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Abstract In this paper we study the spaceability of divergence sets of sequences of
bounded linear operators on Banach spaces. For Banach spaces with the s-property,
we can give a sufficient condition that guarantees the unbounded divergence on a set
that contains an infinite dimensional closed subspace after the zero element has been
added. This generalizes the classical Banach–Steinhaus theorem which implies that
the divergence set is a residual set. We further prove that many important spaces, e.g.,
�p, 1 ≤ p < ∞, C[0, 1], L p, 1 < p < ∞, as well as Paley–Wiener and Bernstein
spaces, have the s-property. Finally, consequences for the convergence behavior of
sampling series and system approximation processes are shown.
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1 Introduction

In [11] we gave a sufficient condition for the spaceability of the divergence set of a
sequence of linear operators on an arbitrary Banach space. This result can be seen
as an extension of the classical theory of Banach and Steinhaus [3,5]. The Banach–
Steinhaus theory is particularly valuable for the analysis of the approximation behavior
in Fourier analysis and approximation theory. Typical examples are the analysis of
normconvergence andpointwise convergenceofFourier series, summability ofFourier
series, convergence behavior of sampling series, signal reconstructions, and system
approximations.

However, so far it was unclear what happens if the sufficient condition that was
given in [11] is not satisfied. Our first contribution is to show that the condition is
not necessary. To this end, we choose a different approach for the analysis in this
paper. We will show for a large class of Banach spaces that we have spaceability of
the divergence set of a sequence of linear operators under similar conditions as in the
Banach–Steinhaus theorem. Hence, for these spaces we can considerably strengthen
the Banach–Steinhaus theorem. The class of Banach spaces for which we can show
this behavior comprises important spaces that are used in Fourier analysis and approxi-
mation theory, e.g., all separable Hilbert spaces,C[0, 1],Ce[−π, π ], L p, 1 ≤ p < ∞,
c0, �p, 1 < p < ∞, Paley–Wiener spaces PW p

π , 1 ≤ p < ∞, and Bernstein spaces
B p

π , 1 ≤ p < ∞. As an application of the results we show the spaceability of the
divergence set for sampling series, system approximations, and convolution sums.

2 Notation

In this work we will use several Banach spaces, which we briefly introduce next. By
c0 we denote the space of all sequences that converge to zero. �p, 1 < p < ∞, are the
usual spaces of p-th power summable sequences x = {xn}n∈N with the norm ‖x‖�p =
(
∑∞

n=1|xn|p)1/p. The space of all continuous functions on [0, 1] is denoted byC[0, 1],
and the space of all continuous functions f on [−π, π ], satisfying f (π) = f (−π)

by Ce[−π, π ]. Let � be a Lebesgue measurable subset ofR. By L p(�), 1 ≤ p ≤ ∞,
we denote the usual L p-spaces on �, equipped with the norm ‖ · ‖p. The Bernstein
space B p

σ , σ > 0, 1 ≤ p ≤ ∞, consists of all functions of exponential type at most
σ , whose restriction to the real line is in L p(R) [20, p. 49]. B∞

σ,0 denotes the set of all
signals in B∞

σ that vanish on the real axis at infinity.
Let f̂ denote the Fourier transform of a function f , where f̂ is to be understood in

the distributional sense. For σ > 0 and 1 ≤ p ≤ ∞, we denote by PW p
σ the Paley–

Wiener space of signals f with a representation f (z) = 1/(2π)
∫ σ

−σ
g(ω) ei zω dω,

z ∈ C, for some g ∈ L p[−σ, σ ]. The norm for PW p
σ , 1 ≤ p < ∞, is given by

‖ f ‖PW p
σ

= (1/(2π)
∫ σ

−σ
| f̂ (ω)|p dω)1/p. Note that PW2

σ ⊂ PW1
σ .

A subset M of a metric space X is said to be nowhere dense in X if the closure
[M] does not contain a non-empty open subset of X . M is said to be meager (or of
the first category) ifM is the countable union of sets each of which is nowhere dense
in X . M is said to be nonmeager (or of the second category) if it is not meager. The
complement of a meager set is called a residual set. Meager sets may be considered as
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“small”. According to Baire’s theorem [26], in a complete metric space any residual
set is dense and nonmeager. One property that shows the richness of residual sets is the
following: the countable intersection of residual sets is always a residual set. Further,
any subset of a meager set is a meager set and any superset of a residual set is a residual
set.

3 General Questions on Spaceability

Beforewe startwith our program thatwas outlined in the introduction,we introduce the
concept of spaceability. Spaceability, which has recently been used for example in [1,
2,6,16,18], is a concept that describes the structure of some given subset of an ambient
normed space or, more generally, topological space. A set S in a linear topological
space X is said to be spaceable if S∪{0} contains a closed infinite dimensional subspace
of X .

Next, we review the Banach–Steinhaus theorem [25, p. 98].

Theorem 1 (Banach–Steinhaus). Let B1 be a Banach space and B2 a normed space.
Assume that {TN }N∈N is a sequence of bounded linear operators from B1 into B2,
satisfying lim supN→∞‖TN ‖B1→B2 = ∞. Then the set

{

f ∈ B1 : lim sup
N→∞

‖TN f ‖B2 = ∞
}

(3.1)

is a residual set.

The goal of this work is to strengthen this result. In particular we are interested in
extending it towards showing a linear structure in the set (3.1), or, more specifically
spaceability. Such a linear structure is important in applications, because it implies
that any linear combination of vectors, which is not the zero vector, leads to divergence
as well.

Note that it is significantly more difficult to show a linear structure in the set of
vectors for which we have divergence compared to showing a linear structure in the
set of vectors for which we have convergence. If we have two vectors f1 and f2,
for which TN f1 and TN f2 converge, it is clear that for their sum f1 + f2 we have
convergence as well. However, for divergence this is not true. Given two vectors g1 and
g2 for which TN g1 and TN g2 diverge, we cannot conclude that TN (g1 + g2) diverges:
indeed, choose g2 = f1 − g1, where f1 is any vector for which we have convergence
and g1 any vector for which we have divergence.

The above example shows that in general we cannot expect that the set of vectors
with divergent approximation process is a linear space. However, we can ask if this
set contains an infinite dimensional subspace with linear structure.

We want to analyze the following question.

Question 1 Let B1 and B2 be two separable Banach spaces. Assume that {TN }N∈N
is a sequence of bounded linear operators from B1 into B2, satisfying:

(A1) lim supN→∞‖TN ‖B1→B2 = ∞, and
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(A2) There exists a bounded linear operator T : B1 → B2 as well as a dense subset
M ⊂ B1 such that limN→∞‖T f − TN f ‖B2 = 0 for all f ∈ M.

Is the set {

f ∈ B1 : lim sup
N→∞

‖TN f ‖B2 = ∞
}

(3.2)

spaceable?

We do not knowwhether the answer to Question 1 is positive for arbitrary separable
Banach spaces B1, B2. In [11], we were able to answer the question positively under
an additional assumption on the sequence {TN }N∈N. If it is additionally assumed that

(A3) There exists an infinite dimensional closed subspace B1 of B1 such that
supN∈N‖TN f ‖B2 ≤ C‖ f ‖B1

for all f ∈ B1,

then it can be concluded that the set (3.2) is spaceable. Thus, the assumptions (A1)–
(A3) are sufficient for spaceability. In Sect. 5 we will give an example where we
have spaceability, but where the assumptions from [11] are not satisfied. Hence, the
assumptions in [11] are sufficient but not necessary for spaceability.

Remark 1 Condition (A2) in Question 1 entails that the set of functions with conver-
gence is dense lineable.

It is possible to reduce Question 1 to a simpler question about sequences of func-
tionals on C[0, 1].
Question 2 Let B1 be a closed subspace of C[0, 1]. Assume that {ψN }N∈N is a
sequence of continuous linear functionals on B1, satisfying:

(A1’) lim supN→∞‖ψN ‖B1→C = ∞, and
(A2’) there exists a dense subset M ⊂ B1 such that limN→∞ ψN f = 0 for all

f ∈ M.

Is the set {

f ∈ B1 : lim sup
N→∞

|ψN f | = ∞
}

(3.3)

spaceable?

The answer to Question 1 is positive if and only if Question 2 can be answered
positively. The details of this reduction are provided in Appendix 1.

Hence, it is possible to significantly reduce the problem of answering Question 1.
However, we still do not know the answer to Question 2, or, equivalently, the full
answer to Question 1, i.e., if for all separable Banach spaces B1, assumptions (A1)
and (A2) are sufficient for the spaceability of the divergence set (3.2).

