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Abstract There exist many ways to build an orthonormal basis of RN , consisting
of the eigenvectors of the discrete Fourier transform (DFT). In this paper we show
that there is only one such orthonormal eigenbasis of the DFT that is optimal in the
sense of an appropriate uncertainty principle. Moreover, we show that these optimal
eigenvectors of the DFT are direct analogues of the Hermite functions, that they also
satisfy a three-term recurrence relation and that they converge to Hermite functions
as N increases to infinity.
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1 Introduction and the Main Results

The following question about the discrete Fourier transform (DFT) has received a lot
of attention in the research literature: How can we construct an orthonormal basis of
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mateusz.kwasnicki@pwr.edu.pl

1 Deparment of Mathematics and Statistics, York University, 4700 Keele Street, Toronto,
ON M3J 1P3, Canada

2 Faculty of Pure and Applied Mathematics, Wrocław University of Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-018-9600-z&domain=pdf


1054 J Fourier Anal Appl (2019) 25:1053–1079

R
N consisting of the eigenvectors of the DFT, which would be analogous to Hermite

functions andwould have some other desirable properties? In terms of “other desirable
properties”,wemight ask for this eigenbasis to be explicit or, at least, easily computable
numerically; it would also be beneficial if the eigenbasis was in some sense unique.
The reader can find some examples of such constructions in the papers by Dickinson
and Steiglitz [1], Grunbaum [3], Mehta [7] and Pei and Chang [8].

Let us state themain properties of Hermite functions that will be used later. Hermite
functions are defined as follows:

ψn(x) := (−1)n(
√

π2nn!)−1/2ex
2/2 dn

dxn
e−x2 , n ≥ 0. (1)

One can also writeψn(x) = (
√

π2nn!)−1/2e−x2/2Hn(x), where Hn are Hermite poly-
nomials. It is well-known that Hermite functions form a complete orthonormal basis
of L2(R) and that they are the eigenfunctions of the continuous Fourier transform
operator F , defined as

(Fg)(x) = 1√
2π

∫
R

e−ixyg(y)dy, (2)

so that (Fψn)(x) = (−i)nψn(x).
Many constructions of the eigenbasis of the DFT start either with the fact that the

Hermite functions are the eigenfunctions of the operator L := d2/dx2 − x2, or that
they satisfy the recursion relations

ψ ′
n(x) + xψn(x) = √

2nψn−1(x), ψ ′
n(x) − xψn(x) = −√

2(n + 1)ψn+1(x).

The goal, typically, is to find a discrete counterpart of the operator L or the operators
d/dx + x and d/dx − x and to use them to construct discrete analogues of Hermite
functions. A major problem with this approach is that there are many ways to approxi-
mate a differential operator by a matrix, and this leads to many different constructions
and results in lack of uniqueness of the “canonical eigenbasis” of the DFT.

However, we do not need to be restricted to using differential operators if we want
to characterize Hermite functions. It turns out that a much more fruitful approach, in
terms of finding discrete analogues of Hermite functions, is to use Hardy’s uncertainty
principle. This result was derived back in 1933 and it states that if both functions
f and F f are O(|x |me−x2/2) for large x and some m, then f and F f are finite
linear combinations of Hermite functions (see [4, Theorem 1]). The following theorem
follows easily from Hardy’s result.

Theorem 1.1 (Uncertainty principle characterization of Hermite functions) Assume
that the functions fn : R �→ R satisfy the following three conditions:

(i) fn are the eigenfunctions of the Fourier transform: (F fn)(x) = (−i)n fn(x) for
n ≥ 0 and x ∈ R;

(ii) { fn}n≥0 form an orthonormal set in L2(R), that is
∫
R
fn(x) fm(x)dx = δn,m;

(iii) for every n ≥ 0 we have x−n−1ex
2/2 fn(x) → 0 as |x | → ∞.
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Then for all n ≥ 0 we have fn ≡ ψn or fn ≡ −ψn.

The main goal of our paper is to find a set of vectors {Tn}0≤n<N−1 that would
be characterized uniquely by the three conditions similar to items (i), (ii) and (iii) in
Theorem 1.1. It is clear what should be the analogues of conditions (i) and (ii) in the
discrete setting. It turns out that condition (iii), which essentially expresses Hardy’s
uncertainty principle, has a counterpart in the form of a discrete uncertainty principle
(see [2,9]), which states that the number of non-zero elements of a vector and of its
discrete Fourier transform cannot be too small (the signal and its Fourier transform
cannot be too localized).

In order to state our results, first we need to present necessary definitions and
notation. We denote by �x� the floor function and by x� the ceiling function. Let N
be a positive integer and define

IN := {k ∈ Z : −N/2� + 1 ≤ k ≤ �N/2�}.

We consider the elements of a vector a ∈ C
N as being labelled by the set IN . Given

a vector a, we define an N -periodic function a : Z �→ C by specifying a(k) = a(k)
for k ∈ IN and extending it by periodicity to all of Z. This correspondence between
vectors and N -periodic functions is clearly a bijection, and we will often view vectors
as N -periodic functions and N -periodic functions as vectors, depending on situation;
we will use the same notation a to denote both of these objects.

The dot product between vectors a and b is denoted by 〈a, b〉 and the norm ‖a‖ is
defined by ‖a‖ = √〈a, ā〉. The (centered) discrete Fourier transformF is defined as
a linear map that sends a vector a ∈ C

N to b = Fa ∈ C
N according to the rule

b(l) = 1√
N

∑
k∈IN e−iωkla(k), l ∈ IN ,

where we denoted ω := 2π/N . With the above normalisation,F is a unitary operator
on CN .

The next definition will play a crucial role in our paper.

Definition 1.2 For a vector a ∈ C
N we define width(a) to be the integer n ∈

{0, 1, . . . , �N/2�} such that a(n) �= 0 or a(−n) �= 0, but a(k) = 0 when
n < |k| ≤ �N/2�.

To illustrate the concept of thewidth of a vector, we provide the following examples:

if a = [0, 0, 1, 2, 3, 0, 0] then width(a) = 1;
if a = [0, 0, 0, 1, 2, 3, 0] then width(a) = 2;
if a = [0, 1, 2, 3, 0, 0] then width(a) = 1;
if a = [1, 2, 3, 0, 0, 0] then width(a) = 2;
if a = [0, 0, 0, 0, 0, 1] then width(a) = 3.

For clarity, we have underlined the term a(0). The next theorem is our first main result.
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Theorem 1.3 For every N ≥ 2 there exist unique (up to change of sign) vectors
{Tn}0≤n<N in RN that satisfy the following three conditions:

(i) Tn are the eigenvectors of the DFT: FTn = λnTn for 0 ≤ n < N, where
λn = (−i)n for 0 ≤ n < N − 1;

(ii) {Tn}0≤n<N form an orthonormal basis in RN ;
(iii) width(Tn) ≤ �(N + n + 2)/4� for 0 ≤ n < N.

Note that Theorem 1.3 is a counterpart of Theorem 1.1, as both identify unique
orthonormal bases consisting of the eigenvectors of the Fourier transform that are
optimal in the sense of corresponding uncertainty principles. Therefore, the following
name is appropriate for the eigenbasis constructed in Theorem 1.3.

Definition 1.4 Thebasis {Tn}0≤n<N , which is identified inTheorem1.3,will be called
the minimal Hermite-type basis of RN .

The vectors {Tn}0≤n<N were introduced in [6], building upon earlier work of Kong
[5]. However, the optimality of this basis was not established in [6], and the construc-
tion of the basis was done differently depending on the residue of N modulo 4. In the
present paper we give a simpler construction of the basis {Tn}0≤n<N , which also has
the advantage that it does not distinguish between residue classes of N modulo 4.More-
over, from this construction we are able to deduce that width(Tn) = �(N + n+ 2)/4�
for 0 ≤ n < N .

Our construction provides new information about eigenspaces of the DFT. Let Em

be the eigenspace of the DFT with the eigenvalue (−i)m and let Sn be the linear
subspace of vectors having width not greater than n. More formally,

Em := {a ∈ R
N : Fa = (−i)ma}, Sn := {a ∈ R

N : width(a) ≤ n}, (3)

where m ∈ {0, 1, 2, 3} and 0 ≤ n ≤ �N/2�. It is clear that for 0 ≤ n < �N/2� we
have Sn ⊂ Sn+1 and dim(Sn) = 2n + 1, while S�N/2� = R

N . The dimensions of the
eigenspaces Em are also known:

dim(Em) = �N/2� − Km + 1 for m ∈ {0, 2},
dim(Em) = N/2� − Km for m ∈ {1, 3}, (4)

where Km := �(N+2+m)/4�. The result (4) is usually presented in the formof a table,
by considering different residue classes of N modulo 4, see Table 1. The dimensions of
the eigenspaces of theDFTwere first found by Schur in 1921, however they can also be
easily obtained from amuch earlier result of Gauss on the law of quadratic reciprocity.
By using this result and the fact that the vectors {Tn}0≤n<N satisfy conditions (i) and
(ii) of Theorem 1.3, we can establish the eigenvalue corresponding to the eigenvector
TN−1: FTN−1 = (−i)N−1TN−1 (respectively, FTN−1 = (−i)NTN−1) if N is odd
(respectively, if N is even). For this reason we will find it convenient to introduce a
“ghost” vector TN = TN−1, so that we can restore the symmetry and have FTN =
(−i)NTN when N is even.

