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Abstract In this paper we study the spaceability of divergence sets of sequences of
bounded linear operators on Banach spaces. For Banach spaces with the s-property,
we can give a sufficient condition that guarantees the unbounded divergence on a set
that contains an infinite dimensional closed subspace after the zero element has been
added. This generalizes the classical Banach—Steinhaus theorem which implies that
the divergence set is a residual set. We further prove that many important spaces, e.g.,
P, 1 < p <o00,C[0,1], LP, 1 < p < 00, as well as Paley—Wiener and Bernstein
spaces, have the s-property. Finally, consequences for the convergence behavior of
sampling series and system approximation processes are shown.
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1 Introduction

In [11] we gave a sufficient condition for the spaceability of the divergence set of a
sequence of linear operators on an arbitrary Banach space. This result can be seen
as an extension of the classical theory of Banach and Steinhaus [3,5]. The Banach—
Steinhaus theory is particularly valuable for the analysis of the approximation behavior
in Fourier analysis and approximation theory. Typical examples are the analysis of
norm convergence and pointwise convergence of Fourier series, summability of Fourier
series, convergence behavior of sampling series, signal reconstructions, and system
approximations.

However, so far it was unclear what happens if the sufficient condition that was
given in [11] is not satisfied. Our first contribution is to show that the condition is
not necessary. To this end, we choose a different approach for the analysis in this
paper. We will show for a large class of Banach spaces that we have spaceability of
the divergence set of a sequence of linear operators under similar conditions as in the
Banach—Steinhaus theorem. Hence, for these spaces we can considerably strengthen
the Banach—Steinhaus theorem. The class of Banach spaces for which we can show
this behavior comprises important spaces that are used in Fourier analysis and approxi-
mation theory, e.g., all separable Hilbert spaces, C[0, 1], C¢[—n, 7], L?,1 < p < oo,
co, L7, 1 < p < oo, Paley—Wiener spaces PWE 1 < p < oo, and Bernstein spaces
BE, 1 < p < oo. As an application of the results we show the spaceability of the
divergence set for sampling series, system approximations, and convolution sums.

2 Notation

In this work we will use several Banach spaces, which we briefly introduce next. By
co we denote the space of all sequences that converge to zero. £, 1 < p < oo, are the
usual spaces of p-th power summable sequences x = {x,},cN With the norm ||x||;» =
(Zi‘;l | x5 |1’)1/1’. The space of all continuous functions on [0, 1] is denoted by C[O0, 1],
and the space of all continuous functions f on [—m, 7], satisfying f(7) = f(—m)
by C¢[—m, ]. Let Q be a Lebesgue measurable subset of R. By L?(2), 1 < p < oo,
we denote the usual L”-spaces on €2, equipped with the norm || - || ,. The Bernstein
space Bl o >0,1< p < oo, consists of all functions of exponential type at most
o, whose restriction to the real line is in L? (R) [20, p. 49]. gf’o denotes the set of all
signals in BS° that vanish on the real axis at infinity.

Let f denote the Fourier transform of a function f, where f is to be understood in
the distributional sense. Foro > 0 and 1 < p < oo, we denote by PWYE the Paley—
Wiener space of signals f with a representation f(z) = 1/(2x) ffg g(w) ez do,
z € C, for some g € LP[—0, o]. The norm for PW5, 1 < p < oo, is given by
£ llpyye = (1/(2) ffg|f(a))|p dw)!/?. Note that PW2 ¢ PW!.

A subset M of a metric space X is said to be nowhere dense in X if the closure
[M] does not contain a non-empty open subset of X. M is said to be meager (or of
the first category) if M is the countable union of sets each of which is nowhere dense
in X. M is said to be nonmeager (or of the second category) if it is not meager. The
complement of a meager set is called a residual set. Meager sets may be considered as
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“small”. According to Baire’s theorem [26], in a complete metric space any residual
set is dense and nonmeager. One property that shows the richness of residual sets is the
following: the countable intersection of residual sets is always a residual set. Further,
any subset of a meager set is a meager set and any superset of a residual set is a residual
set.

3 General Questions on Spaceability

Before we start with our program that was outlined in the introduction, we introduce the
concept of spaceability. Spaceability, which has recently been used for example in [1,
2,6,16,18], is a concept that describes the structure of some given subset of an ambient
normed space or, more generally, topological space. A set S in a linear topological
space X is said to be spaceable if SU{0} contains a closed infinite dimensional subspace
of X.

Next, we review the Banach—Steinhaus theorem [25, p. 98].

Theorem 1 (Banach-Steinhaus). Let By be a Banach space and By a normed space.
Assume that {Tn}neN is a sequence of bounded linear operators from By into By,
satisfying limsupy_, o | Tn | B,— B, = 00. Then the set

{feBl: lim sup|| Ty f | B, =oo} 3.1

N—o00

is a residual set.

