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1 Introduction

Let Sn be the disc multiplier on R
n (n > 1) defined by

(̂Sn f )(ξ) = χB(0,1)(ξ) f̂ (ξ), ξ ∈ R
n .

It is known [13] that Sn is bounded on L p(Rn) if and only if p = 2. However, in
[17] it was proved that, when restricted to radial functions, Sn is bounded on L p(Rn)

if and only if

2n

n + 1
< p <

2n

n − 1
.

Moreover, in [19] the authors proved that Sn is not of weak type on the extreme points

p− := 2n

n + 1
, p+ := 2n

n − 1
,

but it holds (see [8]) that Sn is of restricted weak type at these points; that is

Sn : L p−,1
rad −→ L p−,∞, and Sn : L p+,1

rad −→ L p+,∞

are bounded, where X rad is the set of radial functions in X . We observe that the
boundedness on L p+,1

rad follows of that in L p−,1
rad by duality.

Later on, several results concerning the boundedness of Sn on radial functions on
weighted L p spaces were developed. In particular, we have to mention the following
results:
(1) In [1,22], two (different) sufficient conditions on a radial weight w such that Sn is
bounded on L2

rad(w)were given. In fact, these conditions were necessary when applied
to power weights.
(2) In [12], using the characterization in [22], a new sufficient condition on a radial
weight is given. In this case, the weights are in a subclass of the Muckenhoupt class
A2 [23], which was important to obtain other weighted results via Rubio de Francia
extrapolation theory [26].

Recall that a positive locally integrable function w (called weight) is said to be in
the Muckenhoupt class Ar (r > 1) if

‖w‖Ar = sup
Q

(
1

|Q|
∫
Q

w(x) dx

)(
1

|Q|
∫
Q

w−1/(r−1)(x) dx

)r−1

< ∞,

where Q stands for any cube in R
n and, we say that w ∈ A1, if Mw(x) ≤ Cw(x), at

almost every point x ∈ R
n with M is the Hardy–Littlewood maximal operator defined

by

M f (x) = sup
x∈B

1

|B|
∫
B

| f (y)| dy,
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where B is a ball in R
n . In this case, ‖w‖A1 will be the least constant C satisfying

such inequality, and we notice that we use balls instead of cubes since we shall need
that if f is radial, so is M f in Theorem 3.9.

Concerning the boundedness on weighted L p spaces of Sn , the following result
holds:

Theorem 1.1 [12] If w is a radial function such that wn ∈ A2(R
n), then

Sn : L2
rad(w) −→ L2(w)

is bounded.

Then, using a technique based on Rubio de Francia extrapolation theory (Theorem
7.1, [12]) the following result (although not stated in [12]) can be easily obtained.
At this point, we should mention that limited range extrapolation results, of the same
nature of the following theorem, have been proved by several different authors and we
explicitly referred to [3,10].

Theorem 1.2 Let p ∈ (p−, p+) and let w be a radial function such that

w = uα0
0 uα1(1−p)

1 , u j ∈ (A1)rad, j = 0, 1,

with

α0 = 1 − p
(n − 1

2n

)
, α1 = 1 − p′(n − 1

2n

)
.

Then,

Sn : L p
rad(w) −→ L p(w)

is bounded.

Now, by the result proved in [19] and mentioned above, in the previous theorem p
cannot be either p− or p+ showing that Rubio de Francia extrapolation theory does
not allow to extrapolate to the end-points. However, taking into account the result of
Chanillo [8] on restricted weak type boundedness at the end-points, one can conjecture
that something similar could be true in the above weighted setting. To show that this
conjecture at the extreme point p− is true is one of the main goals of this paper.
Contrary to what happens in the unweighted case, the analogue boundedness result at
the extreme point p+ does not follow from this one using duality.

Theorem 1.3 (Main Theorem) Let w be a radial function such that w
n+1
2 ∈ A1(R

n).
Then

Sn : L p−,1
rad (w) −→ L p−,∞(w)

is bounded. Moreover, the result is optimal in the sense that the exponent in w can not
be improved.
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At this point we have to emphasize that the proof of our main result is not an easy
extension of Theorem 1.2 although it follows the same pattern. Namely, we shall prove
an estimate for p = 2, analogous to the one in Theorem 1.1, and then prove some new
extrapolation results. To this end, we have to work with the class of weights AR

p for
which the Hardy-Littlewood maximal operator in R

n satisfies that

M : L p,1(w) −→ L p,∞(w)

is bounded, and one of the main difficulties will be the fact that this class does not
satisfy the so-called p − ε property, neither the reverse Hölder’s inequalities or the
corresponding duality property that w ∈ Ap if and only if w1−p′ ∈ Ap′ .

This new extrapolation result (Theorem 3.7) is interesting by itself since it can be
applied to many other situations and it is the second main result of this paper. In short,
it states that it is possible to extrapolate down to the end-point p−, contrary to what
happens with the clasical limited extrapolation result as shown in Theorem 1.2.

Concerning the weighted boundedness of Sn at the upper extreme point p+ = 2n
n−1 ,

we believe that the following result is also true: if w is a radial weight such that

w− n−1
2 ∈ A1(R

n), then

Sn : L p+,1
rad (w) −→ L p+,∞(w)

is bounded. However, the lack of the duality property (mentioned above) in our class
of weights makes things more complicated and, up to now, this result remains as an
open question.