The following result, which follows from our construction of the minimal Hermite-
type basis, provides more detailed information about the eigenspaces of the DFT.
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Table 1 Dimensions of the
eigenspaces of the DFT

dim(E0) dim(E1) dim(E2) dim(E3)

N = 4L L + 1 L L L − 1

N = 4L + 1 L + 1 L L L

N = 4L + 2 L + 1 L L + 1 L

N = 4L + 3 L + 1 L + 1 L + 1 L

Proposition 1.5 Let {Tn}0≤n<N be the minimal Hermite-type basis ofRN and denote
TN := TN−1 and Km := �(N + 2 + m)/4�.
(i) If 0 ≤ n < K0 then dim(E0∩Sn) = 0. If K0 ≤ n ≤ �N/2� then dim(E0∩Sn) =

n−K0+1 and the vectors {T4l}0≤l≤n−K0 form an orthonormal basis of E0∩ Sn.
(ii) If 0 ≤ n < K1 then dim(E1∩Sn) = 0. If K1 ≤ n < N/2� then dim(E1∩Sn) =

n−K1+1 and the vectors {T4l+1}0≤l≤n−K1 formanorthonormal basis of E1∩Sn.
(iii) If 0 ≤ n < K2 then dim(E2∩Sn) = 0. If K2 ≤ n ≤ �N/2� then dim(E2∩Sn) =

n−K2+1 and the vectors {T4l+2}0≤l≤n−K2 formanorthonormal basis of E2∩Sn.
(iv) If 0 ≤ n < K3 then dim(E3∩Sn) = 0. If K3 ≤ n < N/2� then dim(E3∩Sn) =

n−K3+1 and the vectors {T4l+3}0≤l≤n−K3 formanorthonormal basis of E3∩Sn.

We have argued above that the minimal Hermite-type eigenvectors {Tn}0≤n<N are
analogues of Hermite functions {ψn}n≥0, since both are characterized in a very similar
way via uncertainty principles, as presented in Theorems 1.1 and 1.3. There is another
similarity between the vectors {Tn}0≤n<N and Hermite functions: they both satisfy a
three term recurrence relation. In order to state this result, let us introduce an operator
L acting on vectors in RN in the following way:

L a(k) = a(k + 1) + a(k − 1) + 2 cos(ωk)a(k). (5)

Note that here we interpret vectors a and L a as N -periodic functions on Z, see the
discussion on page 1055. It is clear that L is a self-adjoint operator and it is also
known that it commutes with the DFT (see [1]).

Theorem 1.6 Let {Tn}0≤n<N be the minimal Hermite-type basis of RN and denote
TN := TN−1. Then for 0 ≤ n < N − 5 we have

Tn+4 = (
L Tn − anTn − bn−4Tn−4

)
/bn, (6)

where the coefficients an and bn satisfy

an =〈L Tn, Tn〉 and b2n =‖L Tn − anTn − bn−4Tn−4‖2=‖L Tn‖2 − a2n − b2n−4.

(7)

In the above formulas we interpret bn = 0 and Tn = 0 for n < 0. When N is odd
(respectively, even) formula (6) holds also for n = N − 5 (respectively, n = N − 4).
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In Sect. 2 we will give explicit formulas for the vectors Tn for n = 0, 1, 2, 3. These
explicit formulas, combined with the three-term recurrence (6), lead to a simple and
efficient algorithm for computing the remaining vectors {Tn}4≤n<N . We will discuss
this numerical algorithm in Sect. 4.

Given the many similarities between the vectors Tn and Hermite functions, it is
natural to ask whether Tn converge to the corresponding Hermite functions ψn . This
result was established in [6] for n ≤ 7 when N ≡ 1 (mod 4), and it was conjectured
that this convergence holds true for all n (and all residue classes of N modulo 4). The
following theorem confirms this conjecture and provides precise information about
the rate of convergence.

Theorem 1.7 Let N ≥ 2, ω = 2π/N and {Tn}0≤n<N be the minimal Hermite-type
basis of RN . Define the sequence of vectors {�n}n≥0 as

�n(k) = 4
√

ω × ψn(
√

ωk), k ∈ IN . (8)

Then it is possible to choose the signs of vectors Tn in such a way that for every n ≥ 0
and any ε > 0 we have ‖Tn − �n‖ = O(N−1+ε) as N → +∞.

The rest of the paper is organized as follows. In Sect. 2 we give an explicit con-
struction of the minimal Hermite-type basis and we prove Theorem 1.3, Proposition
1.5 and Theorem 1.6. In Sect. 3 we prove Theorem 1.7. Finally, in Sect. 4 we discuss
an algorithm for numerical computation of the minimal Hermite-type basis.

2 Constructing the Minimal Hermite-Type Basis

Our goal in this section is to construct the basis {Tn}0≤n<N and to investigate its
properties, and ultimately to prove Theorem 1.3. While the construction is essentially
the same as in [6], the present version is simpler, both in notation and proofs. Another
advantage of the present construction is that it does not distinguish between different
residue classes of N modulo 4.

We recall that ω = 2π/N . We define S(0) = 1 and

S(k) =
k∏
j=1

(2 sin(ω j/2)), k ≥ 1. (9)

In the next Lemma we list some properties of the sequence {S(k)}k≥0.

Lemma 2.1 (i) S(k)S(N − 1 − k) = S(N − 1) = N when 0 ≤ k < N.
(ii) If N is odd, then for |k| ≤ �N/2�

S(�N/2� − k)S(�N/2� + k) = S(N/2� − 1 − k)S(N/2� − 1 + k) = N . (10)
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(iii) If N is even, then

S(�N/2� − k)S(�N/2� + k) = 2N cos(ωk/2), |k| ≤ �N/2�,
S(N/2� − 1 − k)S(N/2� − 1 + k) = N

2 cos(ωk/2)
|k| ≤ N/2�. (11)

Proof The fact S(k)S(N − 1 − k) = S(N − 1) follows from (9) by using formula
sin(ω j/2) = sin(ω(N − j)/2). Next, evaluating the identity

∣∣∣
N−1∑
j=0

z j
∣∣∣ = ∏N−1

j=1 |z − eiω j |

for z = 1, we obtain

N = ∏N−1
j=1 |1 − eiω j | = S(N − 1),

which ends the proof of item (i). Items (ii) and (iii) follow easily from (i). ��
If N is even (respectively, odd) we set α0 := 1/2 (respectively, α0 := 1). For

1 ≤ n ≤ �N/2� we define

αn :=
{
S(n)−2(S(2n))1/2, if N is odd,

S(n)−2(S(2n − 1) sin(ωn/2))1/2, if N is even.
(12)

Similarly, for 0 < n < N/2� we define

βn :=
{
S(n)−2(S(2n − 1))1/2, if N is odd,

S(n)−2(S(2n − 1) cos(ωn/2))1/2, if N is even.
(13)

We also denote

tk := 2√
ω
sin(ωk/2). (14)

Definition 2.2 When 0 ≤ n ≤ �N/2�, we define the Gaussian-type vector un by

un(k) = αn

�N/2�∏
j=n+1

(
1 − (tk/t j )

2), k ∈ IN . (15)

If n = �N/2� the empty product is interpreted as one, thus u�N/2�(k) = α�N/2� for
k ∈ IN . When 0 < n < N/2�, we define the modified Gaussian-type vector vn by

vn(k) = βn sin(ωk)
N/2�−1∏
j=n+1

(
1 − (tk/t j )

2), k ∈ IN . (16)
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If n = N/2� − 1 the empty product is interpreted as one, thus vN/2�−1(k) =
βN/2�−1 sin(ωk) for k ∈ IN .

Remark 2.3 The vectors un and vn were introduced in [6] and [8], following the
earlier work of Kong [5]. Note, however, that these vectors had different normalization
constants in [6,8] and were labelled with different index in [6].

To simplify the statement of results, whenever we write an identity involving un ,
vn or any of a number of objects introduced below, we implicitly assume that n is in
the admissible range; for example, 0 ≤ n ≤ �N/2� when speaking about un .

Definition 2.4 We call a vector a ∈ R
N even (respectively, odd) if the corresponding

N -periodic function is even (respectively, odd).

Note that the vectors un are even and vectors vn are odd.

Lemma 2.5 Assume that N ≥ 2 and k ∈ IN .