The goal of this work is to strengthen this result. In particular we are interested in
extending it towards showing a linear structure in the set (3.1), or, more specifically
spaceability. Such a linear structure is important in applications, because it implies
that any linear combination of vectors, which is not the zero vector, leads to divergence
as well.

Note that it is significantly more difficult to show a linear structure in the set of
vectors for which we have divergence compared to showing a linear structure in the
set of vectors for which we have convergence. If we have two vectors f and f>,
for which Ty f1 and Ty f, converge, it is clear that for their sum f; + f> we have
convergence as well. However, for divergence this is not true. Given two vectors g1 and
g» for which Ty g1 and Ty g diverge, we cannot conclude that Ty (g1 + g2) diverges:
indeed, choose g» = fi — g1, where f} is any vector for which we have convergence
and g any vector for which we have divergence.

The above example shows that in general we cannot expect that the set of vectors
with divergent approximation process is a linear space. However, we can ask if this
set contains an infinite dimensional subspace with linear structure.

We want to analyze the following question.

Question 1 Let By and By be two separable Banach spaces. Assume that {Tn}neN
is a sequence of bounded linear operators from By into By, satisfying:

(Al) lim SupN*)OO”TN”BI%Bz = oo, and

Birkhauser



430 J Fourier Anal Appl (2019) 25:427-459

(A2) There exists a bounded linear operator T : B] — By as well as a dense subset
M C By such that imy_, o ||Tf — Ty f B, = 0 forall f € M.

Is the set
{f € By: limsup|| Ty fllg, = oo} (3.2)

N—o00

spaceable?

We do not know whether the answer to Question 1 is positive for arbitrary separable
Banach spaces Bj, B>. In [11], we were able to answer the question positively under
an additional assumption on the sequence {7x}yen. If it is additionally assumed that

(A3) There exists an infinite dimensional closed subspace B; of Bj such that
supyenllTn fll, = Cll fli, forall f € By,

then it can be concluded that the set (3.2) is spaceable. Thus, the assumptions (Al)-
(A3) are sufficient for spaceability. In Sect. 5 we will give an example where we
have spaceability, but where the assumptions from [11] are not satisfied. Hence, the
assumptions in [11] are sufficient but not necessary for spaceability.

Remark I Condition (A2) in Question 1 entails that the set of functions with conver-
gence is dense lineable.

It is possible to reduce Question 1 to a simpler question about sequences of func-
tionals on C[O, 1].

Question 2 Let By be a closed subspace of C[0, 1]. Assume that {Yn}neN is a
sequence of continuous linear functionals on By, satisfying:

(A1) limsupy_ oo Y]l 3y = 00, and
(A2’) there exists a dense subset M C Bj such that limy_, ¥y f = 0 for all

feM
Is the set
{fe Bi: limsup|1//Nf|=oo} (3.3)
N—>00
spaceable?

The answer to Question 1 is positive if and only if Question 2 can be answered
positively. The details of this reduction are provided in Appendix 1.

Hence, it is possible to significantly reduce the problem of answering Question 1.
However, we still do not know the answer to Question 2, or, equivalently, the full
answer to Question 1, i.e., if for all separable Banach spaces Bj, assumptions (A1)
and (A2) are sufficient for the spaceability of the divergence set (3.2).

Although we are not able to prove the sufficiency of assumptions (A1) and (A2) for
the spaceability of the divergence set (3.2), we will identify important Banach spaces,
for which (A1) and (A2) are sufficient for spaceability. We call those Banach spaces,
Banach spaces that have the s-property, where “s” stands for “spaceability”.

Definition 1 We say that an infinite dimensional separable Banach space Bj has the
s-property if for every separable Banach space B; and every sequence of bounded
linear operators {7x}yen from By into By, satisfying:
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(A1) limsupy_, I TNl B, B, = 00, and
(A2) there exists a bounded linear operator 7: By — B as well as a dense subset
M C By such thatlimyool|Tf —Tn fllp, =0forall f € M,

the set
{f € By: limsup||Ty fll5, = 00}

N—o00

is spaceable.

Remark 2 If T and Ty have further structural properties, e.g., shift invariance, one
may expect the divergence subspace to have additional properties as well. We will
resume this discussion later in Remark 7, where we discuss shift invariance.

According to the considerations regarding Questions 1 and 2, we can define the
s-property of a Banach space also in a different but equivalent way.