As usual, we shall use the symbol A � B to indicate that there exists a universal
positive constant C , independent of all important parameters, such that A ≤ CB.
A ≈ B means that A � B and B � A. Also, if f is a radial function on R

n , f0 will
denote its radial part f0(|x |) = f (x) defined on R

+, and all over the paper, we shall
denote

Ik = (2k, 2k+1), Jk = (2k−1, 2k+2), ∀k ∈ Z.

For later purposes, we need also to recall (see [18]) that u ∈ Ap if and only if there
exists u0, u1 ∈ A1 such that

u = u0u
1−p
1 , ‖u0‖A1 ≤ ‖u‖Ap , ‖u1‖A1 ≤ ‖u‖

1
p−1
Ap

, (1.1)

and u ∈ A1 if and only if there exists h ∈ L1
loc(R

n) and k such that k, k−1 ∈ L∞
satisfying that, for some 0 < δ < 1, u = k(Mh)δ .

Finally, the Lorentz spaces L p,q(u) are defined as the set of measurable functions
such that

‖ f ‖L p,q (u) =
( ∫ ∞

0
yq−1λuf (y)

q/pdy

)1/q

< ∞,
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and L p,∞(u) is defined by the condition

‖ f ‖L p,∞(u) = sup
y>0

yλuf (y)
1/p < ∞,

where λuf (y) = u
({
x : | f (x)| > y

})
is the distribution function of f with respect to

u (see [4]). We use the standard notation u(E) = ∫
E u(x) dx and, if u = 1, we shall

write λ f (y) and |E |.
The paper is organized as follows: Sect. 2 contains the above mentioned weighted

L2 estimate for Sn . The complete proof of this estimate needs several technical results
which are formulated in Proposition 2.4 without proof in order to make easier the
reading of the paper. The proof will be given in Sect. 4. Finally, the restricted weak
type extrapolation theory and the proof of our main theorem will be done in Sect. 3.

Finally, we want to thank the referees for the very useful comments and remarks
that have improved the final presentation of this paper.

2 A Weighted L2 Estimate

As mentioned in the introduction, we need to deal with restricted weak type estimates
and hence, we have to work with the class of weights AR

p for which

M : L p,1(w) −→ L p,∞(w)

is bounded and we recall that w ∈ AR
p if and only if (see [20])

‖w‖AR
p

= sup
E⊂Q

|E |
|Q|

(
w(Q)

w(E)

)1/p

< ∞, (2.1)

where the supremum is taken over all cubes Q and all measurable sets E ⊂ Q, or
equivalently [9],

‖w‖∗
AR
p

= sup
Q

||χQ ||L p,1(w)||w−1χQ ||L p′,∞(w)

|Q| < +∞. (2.2)

Remark 2.1 At this point, we have to emphasize that since we shall be dealing with
radial functions, we shall work in two settings:Rn andR

+. Hence, AR
p could be either

AR
p (Rn) or AR

p (R+). Clearly in the case R
+, Q = (a, b) with 0 ≤ a < b < ∞. We

shall try to be precise if needed but we shall use the shorter notation AR
p whenever

things are clear. The same will happen in the context of Ap. Also we shall use the
letter M to indicate the Hardy–Littlewood maximal operator either on R

n or on R
+.

In a recent paper (see [7]) the following class of weights was introduced:
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Definition 2.2 Set

Â p =
{
u ∈ L1

loc : ∃ f ∈ L1
loc and ∃ u1 ∈ A1 : u = (M f )1−pu1

}
,

with

‖u‖ Â p
= inf ‖u1‖1/pA1

.

And, it was proved that
Â p ⊂ AR

p . (2.3)

Also, by (1.1), and the fact that u ≈ Mu for every u ∈ A1, it is clear that Ap ⊂ Â p.
We need to also introduce the following class of radial weights:

Definition 2.3 We define R̂p(R
n) the class of radial weights u on R

n such that there
exists f ∈ (L1

loc(R
n))rad and u1 ∈ (A1(R

n))rad satisfying that

u = (M f )1−pu1.

Taking into account (2.3), it is clear that R̂p ⊂ (AR
p )rad.

The following proposition collects all the properties of the weights which shall be
fundamental for our purposes. In order to make things clearer and not introduce too
many technicalities, the proof will be postponed to the last section.

Proposition 2.4 (i) If u ∈ A1(R
+) then, for every γ > 1, v(s) = u(sγ )1/γ ∈

A1(R
+).

(ii) Let u ∈ A1(R
+) and f = 0, f ∈ L1

loc(R
+) such that M f (x) < ∞ a.e. Then, for

every γ > 1,

w(s) = (M f (sγ ))
−1
γ (u(sγ ))1/γ ∈ AR

2 (R+),

with constant independent of f .

(iii) If wn ∈ R̂2(R
n), then w0(s

2
n+1 )s

n−1
n+1 ∈ AR

2 (R+).
(iv) If wn ∈ R̂2(R

n), then w0 ∈ AR
2 (R+).