(i) The following identities are true:

un(k) = αn S(n)2

S(�N/2�)2
�N/2�∏
j=n+1

(2 cos(ωk) − 2 cos(ω j)), (17)

vn(k) = βn S(n)2

S(N/2� − 1)2
sin(ωk)

N/2�−1∏
j=n+1

(2 cos(ωk) − 2 cos(ω j)). (18)

(ii) If N is odd then

un(k) = αn S(n)2

N 2 S(N − n − 1 − k)S(N − n − 1 + k), (19)

and if N is even and n < N/2 then

un(k) = αn S(n)2

N 2 cos(ωk/2)S(N − n − 1 − k)S(N − n − 1 + k), (20)

whereas if N is even and n = N/2 we have un(k) = 1/(2
√
N ).

(iii) If N is odd then

vn(k) = βn S(n)2

N 2 sin(ωk)S(N − n − 1 − k)S(N − n − 1 + k), (21)

and if N is even then

vn(k) = 2βn S(n)2

N 2 sin(ωk/2)S(N − n − 1 − k)S(N − n − 1 + k). (22)
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Proof Formulas (17) and (18) follow from (15) and (16) by noting that

ωt2k = 4 sin2(ωk/2) = 2 − 2 cos(ωk)

and using the identity

m∏
j=n+1

(ωt2j ) =
m∏

j=n+1

(2 sin(ω j/2))2 = S(m)2

S(n)2
,

with m = �N/2� or m = N/2� − 1.
In order to prove formula (19) we write for |k| ≤ n

un(k) = αn S(n)2

S(�N/2�)2
�N/2�∏
j=n+1

(2 cos(ωk) − 2 cos(ω j))

= αn S(n)2

S(�N/2�)2
�N/2�∏
j=n+1

(2 sin(ω( j − k)/2)2 sin(ω( j + k)/2))

= αn S(n)2S(�N/2� − k)S(�N/2� + k)

S(�N/2�)2S(n − k)S(n + k)
.

After simplifying the above expression using Lemma 2.1, we see that formula (19) is
valid for all |k| ≤ n. We extend its validity to all k ∈ IN , since both the left-hand side
and the right-hand side are zero when n < |k|.

The proof of formulas (20), (21) and (22) follows exactly the same steps. We leave
the details to the reader. ��

The following result is the key to constructing the basis {Tn}0≤n<N . This result was
first established in [6] via q-binomial Theorem; here we give a simpler proof based on
Lemma 2.5.

Theorem 2.6 For all admissible n we have Fun = u�N/2�−n and Fvn =
−ivN/2�−n.

Proof The proof is based on the following observations:

(i) if a ∈ R
N is even, then Fa ∈ R

N and is also even, and both a and Fa are
polynomials of cos(ωk) (of degree width(Fa) and width(a), respectively);

(ii) if a ∈ R
N is odd, then iFa ∈ R

N and is also odd, and both a and Fa are
polynomials of cos(ωk) (of degree width(Fa)−1 andwidth(a)−1, respectively)
multiplied by sin(ωk).

Formula (17) implies that un(k) = Pn(2 cos(ωk)) for a polynomial Pn(z) of degree
�N/2� − n, which has �N/2� − n zeroes located at points z = cos(ω j) with n <

j ≤ �N/2�. Note, furthermore, that these properties describe the polynomial Pn(z)
uniquely, up to multiplication by a constant.
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Next, we write 2 cos(ωk) = eiωk + e−iωk , and we note that Pn(2 cos(ωk)) can be
written as a sum of terms eiωkl with |l| ≤ �N/2� − n. It follows that Fun(l) = 0
when �N/2� − n < |l| ≤ �N/2�. On the other hand, according to property (i) above,
Fun(k) = Qn(2 cos(ωk)) for some polynomial Qn(z) of degree n. Since we already
know that Qn has n zeroes located at points z = cos(ω j) with �N/2� − n < j ≤
�N/2�, it follows that Qn = Cn P�N/2�−n for some constant Cn . We conclude that
Fun = Cnu�N/2�−n .

Now our goal is to identify the constant Cn . We observe that formula (17) tells us
that

Pn(z) = αn S(n)2

S(�N/2�)2 z
�N/2�−n + a polynomial of lower degree.

Since un(k) = Pn(2 cos(ωk)) = Pn(eiωk + e−iωk) we conclude that the coef-
ficient at eiωk(�N/2�−n) in the expansion of un(k) in powers of eiωk is equal to
αn S(n)2/S(�N/2�)2. Since un = F−1(Fun) = CnF−1u�N/2�−n , we see that the
coefficient at eiωk(�N/2�−n) is also equal to Cnu�N/2�−n(�N/2� − n)/

√
N . Thus we

obtain an identity

αn S(n)2

S(�N/2�)2 = Cn√
N

u�N/2�−n(�N/2� − n), (23)

and we need to verify that this identity implies Cn = 1.
When N is odd, we use formulas (12), (19) and Lemma 2.1 to find that αn S(n)2 =

S(2n)1/2, S(�N/2�)2 = N and

u�N/2�−n(�N/2� − n) = 1

N
S(N − 1 − 2n)1/2S(2n).

Substituting the above results into (23) and using the identity S(N−1−2n)S(2n) = N
we conclude that Cn = 1.

When N is even, we use formulas (12), (20) and Lemma 2.1 to find that αn S(n)2 =
(S(2n − 1) sin(ωn/2))1/2, S(�N/2�)2 = 2N and

u�N/2�−n(�N/2� − n) = 1

N
(S(N − 1 − 2n) cos(ωn/2))1/2S(2n − 1)

Substituting the above results into (23) and using the identity S(N − 1 − 2n)S(2n −
1) cos(ωn/2) sin(ωn/2) = N/4 we again conclude that Cn = 1.

In a similar way, one shows that vn(k) = 2 sin(ωk)P̃n(2 cos(ωk)) for a polynomial
P̃n of degree N/2� − n − 1, with zeroes at 2 cos(ω j), n < j < N/2�; and that
Fvn(k) = −2i sin(ωk)Q̃n(2 cos(ω j)) for a polynomial Q̃n of degree n − 1, with
zeroes at 2 cos(ω j), N/2� − n < j < N/2�. It follows thatFvn = −iC̃nvN/2�−n

for some constant C̃n .
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In order to show that C̃n = 1, we follow the same argument as in the first part of
the proof and we conclude that

βn S(n)2

2S(N/2� − 1)2
= C̃n√

N
vN/2�−n(N/2� − n). (24)

When N is odd, we use formulas (13), (21) and Lemma 2.1 to find that βn S(n)2 =
S(2n − 2)1/2, S(N/2� − 1)2 = N and

u�N/2�−n(�N/2� − n) = 1

2N
S(N − 2n)1/2S(2n − 1).

Substituting the above results into (24) and using the identity S(N−2n)S(2n−1) = N
we conclude that C̃n = 1.

When N is even, we use formulas (13), (22) and Lemma 2.1 to find that βn S(n)2 =
(S(2n − 1) cos(ωn/2))1/2, S(N/2� − 1)2 = N/2 and

u�N/2�−n(�N/2� − n) = 2

N
(S(N − 1 − 2n) sin(ωn/2))1/2 cos(ωn/2)S(2n − 1).

Substituting the above results into (24) and using the identity S(N − 1 − 2n)S(2n −
1) cos(ωn/2) sin(ωn/2) = N/4 we conclude that C̃n = 1. ��
Definition 2.7 We define Km := �(N + 2 + m)/4� and

wn := un + u�N/2�−n when K0 ≤ n ≤ �N/2�;
xn := vn + vN/2�−n when K1 ≤ n < N/2�;
yn := un − u�N/2�−n when K2 ≤ n ≤ �N/2�;
zn := vn − vN/2�−n when K3 ≤ n < N/2�.

Let us explain the motivation behind this definition. First of all, one can check that

K0 = �N/2�/2�, K1 = N/2�/2�, K2 = ��N/2�/2� + 1,

K3 = �N/2�/2� + 1.

Next, given any even vector a, the vector a ± Fa is an eigenvector of the DFT with
corresponding eigenvalue ±1. Thus, we have �N/2� eigenvectors un + u�N/2�−n of
the DFTwith eigenvalue 1, but some of these will be repeated twice. It is easy to check
that there are exactly �N/2�−K0+1 distinct eigenvectors of the form un +u�N/2�−n .
Similar considerations apply to vectors un−u�N/2�−n , the differencewith the previous
case is that one of these vectors may be zero: this happens if 2n = �N/2� for some n.
Thus, one can check that there exist precisely �N/2�−K2 +1 distinct eigenvectors of
the form un−u�N/2�−n . The same considerations apply in the case of odd eigenvectors
vn ± vN/2�−n : here we would use the fact that if a is an odd vector, then a ± iFa is
an eigenvector of the DFT with the corresponding eigenvalue ∓i .
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We recall that the subspaces Em and Sn were defined in (3). In the following
proposition we collect some important properties of vectors wn , xn , yn and zn .

