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Abstract In this article, we prove that a cone is a Heisenberg uniqueness pair corre-
sponding to sphere as long as the cone does not completely recline on the level surface
of any homogeneous harmonic polynomial onRn .We derive that

(
S2, paraboloid

)
and(

S2, geodesic of Sr (o)
)
are Heisenberg uniqueness pairs for a class of certain sym-

metric finite Borel measures in R
3. Further, we correlate the problem of Heisenberg

uniqueness pairs to the sets of injectivity for the spherical mean operator.
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1 Introduction

A Heisenberg uniqueness pair is a pair (�,�), where � is a surface in R
n and �

is a subset of Rn such that any finite Borel measure μ which is supported on �

and absolutely continuous with respect to the surface measure on �, whose Fourier
transform μ̂ vanishes on �, implies μ = 0.

In general, the existence of Heisenberg uniqueness pair (HUP) is a question of
asking about the determining properties of the finite Borel measures which are sup-
ported on some lower dimensional entities whose Fourier transform also vanishes on
lower dimensional entities. In fact, the main contrast in the HUP problem to the known
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results on determining sets for measures [10] is that the set � has also been consid-
ered as a very thin set. In particular, if � is compact, then μ̂ is real analytic, having
exponential growth, and hence μ̂ can vanishes on a very delicate set. Thus, the HUP
problem becomes little easier in this case. However, this problem becomes immensely
difficult when the measure is supported on a non-compact entity. It appears that the
HUP problem is a natural invariant of the theme of the uncertainty principle for the
Fourier transform.

In addition, the concept of determining the Heisenberg uniqueness pair for a class
of finite measures has also a significant similarity with the celebrated result due to
M. Benedicks (see [11]). That is, support of a function f ∈ L1(Rn) and its Fourier
transform f̂ both cannot be of finite measure simultaneously. Later, various analogues
of the Benedicks theorem has been investigated in different aspects including the
Heisenberg group and Euclidean motion groups (see [17,21,22]).

However, our main objective in this article is to discuss the concept of HUP, which
was first introduced byHedenmalm andMontes-Rodríguez in 2011. In the article [14],
HedenmalmandMontes-Rodríguez have shown that the pair (hyperbola, somediscrete
set) is a Heisenberg uniqueness pair. As a dual problem, a weak∗ dense subspace of
L∞(R) has been constructed to solve the Klein–Gordon equation. Further, a complete
characterization of the Heisenberg uniqueness pairs corresponding to any two parallel
lines has been given by Hedenmalm and Montes-Rodríguez (see [14]). Thereafter, a
considerable amount of work has been done pertaining to the Heisenberg uniqueness
pair in the plane as well as in the Euclidean spaces.

Recently, Lev [16] and Sjölin [23] have independently shown that circle and certain
system of lines areHUP corresponding to the unit circle S1. Further, Vieli [32] has gen-
eralized HUP corresponding to circle in the higher dimension and shown that a sphere
whose radius does not lie in the zero set of the Bessel functions J(n+2k−2)/2; k ∈ Z+,
the set of non-negative integers, is a HUP corresponding to the unit sphere Sn−1.
Vieli [33] has worked out some HUPs corresponding to the paraboloid in the higher
dimensions.

Further, Sjölin [24] has investigated some of the Heisenberg uniqueness pairs cor-
responding to the parabola. Subsequently, Babot [9] has given a characterization of the
Heisenberg uniqueness pairs corresponding to a certain system of three parallel lines.
Thereafter, the authors in [12] have given some necessary and sufficient conditions for
the Heisenberg uniqueness pairs corresponding to a system of four parallel lines. In the
latter case, a phenomenon of three totally disconnected interlacing sets that are given
by zero sets of three trigonometric polynomials has been observed. However, an exact
analogue for the finitely many parallel lines as compared to three lines result [9] is still
unsolved. In [12], the authors have also investigated some of the Heisenberg unique-
ness pairs corresponding to the spiral, hyperbola, circle and the exponential curves.

In a major development, Jaming and Kellay [15] have given a unifying proof for
some of the Heisenberg uniqueness pairs corresponding to the hyperbola, polygon,
ellipse andgraphof the functionsϕ(t) = |t |α , wheneverα > 0. Further,Gröchenig and
Jaming [13] have worked out some of the Heisenberg uniqueness pairs corresponding
to the quadratic surface.