Although we are not able to prove the sufficiency of assumptions (A1) and (A2) for
the spaceability of the divergence set (3.2), we will identify important Banach spaces,
for which (A1) and (A2) are sufficient for spaceability. We call those Banach spaces,
Banach spaces that have the s-property, where “s” stands for “spaceability”.

Definition 1 We say that an infinite dimensional separable Banach space B1 has the
s-property if for every separable Banach space B2 and every sequence of bounded
linear operators {TN }N∈N from B1 into B2, satisfying:
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(A1) lim supN→∞‖TN ‖B1→B2 = ∞, and
(A2) there exists a bounded linear operator T : B1 → B2 as well as a dense subset

M ⊂ B1 such that limN→∞‖T f − TN f ‖B2 = 0 for all f ∈ M,

the set {

f ∈ B1 : lim sup
N→∞

‖TN f ‖B2 = ∞
}

is spaceable.

Remark 2 If T and TN have further structural properties, e.g., shift invariance, one
may expect the divergence subspace to have additional properties as well. We will
resume this discussion later in Remark 7, where we discuss shift invariance.

According to the considerations regarding Questions 1 and 2, we can define the
s-property of a Banach space also in a different but equivalent way.

Definition 2 We say that an infinite dimensional separable Banach space B1 has the
s-property if for every sequence of linear and continuous functionals {ψN }N∈N on B1,
satisfying:

(A1’) lim supN→∞‖ψN ‖B1→C = ∞, and
(A2’) there exists a dense subset M ⊂ B1 such that limN→∞ ψN f = 0 for all

f ∈ M ,

the set {

f ∈ B1 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable.

In the next section we will show that the corresponding question for sequences of
bounded linear functionals on separable Hilbert spaces can be answered positively.
Later in Sect. 6 we will extend this results to other relevant Banach spaces.

Remark 3 There is probably no universal approach for showing lineability. This con-
jecture is supported by an observation made in [13], where it was discussed that for
a certain set the question of dense lineability is equivalent to the Riemann hypothesis
on the zeros of the Riemann zeta function.

4 Separable Hilbert Spaces

Next we show that Question 1 can be answered positively for all separable Hilbert
spaces. Thus, all separable Hilbert spaces have the s-property.

Theorem 2 Let H1 be an infinite dimensional separable Hilbert space. Then H1 has
the s-property.

Before we prove Theorem 2, we present a useful lemma, which we will also employ
in the proof, and in several corollaries.
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Lemma 1 Let B1 and B2 be two separable isomorphic Banach spaces. Then B1 has
the s-property if and only if B2 has the s-property.

Proof Since B1 and B2 are isomorphic, there exists a linear and bounded bijection
U : B1 → B2. Without loss of generality we assume that B1 has the s-property. Let
{ψN }N∈N be a sequence of functionals on B2, satisfying the properties (A1’) and
(A2’), i.e., limN→∞‖ψN ‖B2→C = ∞, and limN→∞ ψN f = 0 for all f in some
dense subset M of B2. Then U−1(M) is dense in B1. Let φN = ψN U , N ∈ N.
{φN }N∈N is a sequence of functionals on B1 that satisfies limN→∞ φN f = 0 for all
f in the dense subset U−1(M) of B1. Further, we have ψN = φN U−1, N ∈ N, and
consequently

‖ψN ‖B2→C ≤ ‖φN ‖B1→C‖U−1‖B2→B1,

which shows that
lim sup

N→∞
‖φN ‖B1→C = ∞.

Thus, {φn}n∈N is a sequence of functionals on B1 that satisfies the conditions (A1’)
and (A2’). Since B1 has the s-property, there exists an infinite dimensional closed
subspace B1 ⊂ B1 such that

lim sup
N→∞

|φN f | = ∞

for all f ∈ B1 \ {0}. It follows that B2 := U (B1) is an infinite dimensional closed
subspace, and we have

lim sup
N→∞

|ψN f | = lim sup
N→∞

|φN U−1 f | = ∞

for all f ∈ B2 \ {0}. This shows that B2 has the s-property because the sequence of
functionals {ψN }N∈N was chosen arbitrary. 	


Theorem 2 together with Lemma 1 immediately gives the following corollary.

Corollary 1 In L2[0, 1] every infinite dimensional closed subspace has the s-property.

Remark 4 If we could prove the statement of Corollary 1 for C[0, 1] instead of
L2[0, 1], i.e., if we could prove that every infinite dimensional closed subspace of
C[0, 1] has the s-property, then we would know that every separable Banach space
has the s-property.

Theorem 2 has further interesting consequences. An infinite dimensional Banach
space B1 is called homogeneous if every infinite dimensional closed subspace B2 of
B1 is isomorphic to B1. This definition leads us to the following corollary.

Corollary 2 Every homogeneous separable Banach space B1 has the s-property, and
every infinite dimensional closed subspace B1 of B1 has the s-property.

Proof Gowers has shown in [17] that every homogeneous separable Banach space is
isomorphic to some separable Hilbert space and therefore to L2[0, 1]. Application of
Lemma 1 and Theorem 2 gives the result. 	
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Now we come to the proof of Theorem 2. As we have discussed in the previous
section, instead of studying sequences of linear operators, it is sufficient to study
sequences of linear functionals. Further, since all infinite dimensional separableHilbert
spaces are isomorphic to �2, it suffices, thanks to Lemma 1, to consider sequences of
linear functionals on �2.

Theorem 3 Let {ψN }N∈N be a sequence of continuous linear functionals on �2, sat-
isfying:

(A1’) lim supN→∞‖ψN ‖ = ∞, and
(A2’) there exists a dense subset M ⊂ �2 such that limN→∞ ψN f = 0 for all

f ∈ M.

Then the set {

f ∈ �2 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable.

Remark 5 Theorem 3 shows that �2 has the s-property.

For the proof of Theorem 3 we use the following lemma, the proof of which we
postpone until the end of this section.

Lemma 2 Let {gN }N∈N be a sequence in �2, satisfying

1. lim supN→∞‖gN ‖�2 = ∞ and
2. limN→∞|gN (n)| = 0 for all n ∈ N.

For N ∈ N, we define

ψN f =
∞∑

k=1

f (k)gN (k).

Then the set {

f ∈ �2 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable.

Equipped with Lemma 2, we are in the position to prove Theorem 3.

Proof of Theorem 3 Let {ψN }N∈N be a sequence of continuous linear functionals
defined on �2, satisfying (A1’) and (A2’). Let L = span(M). Since �2 is separa-
ble, L is separable and therefore contains a countable linearly independent subset
{un}n∈N ⊂ L such that span({un}n∈N), i.e., the finite linear span, is dense in L . Next,
we can apply the Gram–Schmidt orthonormalization process on {un}n∈N, which gives
us a complete orthonormal system {φn}n∈N in �2, where each φn , n ∈ N, is a linear
combination of {u1, . . . , un}, and hence an element of L . Since the functionals ψN

are linear, it follows that
lim

N→∞ ψN φn = 0 (4.1)
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for all n ∈ N. Using the isomorphic isomorphism

U : �2 → �2, f �→
{ ∞∑

k=1

f (k)φn(k)

}

n∈N
,

we can work directly in the coefficient space of the complete orthonormal system
{φn}n∈N. Let us consider ψ∗

N f = ψN U−1 f , f ∈ �2. Then {ψ∗
N }N∈N is a sequence of

continuous linear functionals defined on �2, for which we have

lim sup
N→∞

‖ψ∗
N ‖�2→C = ∞ (4.2)

and
lim

N→∞ ψ∗
N Uφn = 0 (4.3)

for all n ∈ N according to (4.1). Due to the Riesz representation theorem, there exists
gN ∈ �2 such that

ψ∗
N f =

∞∑

k=1

f (k)gN (k)

for all f ∈ �2. For n ∈ N we have

ψ∗
N Uφn =

∞∑

k=1

(Uφn)(k)gN (k) =
∞∑

k=1

( ∞∑

m=1

φn(m)φk(m)

)

gN (k) = gN (n).

Hence, we see from (4.3) that limN→∞ gN (n) = 0 for all n ∈ N. Further, since
‖ψ∗

N ‖�2→C = ‖gN ‖�2 , it follows from (4.2) that lim supN→∞‖gN ‖�2 = ∞. Thus, we
can apply Lemma 2 which gives that the set

{

f ∈ �2 : lim sup
N→∞

|ψ∗
N f | = ∞

}

is spaceable, i.e., that there exists an infinite dimensional closed subspace B1 ⊂ �2

such that lim supN→∞|ψ∗
N f | = ∞ for all f ∈ B1\{0}. It follows that B2 := U−1(B1)

is an infinite dimensional closed subspace, and we have

lim sup
N→∞

|ψN f | = lim sup
N→∞

|ψ∗
N U f | = ∞

for all f ∈ B2. In other words,

{

f ∈ �2 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable. 	
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Having proved Theorem 3, we are in the position to give the short proof of Theo-
rem 2.