Proposition 2.8 (i) For K0 ≤ n ≤ �N/2� the vectors {wl}K0≤l≤n form the basis of
the subspace E0 ∩ Sn. In particular, dim(E0 ∩ Sn) = max(n − K0 + 1, 0) for
0 ≤ n ≤ �N/2�.

(ii) For K1 ≤ n < N/2� the vectors {xl}K1≤l≤n form the basis of the subspace
E1 ∩ Sn. In particular, dim(E1 ∩ Sn) = max(n−K1 +1, 0) for 0 ≤ n < N/2�.

(iii) For K2 ≤ n ≤ �N/2� the vectors {yl}K2≤l≤n form the basis of the subspace
E2 ∩ Sn. In particular, dim(E2 ∩ Sn) = max(n−K2 +1, 0) for 0 ≤ n ≤ �N/2�.

(iv) For K3 ≤ n < N/2� the vectors {zl}K3≤l≤n form the basis of the subspace
E3 ∩ Sn. In particular, dim(E3 ∩ Sn) = max(n−K3 +1, 0) for 0 ≤ n < N/2�.

Proof Note that for all admissible n we have

(a) width(wn) = width(xn) = width(yn) = width(zn) = n,
(b) Fwn = wn, Fxn = −ixn, Fyn = −yn, F zn = izn .

Let us denote

d(m)
n = dim(Em ∩ Sn).

Note that a vector of width l cannot be obtained as a linear combination of vectors
of strictly smaller width, thus the vectors {wl}K0≤l≤�N/2� are linearly independent. In
particular, for K0 ≤ n ≤ �N/2� the vectors {wl}K0≤l≤n are linearly independent and
they lie in E0 ∩ Sn due to items (a) and (b) above.

This gives us the following inequalities: d(0)
n < d(0)

n+1 for K0 ≤ n < �N/2� and

n − K0 + 1 ≤ d(0)
n for K0 ≤ n ≤ �N/2�. (25)

Similarly,

n − K1 + 1 ≤ d(1)
n for K1 ≤ n < N/2�, (26)

n − K2 + 1 ≤ d(2)
n for K2 ≤ n ≤ �N/2�, (27)

n − K3 + 1 ≤ d(3)
n for K3 ≤ n < N/2�. (28)

Using the fact that

E0 ∩ S�N/2� = E0, E1 ∩ SN/2�−1 = E1,

E2 ∩ S�N/2� = E2, E3 ∩ SN/2�−1 = E3,

we conclude that

d(0)
�N/2� + d(1)

N/2�−1 + d(2)
�N/2� + d(3)

N/2�−1 =
3∑

m=0

dim(Em) = N . (29)
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In deriving the above identity we have also used the fact that the linear subspaces Em

are orthogonal and E0 + E1 + E2 + E3 = R
N . Next, one can check that

(�N/2� − K0 + 1) + (N/2� − K1) + (�N/2� − K2 + 1) + (N/2� − K3) = N .

The above result, combined with (29) and the inequalities (25)–(28) proves that
d(m)
�N/2� = dim(Em) = �N/2� − Km + 1 for n even and d(m)

N/2�−1 = dim(Em) =
N/2� − Km for m odd. Note that this is equivalent to Schur’s result as presented in
Table 1.

Now, considering the case m = 0, we summarize what we have proved so far. We
know that

n − K0 + 1 ≤ d(0)
n for K0 ≤ n ≤ �N/2�,

d(0)
n < d(0)

n+1 for K0 ≤ n < �N/2�,
d(0)
�N/2� = �N/2� − K0 + 1.

These results imply that d(0)
n = n−K0+1 for K0 ≤ n ≤ �N/2�. Since the n−K0+1

vectors {wl}K0≤l≤n are linearly independent and they lie in the linear subspace E0∩Sn
of dimension d(0)

n = n − K0 + 1, these vectors form the basis for E0 ∩ Sn . This ends
the proof of item (i). The proof of remaining items (ii), (iii) and (iv) follows exactly
the same steps. ��

Wedefine {Wn}K0≤n≤�N/2�, {Xn}K1≤n<N/2�, {Yn}K2≤n≤�N/2� and {Zn}K3≤n<N/2�
to be the sequences of unit vectors, obtained by applying Gram–Schmidt ortogonalisa-
tion to the corresponding sequences {wn}K0≤n≤�N/2�, {xn}K1≤n<N/2�, {yn}K2≤n≤�N/2�
and {zn}K3≤n<N/2�. Furthermore, we define Tn , 0 ≤ n < N , to be the rearrangement
of the vectors Wn , Xn , Yn and Zn , obtained by enumerating the rows of the table

T0 = WK0 , T1 = XK1 , T2 = YK2 , T3 = ZK3 ,

T4 = WK0+1, T5 = XK1+1, T6 = YK2+1, T7 = ZK3+1,

T8 = WK0+2, T9 = XK1+2, T10 = YK2+2, T11 = ZK3+2,

. . . . . . . . . . . . (30)

Note that the columns of the above table have unequal length. In the case N ≡ 0
(mod 4) we have �N/2� = N/2�, K3 = K2 = K1 + 1 = K0 + 1 and the last three
rows of the table (30) are

. . . . . . . . . . . .

TN−8 = W�N/2�−2, TN−7 = XN/2�−2, TN−6 = Y�N/2�−1, TN−5 = ZN/2�−1,

TN−4 = W�N/2�−1, TN−3 = XN/2�−1, TN−2 = Y�N/2�,
TN−1 = W�N/2�. (31)
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Similarly, when N ≡ 1 (mod 4) we have �N/2� = N/2� − 1, K3 = K2 = K1 =
K0 + 1 and the last three rows of the table (30) are

. . . . . . . . . . . .

TN−9 = W�N/2�−2, TN−8 = XN/2�−2, TN−7 = Y�N/2�−1, TN−6 = ZN/2�−2,

TN−5 = W�N/2�−1, TN−4 = XN/2�−1, TN−3 = Y�N/2�, TN−2 = ZN/2�−1,

TN−1 = W�N/2�; (32)

when N ≡ 2 (mod 4) we have �N/2� = N/2�, K3 = K2 = K1 = K0 and the last
three rows of the table (30) are

. . . . . . . . . . . .

TN−10 = W�N/2�−2, TN−9 = XN/2�−2, TN−8 = Y�N/2�−2, TN−7 = ZN/2�−2,

TN−6 = W�N/2�−1, TN−5 = XN/2�−1, TN−4 = Y�N/2�−1, TN−3 = ZN/2�−1,

TN−2 = W�N/2�, TN−1 = Y�N/2�; (33)

and when N ≡ 3 (mod 4) we have �N/2� = N/2� − 1, K3 − 1 = K2 = K1 = K0
and the last three rows of the table (30) are

. . . . . . . . . . . .

TN−11 = W�N/2�−2, TN−10 = XN/2�−3, TN−9 = Y�N/2�−2, TN−8 = ZN/2�−2,

TN−7 = W�N/2�−1, TN−6 = XN/2�−2, TN−5 = Y�N/2�−1, TN−4 = ZN/2�−1,

TN−3 = W�N/2�, TN−2 = XN/2�−1, TN−1 = Y�N/2�. (34)

The above examples show that when N is odd, the vectors {Tn}0≤n<N are a straight-
forward rearrangement of the vectors Wn , Xn , Yn and Zn as shown in (30). When N
is even, then the vectors {Tn}0≤n<N−1 are also a straightforward rearrangement of the
vectors Wn , Xn , Yn and Zn as shown in (30), but the last vector TN−1 “skips” one spot
in this table so that it corresponds to a W vector or a Y vector. Thus, the last vector
TN−1 always has a real eigenvalue, irrespective of the residue class of N modulo 4.

Also, note that the index of vectors T increases by four along each column in
(31)–(34), except that if N is even then the column containing the vectors TN−8 and
TN−4 ends in TN−1 and not in TN . This discrepancy explains why in the statements
of our results we introduce a “ghost” vector TN = TN−1: this simple trick allows us
to restore the pattern of indices increasing by four along each column and makes the
statements of our results more precise.

Proof of Theorem 1.3 First let us establish “existence” part of Theorem 1.3: we will
check that the vectorsTn constructed above satisfy conditions (i)–(iii) of Theorem 1.3.
We note that

width(Wn) = width(Xn) = width(Yn) = width(Zn) = n

and

FWn = Wn, FXn = −iXn, FYn = −Yn, FZn = iZn
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for all admissible n. Thus, by construction, it follows that {Tn}0≤n<N is an orthonormal
basis of RN , and that FTn = (−i)nTn and width(Tn) = �(N + n + 2)/4� for
0 ≤ n < N − 4. Considering the case N ≡ 0 (mod 4) (see (31)), we see that
FTn = (−i)nTn for N − 4 ≤ n < N − 1 and width(Tn) = �(N + n + 2)/4� for
N − 4 ≤ n < N . Thus in the case N ≡ 0 (mod 4) the vectors {Tm}0≤m≤N−1 satisfy
conditions (i)–(iii) of Theorem 1.3. The remaining cases N ≡ 1, 2, 3 (mod 4) can be
considered in exactly the same way using (32), (33) and (34). We leave all the details
to the reader.