Let � be a finite disjoint union of smooth curves inR2. Let X (�) be the space of all
finite complex-valued Borel measure μ in R2 which is supported on � and absolutely
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continuous with respect to the arc length measure on �. For (ξ, η) ∈ R
2, the Fourier

transform of μ is defined by

μ̂(ξ, η) =
∫

�

e−iπ(x ·ξ+y·η)dμ(x, y).

In the above context, the function μ̂ becomes a uniformly continuous bounded function
on R2. Thus, we can analyze the pointwise vanishing nature of the function μ̂.

Definition 1.1 Let� be a set inR2. The pair (�,�) is called a Heisenberg uniqueness
pair for X (�) if any μ ∈ X (�) satisfies μ̂|� = 0, implies μ = 0.

Since the Fourier transform is invariant under translation and rotation, one can
easily deduce the following invariance properties about the Heisenberg uniqueness
pair.

(i) Let uo, vo ∈ R
2. Then the pair (�,�) is a HUP if and only if the pair (�+uo,�+

vo) is a HUP.
(ii) Let T : R2 → R

2 be an invertible linear transform whose adjoint is denoted by
T ∗. Then (�,�) is a HUP if and only if

(
T−1�, T ∗�

)
is a HUP.

Now, we would like to state the first known result about the Heisenberg uniqueness
pair due to Hedenmalm and Montes-Rodríguez [14].

Theorem 1.2 [14] Let � be the hyperbola x1x2 = 1 and �α,β a lattice-cross defined
by

�α,β = (αZ × {0}) ∪ ({0} × βZ) ,

where α, β are positive reals. Then
(
�,�α,β

)
is a Heisenberg uniqueness pair if and

only if αβ ≤ 1.

For ξ ∈ �, defining a function eξ on � by eξ (x) = eiπx ·ξ . As a dual problem
to Theorem 1.3, Hedenmalm and Montes-Rodríguez [14] have proved the following
density result which in turn solve the one-dimensional Klein–Gordon equation.

Theorem 1.3 [14] The pair (�,�) is a Heisenberg uniqueness pair if and only if the
set {eξ : ξ ∈ �} is a weak∗ dense subspace of L∞(�).

Remark 1.4 In particular, theHUPproblemhas another formulation. That is, if� is the
zero set of a polynomial P onR2, then μ̂ satisfies the PDE P (−i∂) μ̂ = 0 with initial
condition μ̂|� = 0. This may help potentially in determining the geometrical structure
of the set Z(μ̂), the zero set of the function μ̂. If we consider � to be contained in
Z(μ̂), then (�,�) is not a HUP. Hence the question of the HUP arises when � has
located away from Z(μ̂).

Definition 1.5 A set C in R
n (n ≥ 2) which satisfies the scaling condition λC ⊆ C ,

for all λ ∈ R, is called a cone.
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Let Sn−1 denote unit sphere in Rn . In this article, we prove that the pair
(
Sn−1,C

)

is a Heisenberg uniqueness pair as long as the cone C does not recline on the level
surface of any homogeneous harmonic polynomial on Rn . We will call such cones as
non-harmonic cones.

An example of such a cone has been produced byArmitage (see [8]). Let 0 < α < 1
and let Gλ

l denote the Gegenbauer polynomial of degree l and order λ. Then

Kα =
{
x ∈ R

n : |x1|2 = α2|x |2
}

is a non-harmonic cone if and only if DmG
n−2
2

l (α) 
= 0 for all 0 ≤ m ≤ l − 2, where
Dm denotes the m-th derivative.

2 Notation and Preliminaries

In this section, we recall certain standard facts about spherical harmonics. For more
details see [31, p. 12].

Let K = SO(n) be the special orthogonal group and M = SO(n − 1). Let K̂M

denote the set of all the equivalence classes of irreducible unitary representations of
K which have a nonzero M-fixed vector. It is well known that each representation in
K̂M has, in fact, a unique nonzero M-fixed vector, up to a scalar multiple.