Definition 2 We say that an infinite dimensional separable Banach space Bj has the
s-property if for every sequence of linear and continuous functionals {1y } yecn On B,
satisfying:

(A1’) limsupy_, o 1¥N | B,—C = 00, and
(A2’) there exists a dense subset M C Bj such that limy_, o ¥y f = O for all

fem,
the set
{f € Bp: limsup|yy f| = oo}

N—o00
is spaceable.
In the next section we will show that the corresponding question for sequences of

bounded linear functionals on separable Hilbert spaces can be answered positively.
Later in Sect. 6 we will extend this results to other relevant Banach spaces.

Remark 3 There is probably no universal approach for showing lineability. This con-
jecture is supported by an observation made in [13], where it was discussed that for
a certain set the question of dense lineability is equivalent to the Riemann hypothesis
on the zeros of the Riemann zeta function.

4 Separable Hilbert Spaces

Next we show that Question 1 can be answered positively for all separable Hilbert
spaces. Thus, all separable Hilbert spaces have the s-property.

Theorem 2 Let Hy be an infinite dimensional separable Hilbert space. Then Hy has
the s-property.

Before we prove Theorem 2, we present a useful lemma, which we will also employ
in the proof, and in several corollaries.

Birkhauser



432 J Fourier Anal Appl (2019) 25:427-459

Lemma 1 Let By and B> be two separable isomorphic Banach spaces. Then By has
the s-property if and only if By has the s-property.

Proof Since Bp and B, are isomorphic, there exists a linear and bounded bijection
U: By — B>. Without loss of generality we assume that By has the s-property. Let
{Yn}nen be a sequence of functionals on Bj, satisfying the properties (Al’) and
(A2), i.e., imyooll¥nllBy—>c = 00, and limy 00 Y f = O for all f in some
dense subset M of B>. Then U~'(M) is dense in By. Let ¢y = ¥nU, N € N.
{dn}Nen is a sequence of functionals on Bj that satisfies limy_, oo ¢pn f = 0 for all
f in the dense subset U~'(M) of By. Further, we have YN = dN U™',N eN, and
consequently

-1
l¥nlB,—c < llénllB—cllU ™" lB,— B

which shows that

lim sup| | 3, ¢ = 0.
N—o0

Thus, {¢,}nen is a sequence of functionals on Bj that satisfies the conditions (A1’)
and (A2’). Since B has the s-property, there exists an infinite dimensional closed
subspace B| C Bj such that

lim sup|gy f| = o0
N—>o0

for all f € By \ {0}. It follows that B, := U(B) is an infinite dimensional closed
subspace, and we have

lim sup|yry f| = lim sup|pyU~" f| = oo

N—o00 N—o0

forall f € B, \ {0}. This shows that B; has the s-property because the sequence of
functionals {1y }yen Was chosen arbitrary. O

Theorem 2 together with Lemma 1 immediately gives the following corollary.

Corollary 1 In L?[0, 1] every infinite dimensional closed subspace has the s-property.

Remark 4 If we could prove the statement of Corollary 1 for C[O0, 1] instead of
L2[0, 1], i.e., if we could prove that every infinite dimensional closed subspace of
C[0, 1] has the s-property, then we would know that every separable Banach space
has the s-property.

Theorem 2 has further interesting consequences. An infinite dimensional Banach
space Bj is called homogeneous if every infinite dimensional closed subspace B, of
By is isomorphic to Bp. This definition leads us to the following corollary.

Corollary 2 Every homogeneous separable Banach space By has the s-property, and
every infinite dimensional closed subspace B of B\ has the s-property.

Proof Gowers has shown in [17] that every homogeneous separable Banach space is
isomorphic to some separable Hilbert space and therefore to L2[0, 1]. Application of
Lemma 1 and Theorem 2 gives the result. O
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Now we come to the proof of Theorem 2. As we have discussed in the previous
section, instead of studying sequences of linear operators, it is sufficient to study
sequences of linear functionals. Further, since all infinite dimensional separable Hilbert
spaces are isomorphic to £2, it suffices, thanks to Lemma 1, to consider sequences of
linear functionals on £2.

Theorem 3 Let {{/x}nen be a sequence of continuous linear functionals on €2, sat-
isfying:

(A1) Timsupy_ o[ ¥wll = o0, and
(A2’) there exists a dense subset M C 0% such that limy_ oo vnf = 0 for all
feM

Then the set
{f €’ lim sup|y¥y f| =oo}

N—o0

is spaceable.
Remark 5 Theorem 3 shows that £ has the s-property.

For the proof of Theorem 3 we use the following lemma, the proof of which we
postpone until the end of this section.

Lemma 2 Let {gy}nen be a sequence in €2, satisfying

1. limsupy_, o llgnllez = 00 and
2. limy_oolgyn(®m)| =0 foralln € N.

For N € N, we define

ynf =) flgn®).

k=1
Then the set
{f € 02: limsup|yy f| = oo}

N—o0

is spaceable.
Equipped with Lemma 2, we are in the position to prove Theorem 3.