Proof of Theorem 2 From Theorem 3 we know that �2 has the s-property. Since every
infinite dimensional separable Hilbert space is isomorphic to �2, the statement of
Theorem 2 follows directly from Lemma 1. 	


Finally, we come to the remaining proof of Lemma 2. Given a sequence G =
{gN }N∈N in �2 we define

Div(G) =
{

f ∈ �2 : lim sup
N→∞

|〈 f, gN 〉| = ∞
}

.

Further, to keep the notation compact we introduce the following abbreviation. For
S ⊆ N we set

1S(k) =
{
1, k ∈ S,

0, k ∈ N \ S,

and for the case S = {1, . . . n} we simply write 1n .

Lemma 3 Assume that G = {gn}n∈N and H = {hn}n∈N are two sequences in �2 with

lim
N→∞‖hN − gN ‖�2 = 0.

Then

1. lim supN→∞‖gN ‖�2 = ∞ if and only if lim supN→∞‖hN ‖�2 = ∞,
2. limN→∞ gN (k) = 0 for all k ∈ N if and only if limN→∞ hN (k) = 0 for all k ∈ N,

and
3. Div(H) = Div(G).

As a consequence of Lemma 3, the simple proof of which is omitted, we can assume,
without loss of generality, in the proof of Lemma 2 that, for each N ∈ N, the support
of gN is finite. This is easily justified: For each N there exists a n(N ) ∈ N such that
‖gN − gN 1n(N )‖�2 ≤ 1/N . Defining H = {hN }N∈N = {gN 1n(N )}N∈N the situation
of Lemma 3 is given.

Proof of Lemma 2 Let G = {gN }N∈N be a sequence in �2, satisfying the assumptions
of the lemma. As justified above, we work with the finitely supported functions hN ,
N ∈ N in the following. Since limN→∞ hN (k) = 0 for all k ∈ N, we even have
limN→∞‖hN 1n‖�2 = 0 for each fixed n ∈ N.

Next, we will construct by induction:

1. A strictly increasing index sequence {N ( j)} j∈N of natural numbers such that
‖hN ( j)‖�2 ≥ j + 1,

2. A sequence of disjoint intervals I j = {l j , . . . , r j } ⊂ N with l j < r j < l j+1 for
all j ∈ N,

3. An ONS {φ j } j∈N with suppφ j ⊆ I j for all j ∈ N,
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4. The index sequence {N ( j)} j∈N and the intervals I j = {l j , . . . , r j }, j ∈ N, are
such that ‖hN 1r j−1‖�2 < 1/j for all j ≥ 2 and all N ≥ N ( j).

Let N (1) be the smallest natural number such that ‖hN (1)‖�2 ≥ 2. By r1 we denote the
smallest natural number such that supp hN (1) ⊆ {1, . . . , r1}. We set I1 = {1, . . . , r1}
and φ1 = hN (1)/‖hN (1)‖�2 .

Given N ( j −1), I j−1 = {l j−1, . . . , r j−1}, and φ j−1, we choose N ( j) > N ( j −1)
such that

‖hN ( j)‖�2 ≥ j + 1 (4.4)

and
‖hN 1r j−1‖�2 < 1/j (4.5)

for all N ≥ N ( j). We set l j = r j−1 +1, r j = max supp hN ( j), and I j = {l j , . . . , r j }.
Then hN ( j)1I j satisfies

‖hN ( j)1I j ‖�2 ≥ ‖hN ( j)‖�2 − ‖hN ( j)1r j−1‖�2 ≥ j, (4.6)

and we see that hN ( j)1I j is non-zero. We set

φ j = hN ( j)1I j /‖hN ( j)1I j ‖�2 .

Having constructed all above quantities for all j by induction, we set

ηn = φ2n+n−1 +
∞∑

k=n+1

1

k
φ2k+n−1, n ∈ N.

Since the supports of the φk , k ∈ N, are all pairwise disjoint, and we have ‖φk‖�2 = 1,
k ∈ N, it follows that

‖ηn‖2
�2

= 1 +
∞∑

k=n+1

1

k2

and consequently that
1 < ‖ηn‖2�2 ≤ π2/6 (4.7)

for all n ∈ N . We set
κn = ηn/‖ηn‖�2 , n ∈ N.

Thus, ‖κn‖�2 = 1, n ∈ N, and all κn , n ∈ N, have pairwise disjoint supports and hence
are orthogonal.

For n ∈ N and s > n we have

ψN (2s+n−1)κn = 〈κn, hN (2s+n−1)〉
= 〈κn1r2s+n−2 , hN (2s+n−1)〉 + 〈κn1I2s+n−1 , hN (2s+n−1)〉

+ 〈κn(1 − 1r2s+n−1), hN (2s+n−1)〉. (4.8)
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Next, we analyze the three summands on the right hand side of (4.8). For the first term
we have

|〈κn1r2s+n−2 , hN (2s+n−1)〉| ≤ ‖κn‖�2‖hN (2s+n−1)1r2s+n−2‖�2

≤ 1

2s + n − 1
,

where we used (4.5) in the last inequality. For the second term we have

〈κn1I2s+n−1 , hN (2s+n−1)〉 = 1

s‖ηn‖�2
〈φ2s+n−1, hN (2s+n−1)〉

= 1

s‖ηn‖�2

∥
∥hN (2s+n−1)1I2s+n−1

∥
∥

�2

≥ (2s + n − 1)
√
6

sπ
,

where we used (4.6) and (4.7) in the last inequality. The third term gives

〈κn(1 − 1r2s+n−1), hN (2s+n−1)〉 = 〈κn, hN (2s+n−1)(1 − 1r2s+n−1)〉 = 0,

because, according to the definition of r2s+n−1, hN (2s+n−1)(k) = 0 for all k > r2s+n−1.
Combining all partial results it follows that

|ψN (2s+n−1)κn| ≥ (2s + n − 1)
√
6

sπ
− 1

2s + n − 1
,

which shows that for each fixed n ∈ N

lim
s→∞|ψN (2s+n−1)κn| = ∞. (4.9)

We define now the spaceD = span({κn}n∈N)
�2

. Since the set {κn}n∈N is a complete
orthonormal system in D we have for the coefficients αn = 〈 f, κn〉

f =
∞∑

n=1

αnκn, and ‖ f ‖2
�2

=
∞∑

n=1

|αn|2, f ∈ D. (4.10)

Let f ∈ D, f �≡ 0, be arbitrary but fixed. Further let n0 be the smallest natural number
such that αn0 �= 0. Then we have for s ∈ N that

ψN (2s+n0−1) f = αn0ψN (2s+n0−1)κn0 +
∞∑

n=n0+1

αnψN (2s+n0−1)κn . (4.11)
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We study the expression ψN (2s+n0−1)κn for n > n0 next. We have to distinguish
two cases: n0 < n < s and n0 < s ≤ n. For n0 < n < s, we have

ψN (2s+n0−1)κn = 〈κn, hN (2s+n0−1)〉
= 〈κn1r2s+n0−2 , hN (2s+n0−1)〉 + 〈κn1I2s+n0−1 , hN (2s+n0−1)〉

+ 〈κn(1 − 1r2s+n0−1), hN (2s+n0−1)〉.

For the first summand we have

|〈κn1r2s+n0−2 , hN (2s+n0−1)〉| ≤ ‖κn‖�2‖hN (2s+n0−1)1r2s+n0−2‖�2 ≤ 1

2s + n0 − 1
,

where we used (4.5) in the last inequality. For the second summand we have

〈κn1I2s+n0−1 , hN (2s+n0−1)〉 = 0,

because κn(k) = 0 for all k ∈ I2s+n0−1. For the third summand we have

〈κn(1 − 1r2s+n0−1), hN (2s+n0−1)〉 = 〈κn, hN (2s+n0−1)(1 − 1r2s+n0−1)〉 = 0

because, according to the definition of r2s+n0−1, hN (2s+n0−1)(k) = 0 for all k >

r2s+n0−1. Combining all partial results, we see that for n0 < n < s

|ψN (2s+n0−1)κn| ≤ 1

2s + n0 − 1
. (4.12)

For n0 < s ≤ n we have

ψN (2s+n0−1)κn = 〈κn, hN (2s+n0−1)〉
= 〈κn(1 − 1r2n+n−2), hN (2s+n0−1)1r2s+n0−1〉
= 〈κn, hN (2s+n0−1)1r2s+n0−1(1 − 1r2n+n−2)〉 = 0, (4.13)

where we used that κn(k) = 0 for all k ≤ r2n+n−2, hN (2s+n0−1)(k) = 0 for all
k > r2s+n0−1, and the fact that 2s + n0 − 1 ≤ 2n + n − 2.