For a σ ∈ K̂M , which is realized on Vσ , let {e1, . . . , ed(σ )} be an orthonormal basis

of Vσ , with e1 as the M-fixed vector. Let t i jσ (k) = 〈ei , σ (k)e j 〉, whenever k ∈ K . By
the Peter-Weyl Theorem for the representations of a compact group, it follows that
{√d(σ )t1 jk : 1 ≤ j ≤ d(σ ), σ ∈ K̂M } is an orthonormal basis of L2(K/M).

We also need a concrete realization of the representations in K̂M , which can be
done in the following way.

Let Z+ denote the set of all non-negative integers. For l ∈ Z+, let Pl denote the
space of all homogeneous polynomials P in n variables of degree l. Let Hl = {P ∈
Pl : P = 0}, where  is the standard Laplacian on R

n . The elements of Hl are
called solid spherical harmonics of degree l. It is easy to see that the natural action of
K leaves the space Hl invariant. In fact, the corresponding unitary representation πl is
in K̂M . Moreover, K̂M can be identified, up to unitary equivalence, with the collection
{πl : l ∈ Z+.}

Define the spherical harmonics on the sphere Sn−1 by Yl j (ω) = √
dl t

1 j
πl (k),

where ω = k.en ∈ Sn−1, k ∈ K and dl is the dimension of Hl . Then the set
H̃l = {

Yl j : 1 ≤ j ≤ dl , l ∈ Z+
}
forms an orthonormal basis for L2(Sn−1). Thus,

we can expand a suitable function g on Sn−1 as

g(ω) =
∞∑

l=0

dl∑

j=1

al jYl j (ω). (2.1)
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For each fixed ξ ∈ Sn−1, define a linear functional on H̃l by ξ �→ Yl(ξ). Then there
exists a unique spherical harmonic, say Z (l)

ξ ∈ Hl such that

Yl(ξ) =
∫

Sn−1
Z (l)

ξ (η)Yl(η)dσ(η). (2.2)

The spherical harmonic Z (l)
ξ is a K bi-invariant real-valued function which is constant

on the geodesics orthogonal to the line joining the origin and ξ . The spherical harmonic
Z (l)

ξ is called the zonal harmonic of the space H̃l around the point ξ for the above and
the various other peculiar reasons. For more details, see [29, p. 143].

Let f be a function in L1(Sn−1). For each l ∈ Z+, we define the lth spherical
harmonic projection of the function f by

�l f (ξ) =
∫

Sn−1
Z (l)

ξ (η) f (η)dσ(η). (2.3)

Then the function �l f is a spherical harmonic of degree l. If for a δ > (n − 2)/2, we

denote Am
l (δ) = (m−l+δ

δ

)(m+δ
δ

)−1
, then the spherical harmonic expansion

∞∑
l=0

�l f of

the function f ∈ L1(Rn) is δ - Cesaro summable to f . That is,

f = lim
m→∞

m∑

l=0

Am
l (δ)�l f, (2.4)

where limit on the right-hand side of (2.4) exists in L1
(
Sn−1

)
. For more details see

[25].
Wewould like tomention that the proof of ourmain result is carried out by restricting

the problem to the unit sphere Sn−1 in terms of averages of its geodesic spheres. This
is possible because the cone C is closed under scaling.

For ω ∈ Sn−1 and t ∈ (−1, 1), the set Stω = {
ν ∈ Sn−1 : ω · ν = t

}
is a geodesic

sphere on Sn−1 with pole at ω. Let f be an integrable function on Sn−1. Then by
Fubini’s Theorem, we can define the geodesic spherical means of the function f by

f̃ (ω, t) =
∫

Stω

f dνn−2,

where νn−2 is the normalized surface measure on the geodesic sphere Stω.

