove
this Lemma for the case (T,m) = (TN, μ) and (ψn) = (zn). This is proved in [6]
with (zn) replaced by an i.i.d. gaussian sequence, using the Ornstein-Uhlenbeck (or
Mehler) semigroup. Here we may use Riesz products instead.

We claim that for any N and any z0 ∈ T
N the function F = ∑N

1 z0nzn ⊗ zn admits
for any 0 < ε ≤ 1 a decomposition F = tε + rε in the algebraic tensor product
L1(T

N) ⊗ L1(T
N) with

‖tε‖∧ =
∫

|tε(x, y)|dμ(x)dμ(y) ≤ w(ε) and ‖rε‖∨ ≤ ε,

where we have set

‖rε‖∨ = supa,b∈BL∞

∣∣∣∣
∫

rε(x, y)a(x)b(y)dμ(x)dμ(y)

∣∣∣∣ ,

and where w(ε) is a function depending only on 0 < ε ≤ 1 (and not on N or z0). To
verify this we fix z0 and consider in L1(T

N × T
N, μ × μ) the Riesz product

νε(z, z
′) =

∏N

1

(
1 + ε�(

z0nznz
′
n

)) =
∑

α⊂[1...N ]
(ε/2)|α| ∏

n∈α

(
z0nznz

′
n + z0nznz

′
n

)
.
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We will view the tensors in L1(T
N)⊗ L1(T

N) as functions of (z, z′) ∈ T
N×T

N. Note

νε(z, z
′) =

∑
α⊂[1...N ](ε/2)

|α| ∑

β⊂α

∏

n∈β

z0nznz
′
n

∏

n∈[1...N ]\β
z0nznz

′
n . (17)

Observe that the terms of the latter sum are orthogonal. Without trying to optimize
(see [6] for a discussion of the optimal logarithmic growth for w) we set

t ′ε = (νε − ν0)/ε.

Note that (since νε ≥ 0 and hence ‖νε‖1 = 1) we have ‖t ′ε‖∧ ≤ 2/ε. Let r ′
ε =∑N

1 �(z0nznz
′
n)) − t ′ε.

By the orthogonality in the sum (17) one checks that ‖r ′
ε‖∨ ≤ ε/2. This gives us

the desired decomposition but, instead of
∑N

1 z0nznz
′
n , we are decomposing the sum

∑N

1
�(

z0nznz
′
n

)) = (1/2)
∑N

1
z0nznz

′
n + (1/2)

∑N

1
z0nznz

′
n .

To remove the second term we introduce an extra variable ω ∈ T that acts on T
N

by multiplication ( i.e. ω(zn) = (ωzn)) and we define (here mT is normalized Haar
measure on T)

tε(z, z
′) = 2

∫
ω̄t ′ε(ωz, z′)dmT(ω) and rε(z, z

′) = 2
∫

ω̄r ′
ε(ωz, z

′)dmT(ω).

This gives us ‖tε‖∧ ≤ 4/ε and ‖rε‖∨ ≤ ε. Moreover we have

(1/2)
∑N

1
z0nznz

′
n = (1/2)tε + (1/2)rε

which proves the claim with w(ε) ≤ 4/ε.
We can nowcomplete the proof. Let (an) be a scalar sequence. Let� = ∑N

1 anψn⊗
ψn . Choosing z0n so that z

0
nan = |an| we have

〈�, F〉 =
∑

z0nan =
∑

|an|,

and hence
∑ |an| = 〈�, tε〉 + 〈�, rε〉 which leads to

∑
|an| ≤ ‖�‖∞w(ε) +

∑
|an|ε

(
sup1≤n≤N ‖ψn‖2∞

)
.

To conclude, we set C ′ = supn≥1 ‖ψn‖∞ and we choose, say, ε = 1/2C ′2. We have
then

∑
|an| ≤ 2w(ε)‖�‖∞.

�
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Let us say that a bounded set S in L∞(T,m) is Sidon with constant C if for any
finitely supported function x : S → C we have

∑
ϕ∈S |x(ϕ)| ≤ C‖∑

x(ϕ)ϕ‖. If
(ϕn) is an enumeration of S, this is the same as

∑
n∈N |x(n)| ≤ C‖∑

n∈N x(n)ϕn‖.
Similarly we extend the term ⊗4-Sidon to sets in L∞(T,m).

For the convenience of the reader we give a slightly more direct proof of the fol-
lowing result from [6], which generalizes Drury’s theorem.