From (4.11) it follows that

∣
∣ψN (2s+n0−1) f − αn0ψN (2s+n0−1)κn0

∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

n=n0+1

αnψN (2s+n0−1)κn

∣
∣
∣
∣
∣
∣

≤
s−1∑

n=n0+1

|αnψN (2s+n0−1)κn| +
∞∑

n=s

|αnψN (2s+n0−1)κn|.
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The second term equals 0 due to (4.13), and thanks to (4.12) and the Cauchy–Schwarz
inequality we have

s−1∑

n=n0+1

|αnψN (2s+n0−1)κn| ≤ 1

2s + n0 − 1

s−1∑

n=n0+1

|αn|

≤
√

s

2s + n0 − 1

√
√
√
√

s−1∑

n=n0+1

|αn|2 ≤
√

s

2s
‖ f ‖�2 .

Thus, we obtain altogether

∣
∣ψN (2s+n0−1) f − αn0ψN (2s+n0−1)κn0

∣
∣ ≤

√
s

2s
‖ f ‖�2 (4.14)

for all s > n0. Combining (4.9) and (4.14), we finally see that

lim
s→∞|ψN (2s+n0−1) f | = ∞.

Since f ∈ D, f �≡ 0, was chosen arbitrarily, we have proved the spaceability of the
set

{
f ∈ �2 : lim supN→∞|ψN f | = ∞}

. 	


5 Spaceability Without the Control of the Boundedness Behavior

In [11] a sufficient condition for the spaceability of the divergence set of a sequence of
linear operators on an arbitrary Banach space was given. For completeness, we state
this theorem next.

Theorem 4 Let B1 and B2 be two separable Banach spaces. Assume that {TN }N∈N
is a sequence of bounded linear operators from B1 into B2, satisfying:

(A1) lim supN→∞‖TN ‖B1→B2 = ∞,
(A2) There exists a bounded linear operator T : B1 → B2 as well as a dense subset

M of B1 such that limN→∞‖T f − TN f ‖B2 = 0 for all f ∈ M, and
(A3) There exists an infinite dimensional closed subspace B1 of B1 such that

supN∈N‖TN f ‖B2 ≤ C‖ f ‖B1
for all f ∈ B1.

Then, the set {

f ∈ B1 : lim sup
N→∞

‖TN f ‖B2 = ∞
}

is spaceable.

Theorem 4 shows that the conditions (A1)–(A3) together are sufficient for the space-
ability of the divergence set. However, the next theorem shows that they are not
necessary, because we can find a sequence of bounded linear operators {TN }N∈N,
satisfying (A1) and (A2), such that the divergence set is spaceable, but (A3) does not
hold. Again we can reduce the problem to sequences of continuous linear functionals
on �2.
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Theorem 5 There exists a sequence of continuous linear functionals {ψN }N∈N on �2,
satisfying:

(A1”) limN→∞‖ψN ‖ = ∞, and
(A2’) there exists a dense subspace M ⊂ �2 such that limN→∞ ψN ( f ) = 0 for all

f ∈ M,

such that the set {

f ∈ �2 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable, but {

f ∈ �2 : lim sup
N→∞

|ψN f | < ∞
}

(5.1)

is not spaceable.

Note that the divergence set

{

f ∈ �2 : lim sup
N→∞

|ψN f | = ∞
}

in Theorem 5 is spaceable according to Theorem 3. However, since (5.1) is not space-
able, we see that (A3) is not satisfied.

Proof For γ > 0, we consider the functionals ψn : �2 → C, n ∈ N, defined by

ψn f = f (n)nγ .

Let

en(k) =
{
1, k = n,

0, k �= n,

denote the standard basis of �2. Since we have ψnen = nγ , it follows that
limn→∞‖ψn‖ = ∞. Further, for all finite sequences f ∈ �2 we have limn→∞ ψn f =
0. It remains to show that the set

K =
{

f ∈ �2 : lim sup
n→∞

|ψn f | < ∞
}

is not spaceable, or, in other words, that K contains no infinite dimensional closed
subspace.We use an indirect proof and assume that there exists an infinite dimensional
closed subspace H1 ⊂ K . We have f ∈ K if and only if

sup
n∈N

| f (n)|nγ < ∞.

For N ∈ N, let
PN ( f, γ ) = max

1≤n≤N
| f (n)|nγ .
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{PN }N∈N is a sequence of convex homogeneous continuous functionals. For f ∈ H1
we have

lim
N→∞ PN ( f, γ ) = sup

n∈N
| f (n)|nγ < ∞.

According to the generalized uniform boundedness principle [21] there exists a con-
stant C1 such that

PN ( f, γ ) ≤ C1‖ f ‖�2

for all f ∈ H1, which in turn implies that

sup
n∈N

| f (n)|nγ ≤ C1‖ f ‖�2 (5.2)

for all f ∈ H1.
We choose γ = 2. For M ∈ N and f ∈ H1 we have

(
M∑

n=1

| f (n)|2n2

) 1
2

=
(

M∑

n=1

| f (n)|2n4 1

n2

) 1
2

≤
(

sup
n∈N

| f (n)|n2
)(

M∑

n=1

1

n2

) 1
2

≤ π√
6
sup
n∈N

| f (n)|n2. (5.3)

It follows that
( ∞∑

n=1

| f (n)|2n2

) 1
2

< ∞

for all f ∈ H1, and, by (5.3) and (5.2), there exists a constant C2 such that

( ∞∑

n=1

| f (n)|2n2

) 1
2

≤ C2‖ f ‖�2 (5.4)

for all f ∈ H1.
Next, we show that H1 needs to be finite dimensional, which is a contradiction to

our assumption. Let { f (m)}m∈N be an arbitrary bounded sequence of elements in H1.
Without loss of generality, we assume that ‖ f (m)‖�2 ≤ 1, m ∈ N. Since �2 is reflexive,
{ f (m)}m∈N has a weakly convergent subsequence. It follows that there exists a f ∗ ∈ �2

and a subsequence {mk}k∈N of the natural numbers such that

lim
k→∞ f (mk )(n) = f ∗(n) (5.5)

for all n ∈ N. We have ‖ f ∗‖�2 ≤ 1. It follows that

| f ∗(n)|n ≤ C2, n ∈ N, (5.6)
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and
| f (mk )(n)|n ≤ C2, n ∈ N, (5.7)

where we used (5.4). We further have

( ∞∑

n=1

| f (mk)(n) − f ∗(n)|2
) 1

2

=
(

M∑

n=1

| f (mk )(n) − f ∗(n)|2 +
∞∑

n=M+1

| f (mk)(n) − f ∗(n)|2
) 1

2

≤
(

M∑

n=1

| f (mk )(n) − f ∗(n)|2
) 1

2

+
( ∞∑

n=M+1

| f (mk )(n) − f ∗(n)|2
) 1

2

.

For the second term on the right hand side we obtain

( ∞∑

n=M+1

| f (mk )(n) − f ∗(n)|2
) 1

2

≤
( ∞∑

n=M+1

| f (mk )(n)|2
) 1

2

+
( ∞∑

n=M+1

| f ∗(n)|2
) 1

2

≤ C2

( ∞∑

n=M+1

1

n2

) 1
2

+ C2

( ∞∑

n=M+1

1

n2

) 1
2

≤ 2C2

M
,

where we used (5.6) and (5.7) in the second to last line. Let ε > 0 be arbitrary, and
let M be the smallest natural number such that

2C2

M
<

ε

2
.

Due to (5.5) there exists a k0 = k0(ε) such that

max
1≤n≤M

| f (mk )(n) − f ∗(n)| <
ε

2M

for all k ≥ k0. It follows that

( ∞∑

n=1

| f (mk )(n) − f ∗(n)|2
) 1

2

< ε
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for all k ≥ k0. That is, we have norm convergence of the subsequence { f (mk )}k∈N.
Thus, every bounded sequence has a norm convergent subsequence, i.e., the unit ball
in H1 is compact. This implies that H1 is finite dimensional. 	


6 Extension to Other Banach Spaces

We want to use the results from Sect. 4 to prove the s-property for further Banach
spaces. To this end, we start with a general result.

Theorem 6 Let B1 be a separable Banach space. If B1 contains an infinite dimen-
sional closed subspace B1 that has a basis and the s-property, then B1 has the
s-property.

Corollary 3 C[0, 1] has the s-property.