Now we need to establish the “uniqueness” part of Theorem 1.3. Assume that
{T̃n}0≤n<N is a set of vectors satisfying conditions (i)-(iii) of Theorem 1.3. We denote
T̃N := T̃N−1 and define

W̃n = T̃4(n−K0) for K0 ≤ n ≤ �N/2�,
X̃n = T̃4(n−K1)+1 for K1 ≤ n < N/2�,
Ỹn = T̃4(n−K2)+2 for K2 ≤ n ≤ �N/2�,
Z̃n = T̃4(n−K3)+3 for K3 ≤ n < N/2�.

As we argued on page 4, conditions (i) and (ii) of Theorem 1.3 and Schur’s result
(1) imply that F T̃N−1 = (−i)N−1T̃N−1 (respectively, F T̃N−1 = (−i)N T̃N−1) if
N is odd (respectively, if N is even). Thus we can arrange {T̃n}0≤n<N as in the table
(30), and in each case N ≡ 0, 1, 2, 3 (mod 4) the table would have the same form
of last rows, as shown in (31), (32), (33) and (34). One can check that an equivalent
way to define the vectors {W̃n}K0≤n≤�N/2�, {X̃n}K1≤n<N/2�, {Ỹn}K2≤n≤�N/2� and
{Z̃n}K3≤n<N/2� is through the table (30) with Tn replaced by T̃n .

Let us consider the sequence of vectors {W̃n}K0≤n≤�N/2�. From the definition it is
clear that these vectors are orthonormal, they satisfyFW̃n = W̃n and

width(W̃n) = width(T̃4(n−K0)) ≤ �(N + 4n − 4K0 + 2)/4�
= �(N + 2)/4� + n − K0 = n.

In the case N ≡ 0 (mod 4) and n = �N/2�, the last computation should be replaced by
the inequality width(W̃�N/2�) ≤ �N/2�, which is trivial, since the width of any vector
in R

N is not greater than �N/2�. These conditions imply that for K0 ≤ n ≤ �N/2�
the vectors {W̃l}K0≤l≤n give an orthonormal basis of the space E0 ∩ Sn .

Consider the case n = K0. As we established in Proposition 2.8(i), we have
dim(E0 ∩ SK0) = 1 and WK0 is a unit vector lying in E0 ∩ SK0 . Thus W̃K0 = WK0

or W̃K0 = −WK0 .
Next, consider n = K0 + 1. Again, according to Proposition 2.8(i), we have

dim(E0 ∩ SK0+1) = 2 and {WK0 , WK0+1} is an orthonormal basis of E0 ∩ SK0+1.
Since {W̃K0 , W̃K0+1} is also an orthonormal basis of E0 ∩ SK0+1 and we have already
proved that W̃K0 = WK0 or W̃K0 = −WK0 , we conclude that W̃K0+1 = WK0+1 or
W̃K0+1 = −WK0+1.

Proceeding in this way, we show that for K0 ≤ n ≤ �N/2� we have W̃n = Wn or
W̃n = −Wn .
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In exactly the same way we show that for all admissible n we have X̃n = ±Xn ,
Ỹn = ±Yn and Z̃n = ±Zn , and this implies that T̃n = ±Tn for 0 ≤ n < N . ��
Proof of Proposition 1.5 The proof follows fromProposition 2.8 and tables (31)–(34).

��
Proof of Theorem 1.6 The proof will be based on the following key observation: if
a ∈ Em , then L a ∈ Em and width(L a) ≤ width(a) + 1. The first statement is true
sinceL commutes with the DFT, and the second statement follows from (5).

Let us denote ν(n) = �(N + n + 2)/4�, so that width(Tn) = ν(n). Consider
0 ≤ n < N − 5. Then Tn ∈ Sν(n) ∩ Em for some m ∈ {0, 1, 2, 3}, which implies
L Tn ∈ Sν(n)+1 ∩ Em . Thus we can expand

L Tn = γn+4Tn+4 + γnTn + γn−4Tn−4 + γn−8Tn−8 + · · · , (35)

where we interpret γ j = 0 and T j = 0 for j < 0. Using the orthonormality of Tn , for-
mula (35) and the fact thatL is self-adjoint imply that for anym, n ∈ {0, 1, . . . , N−5}
such that |m − n| > 4 we have

0 = 〈L Tn, Tm〉. (36)

From (35) and (36) we find

γn−8 = 〈L Tn, Tn−8〉 = 0

and similarly for γn−12 and all other coefficients γ j with j < n − 4. Thus we have
proved that there exist sequences an , bn and cn such that for all 0 ≤ n < N − 4 we
have

L Tn = cnTn+4 + anTn + bn−4Tn−4. (37)

From (37) we find an = 〈L Tn, Tn〉 and

cn = 〈L Tn, Tn+4〉 = 〈Tn,L Tn+4〉 = 〈Tn, cn+4Tn+8 + an+4Tn+4 + bnTn〉 = bn .

Thus we can write
L Tn = bnTn+4 + anTn + bn−4Tn−4. (38)

Finally, we compute

b2n = ‖bnTn+4‖2 = ‖L Tn − anTn − bn−4Tn−4‖2
= ‖anTn‖2 + ‖L Tn‖2 + ‖bn−4Tn−4‖2

− 2〈anTn,L Tn〉 − 2〈L Tn, bn−4Tn−4〉 + 2〈anTn, bn−4Tn−4〉
= a2n + ‖L Tn‖2 + b2n−4 − 2a2n − 2b2n−4 + 0 = ‖L Tn‖2 − a2n − b2n−4.

This ends the proof of Theorem 1.6 in the case n < N − 5. The remaining cases
n = N − 5 if N is odd and n = N − 4 if N is even are left to the reader. ��
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3 Convergence of Vectors Tn to Hermite Functions

In the previous section we considered N to be fixed. Now our goal is to study the
behaviour of Tn as N → ∞. Note that dependence of Tn (as well as many other
objects in this section) on N is not visible in our notation.

The proof of Theorem 1.7 will be preceded by several lemmas. Recall that we
denoted ω = 2π/N .

Lemma 3.1 (i) Assume that P, Q are real polynomials (that do not depend on N)
and a and b are vectors in R

N , having elements a(k) = P(
√

ωk) exp(−ωk2/2),
b(k) = Q(

√
ωk) exp(−ωk2/2) for k ∈ IN . Then for any ε > 0

√
ω〈a, b〉 =

∫
R

P(x)Q(x) exp(−x2)dx + O(e−(π/2−ε)N ), (39)

as N → +∞.
(ii) Assume that P, Q are real polynomials (that do not depend on N) such that

Q(x) exp(−x2/2) is the continuous Fourier transform of P(x) exp(−x2/2). Let
a and b be vectors in R

N , having elements a(k) = P(
√

ωk) exp(−ωk2/2) and
b(k) = Q(

√
ωk) exp(−ωk2/2) for k ∈ IN . Then for any ε > 0

‖Fa − b‖ = O(e−(π/4−ε)N ), (40)

as N → +∞.

Proof The proof is based on the Poisson summation formula: for a function f in
Schwartz class and any a > 0, y ∈ R we have

a
∑
k∈Z

f (ak)e−iaky = √
2π

∑
k∈Z

(F f )(y + 2πk/a). (41)

We will also need the following estimates: for any α > 0, β > 0, ε > 0 and for any
polynomial P (which does not depend on N ) we have

√
ω

∑
k≥αN

P(
√

ωk)e−βωk2 = O(e−(2πα2β−ε)N ), (42)

∞∑
k=1

P(k/
√

ω)e−βk2/ω = O(e−(β/(2π)−ε)N ), (43)

as N → +∞. We leave it to the reader to verify these estimates.
Let us prove item (i). Let deg(P) = n and deg(Q) = m and let R(x)e−x2/4 be the

continuous Fourier transform of P(x)Q(x)e−x2 , for some polynomial R of degree
n + m. We write
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√
ω〈a, b〉 = √

ω
∑
k∈IN

P(
√

ωk)Q(
√

ωk)e−ωk2

= √
ω

∑
k∈Z

P(
√

ωk)Q(
√

ωk)e−ωk2 + O(e−(π/2−ε)N )

=
∫
R

P(x)Q(x)e−x2dx + √
2π

∑
k∈Z,k �=0

R(2πk/
√

ω)e−(2πk/
√

ω)2/4

+ O(e−(π/2−ε)N )

=
∫
R

P(x)Q(x)e−x2dx + O(e−(π/2−ε)N ),

where in the second step we used estimate (42), in the third step we applied the Poisson
summation formula (41) and in the last step we used estimate (43). The above result
gives us (39).