Theorem 15 Let �1 = {ϕ1
n | n ∈ I (2)} and �2 = {ϕ2

n | n ∈ I (1)} be two Sidon
sets (indexed by sets I (1), I (2)) in L∞(T,m), with constants C1,C2. Assume that
�1 ⊥ �2 in L2(m) and there are C ′

1,C
′
2, δ > 0 such that

∀n δ ≤ ‖ϕ1
n‖2 ≤ ‖ϕ1

n‖∞ ≤ C ′
1 and δ ≤ ‖ϕ2

n‖2 ≤ ‖ϕ2
n‖∞ ≤ C ′

2.

Then the union �1 ∪ �2 is ⊗4-Sidon with a constant C depending only on
C1,C2,C ′

1,C
′
2, δ.

Proof We assume for simplicity that the sets are sequences indexed by N. By homo-
geneity (changing C ′

1,C
′
2 accordingly) we may assume that ‖ϕ1

n‖2 = ‖ϕ2
n‖2 = 1 for

all n. Let E j ⊂ L∞(T,m) be the normclosed span of (ϕ j
n ) ( j = 1, 2). Consider the lin-

ear mapping Tj : E j → L∞(TN) such that Tj (ϕ
j
n ) = zn . By assumption ‖Tj‖ ≤ C j .

By the injectivity of L∞-spaces Tj has an extension T̃ j : L∞(T,m) → L∞(TN)

such that T̃ j |E j
= Tj and ‖T̃ j‖ = ‖Tj‖ ≤ C j . We introduce the operator

T : L∞(T,m) → L∞(TN × T
N) defined by

T ( f )(z, z′) = T̃1( f )(z) + T̃2( f )(z
′).

Then ‖T ‖ ≤ C1 + C2. The operator T ⊗ idL∞(T,m) clearly extends to an bounded
operator

W : L∞(T × T ) → L∞(TN × T
N × T ),

satisfying ‖W‖ ≤ ‖T ‖ ≤ C1 + C2.
We claim that the collection

U = {
W

(
ϕ1
n ⊗ ϕ1

n

)} ∪ {
W

(
ϕ2
n ⊗ ϕ2

n

)}

is biorthogonal to

V = {zn ⊗ 1 ⊗ ϕ1
n} ∪ {1 ⊗ zn ⊗ ϕ2

n}.

Indeed, noteW (ϕ1
n⊗ϕ1

n) ⊂ L∞(TN×T
N)⊗ϕ1

n andW (ϕ2
n⊗ϕ2

n) ⊂ L∞(TN×T
N)⊗ϕ2

n .
Therefore, by our L2(m)-orthogonality assumption

∀n,m W
(
ϕ1
n ⊗ ϕ1

n

) ⊥ 1 ⊗ zm ⊗ ϕ2
m and W

(
ϕ2
n ⊗ ϕ2

n

) ⊥ zm ⊗ 1 ⊗ ϕ2
m .
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Moreover, if we set ξ1n = T̃2(ϕ1
n) we have

W
(
ϕ1
n ⊗ ϕ1

n

) = T
(
ϕ1
n

) ⊗ ϕ1
n = zn ⊗ 1 ⊗ ϕ1

n + 1 ⊗ ξ1n ⊗ ϕ1
n ,

which shows that (W (ϕ1
n ⊗ϕ1

n)) is biorthogonal to {zn ⊗ 1 ⊗ ϕ1
n}. Similarly (W (ϕ2

n ⊗
ϕ2
n)) is biorthogonal to {1 ⊗ zn ⊗ ϕ2

n}. This proves the claim.

ByRemarks 13 and 12, the familyV = {zn ⊗ 1 ⊗ ϕ1
n}∪{1 ⊗ zn ⊗ ϕ2

n} is dominated
in L1(T

N ×T
N × T ) by the sequence (zn). By Lemma 14 we conclude that U is ⊗2-

Sidon in L∞(TN×T
N×T ). SinceW is bounded this implies that {ϕ1

n⊗ϕ1
n}∪{ϕ2

n⊗ϕ2
n}

is also ⊗2-Sidon in L∞(T × T ). Consequently �1 ∪ �2 is ⊗4-Sidon in L∞(T,m).
The assertion about the constant C is easy to check by going over the various steps. �
Acknowledgements Thanks to Bernard Maurey for useful communications, and to the referee for his/her
careful reading.
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