Proof of Corollary 3 According to theBanach–Mazur theorem, there exists an infinite
dimensional closed subspace B1 ⊂ C[0, 1] that is isometrically isomorphic to �2.
Since �2 has the s-property, according to Theorem 3, it follows from Lemma 1 that
B1 has the s-property. Theorem 6 gives the assertion. 	

Proof of Theorem 6 Let B1 be the infinite dimensional closed subspace of B1 that
has a basis and the s-property. Let {en}n∈N be a basis of B1. Further, let {ψN }N∈N
a sequence of continuous linear functionals on B1, satisfying properties (A1’) and
(A2’), i.e., lim supN→∞‖ψN ‖B1→C = ∞ and limN→∞ ψN f = 0 for all f ∈ M,
where M is some dense subset of B1.

We have to distinguish two cases: First, supN∈N‖ψN ‖B1→C < ∞, and second,
supN∈N‖ψN ‖B1→C = ∞. In the first case we can use Theorem 4 from [11], which
immediately gives that the set

{

f ∈ B1 : lim sup
N→∞

|ψN f | = ∞
}

(6.1)

is spaceable and thus completes the proof. Hence, we can assume in the following
that we have the second case, i.e., that supN∈N‖ψN ‖B1→C = ∞. Let {e∗

n}n∈N ⊂ B∗
1

denote the coefficient functionals of the basis {en}n∈N. Since M is dense in B1, we
can find for every n ∈ N a function fn ∈ M such that

‖en − fn‖B1 <
1

2n+1‖e∗
n‖B∗

1

It follows that ∞∑

n=1

‖e∗
n‖B∗

1
‖en − fn‖B1 <

∞∑

n=1

1

2n+1 = 1

2
,

which shows that { fn}n∈N is a basic sequence in B1 that is equivalent to {en}n∈N [14,

Theorem 9]. Let B2 = span ({ fn}n∈N)
B1 . Then B2 is a infinite dimensional closed

subspace of B1, which is isomorphic to B1 [14, Theorem 5]. Hence, we can use
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Lemma 1 to deduce that B2 has the s-property. For f ∈ span({ fn}n∈N) we have the
representation

f =
L∑

l=1

αkl fkl

and it follows that

lim
N→∞ ψN f =

L∑

l=1

αkl lim
N→∞ ψN fkl = 0,

because fn ∈ M for all n ∈ N. Hence, we have convergence for the dense subset
span({ fn}n∈N) of B2. Again, we distinguish the two cases: supN∈N‖ψN ‖B2

< ∞ and
supN∈N‖ψN ‖B2

= ∞. In the first casewe can apply Theorem4 from [11] again, which
immediately gives that the set (6.1) is spaceable and thus completes the proof. Thus, we
can assume that we are in the second case, i.e., that lim supN→∞‖ψN ‖B2

= ∞ Since
B2 has the s-property, there exists an infinite dimensional closed subspace B

2
⊂ B2

such that
lim sup

N→∞
|ψN f | = ∞

for all f ∈ B
2

\ {0}. Clearly, B
2
is also an infinite dimensional closed subspace of

B1. Since the sequence of functionals {ψN }N∈N was arbitrary, we have completed the
proof. 	


Next, we show that the �p spaces, 1 < p < ∞, and c0 have the s-property. Later, in
Sect. 7 we will use this result together with Theorem 6 to prove the s-property for the
Paley–Wiener spaces PW p

π , 1 ≤ p < ∞, and the Bernstein spaces B p
π , 1 < p < ∞.

Theorem 7 Let B1 = �p for some p ∈ (1,∞) or B1 = c0. Then B1 has the s-property.

Proof Let {ψN }N∈N be an arbitrary sequence of continuous linear functionals on B1,
satisfying the properties (A1’) and (A2’), i.e., lim supN→∞‖ψN ‖B1→C = ∞, and
limN→∞ ψN f = 0 for all f is some dense subset M of B1. Let q be the conjugate
index to p, i.e., satisfying 1/p + 1/q = 1. Then we have B∗

1 = �q if B1 = �p,
1 < p < ∞, and B∗

1 = �1 if B1 = c0. Further, let

en(k) =
{
1, k = n,

0, k �= n,

denote the standard basis of �p and c0, and {e∗
n}n∈N ⊂ B∗

1 the coefficient functionals
of the basis {en}n∈N. We have ‖e∗

n‖B∗
1

= 1, n ∈ N. Since M is dense in B1 we can
find for every n ∈ N an element fn ∈ M such that

‖en − fn‖B1 <
1

2n+1 .

Thus, we have
∞∑

n=1

‖e∗
n‖B∗

1
‖en − fn‖B1 = 1

2
,
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which shows that { fn}n∈N is a basic sequence in B1 that is equivalent to {en}n∈N [14,

Theorem 9]. Let B1 = span ({ fn}n∈N)
B1 . Then B1 is an infinite dimensional closed

subspace of B1 that is isomorphic to B1 [14, Theorem 5]. Further, every f ∈ B1 has
the representation

f =
∞∑

n=1

αn( f ) fn (6.2)

with a unique sequence of coefficients {αn( f )}n∈N. Since the basis { fn}n∈N of B1 is
equivalent to the standard basis {en}n∈N of B1, it follows that there exist two positive
constants CL and CR such that

CL

( ∞∑

n=1

|αn( f )|p

) 1
p

≤ ‖ f ‖B1
≤ CR

( ∞∑

n=1

|αn( f )|p

) 1
p

(6.3)

for all f ∈ B1 if B1 = �p, 1 < p < ∞. If B1 = c0 then the above norm has to be
replaced by the maximum norm.

We have to distinguish two cases: First, supN∈N‖ψN ‖B1→C < ∞, and second
supN∈N‖ψN ‖B1→C = ∞. In the first case we can use Theorem 4, which immediately
gives that the set {

f ∈ B1 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable. Hence, we can assume in the following that we have the second case, i.e.,
that supN∈N‖ψN ‖B1→C = ∞. For f ∈ span({ fn}n∈N) we have the representation

f =
L∑

l=1

βkl fkl

and it follows that

lim
N→∞ ψN f =

L∑

l=1

βkl lim
N→∞ ψN fkl = 0,

because fn ∈ M for all n ∈ N. Hence, we have convergence for the dense subset
span({ fn}n∈N) of B1.

We consider the operator T : B1 → �p, f �→ {αn( f )}n∈N. From (6.3) we see that
T is a linear bounded operator mapping B1 onto �p and that T −1 is also a linear and
bounded. For α ∈ �p we consider

ψ∗
N α = ψN T −1α.

We have ψ∗
N T f = ψN f , and it follows that

|ψN f | ≤ ‖ψ∗
N ‖�p→C‖T f ‖�p

≤ ‖ψ∗
N ‖�p→C‖T ‖B1→�p‖ f ‖B1
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≤ C−1
L ‖ψ∗

N ‖�p→C‖ f ‖B1
.

Thus, we have ‖ψN ‖B1→C ≤ C−1
L ‖ψ∗

N ‖�p→C, which implies that

lim sup
N→∞

‖ψ∗
N ‖�p→C = ∞.

Further, we have T fn = en , i.e., fn = T −1en . Hence, we have

ψ∗
N en = ψN T −1en = ψN fn

and consequently
lim

N→∞ ψ∗
N en = 0.

According to the Riesz representation theorem there exists a gN ∈ �q such that

ψ∗
N α =

∞∑

n=1

α(n)gN (n)

for all α ∈ �p. We have

‖ψ∗
N ‖�p→C =

( ∞∑

n=1

|gN (n)|q
) 1

q

,

and consequently

lim sup
N→∞

( ∞∑

n=1

|gN (n)|q
) 1

q

= ∞.

Further, we have
ψ∗

N (en) = gN (n)

which implies that
lim

N→∞|gN (n)| = 0

for all n ∈ N. Using Lemma 4, which follows below, we obtain an infinite dimensional
closed subspace S ⊂ �p with

lim sup
N→∞

|ψ∗
N α| = ∞

for all α ∈ S \ {0}. Then B
1

= T −1[S] is an infinite dimensional closed subspace of
B1. For f ∈ B

1
, f �= 0, we have

ψN f = ψ∗
N T f,
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and, since T f ∈ S, it follows that

lim sup
N→∞

|ψN f | = ∞.

Hence, B1 has the s-property. 	

Lemma 4 is a simple extension of Lemma 2.

Lemma 4 Let 1 ≤ q < ∞ and {gN }N∈N ⊂ �q be a sequence, satisfying

1. limN→∞‖gN ‖�q = ∞ and
2. limN→∞ gN (k) = 0 for all k ∈ N.