Since the zonal harmonic Z (l)
ξ (η) is K bi-invariant, there exists a nice function F

in (−1, 1) such that Z (l)
ξ (η) = F(ξ · η). Hence the extension of the formula (2.2)

becomes inevitable. An extension of formula (2.2) for the functions F in L1(−1, 1)
was obtained. This is known as the Funk–Hecke Theorem. That is,

∫

Sn−1
F(ξ · η)Yl(η)dσ(η) = ClYl(ξ), (2.5)



1430 J Fourier Anal Appl (2018) 24:1425–1437

where the constant Cl is given by

Cl = αl

∫ 1

−1
F(t)G

n−2
2

l (t)(1 − t2)
n−3
2 dt

and Gβ
l stands for the Gegenbauer polynomial of degree l and order β. As a conse-

quence of the Funk–Hecke Theorem, it can be deduced that the geodesic mean of a
spherical harmonic Yl can be expressed as

Ỹl(ω, t) = Dl(1 − t2)
n−2
2 G

n−2
2

l (t)Yl(ω), (2.6)

where the constant Dl = |Sn−2|/G
n−2
2

l (1) and |Sn−2| denotes the surface area of the
unit sphere in Rn−1. For more details see [7, p. 459]. In order to prove the main result
of this article, we need the following lemma, which percolates the geodesic mean
vanishing condition of f ∈ L1(Sn−1) to each spherical harmonic component of f .
For the class of continuous functions C(Sn−1), this lemma has been worked in [5].
We prove in this article for L1(Sn−1) using δ - Cesaro summation technique described
above.

Lemma 2.1 Let f ∈ L1(Sn−1). Then f̃ (ω, t) = 0 for all t ∈ (−1, 1) if and only if
�l f (ω) = 0 for all l ∈ Z+.

Notice that as a corollary to Lemma 2.1, it can be deduced that if f̃ (ω, t) = 0 for
all t ∈ (−1, 1), then f = 0 a.e. on Sn−1 if and only if ω is not contained in the zero
set of any homogeneous harmonic polynomial.

Proof By the hypothesis, we have f̃ (ω, t) = 0 for all t ∈ (−1, 1). Now, by taking
geodesic mean in (2.4) and then using (2.6), we arrive at

lim
m→∞

m∑

k=0

Am
l (δ)ClG

n−2
2

l (t)�l f (ω) = 0. (2.7)

Since the set

{
G

n−2
2

l : l ∈ Z+
}

form an orthonormal set on (−1, 1) with weight
(
1 − t2

)−1/2
, from (2.7) it follows that

lim
m→∞ Am

l (δ)Cl

∥∥∥∥G
n−2
2

l

∥∥∥∥

2

2
�l f (ω) = 0.

By using the fact that for each fixed l, we have lim
m→∞ Am

l (δ) = 1, we conclude that

�l f (ω) = 0 for all l ∈ Z+. In particular, if ω is not contained in Y−1
l (0) for all

l ∈ Z+, then f (ω) = 0 a.e. on Sn−1. This completes the proof of Lemma 2.1. ��
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3 Proofs of the Main Result

In this section, we first prove that a non-harmonic cone is a Heisenberg uniqueness
pair corresponding to the unit sphere.

Theorem 3.1 Let� = C be a cone inRn. Then
(
Sn−1,�

)
is aHeisenberg uniqueness

pair if and only if � is not contained in P−1(0), whenever P ∈ Hl and l ∈ Z+.

Proof Since μ is absolutely continuous with respect to the surface measure on Sn−1,
by Radon-Nikodym theorem, there exists a function f in L1

(
Sn−1

)
such that dμ =

f (η)dσ(η), where dσ is the normalized surface measure on Sn−1. Suppose μ̂|� = 0.
Then

μ̂(ξ) =
∫

Sn−1
e−iξ ·η f (η)dσ(η) = 0 (3.1)

for all ξ ∈ Sn−1. Let ξ = rω, where r > 0 and ω ∈ Sn−1. By decomposing the
integral in (3.1) into the geodesic spheres at pole ω, we get

∫ 1

−1

(∫

Stω

e−irω·ν f (ν)dσn−2(ν)

)

dt = 0,

where Stω = {
ν ∈ Sd−1 : ω · ν = t

}
. That is,

∫ 1

−1
eirt f̃ (ω, t)dt = 0, (3.2)

for all r > 0. Since f ∈ L1
(
Sn−1

)
, the geodesic mean f̃ (ω, t) will be a continuous

function on (−1, 1). Thus for each fixedω, the left-hand side of (3.2) can be viewed as
the Fourier transform of the compactly supported function f̃ (ω, .) onR. Hence, it can
be extended holomorphically toC. Then, in this case, the Fourier transform of f̃ (ω, .)

can vanish at most on a countable set. Thus, by the continuity of f̃ (ω, .) it follows
that f̃ (ω, t) = 0 for all t ∈ (−1, 1). Hence, in view of Lemma 2.1, we conclude that
f = 0 a.e. on Sn−1 if and only if ω is not contained in Y−1

l (0) for all l ∈ Z+. Since
the cone � is closed under scaling, we infer that f = 0 a.e. if and only if � is not
contained in P−1(0) for any P ∈ Hl and for all l ∈ Z+. Thus μ = 0.