Remark 2.5 If we consider the maximal operator

Tn f (x) = sup
R>0

|SR
n f (x)| with (̂SR

n f )(ξ) = χB(0,R)(ξ) f̂ (ξ),

the boundedness of Tn on L p
rad(R

n) was also studied in [24,25]. The proof is based on
the following inequality valid for a radial function f :

Tn f (x) � 1

|x | n−1
2

(M + H̃ + Q + C̃)
(
f0(s)s

n−1
2

)
(|x |), (2.4)
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where

H̃ g(t) = sup
ε>0

∣∣∣∣
∫

|t−s|>ε

g(s)

t − s
ds

∣∣∣∣
is the maximal Hilbert transform,

Qg(s) =
∫ ∞

s
|g(t)|dt

t

is the conjugate Hardy operator, and C̃ is the maximal Carleson operator (we omit the
definition of the Carleson operator since it will not be used in this paper).

Now, revisiting the proof of (2.4) in [25] and adapting it to the case of the operator
Sn , one can easily see that if f is a radial function, then

|Sn f (x)| � 1

|x | n−1
2

(M + H̃ + Q + Hloc)( f0(s)s
n−1
2 )(|x |), (2.5)

where

Hlocg(t) = p.v.

∣∣∣∣
∫ 2t

t/2

g(s)eis

t − s
ds

∣∣∣∣
is a local Hilbert transform. Moreover, it was proved in [25] that, for every x ∈ Ik and
every f such that supp f0 ⊂ J ck ,

|Sn f (x)| � Pn( f )(|x |) + Qn( f )(|x |), (2.6)

where

Pn( f )(|x |) = 1

|x | n+1
2

∫ |x |

0
| f0(s)|s n−1

2 ds,

and

Qn( f )(|x |) = 1

|x | n−1
2

∫ ∞

|x |
| f0(s)|s n−1

2
ds

s
.

Lemma 2.6 If v ∈ AR
2 (R+),

Q : L2,1(v) −→ L2,∞(v)

is bounded.
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Proof Let h ∈ L2,1(v) such that ‖h‖L2,1(v) ≤ 1. Then

∣∣∣∣
∫ ∞

0
Q( f )(s)h(s)v(s)ds

∣∣∣∣ ≤
∫ ∞

0
| f (s)| P(hv)(s)

v(s)
v(s)ds,

where P f (t) = 1
t

∫ t
0 f (s)ds is the Hardy operator and hence P f (t) ≤ M f (t). But it

is known (see [5]) that, if v ∈ AR
2 (R+),

∥∥∥M(hv)

v

∥∥∥
L2,∞(v)

� ‖h‖L2,1(v),

and hence the result follows by duality. ��

Lemma 2.7 For every w ∈ AR
2 (R+)

Hloc : L2,1(w) −→ L2,∞(w)

is bounded.

Proof The proof will be an easy modification of the one given in [2] for the strong
boundedness using that M, H : L2,1(w) −→ L2,∞(w) (see [7]).

Let us take f = χE and x ∈ Ik . Then,

Hloc f (x) =
∣∣∣∣∣
( ∫ 2k+2

2k−1
−

∫ x/2

2k−1
−

∫ 2k+2

2x

)
f (t)eit

t − x
dt

∣∣∣∣∣ ≤ I + I I + I I I.

where I = |H( fk)(x)| with fk(t) = f (t)eitχJk and I I + I I I � M fk(x). Hence,

w
({
x : Hloc f (x) > y

}) =
∑
k

w
({
x ∈ Ik : Hloc f (x) > y

})

≤
∑
k

w
({
x ∈ Ik : M fk(x) > Cy

}) +
∑
k

w
({
x ∈ Ik : H fk(x) > Cy

})

�
∑
k

1

y2
‖ fk‖2L2,1(w)

= 1

y2
∑
k

w(E ∩ Jk) ≈ 1

y2
w(E).

��

Lemma 2.8 For every radial weight w in R
n such that wn ∈ R̂2,

Pn : L2,1
rad(w) −→ L2,∞(w)

is bounded.
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Proof Let v(s) = w0(s
2

n+1 )s
n−1
n+1 and note that, by Proposition 2.4, v ∈ AR

2 (R+).
Then, if f is a radial function,

∫
{x∈R|n :Pn f (x)>λ}

w(x)dx ≈
∫{

s>0:s− n+1
2

∫ s
0 f0(t)t

n−1
2 dt>λ

} w0(s)s
n−1ds

≈
∫
{
s>0: 1s

∫ s
2

n+1
0 f0(t)t

n−1
2 dt>λ

} w0(s
2

n+1 )s
n−1
n+1 ds

≈
∫{

s>0: 1s
∫ s
0 f0(u

2
n+1 )du>λ

} w0(s
2

n+1 )s
n−1
n+1 ds

=
∫{

s>0: 1s
∫ s
0 f0(u

2
n+1 )du>λ

} v(s)ds.