Further, let B1 = c0 if q = 1 and B1 = �p, 1/p + 1/q = 1, if q > 1. For N ∈ N,
define

ψN f =
∞∑

k=1

f (k)gN (k).

Then the set {

f ∈ B1 : lim sup
N→∞

|ψN f | = ∞
}

is spaceable.

Proof The proof is very similar to the proof of Lemma 2. For 1 < p < ∞ we use
duality and replace the �2 norm conditions with �q norm conditions. For c0 we replace
the �2 norm conditions with �1 norm conditions. 	


7 Applications

In this section we prove the s-property for classes of Paley–Wiener and Bernstein
spaces and present several applications.

7.1 Paley–Wiener Space PW1
σ

We start with the Paley–Wiener spaces. The Paley–Wiener space PW p
σ , 0 < σ <

∞, 1 ≤ p < ∞, consists of all functions f with a representation f (z) =
1/(2π)

∫ σ

−σ
g(ω) ei zω dω, z ∈ C, for some g ∈ L p[−σ, σ ]. The norm for PW p

σ

is given by

‖ f ‖PW p
σ

=
(

1

2π

∫ σ

−σ

|g(ω)|p dω

) 1
p

.

Observation 1 PW1
σ , 0 < σ < ∞, has the s-property.

Proof Let 0 < σ < ∞ be arbitrary but fixed. For n ∈ N, let

qn(t) = sin(π( σ
π

t − 2n))

π( σ
π

t − 2n)
, t ∈ R.
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According to Paley’s theorem [15, p. 104], {qn}n∈N is a basic sequence in PW1
σ . Let

Dσ = span({qn}n∈N)
PW1

σ . (7.1)

ThenDσ is an infinite dimensional closed subspace of PW1
σ . Further, for all f ∈ Dσ

we have

1

C

( ∞∑

k=−∞

∣
∣
∣
∣ f

(
πk

σ

)∣
∣
∣
∣

2
) 1

2

≤ ‖ f ‖PW1
σ

≤
( ∞∑

k=−∞

∣
∣
∣
∣ f

(
πk

σ

)∣
∣
∣
∣

2
) 1

2

,

where C is a constant that does not depend on f . Hence,Dσ is isomorphic to �2. From
Theorem 7 we know that �2 has the s-property, and, since Dσ and �2 are isomorphic,
Lemma 1 implies that Dσ has the s-property. Thus, PW1

σ contains an infinite dimen-
sional closed subspace that has a basis and the s-property. It follows from Theorem 6
that PW1

σ has the s-property. 	


7.1.1 Approximation of the Identity

We study the approximation behavior of sampling series next, and use the fact that
PW1

π has the s-property to show that the set of divergence is spaceable. We consider
sampling series of the type

∞∑

k=−∞
f (tk)φk(t),

where φk , k ∈ Z, are certain reconstruction functions and {tk}k∈Z is the sequence
of real sampling points. We assume that the sequence of sampling points is ordered
strictly increasingly, i.e.,

· · · < t−2 < t−1 < t0 < t1 < t2 < · · · ,

and, without loss of generality, that t0 = 0. Further, we assume that the set of sampling
points {tk}k∈Z is the zero set of a function of sine type.

Definition 3 An entire function f of exponential type π is said to be of sine type if
the zeros of f are separated and simple, and there exist positive constants A, B, and
H such that A eπ |y| ≤ | f (x + iy)| ≤ B eπ |y| whenever x and y are real and |y| ≥ H .

Under the above assumptions on the sequence {tk}k∈Z, the limit

φ(z) = (z − t0) lim
N→∞

∏

|tk |≤N
k �=0

(

1 − z

tk

)
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exists for all finite z ∈ C and represents an entire function of exponential type π , and
the reconstruction functions φk , k ∈ Z, are given by

φk(t) = φ(t)

φ′(tk)(t − tk)
. (7.2)

There is an important connection between the set of zeros {tk}k∈Z of a function of
sine type, the basis properties of the system of exponentials {eiωtk }k∈Z, and complete
interpolating sequences, which we will summarize in the following lemma. Please see
[22] and [27] for details.

Lemma 5 If {tk}k∈Z is the set of zeros of a function of sine type, then {tk}k∈Z is a
complete interpolating sequence for PW2

π , the system {eiωtk }k∈Z is a Riesz basis for
L2[−π, π ], and {φk}k∈Z is a Riesz basis for PW2

π .

For a subclass of the just introduced class of sampling patterns, we have an interest-
ing divergence result. This subclass consists of all separated and strictly increasingly
ordered sequences {tk}k∈Z that are the zero set of an entire function φ that has the
Fourier-Stieltjes integral representation

φ(t) = 1

2π

∫ π

−π

eiωt dμ(ω), (7.3)

where μ(ω) is a real function of bounded variation on the interval [−π, π ] and has
a jump discontinuity at each endpoint. It can be shown that all functions φ with this
property are sine-type functions [27, p. 143], and hence the class of functions φ that
we consider here is a subclass of the functions of sine type.

For this subclass, we have the following result [7].

Theorem 8 Let φ be a function of sine type that has the representation (7.3), and
whose zeros {tk}k∈Z are all real and ordered increasingly. Let φk , k ∈ Z, be the
corresponding reconstruction functions as defined in (7.2). Then there exists a f1 ∈
PW1

π such that

lim sup
N→∞

max
t∈R

∣
∣
∣
∣
∣

f1(t) −
N∑

k=−N

f1(tk)φk(t)

∣
∣
∣
∣
∣
= ∞. (7.4)

Remark 6 In particular sin(π t) is a sine-type function that has the representation (7.3).
Hence, Theorem 8 implies that

lim sup
N→∞

max
t∈R

∣
∣
∣
∣
∣

f1(t) −
N∑

k=−N

f1(k)
sin(π(t − k))

π(t − k)

∣
∣
∣
∣
∣
= ∞, (7.5)

i.e., the peak approximation error of the Shannon sampling series with equidistant
sampling points diverges for some signal f1 ∈ PW1

π .



450 J Fourier Anal Appl (2019) 25:427–459

The next corollary shows that the sets of divergence in (7.4) and (7.5) are spaceable.

Corollary 4 Under the assumptions and notations of Theorem 8, the set of functions
f1 ∈ PW1

π that satisfy (7.4) is spaceable.

Proof We consider the operators ψN : PW1
π → B∞

π,0, N ∈ N, defined by

ψN f =
N∑

k=−N

f (tk)φk .

Clearly, {ψN }N∈N is a sequence of bounded linear operators on PW1
π . For all f in

the dense subset Dπ ⊂ PW1
π , which was defined in (7.1), we have limN→∞‖ f −

ψN f ‖B∞
π,0

= 0, as the following quick argument shows. We have Dπ ⊂ PW2
π , and,

since {φk}k∈N is a Riesz basis for PW2
π , it follows that

lim
N→∞max

t∈R

∣
∣
∣
∣
∣

f (t) −
N∑

k=−N

f (tk)φk(t)

∣
∣
∣
∣
∣
≤ lim

N→∞

∥
∥
∥
∥
∥

f −
N∑

k=−N

f (tk)φk

∥
∥
∥
∥
∥
PW2

π

= 0

for all f ∈ Dπ . Further, from Theorem 8 we see that

lim sup
N→∞

‖ψN ‖PW1
π→B∞

π,0
= ∞.

Since PW1
π has the s-property, it follows that there exists an infinite dimensional

closed subspace B1 ⊂ PW1
π such that lim supN→∞‖ψN f ‖B∞

π,0
= ∞ for all f ∈ B1.

	

Remark 7 An interesting question about shift invariance is the following: If the opera-
tors of the sequence {TN }N∈N are shift invariant, is it then possible to construct a closed
infinite dimensional subspaces with divergence that is additionally shift invariant? As
it turns out, for the kind of operators that we are considering in this paper, this is never
possible [13]. This is a deep result because it is equivalent to Carleson’s theorem on
almost everywhere convergence of Fourier series of L2 functions [13].

7.1.2 Approximation of Stable LTI Systems

In addition to the reconstruction of signals from their samples as discussed in
Sect. 7.1.1, the approximation of linear time-invariant (LTI) systems is of practical
relevance. The canonical approximation process in this case is given by

∞∑

k=−∞
f (tk)(T φk)(t), (7.6)

where T denotes the stable LTI system.
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We briefly review some definitions and facts. A linear system T : PW p
π →

PW p
π , 1 ≤ p ≤ ∞, is called stable if the operator T is bounded, i.e., if

‖T ‖ := sup‖ f ‖PW p
π

≤1‖T f ‖PW p
π

< ∞. Furthermore, it is called time-invariant if

(T f ( · − a))(t) = (T f )(t − a) for all f ∈ PW p
π and t, a ∈ R. For every stable LTI

system T : PW1
π → PW1

π there exists exactly one function ĥT ∈ L∞[−π, π ] such
that

(T f )(t) = 1

2π

∫ π

−π

f̂ (ω)ĥT (ω) eiωt dω, t ∈ R, (7.7)

for all f ∈ PW1
π [8]. Conversely, every function ĥT ∈ L∞[−π, π ] defines a stable

LTI system T : PW1
π → PW1

π . The operator norm of a stable LTI system T is given
by ‖T ‖ = ‖ĥ‖L∞[−π,π ].