Conversely, suppose the cone C is contained in the zero set of a homogeneous
harmonic polynomial, say Pj ∈ Hl . Then, we can construct a finite complex Borel
measure μ in Rn such that dμ = Y j (η)dσ(η), where Y j ∈ H̃l .

Using the Funk–Hecke Theorem, it has been shown that for spherical harmonic
Y j ∈ H̃l , the following identity holds.

∫

Sn−1
e−i x ·ηY j (η)dσ(η) = i j

J j+(n−2)/2(r)

r (n−2)/2
Y j (ξ), (3.3)

where x = rξ , for some r > 0. For a proof of identity (3.3), see [7, p. 464]. This in
turn implies that μ̂|C = 0. ��
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Remark 3.2 (a) A set which is determining set for any real analytic function is called
N A - set. For instance, the spiral is an N A - set in the plane (see [20]). The set

�ϕ =
{
(x1, x2, x3) : x3

(
x21 + x22

)
= x1ϕ(x3)

}
,

where function ϕ is given by ϕ(x3) = exp
1

x23 − 1
, for |x3| < 1 and 0 otherwise. The

set�ϕ is an N A - set. For more details see [20]. Since the Fourier transform of a finite
Borel measure μ which is supported on the boundary ∂� of a bounded domain � in
R
n can be extended holomorphically to C

n , the pair (∂�,NA - set) is a Heisenberg
uniqueness pair. However, the converse is not true. Hence, all together with the result
of Vieli [32], it is an interesting question to examine, whether the exceptional sets for
the HUPs corresponding to � = Sn−1, are eventually contained in the zero sets of all
homogeneous harmonic polynomials and the countably many spheres whose radii are
contained in the zero set of the certain class of Bessel functions. We leave it open for
the time being.
(b) For � = Sn−1, it is easy to verify that μ̂ satisfies Helmholtz’s equation

μ̂ + μ̂ = 0 (3.4)

with initial condition μ̂|� = 0. For a continuous function f on R
n (n ≥ 2), the

spherical mean R f of f over the sphere Sr (x) = {y ∈ R
n : |x− y| = r} is defined by

R f (x, r) =
∫

Sr (x)
f (y)dσr (y),

where dσr is the normalized surface measure on the sphere Sr (x). Then μ̂ will satisfy
the functional equation

Rμ̂(x, r) = cn
J(n−2)/2(r)

r (n−2)/2
μ̂(x). (3.5)

Thus, we infer that μ̂(x) = 0 if and only if Rμ̂(x, r) = 0 for all r > 0.
In an interesting article by Zalcman et al. [5], it is shown that for f to be continuous

function onRn if R f (x, r) = 0 for all r > 0 and for all x ∈ C , then f ≡ 0 if and only
if C is a non-harmonic cone in R

n . In integral geometry, such sets are called sets of
injectivity for the spherical means. We do not digress here to give more history of sets
of injectivity for the spherical means in various set ups, still, we would like to refer
to [1–6,18,19,26–28]. However, this is an incomplete list of the articles on the sets of
injectivity.

Thus, in view of the above result, it follows that μ̂ ≡ 0 if and only if C is a non-
harmonic cone inRn . Asμ is a signed measure, we again need to go through the proof
of Theorem 3.1, in order to show that μ = 0.

Now, consider � to be an arbitrary set in R
n . Then, it is clear that (Sn−1,�) is

HUP if and only if � is a set of injectivity for spherical mean over a class of certain
real analytic functions. However, the latter problem is yet not settled.
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4 Some Observations for a Special Class of Measures in R
3

In this section, we shall prove that the paraboloid is a HUP corresponding to the
unit sphere S2 in R

3 for a class of finite Borel measure which are given by certain
symmetric functions in L1(S2). Further, we prove that a geodesic on the sphere SR(o)
is a HUP corresponding to S2 for the above class of measures.