Now, if f (x) = χE (x), E0 is the radial part of E and En
0 = {s > 0 : s 2

n+1 ∈ E0},
we have that

∫
{x∈Rn :PnχE (x)>λ}

w(x)dx ≈
∫{

s>0: 1s
∫ s
0 χEn0

(u)du>λ

} v(s)ds � v(En
0 )

λ2
,

where we have used that since v ∈ AR
2 , the Hardy operator is restricted weak type

(2, 2). Finally,

v(En
0 ) =

∫
{s>0:s 2

n+1 ∈E0}
w0(s

2
n+1 )s

n−1
n+1 ds ≈

∫
E0

w0(s)s
n−1ds ≈ w(E),

and the result follows. ��

In [12] was proved that if f is a radial function on R
n , then

M f (x) ≈ sup
r1<|x |<r2

1

rn2 − rn1

∫ r2

r1
| f0(t)|tn−1dt,

and hence there exists f̄ , defined in R
+, such that

M f (x) ≈ M f̄ (|x |n). (2.7)

Lemma 2.9 For every w such that wn ∈ R̂2,

Qn : L2,1
rad(w) −→ L2,∞(w)

is bounded.
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Proof The result will follow by duality. As was done in Lemma 2.6, it can be easily
see that the result holds if and only if, for every h radial function,

∥∥∥ Pn(hw)

w

∥∥∥
L2,∞(w)

� ‖h‖L2,1(w).

Now, if v(s) = w0(s
2

n+1 ),
∫{

x∈Rn : Pn (hw)(x)
w(x) >λ

} w(x)dx

≈
∫{

s>0: 1

w0(s)s
n+1
2

∫ s
0 h0(t)t

n−1
2 w0(t)dt>λ

} w0(s)s
n−1ds

≈
∫{

s>0: 1
v(s)s

∫ s
0 h0(t

2
n+1 )v(t)dt>λ

} v(s)s
n−1
n+1 ds.

Therefore, if u(s) = s
n−1
n+1 , we have to prove that, if h̄(t) = h0(t

2
n+1 ),

∥∥∥ P(h̄v)

v

∥∥∥
L2,∞(vu)

� ‖h‖L2,1(w).

In fact, if we prove that v−1u ∈ A2, the result will easily follows since

∥∥∥ P(h̄v)

v

∥∥∥
L2,∞(vu)

�
∥∥∥P(h̄v)

∥∥∥
L2(v−1u)

� ‖h̄‖L2(vu)

=
( ∫ ∞

0
h0(s

2
n+1 )2w0(s

2
n+1 )s

n−1
n+1 ds

)1/2

≈
( ∫ ∞

0
h0(t)

2w0(t)t
n−1dt

)1/2

≈ ‖h‖L2(w) � ‖h‖L2,1(w).

Now, if wn ∈ R̂2, then w ≈ (M f )−1/n(Mg)δ/n , for some radial functions f and g
and 0 < δ < 1. Hence, using (2.7),

v−1(s)u(s) =
(
M f̄ (s

2n
n+1 )

) 1
n
(
Mḡ(s

2n
n+1 )

)− δ
n
s
n−1
n+1

=
[(

M f̄ (s
2n
n+1 )

) n+1
2n

] 2
n+1

[(
Mḡ(s

2n
n+1 )

) δ
n
s− n−1

n+1

]−1

.

By Proposition 2.4,
[
(M f̄ (s

2n
n+1 ))

n+1
2n

] 2
n+1 ∈ A1. On the other hand, we have that

(Mḡ(t))
2δ
n+1 t−

n−1
n+1 ∈ A1. To see this, let us take δ < α < 1 and 0 < ν < 1 so that

α
2

n + 1
+ 1

ν

n − 1

n + 1
= 1,
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and write

(Mḡ(t))
2δ
n+1 t−

n−1
n+1 = [(Mḡ(t))

δ
α ] 2α

n+1 [t−ν] n−1
(n+1)ν .

Since both (Mḡ(t))
δ
α and t−ν are A1 weights, we obtain the result byHölder’s inequal-

ity.
Therefore, again by Proposition 2.4, we obtain that

(Mḡ(s
2n
n+1 ))

δ
n s− n−1

n+1 ∈ A1,

and, hence, v−1u ∈ A2. ��
Now, we are ready to formulate our new weighted L2 estimate for Sn :

Theorem 2.10 If w is a radial function such that wn ∈ R̂2, then

Sn : L2,1
rad(w) −→ L2,∞(w)

is bounded.

Remark 2.11 In the case of radial power weights, that is, w(x) = |x |α , it was proved
in [1] that

Sn : L2
rad(w) −→ L2(w)

if and only if −1 < α < 1. We observe, that the above result, in particular, says that
in the extreme case α = 1 we have indeed a restricted weak type inequality.

Proof Let f = χE be a radial function. Then, its associated radial function f0(s) =
χE0(s), where E0 is the radial set associated to E ; that is x ∈ E if and only if |x | ∈ E0.
Let us write f0 = f 1k + f 2k with f 1k = f0χJk . Set Ck = {x ∈ R

n : 2k ≤ |x | ≤ 2k+1}
and let f j

k (x) = f j
k (|x |), for every x ∈ R

n ( j = 1, 2). Then,

w
({
x ∈ R

n; |Sn f (x)| > 2y
})

≤
∑
k∈Z

w
({
x ∈ Ck; |Sn f 1k (x)| > y

}) +
∑
k∈Z

w
({
x ∈ Ck; |Sn f 2k (x)| > y

})

= I + I I.