In [9] it was shown that for any sampling pattern that is a complete interpolating
sequence and all t ∈ R there exists a stable LTI system T1 : PW1

π → PW1
π and a

signal f1 ∈ PW1
π such that the approximation process (7.6) diverges. This result even

holds true in the case of oversampling.

Theorem 9 Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for
PW2

π , φk as defined in (7.2), and t ∈ R. Then there exists a stable LTI system
T1 : PW1

π → PW1
π such that for every 0 < σ ≤ π there exists a signal f1 ∈ PW1

σ

such that

lim sup
N→∞

∣
∣
∣
∣
∣
(T1 f1)(t) −

N∑

k=−N

f1(tk)(T1φk)(t)

∣
∣
∣
∣
∣
= ∞. (7.8)

Again we can use the results from this paper to derive that the set of signals creating
divergence is spaceable.

Corollary 5 Under the assumptions and notations of Theorem 9, for any 0 < σ ≤ π ,
the set of functions f1 ∈ PW1

σ that satisfies (7.8) is spaceable.

Proof Let {tk}k∈Z ⊂ R be an ordered complete interpolating sequence for PW2
π and

t ∈ R, both arbitrary but fixed. From Theorem 9 we know that there exists a stable
LTI system T1 such that for every 0 < σ ≤ π there exists a signal f1 ∈ PW1

σ such
that (7.8) holds. Let 0 < σ ≤ π be arbitrary but fixed. We consider the functionals
ψN : PW1

σ → C, N ∈ N, defined by

ψN f =
N∑

k=−N

f (tk)(T1φk)(t).

Clearly, {ψN }N∈N is a sequence of bounded linear functionals on PW1
σ . For f ∈

Dσ ⊂ PW2
σ we have

∣
∣
∣
∣
∣
(T1 f )(t) −

N∑

k=−N

f (tk)(T1φk)(t)

∣
∣
∣
∣
∣
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≤
∥
∥
∥
∥
∥

T1 f −
N∑

k=−N

f (tk)T1φk

∥
∥
∥
∥
∥
PW1

π

≤ ‖T1‖∞

∥
∥
∥
∥
∥

f −
N∑

k=−N

f (tk)φk

∥
∥
∥
∥
∥
PW2

π

,

and, since {φk}k∈N is a Riesz basis for PW2
π , we further have

lim
N→∞

∥
∥
∥
∥
∥

f −
N∑

k=−N

f (tk)φk

∥
∥
∥
∥
∥
PW2

π

= 0.

Thus, it follows that limN→∞|(T1 f )(t) − ψN f | = 0 for all f in the dense subset
Dσ ⊂ PW1

σ . Further, from Theorem 9 we see that that

lim sup
N→∞

‖ψN ‖PW1
σ →C

= ∞.

Since PW1
σ has the s-property, it follows that there exists an infinite dimensional

closed subspace B1 ⊂ PW1
σ such that lim supN→∞|ψN f | = ∞ for all f ∈ B1 \ {0}.

	


7.2 Paley–Wiener Space PW2
σ

Since PW2
σ , 0 < σ < ∞, is isomorphic to �2, which has the s-property, it follows

immediately from Lemma 1 that PW2
σ has the s-property.

Observation 2 PW2
σ , 0 < σ < ∞, has the s-property.

Let TC denote the set of all energetically stable LTI systems T : PW2
π → PW2

π

with ĥT ∈ C[−π, π ], and TCe denote the set of all energetically stable LTI systems
T : PW2

π → PW2
π with ĥT ∈ Ce[−π, π ].

Next, we study the convolution sum

∞∑

k=−∞
f (t − k)hT (k), (7.9)

where the time variable is in the argument of the function f . It is easy to see that (7.9)
converges uniformly for all f ∈ PW2

π and all stable LTI systems T : PW2
π → PW2

π .
However, the L2 norm of the convolution sum (7.9) diverges for certain functions and
systems. In [10] it was shown that there exists a spaceable set Vsig ⊂ PW2

π and a
spaceable set Vsys ⊂ TC , such that

lim sup
N→∞

∫ ∞

−∞

∣
∣
∣
∣
∣

N∑

k=−N

f (t − k)hT (k)

∣
∣
∣
∣
∣

2

dt = ∞. (7.10)
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for all f ∈ Vsig, T ∈ Vsys.
This results about joint spaceability gives no information about individual space-

ability, i.e., whether for a given system T the set of signals f with divergence is
spaceable. The following corollary, which is a consequence of the previous results,
gives an answer to this question.

Corollary 6 Let T : PW2
π → PW2

π be an energetically stable LTI system and f ∈
PW2

π such that

lim sup
N→∞

∫ ∞

−∞

∣
∣
∣
∣
∣

N∑

k=−N

f (t − k)hT (k)

∣
∣
∣
∣
∣

2

dt = ∞. (7.11)

Then the set of all functions f ∈ PW2
π for which (7.11) holds is spaceable.

Proof Let T1 be an energetically stable LTI system and f1 ∈ PW2
π be such that

lim sup
N→∞

∫ ∞

−∞

∣
∣
∣
∣
∣

N∑

k=−N

f1(t − k)hT1(k)

∣
∣
∣
∣
∣

2

dt = ∞.

We consider the operators ψN : PW2
π → PW2

π , defined by

ψN f =
N∑

k=−N

f ( · − k)hT1(k).

Clearly {ψN }N∈N is a sequence of bounded linear operators on PW2
π . Let

D =
{

N∑

k=−N

ck
sin(π(t − k))

π(t − k)
: N ∈ N, ck ∈ C

}

.

Then D is a dense subset of PW2
π . For f ∈ D we have

‖T1 f − ψN f ‖2PW2
π

= 1

2π

∫ π

−π

∣
∣
∣
∣
∣

f̂ (ω)ĥT1(ω) − f̂ (ω)

N∑

k=−N

e−iωk hT1(k)

∣
∣
∣
∣
∣

2

dω

≤ ‖ f̂ ‖2L∞[−π,π ]
2π

∫ π

−π

∣
∣
∣
∣
∣
ĥT1(ω) −

N∑

k=−N

e−iωk hT1(k)

∣
∣
∣
∣
∣

2

dω

= ‖ f̂ ‖2L∞[−π,π ]
∑

|k|>N

|hT1(k)|2,
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and it follows that limN→∞‖T1 f − ψN f ‖PW2
π

= 0. Further, from (7.11) we know

that lim supN→∞‖ψN ‖PW2
π→PW2

π
= ∞. Since PW2

π has the s-property, it fol-

lows that there exists an infinite dimensional closed subspace B1 ⊂ PW2
π such that

lim supN→∞‖ψN f ‖PW2
π

= ∞ for all f ∈ B1 \ {0}. 	

The next corollary gives, for a fixed signal f , a statement about the set of systems,

creating divergence.

Corollary 7 Let T ∈ TCe be an energetically stable LTI system and f ∈ PW2
π such

that

lim sup
N→∞

∫ ∞

−∞

∣
∣
∣
∣
∣

N∑

k=−N

f (t − k)hT (k)

∣
∣
∣
∣
∣

2

dt = ∞. (7.12)

Then the set of all energetically stable LTI systems T ∈ TCe for which (7.12) holds is
spaceable.

For the proof of Corollary 7 we need the following observation.

Observation 3 Ce[−π, π ] has the s-property.

Proof of Observation 3 For n ∈ N, let mn = π
(
1 − 3/2n+1

)
and define the functions

φn : [−π, π ] → R by

φn(ω) =
{
1 − 2n+1

π
|ω − mn|, |ω − mn| ≤ π

2n+1 ,

0, otherwise.

We have φn ∈ Ce[−π, π ], n ∈ N. Next, consider

G = span({φn}n∈N)
Ce[−π,π ]

.

Then G is a closed subspace of Ce[−π, π ] and {φn}n∈N is a basis for G [19, Theo-
rem 5.17]. For f ∈ G we have the representation

f =
∞∑

n=1

αnφn

with {αn}n∈N ∈ c0. Further we have ‖ f ‖∞ = ‖{αn}n∈N‖c0 . Thus G is isometric
isomorphic to c0. Since c0 has the s-property according to Theorem 7, it follows from
Lemma 1 that G has the s-property. Finally, Theorem 6 shows that Ce[−π, π ] has the
s-property. 	