We need the following lemma for proofs of our results of this section.

Lemma 4.1 Let f ∈ L1
(
Sn−1

)
be such that

∫

Sn−1

e−i x ·η f (η)dσ(η) = 0. Then

lim
m→∞

m∑

k=0

i k Am
k

Jk+(n−2)/2(r)

r (n−2)/2
�k f (ξ) = 0, (4.1)

where x = rξ , for some r > 0 and ξ ∈ Sn−1.

Proof We have

∣∣∣∣∣

m∑

k=0

Am
k

∫

Sn−1
e−i x ·η�k f (η)dσ(η)

∣∣∣∣∣

=
∣
∣∣∣∣

m∑

k=0

∫

Sn−1
e−i x ·η(Am

k �k f (η) − f (η)) dσ(η)

∣
∣∣∣∣

≤
m∑

k=0

∫

Sn−1

∣∣(Am
k �k f (η) − f (η))

∣∣ dσ(η).

In view of (2.4), it follows that

lim
m→∞

m∑

k=0

Am
k

∫

Sn−1
e−i x ·η�k f (η)dσ(η) = 0. (4.2)

This in turn, from (3.3) implies that (4.1) holds. ��

We know that for n = 3, a typical spherical harmonic of degree k can be expressed
as Y l

k(θ, ϕ) = eilϕPl
k (cos θ), where Pl

k ’s are the associated Legendre functions. In
fact, the set {Y l

k : −k ≤ l ≤ k} forms an orthonormal basis for H̃k , (see [30, p. 91]).
Hence, the k-th spherical harmonic projection �k f can be expressed as

�k f (θ, ϕ) =
k∑

l=−k

Cl
k( f )e

ilϕPl
k (cos θ),
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where 0 ≤ θ < π and 0 ≤ ϕ < 2π . Thus, an integrable function f on S2 has the
spherical harmonic expansion as

f (θ, ϕ) =
∞∑

k=0

k∑

l=−k

Cl
k( f )e

ilϕPl
k (cos θ). (4.3)

Let L1
sym(S2) denotes the space of all those functions f in L1(S2) that satisfy a set of

symmetric-coefficient conditions Cl
k( f ) = Cl

k′( f ), for |l| ≤ min{k, k′}.

Theorem 4.2 Let � = {(x1, x2, x3) : x3 = x21 + x22 }. Then
(
S2,�

)
is a Heisenberg

uniqueness pair with respect to L1
sym(S2).

Proof Since μ is absolutely continuous with respect to the surface measure on S2,
there exists a function f ∈ L1

sym

(
S2

)
such that dμ = f (η)dσ(η), where dσ is the

normalized surface measure on S2. Suppose μ̂|� = 0. Then

∫

S2
e−iξ ·η f (η)dσ(η) = 0 (4.4)

for all ξ ∈ S2. Now, consider the spherical polar co-ordinates x1 = r sin θ cosϕ,
x2 = r sin θ sin ϕ and x3 = r cos θ , where 0 ≤ θ < π and 0 ≤ ϕ < 2π . Then, in
view of Lemma 4.1, Eq. (4.4) becomes

lim
m→∞

m∑

k=0

i k Am
k Jk+1

2
(r) �k f (θ, ϕ) = 0 (4.5)

for all ϕ ∈ [0, 2π). Notice that the rotation ϕ is independent of the choice of r ,
because, the paraboloid is completely determined by cos θ = r sin2 θ . Since the set
{eilϕ : l ∈ Z+} form an orthonormal set in L2[0, 2π) and f ∈ L1

sym(S2), a simple
calculation gives

∫

0
�k f (θ, ϕ)�d f (θ, ϕ)dϕ =

⎧
⎨

⎩

‖�k f (θ, .)‖22 , if k < d

‖�d f (θ, .)‖22 , if k ≥ d.