Let us now prove item (ii). Assume that deg(P) = n. We fix l ∈ IN and compute

Fa(l) = 1√
2π

× √
ω

∑
k∈IN

P(
√

ωk)e−ωk2/2−i
√

ωk×√
ωl

= 1√
2π

× √
ω

∑
k∈Z

P(
√

ωk)e−ωk2/2−i
√

ωk×√
ωl + O(e−(π/4−ε)N )

=
∑
k∈Z

Q(
√

ωl + 2πk/
√

ω)e−(
√

ωl+2πk/
√

ω)2/2 + O(e−(π/4−ε)N ). (44)

Note that since l ∈ IN , we have |l| ≤ N/2, thus for all k �= 0 we have

∣∣√ωl + 2πk/
√

ω
∣∣ ≥ π√

w
(2|k| − 1) ≥ π√

w
|k|.

Thus the sum in the right-hand side of (44) can be estimated as follows

∑
k∈Z

Q(
√

ωl + 2πk/
√

ω)e−(
√

ωl+2πk/
√

ω)2/2 = b(l) + O
( ∑
k≥1

(k/
√

ω)ne−π2k2/(2ω)
)

= b(l) + O(e−(π/4−ε)N ).

The above result combined with (44) imply (40). ��
Recall that we denoted tk = 2ω−1/2 sin(ωk/2). Note the following two properties:

(i) tk/(
√

ω k) → 1 as N → ∞;
(ii) 2

√
ω|k|/π ≤ |tk | ≤ √

ω|k| for k ∈ IN .

Let us define a vector G ∈ R
N as follows:

G(k) = 4
√

ω/π e−ωk2/2, k ∈ IN . (45)

Note that ‖G‖ = 1 + O(e−N ), due to Lemma 3.1(i).
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Lemma 3.2 Suppose that P is a real polynomial (that does not depend on N) and
a ∈ R

N is defined by a(k) = (P(tk) − P(
√

ωk))G(k) for k ∈ IN . Then for any ε > 0
we have ‖a‖ = O(N−1+ε) as N → ∞.

Proof Let us define δ = min(1/2, ε/4). Then for |k| ≤ N 1/2+δ we have

|tk − √
ωk| = √

ω|k| × |(ωk/2)−1 sin(ωk/2) − 1|
= √

ω|k| × O((ωk)2) = O(N−1+3δ). (46)

Since the function P ′(t) exp(−t2/2) is bounded on R and G(k) = O(N−1/4), we
have

|a(k)| = |P(tk) − P(
√

ωk)|G(k)

≤ max
t∈R

[|P ′(t)|e−t2/2] × |tk − √
ωk| × O(N−1/4) = O(N−5/4+3δ),

for |k| ≤ N 1/2+δ . It follows that

∑
|k|≤N1/2+δ

a(k)2 = O(N 1/2+δ) × O(N−5/2+6δ) = O(N−2+7δ). (47)

At the same time, for any p > 0 we have P(tk)G(k) = O(N−p) and P(
√

ωk)g(k) =
O(N−p) uniformly in k such that |k| > N 1/2+δ . Thus,

∑
k∈IN

|k|>N1/2+δ

a(k)2 = O(N 1−2p). (48)

Estimates (47) and (48) imply that ‖a‖ = O(N−1+7δ/2) = O(N−1+ε). ��
We recall that the vectors un and vn were introduced in Definition 2.2 and we

define the normalised vectors Un = ‖un‖−1un and Vn = ‖vn‖−1vn . The next result
is crucial in the proof of Theorem 1.7: it shows that the vectors Un (respectively, Vn)
are analogues of Gaussian function e−x2/2 (respectively, xe−x2/2) if n = N/4+O(1)
as N → +∞. This result was first established in [6] using the Euler-Maclaurin
summation formula, here we give a simpler and shorter proof.

Lemma 3.3 Assume that P is a real polynomial that does not depend on N and define
vectors a and b in R

N by a(k) = P(tk)(Un(k) − G(k)) and b(k) = P(tk)(Vn(k) −√
2tkG(k)) for k ∈ IN . Then for any ε > 0 we have ‖a‖ = O(N−1+ε) and ‖b‖ =

O(N−1+ε) as N → ∞ and n = N/4 + O(1).

Proof Let us first prove that ‖a‖ = O(N−1+ε). We define the vector Ũn ∈ R
N via

Ũn(k) = 4
√

ω/π ×
�N/2�∏
j=n+1

(
1 − (tk/t j )

2), k ∈ IN . (49)
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Denote δ = min(1/16, ε/4). Formula (46) gives us tk − √
ωk = O(N−1+3δ), in

particular tk = O(N δ) for |k| ≤ N 1/2+δ . Next, for n + 1 ≤ j ≤ �N/2� we have
π/4 + O(N−1) ≤ π j/N ≤ π/2, thus sin(π j/N ) > 1/2 and |t j | > CN 1/2 for
C = 1/

√
2π when N is large enough. We conclude that (tk/t j )2 = O(N−1+2δ)

for |k| ≤ N 1/2+δ and n + 1 ≤ j ≤ �N/2�. Using the approximation ln(1 − x) =
−x + O(x2), we obtain for |k| ≤ N 1/2+δ

ln
[

4
√

π/ω Ũn(k)
]

= −t2k

�N/2�∑
j=n+1

t−2
j + O(N ) × O(N−2+4δ)

= − t2k
2

× π

N

�N/2�∑
j=n+1

1

sin(πk/N )2
+ O(N−1+4δ). (50)

Next, we use the Riemann sum approximation

π

N

�N/2�∑
j=n+1

1

sin(πk/N )2
=

∫ π/2

π/4

dx

sin(x)2
+ O(N−1)

= cot(π/4) + O(N−1) = 1 + O(N−1).

Combining the above two computations and the facts tk − √
ωk = O(N−1+3δ) and

tk = O(N δ) we obtain

ln
[

4
√

π/ω Ũn(k)
]

= −ωk2/2 + O(N−1+4δ), |k| ≤ N 1/2+δ

which is equivalent to

Ũn(k) = G(k)(1 + O(N−1+4δ)), |k| ≤ N 1/2+δ (51)

due to (45).
Now, let us consider a vector ã ∈ R

N having elements ã(k) = P(tk)(Ũn(k)−G(k))
for k ∈ IN . Note that we have P(tk)G(k) = O(N−2) for |k| > N 1/2+δ . Using
this result, the fact that |Ũn(k + 1)| ≤ |Ũn(k)| and formula (51), we conclude that
we also have P(tk)Ũn(k) = O(N−2) for |k| > N 1/2+δ , thus ã(k) = O(N−2) for
|k| > N 1/2+δ . We apply the above results and use Lemmas 3.1 and 3.2 and obtain

‖ã‖2 =
∑
k∈IN

|k|≤N1/2+δ

P(tk)
2(Ũn(k) − G(k))2 +

∑
k∈IN

|k|>N1/2+δ

P(tk)
2(Ũn(k) − G(k))2

= O(N−2+8δ)
∑
k∈IN

|k|≤N1/2+δ

P(tk)
2G(k)2 + O(N ) × O(N−4)
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= O(N−2+8δ)
√

ω/π
∑
k∈IN

P(tk)
2e−ωk2 + O(N−3)

= O(N−2+8ε) × 1√
π

∫
R

P(x)2e−x2dx + O(N−3) = O(N−2+8δ) (52)

and we conclude that ‖ã‖ = O(N−1+4δ) = O(N−1+ε). Considering a constant
polynomial P ≡ 1 we conclude that ‖Ũn‖ = ‖G‖ + O(N−1+ε) = 1 + O(N−1+ε).
Since Un/‖Un‖ = Ũn/‖Ũn‖ the above two facts give us the result: the norm of the
vector a is O(N−1+ε).

Now we will prove that that ‖b‖ = O(N−1+ε). In this case we define

Ṽn(k) = 4
√
4ω/π × tk

√
1 − ωt2k /2 ×

N/2�−1∏
j=n+1

(
1 − (tk/t j )

2), k ∈ IN . (53)

Again, we set δ = min(1/16, ε/4). Then for |k| ≤ N 1/2+δ we have

√
1 − ωt2k /2 = 1 + O(N−1+2δ),

since tk = O(N δ) and ω = 2π/N . Repeating the calculation in (50) we conclude that

Ṽn(k) = √
2tkG(k)(1 + O(N−1+4δ)), |k| ≤ N 1/2+δ. (54)

The rest of the proof proceeds as above. Note that Lemmas 3.1 and 3.2 tells us that
the norm of the vector H ∈ R

N having elements H(k) = √
2tkG(k) is 1+ O(N−1+ε)

and that Vn/‖Vn‖ = Ṽn/‖Ṽn‖. The details are left to the reader. ��
Remark 3.4 Using the methods from the proof of Lemma (3.3) one could prove the
following, more general result. Take any real polynomial P that does not depend on
N and any c ∈ (0, 1/2) and define a vector a ∈ R

N via

a(k) = P(tk)
(

Un(k) − (
ω cot(πc)/π

)1/4
e− cot(πc)ωk2/2

)
, k ∈ IN .