For the global part II we use (2.6) together with Lemmas 2.8 and 2.9 to obtain that

I I � w({x ∈ R
n; |(Pn + Qn)( f )(x)| > y}) � w(E)

y2
.

Let us now estimate the local part I. If w is such that wn ∈ R̂2, we have to use (2.5)
and proceed as follows: By Proposition 2.4, we have thatw0 ∈ AR

2 (R+) and hence we
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have that M and H̃ are of restricted weak type (2,2) on L2,1(w0) (see Section 4 in [7]),
and by Lemmas 2.6 and 2.7, the same estimate holds for Q and Hloc and therefore, if

A := M + H̃ + Q + Hloc,

we have, using the boundedness of A proved in the previous lemmas, that

w
({
x ∈ Ck; |Sn f 1k (x)| > y

})
≤ w

({
x ∈ Ck; |A( f 1k (r)r

n−1
2 )(x)| > 2k

n−1
2 y

})
≈ 2k(n−1)w0

({
s ∈ Ik; |A( f 1k (r)r

n−1
2 )(s)| > 2k

n−1
2 y

})

� 1

y2

∥∥∥ f 1k (r)r
n−1
2

∥∥∥2
L2,1(w0)

= 1

y2

(∫ ∞

0
w0({r : f 1k (r)r

n−1
2 > s})1/2 ds

)2

= 1

y2

(∫ ∞

0
w0({r ∈ E0 ∩ Jk : r n−1

2 > s})1/2 ds
)2

≈ 2k(n−1)

y2
w0(E0 ∩ Jk) ≈ 1

y2

∫
(Ck−1∪Ck∪Ck+1)∩E

w(x)dx .

Summing in k ∈ Z, the estimate for I is proved and the result follows. ��

3 Limited Restricted Weak Type Extrapolation

In order to prove the main result of this paper (Theorem 1.3), we need to develop a
new Rubio de Francia extrapolation result, and this is precisely the first goal of this
section. In fact, we just need it for radial functions and radial weights but we shall do
it for the general case, and then adapt it easily to our particular case.

The classical result [26] (see also [14–16]), says that if, for some p ≥ 1 and every
w ∈ Ap,

T : L p(w) −→ L p(w)

is a bounded operator then, for every q > 1 and every w ∈ Aq ,

T : Lq(w) −→ Lq(w)

is also bounded. Moreover, there are examples of operators, for which the hypothesis
of Rubio de Francia’s theoremholds and they are not ofweak type (1, 1) as the operator
M ◦ M trivially shows.

Since the above result was first proved, many other proofs and improvements have
appeared in the literature, but we want to mention the fact that an important property
of the Ap weights that makes possible the extrapolation is the factorization property
(1.1). We refer to the books [10,14,16] for classical and new results on this theory.

It is not known if the class AR
p satisfies some factorization property. However, in

the recent papers [5,7] a Rubio de Francia extrapolation theory was developed for
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operators satisfying a restricted weak type boundedness for the class Â p. The main
advantage of this new class is that allows to obtain boundedness estimates at the
end-point p = 1.

The restricted weak type Rubio de Francia extrapolation results proved in [7] can
be stated as follows:

Theorem 3.1 Let 1 < p < ∞ and let T be a sublinear operator. Assume that, for
every v ∈ Â p, we have that

T : L p,1(v) −→ L p,∞(v)

is bounded. Then, for every v ∈ A1, T is of restricted weak type (1, 1); that is, for
every measurable set E ⊂ R

n,

‖TχE‖
L1,∞(v)

� v(E).

Moreover, Rubio de Francia’s extrapolation theorem was extended in [6,12] to
cover the cases of operators which are not bounded for every p > 1 but only in a
certain interval (p−, p+). In this setting, the authors defined the following class of
weights and the following indices:

Definition 3.2 Given 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, let us define

Ap;(α,β) = {
v = vα

0 v
β(1−p)
1 ; v j ∈ A1

}
.

Definition 3.3 Given p ∈ [1,+∞) and α, β ∈ [0, 1], let us define p− and p+ as

p+ = p

1 − α
, p−′ = p′

1 − β
. (3.1)

We associate to every q ∈ (p−, p+) the indices α(q), β(q) ∈ [0, 1] given by

p+ = q

1 − α(q)
, p−′ = q ′

1 − β(q)
. (3.2)

So, we have that for any q ∈ [p−, p+]

α(q) = 1 − q

p+
, β(q) = 1 − q ′

p−′ .

Then, the following theorem was proved in [6]:

Theorem 3.4 Let us assume that

T : L p(w) −→ L p,∞(w)
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is bounded, for every w ∈ Ap;(α,β) and let p− and p+ be given by (3.1). For q ∈
(p−, p+), let α(q) and β(q) be given by (3.2). Then for v ∈ Aq;(α(q),β(q)), it holds
that

T : Lq(v) −→ Lq,∞(v)

is bounded.

Taking into account these results, our next goal will be to show that a similar result
holds true when dealing with restricted weak type estimate and the corresponding
class Â p;(α0,α1) defined as follows:

Definition 3.5 Given 0 ≤ α, β ≤ 1, let

Â p;(α,β) =
{
v : ∃ g ∈ L1

loc and ∃ u ∈ A1 : v = uα(Mg)β(1−p)
}
.