Proof of Corollary 7 Let T1 ∈ TCe be an energetically stable LTI system and f1 ∈
PW2

π such that

lim sup
N→∞

∫ ∞

−∞

∣
∣
∣
∣
∣

N∑

k=−N

f1(t − k)hT1(k)

∣
∣
∣
∣
∣

2

dt = ∞.
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We consider the operators ψN : Ce[−π, π ] → PW2
π , N ∈ N, defined by

ψN hT =
N∑

k=−N

f1( · − k)hT (k).

Clearly {ψN }N∈N is a sequence of bounded linear operators on Ce[−π, π ]. Let

D =
{

N∑

k=−N

ck e
iωk : N ∈ N, ck ∈ C

}

.

Then D is a dense subset of Ce[−π, π ]. For hT ∈ D we have

‖T f1 − ψN hT ‖2PW2
π

= 1

2π

∫ π

−π

∣
∣
∣
∣
∣

f̂1(ω)ĥT (ω) − f̂1(ω)

N∑

k=−N

e−iωk hT (k)

∣
∣
∣
∣
∣

2

dω

≤
∥
∥
∥
∥
∥

ĥT (ω) −
N∑

k=−N

e−iωk hT (k)

∥
∥
∥
∥
∥

2

L∞[−π,π ]
‖ f ‖2PW2

π

,

and further

lim
N→∞

∥
∥
∥
∥
∥

ĥT (ω) −
N∑

k=−N

e−iωk hT (k)

∥
∥
∥
∥
∥

2

L∞[−π,π ]
= 0.

Hence, it follows that limN→∞‖T f1 − ψN hT ‖PW2
π

= 0 for all hT ∈ D. Further,
from (7.12) we know that lim supN→∞‖ψN ‖Ce[−π,π ]→PW2

π
= ∞. Since Ce[−π, π ]

has the s-property, it follows that there exists an infinite dimensional closed subspace
B1 ⊂ Ce[−π, π ] such that lim supN→∞‖ψN hT ‖PW2

π
= ∞ for all hT ∈ B1 \ {0}. 	


7.3 Further Spaces

So far we have seen that the spaces c0, �p, 1 < p < ∞, C[0, 1], Ce[−π, π ], L2[0, 1],
PW1

σ , PW2
σ , 0 < σ < ∞, have the s-property. More Banach spaces that have the

s-property are summarized in the following theorem.

Theorem 10 The following Banach space have the s-property:

1. The Bernstein spaces B p
π , 1 < p < ∞,

2. L p[−π, π ], 1 ≤ p < ∞,
3. The Paley–Wiener spaces PW p

π , 1 ≤ p < ∞.

Proof 1. For 1 < p < ∞, B p
π is isomorphic to �p [22, p. 152], and �p has the s-

property according to Theorem 7. 2. Let 1 ≤ p < ∞ and let rn , n ∈ N, denote the
Rademacher functions scaled to [−π, π ]. Further, let
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D = span({rn}n∈N)
L p[−π,π ]

.

D is a closed subspace of L p[−π, π ], and, by Khintchine’s inequality [23, p. 66], D
has a basis and is isomorphic to �2. Hence, by Theorem 6, Lemma 1, and the fact that
�2 has the s property (Theorem 7), it follows that L p[−π, π ] has the s property. 3. The
s-property of the Paley–Wiener space PW p

π , 1 ≤ p < ∞, follows from the fact that
PW p

π is isomorphic to L p[−π, π ] and Lemma 1. 	


Appendix: Equivalence of Questions 1 and 2

In this section, we show the equivalence of Questions 1 and 2. We start with reducing
Question 1 to a simpler question.

Theorem 11 The answer to Question 1 is positive for arbitrary separable Banach
spaces B1, B2 if and only if the answer to Question 1 is positive for arbitrary closed
subspaces B1, B2 of C[0, 1].
Proof ⇒: This direction is trivial, because every closed subspace of C[0, 1] is a
Banach space.

⇐: Let B1 and B2 two arbitrary separable Banach spaces, and assume that the
assumptions of Question 1 are fulfilled. According to the Banach–Mazur theorem
[4,24] there exist closed subspaces H1, H2 of C[0, 1] and isometric isomorphisms
U1, U2 such that Ul(Bl) = Hl , l = 1, 2.

B1
T,TN−−−−→ B2

U1

⏐
⏐
�

⏐
⏐
�U2

H1
T c,T c

N−−−−→ H2

Let T c = U2 ◦ T ◦ U−1
1 and T c

N = U2 ◦ TN ◦ U−1
1 , N ∈ N, both of which map from

H1 into H2. We have ‖T c‖H1→H2 = ‖T ‖B1→B2 and ‖T c
N ‖H1→H2 = ‖TN ‖B1→B2 ,

N ∈ N. According to our assumption there exists a dense subset M ⊂ B1 such that

lim
N→∞‖TN f − T f ‖B2 = 0

for all f ∈ M. It follows thatMc := U1(M) is dense in H1 and that for all f ∈ Mc

we have
lim

N→∞‖T c
N f − T c f ‖H2 = 0.

The assertion for arbitrary closed subspaces of C[0, 1], which we assume to be true,
gives that there exists an infinite dimensional closed subspace H1 ⊂ H1 such that

lim sup
N→∞

‖T c
N f ‖H2 = ∞
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for all f ∈ H1 \ {0}. It follows that B1 = U−1
1 H1 is an infinite dimensional closed

subspace of B1, and that we have

lim sup
N→∞

‖TN f ‖B2 = ∞

for all f ∈ B1 \ {0}. 	

We want to further reduce the question by showing that the structure of the space

B2 is not particularly significant; it suffices to consider B2 = C. This leads us to the
following question.

Question 3 Let B1 be a closed subspace of C[0, 1] and {ψN }N∈N a sequence of
continuous linear functionals on B1, satisfying

(A1’) lim supN→∞‖ψN ‖B1→C = ∞, and
(A2’) there exists a continuous linear functional ψ : B1 → C as well as a dense

subset M ⊂ B1 such that limN→∞ ψN f = ψ f for all f ∈ M.

Is the set {

f ∈ B1 : lim sup
N→∞

|ψN f | = ∞
}

spaceable?

Theorem 12 The answer to Question 1 is positive if and only if the answer to Ques-
tion 3 is positive.

Proof ⇒: If the answer to Question 1 is positive, then the assertion is true for arbitrary
separable Banach spaces B1 and B2, and thus, in particular for B1 being an arbitrary
closed subspace of C[0, 1] and B2 = C.

⇐: Let B1, B2 be two arbitrary closed subspaces of C[0, 1]. The set of all f ∈ B1
satisfying lim supN→∞‖TN f ‖C[0,1] = ∞ is a residual set. Hence, there exist a f ∈ B1
and two sequences {Nk}k∈N ⊂ N and {tk}k∈N ⊂ [0, 1], such that

lim
k→∞|(TNk f )(tk)| = ∞.

Further, there exists a t∗ ∈ [0, 1] and a subsequence {kl}l∈N such that

lim
l→∞|t∗ − tkl | = 0.

We consider the functionals

ψl f = (TNkl
f )(tkl ), l ∈ N.

For f ∈ M we have that for all ε > 0 there exists a l0 = l0(ε) such that

‖TNkl
f − T f ‖C[0,1] < ε
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for all l ≥ l0. Since T f is continuous, there exists a l1 = l1(ε) such that

|(T f )(t∗) − (T f )(tkl )| < ε

for all l ≥ l1. Hence, for all l ≥ max{l0, l1} we have

|(TNkl
f )(tkl ) − (T f )(t∗)| < 2ε.

Therefore, we have for all f ∈ M that

lim
l→∞ ψl f = ψ f,

where ψ f = (T f )(t∗). Thus, the set
{

f ∈ B1 : lim sup
l→∞

|ψl f | = ∞
}

is spaceable. Further, we have

‖TNkl
f ‖C[0,1] ≥ |ψl f |, l ∈ N.

and therefore spaceability of the set

{

f ∈ B1 : lim sup
N→∞

‖TN f ‖B2 = ∞
}

.

	

Nextwe show that it is sufficient to consider specific sequences of linear functionals,

which is the the final simplification.

Corollary 8 The answer to Question 1 is positive if and only if Question 3 can be
answered positively for all sequences of functionals {ψN }N∈N with limN→∞ ψN ( f ) =
0 for all f ∈ M.

Proof Choose ψ∗
N = ψN − ψ . 	
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