Then ‖a‖ = O(N−1+ε) as N → +∞ and n = cN + O(1).
The above result tells us that the vectors un , defined in (15), are discrete analogues

of Gaussian functions

fc(x) = cot(πc)1/4e− cot(πc)x2/2,

provided that n = CN + O(1) and N is large. Thus the discrete Fourier transform
identityFun = u�N/2�−n that we established in Theorem 2.6 is the counterpart of the
continuous Fourier transform identity F fc = f1/2−c.

As an immediate consequence of the above lemmas we have the following result.
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Corollary 3.5 (i) If n = N/4+ O(1), P, Q are polynomials (that do not depend on
N) and A(k) = P(tk)Un(k), B(k) = Q(tk)Un(k) for k ∈ IN , then for any ε > 0

〈A, B〉 = 1√
π

∫
R

P(x)Q(x) exp(−x2)dx + O(N−1+ε), (55)

as N → +∞.
(ii) Suppose that n = N/4 + O(1) and that P, Q are polynomials (that do not

depend on N) such that Q(x) exp(−x2/2) is the continuous Fourier transform
of P(x) exp(−x2/2). If A(k) = P(tk)Un(k) and B(k) = Q(tk)G(k) for k ∈ IN ,
then for any ε > 0

‖FA − B‖ = O(N−1+ε), (56)

as N → +∞.

Proof of Theorem 1.7 The proof of Theorem 1.7 will proceed by induction with
respect to n, and first we will consider the case of even n. Let us first present sev-
eral observations. We denote

ν(n) = width(Tn) = �(N + n + 2)/4�.

From the definition of vectors Tn given on page 11 it is clear that if n is even (and
admissible) thenTn is a linear combination ofU�N/2�−ν(n), U�N/2�−ν(n)+1, . . . , Uν(n).
Formula (15) implies that for 0 ≤ m < n ≤ �N/2� we have

Um(k) = C
n∏

j=m+1

(
1 − (tk/t j )

2) × Un(k), k ∈ IN ,

for some constant C = C(m, n, N ). From the above two facts we can conclude that
for every even and admissible n we have

Tn(k) = Pn(tk)Uν(n)(k) (57)

for some even polynomial Pn of degree

deg(Pn) = 2(ν(n) − (�N/2� − ν(n))) = 4ν(n) − 2�N/2�.

It is easy to see that the sequence deg(Pn) for n = 0, 2, 4, 6, . . . is equal to either
0, 4, 4, 8, 8, 12, 12, . . . (if N = 0 or N = 1 modulo 4) or 2, 2, 6, 6, 10, 10, 14, . . .
(otherwise). In particular, deg(Pn) is always equal to either n or n + 2.

For γ ∈ R and a vector a = {a(k)}k∈IN we will write a = O(N γ ) if ‖a‖ = O(N γ )

as N → ∞. Thus our goal is to prove that for every even m we have Tm = �m +
O(N−1+ε) as N → ∞. Note this is true for m = 0 as was established in Lemma 3.3.

Now, fix an even m ≥ 2. Suppose that we have already chosen the signs of
{Tn}n=0,2,...,m−2 in a proper way and have proved that Tn = �n + O(N−1+ε) for
n = 0, 2, . . . ,m − 2. Our goal is to prove that Tm = �m + O(N−1+ε).
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Let us define the normalized Hermite polynomials hn(x) := (2nn!)−1/2Hn(x),
where Hn are the classical Hermite polynomials (see (1)). Note that with this nor-
malization we have �n(k) = hn(

√
ωk)G(k) (see (1) and (45)). Next, let γ j be the

coefficients in the expansion of the polynomial Pm(x) in the basis h j (x), that is

Pm(x) = γ0h0(x) + γ2h2(x) + · · · + γmhm(x) + γm+2hm+2(x).

Note that here we have used the fact that Pm is an even polynomial and deg(Pm) ≤
m+2. Let us define the vectors {A j } j=0,2,...,m+2 viaA j (k) = h j (tk)Uν(m)(k), k ∈ IN ,
so that we have

Tm =
∑

j=0,2,...,m+2

γ j A j (58)

According to Lemmas 3.2 and 3.3, we have A j = � j + O(N−1+ε) for all j ∈
{0, 2, . . . ,m + 2}. Lemma 3.1 implies

〈�i , � j 〉 = δi, j + O(e−N ), for i, j ∈ {0, 2, . . . ,m + 2}, (59)

thus 〈Ai , A j 〉 = δi, j +O(N−1+ε) for i, j ∈ {0, 2, . . . ,m+2}. Therefore, the Gramian
matrix of vectors {A j } j=0,2,...,m+2 converges to the identity matrix as N → +∞, and
the same must be true for the inverse of this Gramian matrix. This proves that the
norm of a linear combination of vectors {A j } j=0,2,...,m+2 is comparable (uniformly
as N → ∞) with the norm of the coefficients. Since ‖Tm‖ = 1, we conclude that the
coefficients {γ j } j=0,2,...,m+2 are uniformly bounded as N → +∞.

Using the above result combined with formula (58) and the estimate A j = � j +
O(N−1+ε) we conclude that

Tm =
∑

j=0,2,...,m+2

γ j � j + O(N−1+ε).

Next, by induction hypothesis, we have Tn = �n + O(N−1+ε), for n ∈
{0, 2, . . . ,m − 2}. Using this result and orthogonality of the vectors {Tn}0≤n<N we
conclude that

0 = 〈Tn, Tm〉 =
∑

j=0,2,...,m+2

γ j 〈Tn, � j 〉 + O(N−1+ε)

=
∑

j=0,2,...,m+2

γ j 〈�n, � j 〉 + O(N−1+ε) = γn + O(N−1+ε),

for n ∈ {0, 2, . . . ,m − 2}. In other words, we have proved that γn = O(N−1+ε) for
all n ∈ {0, 2, . . . ,m − 2}; combining this result with the fact ‖� j‖ = 1 + O(e−N )

we obtain
Tm = γm �m + γm+2 �m+2 + O(N−1+ε). (60)
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Our next goal is to show that γm+2 = O(N−1+ε). First, we use the fact that Tm is
an eigenvector of the DFT to calculate

FTm = (−i)mTm = (−i)mγm �m + (−i)mγm+2 �m+2 + O(N−1+ε).

At the same time, we can evaluate the same expression via Lemma 3.1: this gives us

FTm = γm F�m + γm+2F�m+2 + O(N−1+ε) = (−i)mγm �m

+ (−i)m+2γm+2 �m+2 + O(N−1+ε).

Comparing the above two formulas we conclude that γm+2 = O(N−1+ε). Thus Tm =
γm �m + O(N−1+ε), and since ‖Tm‖ = 1 we conclude that |γm | = 1 + O(N−1+ε).
This implies that Tm = �m + O(N−1+ε) or −Tm = �m + O(N−1+ε) and this ends
the induction step.

The proof of the identity Tn = �n + O(N−1+ε) when n is odd follows the
same steps. We provide only a sketch of the proof and leave all the details to the
reader. First of all, we note that if n is odd then Tn is a linear combination of
VN/2�−ν(n), VN/2�−ν(n)+1, . . . , Vν(n), and therefore

Tn(k) = Qn(tk)Vν(n)(k)

for an even polynomial Qn of degree

deg(Qn) = 2(ν(n) − (N/2� − ν(n))) = 4ν(n) − 2N/2�.

Again, it is easy to see that the sequence deg(Qn) forn = 1, 3, 5, 7, . . . is equal to either
0, 4, 4, 8, 8, 12, 12, . . . (if N = 0 or N = 3 modulo 4) or 2, 2, 6, 6, 10, 10, 14, . . .
(otherwise). In particular, deg(Qn) is always equal to either n − 1 or n + 1.

Thus our goal is to prove that for every odd m we have Tm = �m + O(N−1+ε)

as N → ∞. Note this is true for m = 1 as was established in Lemma 3.3. Now, fix
an odd m ≥ 3. Suppose that we have already chosen the signs of {Tn}n=1,3,...,m−2 in
a proper way and have proved that Tn = �n + O(N−1+ε) for n = 1, 3, . . . ,m − 2.
Our goal is to prove that Tm = �m + O(N−1+ε).

We define γ j to be the coefficients in the expansion of the odd polynomial√
2xQm(x) in the basis h j (x). This is equivalent to writing

Qm(x) = γ1h1(x)/(
√
2x) + γ3h3(x)/(

√
2x) + · · · + γmhm(x)/(

√
2x)

+ γm+2hm+2(x)/(
√
2x).