To prove our next theorem, we will need the following result from [11] (see The-
orem 1.3 and Remark 2.2). See also, [21] where very interesting estimates as the one
in this proposition have been provided.

Proposition 3.6 If u ∈ A1 and v ∈ A∞, then

∥∥∥∥M ( f v/u)

v/u

∥∥∥∥
L1,∞(v)

� ‖ f ‖L1(v).

With this inequality, we can now prove our fundamental extrapolation result that
will allow us (together with Theorem 3.9) to prove our main result. We emphasize
here that, contrary to what happens with the classical limited range extrapolation, we
can obtain here an estimate at the endpoint p−.

Theorem 3.7 Let T be an operator satisfying that, for some p > 1 and every w ∈
Â p;(α,β)

T : L p,1(w) −→ L p,∞(w)

is bounded. Then, if p− > 1 and v is a weight such that v
1

α(p−) ∈ A1,

T : Lp−,1(v) −→ Lp−,∞(v)

is bounded.

Proof Let v = uα(p−) with u ∈ A1, and let

M f = u
1
p+ M

(
f p−

u
p−
p+

)1/p−
.
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Then,

λv
T f (y) ≤ λv

M f (y) + v({|T f | > y, M f ≤ y}
≤ λv

M f (y) + y p

yp−

∫
{|T f |>y}

(M f (x))−(p−p−) v(x) dx .

Therefore,

‖T f ‖p−
Lp−,∞(v)

� ‖M f ‖p−
Lp−,∞(v)

+ sup
y>0

y p
∫

{|T f |>y}
(M f (x))−(p−p−) v(x) dx

= ‖M f ‖p−
Lp−,∞(v)

+ sup
y>0

y p
∫

{|T f |>y}
v0(x) dx

= ‖M f ‖p−
Lp−,∞(v)

+ ‖T f ‖p

L p,∞(v0)
,

with

v0 =
(
u1/p+M1/p−

(
f p−

up−/p+

))−(p−p−)

uα(p−).

Now, since
⎧⎪⎪⎨
⎪⎪⎩

− p − p−
p−

= 1 − p

p−
= 1 − p

(
1 − (1 − β)(p − 1)

p

)
= β(1 − p)

− p − p−
p+

+ α(p−) = 1 − p

p+
= 1 − p(1 − α)

p
= α.

we have that v0 ∈ Â p;(α,β), and hence, by hypothesis, we get that

‖T f ‖p

L p,∞(v0)
� ‖ f ‖p

L p,1(v0)
≈

(∫ ∞

0

(∫
{| f |>z}

v0(x) dx

)1/p

dz

)p

.

Now, if x is such that | f (x)| > z, v0(x) ≤ z−(p−p−)v(x) and hence,

‖T f ‖p

L p,∞(v0)
�

(∫ ∞

0
z
p−
p −1

(λv
f (z))

1/pdz

)p

≈ ‖ f ‖p−
L
p−,

p−
p (v)

.

On the other hand, using that p−
p+ = 1− α(p−), and Proposition 3.6, we obtain that

‖M f ‖p−
Lp−,∞(v)

=
∥∥∥∥∥u1/p+

(
M

(
f p−

up−/p+

))1/p−
∥∥∥∥∥
p−

Lp−,∞(uα(p−))

=
∥∥∥∥u1−α(p−)M

(
f p−

u1−α(p−)

)∥∥∥∥
L1,∞(uα(p−))

� ‖ f ‖p−
Lp− (uα(p−))

= ‖ f ‖p−
Lp− (v)

.
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Therefore,

‖T f ‖p−
Lp−,∞(v)

� ‖ f ‖p−
L
p−,

p−
p (v)

,

and the result follows since ‖χE‖p−
L
p−,

p−
p (v)

≈ ‖χE‖p−
Lp−,1(v)

, and Lp−,∞(v) is aBanach

space. ��
Now, if T is an operator that takes radial functions into radial functions andwework

with radial weights, the proof of Theorem 3.7 can be adapted to obtain the following
results. We will need two new classes of radial weights defined as follows:

Definition 3.8 Given 0 ≤ α, β ≤ 1, let

Rp;(α,β)(R
n) =

{
v : ∃ v0, v1 ∈ (A1)rad : v = vα

0 v
β(1−p)
1

}
,

and

R̂p;(α,β)(R
n) =

{
v : ∃ g ∈ (L1

loc(R
n))rad and ∃ u ∈ (A1)rad : v = uα(Mg)β(1−p)

}
.

Theorem 3.9 Let T be an operator satisfying that, for some p > 1 and every w ∈
R̂p;(α,β)

T : L p,1
rad (w) −→ L p,∞

rad (w),

is bounded. Then, if p− > 1, for every radial weight v such that v
1

α(p−) ∈ A1

T : Lp−,1
rad (v) −→ Lp−,∞

rad (v)

is bounded.

With all these results in our hands, we are now ready to prove our MAIN THEO-
REM.