(4.6)

After multiplying (4.5) by �d f (θ, ϕ) and using (4.6), we conclude that

lim
m→∞

[
d−1∑

k=0

Am
k

∣∣∣Jk+1
2

(r)
∣∣∣
2 ‖�k f (θ, .)‖22 +

m∑

k=d

Am
k

∣∣∣Jk+1
2

(r)
∣∣∣
2 ‖�d f (θ, .)‖22

]

= 0.



J Fourier Anal Appl (2018) 24:1425–1437 1435

Thus, using the fact that lim
m→∞ Am

k = 1 and the second sum goes to zero as d → ∞,

we obtain that

∞∑

l=0

∣∣∣Jl+1
2

(r)
∣∣∣
2 ‖�l f (θ, .)‖22 = 0.

That is, |Jl+1
2

(r)| ‖�l f (θ, .)‖2 = 0 for all r > 0. Since the Bessel functions can have
at most countably many zeros, it follows that

�l f (θ, ϕ) =
l∑

d=−l

Cl
d( f )e

idϕPd
l (cos θ) = 0.

This in turn, because of orthogonality of the set {eilϕ : l ∈ Z+}, implies that
Cl
d( f )P

d
l (cos θ) = 0. However, on the paraboloid, we have cos θ = r sin2 θ , which

gives cos θ = −1+√
1+4r2

2r . Since the Legendre functions can vanish only at countably
many points, it follows that Cl

d( f ) = 0 for all d with −l ≤ d ≤ l. That is, �l f = 0
for all l ∈ Z+. Thus f = 0 a.e. This completes the proof. ��
Remark 4.3 We observe that Theorem 4.2 could be extended to higher dimensions
in a similar way. However, to avoid the complexities of notation and calculation, we
prove the result for n = 3.

Next, we prove that a geodesic sphere which is parallel to the equator of the sphere
SR(o) is a HUP corresponding to the unit sphere S2 with respect to L1

sym(S2).

Theorem 4.4 Let�α,R = {(α, ϕ) : R cosα = r and 0 ≤ ϕ < 2π}. Then (
S2,�α,R

)

is a HUP if and only if J l+1
2

(R) 
= 0 for all l ∈ Z+ and the ratio r/R is not contained

in the zero set of any Legendre function.

Proof Suppose μ̂|�α,R = 0. Then similarly the proof of Theorem 4.2, we reach the
conclusion that |Jl+1

2
(R)| ‖�l f (α, .)‖2 = 0. Then ‖�l f (α, .)‖2 = 0 for all l ∈ Z+

if |Jl+1
2

(R)| 
= 0 for all l ∈ Z+. That is,

�l f (α, ϕ) =
l∑

d=−l

Cl
d( f )e

idϕPd
l (cosα) = 0.

By the uniqueness of the Fourier series, it follows that Cl
d( f )P

d
l

( r
R

) = 0. Then
Cl
d( f ) = 0 if Pd

l

( r
R

) 
= 0. Under the assumptions of the hypothesis, we conclude
that �l f = 0 for all l ∈ Z+. Thus f = 0.

Conversely, if either of the conditions of Theorem 4.4 fails, then for the measure
dμ = eilϕPl

k (cos θ)dσ(θ, ϕ), it follows from the Funk–Hecke identity (3.3) that
μ̂|�α,R = 0. This complete the proof. ��
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Remark 4.5 It is reasonable to mention that if Theorem 4.4 can be extended to a
general class of finite Borel measures, then this result would have a sharp contrast, in
terms of the topological dimension of the pairing set, with the known results for HUP
corresponding to sphere.

5 Concluding Remarks

In this article, we have shown that (Sn−1,C) is a HUP as long as the cone C is not
contained in the zero set of any homogeneous harmonic polynomial. Now, it is natural
to consider a compact subgroup K of SO(n)with Ko the orbit of K around the origin.
Let �K = K/Ko. We know that a unitary irreducible representation of SO(n) can be
decomposed into finitely many irreducible representations of K . Thus, the action of
the group K on a spherical harmonic Yl on the unit sphere Sn−1 will decompose Yl
uniquely into a finite sum of spherical harmonics. Therefore, it would be an interesting
question to find out the possibility that (�K ,C) is a HUP as long as the cone C does
not recline on the level surface of any K—invariant homogeneous polynomial. We
leave this question open for the time being.
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