Note that for odd j the function h j (x)/x is an even polynomial (since h j is an odd
polynomial in this case). Let us define the vectors {B j } j=1,3,...,m+2 via B j (k) =
h j (tk)/(

√
2tk) × Vν(m)(k), k ∈ IN , so that we have

Tm =
∑

j=1,3,...,m+2

γ j B j
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According to Lemmas 3.2 and 3.3, we have B j = � j + O(N−1+ε) for all j ∈
{1, 3, . . . ,m + 2}. The rest of the proof proceeds exactly in the same way as in the
case of even m: first we use orthogonality of Tn to show that γ j = O(N−1+ε) for
j = 1, 2, . . . ,m − 2 and then we use the fact that Tm is an eigenvector of the DFT to
prove that γm+2 = O(N−1+ε). The details are left to the reader. ��

4 Numerical Computation of the Minimal Hermite-Type Basis

The eigenvectors Tn can be efficiently evaluated numerically using the three-term
recurrence relation stated in Theorem 1.6. The algorithm is quite straightforward.
First we compute the vectors T0, T1, T2, T3 via

T0 = c0(uK0 + u�N/2�−K0),

T1 = c1(vK1 + vN/2�−K1),

T2 = c2(uK2 − u�N/2�−K2),

T3 = c3(vK3 − vN/2�−K3),

where Km = �(N + 2 + m)/4�, ci are the normalisation constants that make Ti

unit vectors and the Gaussian-type vectors un and the modified Gaussian-type vectors
vn are computed by expressions given in Definition 2.2 or in Lemma 2.5. Then we
compute the remaining vectors {Tn}4≤n≤N−1 using the three-term recursion described
in Theorem 1.6. While doing this, we need to remember to set TN−1 to the “ghost”
vector TN when N is even.

Let us discuss the computational complexity of the above algorithm. It is easy to
see that the number of arithmetic operations needed to evaluate the initial vectors
T0, T1, T2, T3 is linear in N , and the same is true for each recursive step. Thus the
vector Tn can be evaluated using O(Nn) arithmetic operations, and the entire basis
requires only O(N 2) operations. This bound is clearly optimal: the complete basis
consists of N 2 numbers, so it cannot be evaluated using fewer than O(N 2) opera-
tions. Considering the memory requirement, we note that we need O(N 2) memory to
compute the entire basis (since we need to store the entire basis in memory) and we
need only O(N ) memory if our goal is to compute vector Tn for one fixed value of n:
this last statement is true since the above recursive algorithm, based on Theorem 1.6,
requires us to store only eight vectors {Tl}n−8≤l≤n−1 to compute vectors Tm with
m ≥ n. Clearly, these bounds for memory requirements are also optimal.

However, the time complexity of the above algorithm is worse than O(N 2) due
to rapid loss of precision. It is easy to see where this loss of precision comes from.
Note that for N large we have L Tn = 4Tn + o(1), so that an = 4 + o(1) and
bn = o(1). Thus, when we calculate Tn+4 via (6), first we calculate the difference
L Tn − anTn and we subtract numbers of similar magnitude, then we normalize the
resulting vector L Tn − anTn − bn−4Tn−4 (which is o(1)) by multiplying it by a
large number 1/bn . Subtracting numbers of similar magnitude and multiplying the
result by a large number inevitably results in loss of precision. Empirically, we have
found that evaluation of TN−1 for N = 256 leads to loss of approximately 110 digits
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of precision. This increases to over 440 digits when N = 1024. For this reason,
high-precision arithmetic is necessary even for relatively small values of N .

To facilitate applications, we have pre-computed the minimal Hermite-type basis
for all N less than or equal to 1024, as well as a few larger values of N , and made these
results publicly available on the Internet at drive.google.com/open?id=0B1hpG-8rGM
JcQnhXbE8tR3NZVXM.We used aWolframMathematica script to generate the vec-
tors Tn ; the source code is given in Listing 1 (the output has been generated using
the code given in Listing 2). For N = 1024, and using interval arithmetic with 1000
digits of precision, the script takes about 100 seconds on a modern computer. To test
our results we have also computed the minimal Hermite-type basis using a Fortran90
program and David Bailey’s MPFUN90 multiple precision package, this code can be
found at www.math.yorku.ca/~akuznets/math.html.
numer = (N[Interval[#], prec]&); (* function to be used for numerical evaluation *)
k0 = -Ceiling[nn/2] + 1; (* auxiliary: evaluate vectors a[k0],a[k0+1],...,a[k0+nn-1] *)
omega = 2 Pi/nn;
S[k_?IntegerQ] := S[k] =

If[2 k < nn,
If[k > 0, Product[numer[2 Sin[omega j/2]], {j, 1, k}], numer[1]],
nn/S[nn - 1 - k]

];
alpha[n_?IntegerQ] := alpha[n] = (* multiplied by S[n]^2 *)

If[OddQ[nn],
If[n > 0, Sqrt[S[2 n]], numer[1]],
If[n > 0, Sqrt[S[2 n - 1] Sin[omega n/2]], numer[1/2]]

];
beta[n_?IntegerQ] := beta[n] = (* multiplied by S[n]^2 *)

If[OddQ[nn],
Sqrt[S[2 n - 1]],
Sqrt[S[2 n - 1] Cos[omega n/2]]

];
u[n_?IntegerQ] := u[n] = Table[

If[Abs[k] > n, 0,
If[OddQ[nn],

alpha[n] S[nn - n - 1 - k] S[nn - n - 1 + k] / nn^2,
If[n < nn/2,

alpha[n] S[nn - n - 1 - k] S[nn - n - 1 + k] Cos[omega k/2] / nn^2,
numer[1/Sqrt[4 nn]]

]
]

],
{k, k0, k0 + nn - 1}];

v[n_?IntegerQ] := v[n] = Table[
If[Abs[k] > n, 0,

If[OddQ[nn],
beta[n] S[nn - n - 1 - k] S[nn - n - 1 + k] Sin[omega k] / nn^2,
beta[n] S[nn - n - 1 - k] S[nn - n - 1 + k] 2 Sin[omega k/2] / nn^2

]
],
{k, k0, k0 + nn - 1}];

T[0] := T[0] = Normalize[u[Floor[(nn + 2)/4]] + u[Floor[nn/4]]];
T[1] := T[1] = Normalize[v[Floor[(nn + 3)/4]] + v[Floor[(nn + 1)/4]]];
T[2] := T[2] = Normalize[u[Floor[(nn + 4)/4]] - u[Floor[(nn - 2)/4]]];
T[3] := T[3] = Normalize[v[Floor[(nn + 5)/4]] - v[Floor[(nn - 1)/4]]];
Lm := Lm = Table[numer[2 Cos[omega k]], {k, k0, k0 + nn - 1}]; (* multiplier for L *)
L[a_] := RotateLeft[a, 1] + RotateRight[a, 1] + Lm a;
If[EvenQ[nn], T[nn - 1] := T[nn - 1] = T[nn]]; (* set T[nn-1] to the ghost vector T[nn] *)
T[n_?IntegerQ] := T[n] = Block[{LT, Ta, t},

LT = L[T[n - 4]];
Ta = T[n - 4].LT;
t = If[n < 8,

LT - Ta T[n - 4],
LT - Ta T[n - 4] - Tb[n - 8] T[n - 8]

];
Tb[n - 4] = Norm[t];
t / Tb[n - 4]

];

Listing 1: Mathematica script that was used to evaluate minimal Hermite-type eigenvectors Tn, repre-
sented as T[n] in the code. Input parameters are nn, equal to the dimension N , and precision, the
number of digits to be used in interval arithmetic calculations. Lazy evaluation with memorization is
used. Interval arithmetic allows us to keep track of rounding errors.

http://drive.google.com/open?id=0B1hpG-8rGMJcQnhXbE8tR3NZVXM
http://drive.google.com/open?id=0B1hpG-8rGMJcQnhXbE8tR3NZVXM
www.math.yorku.ca/~akuznets/math.html
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digits = 400;
maxoutput = 100;
print[Interval[{a_, b_}]] := ToString[

If[b - a > 10^(-digits - 2), Throw["Insufficient precision"], (* check precision *)
If[Abs[a + b]/2 < 10^(-maxoutput), "0", (* treat zero in a separate way *)

ScientificForm[
(a + b)/2, (* number to be printed *)
Min[maxoutput, digits + MantissaExponent[(a + b)/2][[2]]], (*number of significant digits to be printed*)
NumberFormat -> (SequenceForm[#1, "e", #3] &)

]
]

]
];
Export["/path/to/file.txt", Table[print /@ T[n], {n, 0, nn - 1}], "Table"]

Listing 2: Mathematica script used for creating pre-evaluated tables of minimal Hermite-type eigen-
vectors. Only faithfully evaluated digits are printed: in case of excessive loss of precision execution is
aborted.
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