Proof of Theorem 1.3 If wn ∈ R̂2, we have by Theorem 2.10 that

Sn : L2,1
rad (w) −→ L2,∞(w)

is bounded. Hence, since w ∈ R̂2;( 1n , 1n ), we can apply Theorem 3.9 to obtain that,
under the conditions on v,

Sn : Lp−,1
rad (v) −→ Lp−,∞

rad (v)

is bounded and the result follows since p− = 2n
n+1 and α(p−) = 2

n+1 .
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Finally, to prove that the exponent in Theorem 1.3 is optimal, assume that

Sn : L
2n
n+1 ,1
rad (w) −→ L

2n
n+1 ,∞(w)

is bounded, for every w such that wμ ∈ A1(R
n), for some μ < n+1

2 . Then, by
Theorem 3.4, it holds that

Sn : Lq,1
rad −→ Lq,∞,

is bounded for every 2n
n+1 ≤ q <

2nμ
(μ−1)(n+1) but since

2nμ
(μ−1)(n+1) > 2n

n−1 , this is not

possible. Therefore, the best exponent μ is precisely n+1
2 . ��

4 Proof of Proposition 2.4

(i) Let u ∈ A1(R
+) and let r > 1 such that ur ∈ A1. Take 0 < α < 1 such that

1
rγ +

(
1 − 1

γ

)
1
α

= 1 and let 0 < a < y < b < ∞. Then, by Hölder’s inequality,

1

b − a

∫ b

a
(u(sγ ))1/γ ds ≈ 1

b − a

∫ bγ

aγ

(u(t))1/γ t
1
γ

−1dt

= bγ − aγ

b − a

[
1

bγ − aγ

∫ bγ

aγ

(ur (t))1/rγ
(
1

tα

)1− 1
rγ

dt

]

≤ bγ − aγ

b − a

[
1

bγ − aγ

∫ bγ

aγ

ur (t) dt

]1/rγ [
1

bγ − aγ

∫ bγ

aγ

t−αdt

]1− 1
rγ

� (u(yγ ))1/γ ,

where in the last inequality we have used that ur ∈ A1 and the easy fact that

bγ − aγ

b − a

[
1

bγ − aγ

∫ bγ

aγ

t−αdt

]1− 1
rγ

� 1.

Therefore, if we write v(s) = (u(sγ ))1/γ , we have shown that Mv(y) � v(y) and
hence v ∈ A1 as we wanted to prove.
(ii) By (2.2), it suffices to prove that, for every 0 ≤ a < b and every t > 0,

(∫ b

a
w

)1/2

t

(∫
{x∈(a,b):w−1(x)>t}

w

)1/2

� (b − a),

with w(s) = (M f (sγ ))
−1
γ (u(sγ ))1/γ .

Let us first consider the case with u = 1:
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Case 1 If b/a ∈ (1, 2), then

∫ b

a
(M f (sγ ))

−1
γ ds ≤

(∫ b

a
(M f (sγ ))−1sγ−1ds

)1/γ (
log

b

a

) γ−1
γ

≈
( ∫ bγ

aγ

(M f (s))−1ds

)1/γ (b
a

− 1
) γ−1

γ
,

and similarly,

∫
{s∈(a,b):M f (sγ )>tγ }

(M f (sγ ))
−1
γ ds

�
( ∫

{s∈(aγ ,bγ ):M f (s)>tγ }
(M f (s))−1ds

)1/γ (b
a

− 1
) γ−1

γ
.

Since (M f (s))−1 ∈ Â2, we have that

(∫ bγ

aγ

(M f (s))−1ds

)1/2

tγ
( ∫

{s∈(aγ ,bγ ):M f (s)>tγ }
(M f (s))−1ds

)1/2

� (bγ − aγ ),

and hence,

(∫ b

a
(M f (sγ ))

−1
γ ds

)1/2

t

(∫
{s∈(a,b):M f (sγ )>tγ }

(M f (sγ ))
−1
γ ds

)1/2

� (bγ − aγ )1/γ
(b
a

− 1
) γ−1

γ � (b − a).

Case 2 If b/a ≥ 2, let I = (a, b), Iγ = (aγ , bγ ) and let g = f χ(3Iγ )c then there
exists 0 < K < +∞ such that

K

2
≤ (Mg(sγ ))1/γ ≤ K ,

for every s ∈ I and it holds that w(s) ≤ (Mg(sγ ))
−1
γ .
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Now, if 0 < t ≤ 2K then

(∫ b

a
w

)1/2

t

(∫
{x∈(a,b):w−1(x)>t}

w

)1/2

≤
(∫ b

a
(Mg(sγ ))

−1
γ

)1/2

t

(∫
{x∈(a,b):w−1(x)>t}

(Mg(sγ ))
−1
γ

)1/2

≤
(∫ b

a

2

K

)1/2

t

(∫
x∈(a,b)

2

K

)1/2

� (b − a).

And, if t > 2K , then for every s ∈ (a, b),

(M f (sγ ))1/γ ≤ (M( f χ3Iγ )(sγ ))1/γ + (Mg(sγ ))1/γ

≤ (M( f χ3Iγ )(sγ ))1/γ + K < (M( f χ3Iγ )(sγ ))1/γ + t

2
.

Therefore, there exists c > 0 such that

{s ∈ (a, b) : w−1(s) > t} ⊂ {
s ∈ (a, b) : M( f χ3I )(s

γ ) > ctγ
} := F.

Then,

t

(∫
{s∈(a,b):w−1(s)>t}

w

)1/2

≤ t (w(F))1/2

≤ t1/2
(
t
∫
F
(M( f χ3Iγ )(sγ ))

−1
γ

)1/2

� t1/2
(∫

F
ds

)1/2

≈ t1/2
(∫

{
s∈(aγ ,bγ ):M( f χ3Iγ )(s)>ctγ

} s 1
γ

−1ds

)1/2

Now, since γ > 1, the function s
1
γ

−1 is decreasing and hence, for every measurable

set E ,
∫
E s

1
γ

−1ds � |E | 1γ . Therefore,

t

(∫
{s∈(a,b):w−1(s)>t}

w

)1/2

� t1/2
(∣∣{s ∈ Iγ : M( f χ3Iγ )(s) > ctγ

}∣∣ 1
γ

)1/2

≈ t1/2
(

1

tγ

∫
3Iγ

f

) 1
2γ

≈
(∫

3Iγ
f

) 1
2γ

≈ (bγ − aγ )
1
2γ

(
1

|3Iγ |
∫
3Iγ

f

) 1
2γ

.
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Consequently,

(∫ b

a
w

)1/2

t

(∫
{x∈(b,c):w−1(x)>t}

w

)1/2

≤ (bγ − aγ )
1
2γ

(∫ b

a
w

)1/2 (
1

|3Iγ |
∫
3Iγ

f

) 1
2γ

� (bγ − aγ )
1
2γ

(∫ b

a
w(s)(M f (sγ ))

1
γ

)1/2

� (bγ − aγ )
1
2γ (b − a)1/2 ≈ b − a.

Therefore, we have proved that w(s) = (M f (sγ ))
−1
γ ∈ AR

2 (R+).

Let us now take u ∈ A1(R
+) and set w(s) = (M f (sγ ))

−1
γ (u(sγ ))1/γ . Let E be a

measurable subset of an interval I and let us use that, by (i), v(s) = (u(sγ ))1/γ ∈ A1.
Then,

∫
I
(M f (sγ ))

−1
γ (u(sγ ))

1/γ ds ≤ 1

inf
s∈I(M f (sγ ))

1
γ

∫
I
(u(sγ ))1/γ ds = v(I )

inf
s∈I(M f (sγ ))

1
γ

.

Let us take 0 < α < 1. Then, since

|I |∫
I (M f (sγ ))

α
γ ds

≤
∫
I (M f (sγ ))

−α
γ ds

|I | ,

we have, using that (M f (sγ ))
α
γ ∈ A1,

1

inf
s∈I(M f (sγ ))

1
γ

=
(

1

inf
s∈I(M f (sγ ))

α
γ

) 1
α

�
( |I |∫

I (M f (sγ ))
α
γ ds

) 1
α

≤
(∫

I (M f (sγ ))
−α
γ ds

|I |
) 1

α ≤
∫
I (M f (sγ ))

−1
γ ds

|I | .

Therefore, we obtain that

A :=
( |E |

|I |
)2 ∫

I
(M f (sγ ))

−1
γ u(sγ )

1/γ ds �
( |E |

|I |
)2

v(I )

|I |
∫
I
(M f (sγ ))

−1
γ ds

Now, we have already proved that (M f (sγ ))
−1
γ ∈ AR

2 (R+), and hence

( |E |
|I |

)2 ∫
I
(M f (sγ ))

−1
γ �

∫
E
(M f (sγ ))

−1
γ ds.
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Consequently,

A �
( ∫

E
(M f (sγ ))

−1
γ ds

)
v(I )

|I | �
∫
E
(M f (sγ ))

−1
γ (u(sγ ))1/γ ds,

and the result follows by (2.1).
(iii) If wn ∈ R̂2(R

n), then wn = (M f )−1(Mg)δ for some radial functions f and g

and some 0 < δ < 1. Hence w0(s) = (M f̄ (sn))
−1
n (Mḡ(sn))

δ
n . So

w0(s
2

n+1 ) = (M f̄ (s
2n
n+1 ))

−1
n (Mḡ(s

2n
n+1 ))

δ
n ,

and by (ii), v0(s) := (w0(s
2

n+1 ))
n+1
2 ∈ AR

2 (R+). On the other hand, if u(s) = s, then
one can immediately see that u ∈ AR

2 (R+). Consequently,

M : L2,1(v0) −→ L2,∞(v0)

and

M : L2,1(u) −→ L2,∞(u)

are bounded operators and, by interpolation,

M : L2,1(vθ
0u

1−θ ) −→ L2,∞(vθ
0u

1−θ )

is also bounded, for every 0 < θ < 1. Therefore, w0(s
2

n+1 )s
n−1
n+1 = (v0(s))

2
n+1

(u(s))
n−1
n+1 ∈ AR

2 (R+).

(iv) If wn ∈ R̂2(R
n), then w = (M f )

−1
n (Mg)

δ
n for some radial functions f and g and

some 0 < δ < 1. Hence, using (ii),

w0(s) = (M f̄ (sn))
−1
n (Mḡ(sn))

δ
n ∈ AR

2 (R+).

��
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