Proof of Theorem 3 Let {{n}nen be a sequence of continuous linear functionals
defined on ¢2, satisfying (A1’) and (A2’). Let L = span(M). Since 22 s separa-
ble, L is separable and therefore contains a countable linearly independent subset
{un}neny C L such that span({uy},eN), i.€., the finite linear span, is dense in L. Next,
we can apply the Gram—Schmidt orthonormalization process on {u, },en, which gives
us a complete orthonormal system {¢, },cN in €2, where each ¢,,, n € N, is a linear
combination of {uy, ..., u,}, and hence an element of L. Since the functionals ¥y
are linear, it follows that

Jm Yy, =0 “.D
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for all n € N. Using the isomorphic isomorphism

k=1

U: > > 0 f > {Zf(k)d)n(k)} :
neN

we can work directly in the coefficient space of the complete orthonormal system
{®n}nen. Let us consider 3 f = ¥y U~'f, f € £2. Then {¥'} }Nen is a sequence of
continuous linear functionals defined on ¢2, for which we have

lim sup||[ ¥ ¥ [l 2 c = 00 4.2)
N—o0
and
lim yNxU¢, =0 “4.3)
N—o0

for all n € N according to (4.1). Due to the Riesz representation theorem, there exists
gn € €% such that

Ynf =Y flogn®)

k=1

forall f € £>. Forn € N we have

YiUn =Y (Up)(kgn®) =) (Z ¢>n<m)¢k<m>> en (k) = gn(n).

k=1 k=1 \m=1

Hence, we see from (4.3) that limy—_ - gn(n) = O for all n € N. Further, since
¥z = llgnllg2, it follows from (4.2) that lim supy _, . llgn [l2 = 00. Thus, we
can apply Lemma 2 which gives that the set

{f € 0%: limsup|y} f| = oo}
N—o0

is spaceable, i.e., that there exists an infinite dimensional closed subspace B; C 02
such thatlim supy_, [y f| = ooforall f € B;\{0}.Itfollows that B, := U~! (By)
is an infinite dimensional closed subspace, and we have

lim sup|¢y f| = limsup|yy Uf| = oo
o0

N—o0 N—

for all f € B,. In other words,

{f € 02: limsup|yy f| = oo}

N—o00

is spaceable. O
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Having proved Theorem 3, we are in the position to give the short proof of Theo-
rem 2.

Proof of Theorem 2 From Theorem 3 we know that £2 has the s-property. Since every
infinite dimensional separable Hilbert space is isomorphic to ¢, the statement of
Theorem 2 follows directly from Lemma 1. O

Finally, we come to the remaining proof of Lemma 2. Given a sequence G =
{gn)nen in £ we define

Div(G) = {f e lim sup|( f, gn)| = oo}.

N—o0

Further, to keep the notation compact we introduce the following abbreviation. For
S € N we set
1, ke,

Lsk) = io, keN\S,

and for the case S = {1, ...n} we simply write 1,,.

Lemma 3 Assume that G = {gn}nen and H = {h, },eN are two sequences in 02 with
lim ||hy —gnlle2 = 0.
N—o0

Then

1. limsupy_, ollgnlle2 = oo if and only if lim supy_, |lAN |2 = 00,

2. limy_ o0 gn(k) =O0forallk € Nifand only iflimy_,» hy (k) = Oforallk € N,
and

3. Div(H) = Div(G).

As a consequence of Lemma 3, the simple proof of which is omitted, we can assume,
without loss of generality, in the proof of Lemma 2 that, for each N € N, the support
of gy is finite. This is easily justified: For each N there exists a n(N) € N such that
lgn — gnlanylliz < 1/N. Defining H = {hy}nen = {gn1a(n)}Nen the situation
of Lemma 3 is given.

Proof of Lemma 2 Let G = {gn}nen be a sequence in £2, satisfying the assumptions
of the lemma. As justified above, we work with the finitely supported functions Ay,
N € N in the following. Since limy_,» 2y (k) = 0 for all k € N, we even have
limy_oollin1s|l,2 = O for each fixed n € N.

Next, we will construct by induction:

1. A strictly increasing index sequence {N(j)}jen of natural numbers such that
gyl = 7+ 1,

2. A sequence of disjoint intervals I; = {/;,...,r;} C Nwith[l; <r; < [j; for
all j e N,

3. AnONS {¢;}jen with supp¢; C [; forall j € N,
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4. The index sequence {N(j)}jen and the intervals I; = {l;,...,r;}, j € N, are
such that [[An1,,_ll;2 < 1/jforall j > 2 andall N > N(j).

Let N (1) be the smallest natural number such that ||y 1),z > 2. By r; we denote the
smallest natural number such that supp iy € {1, ..., r1}. Weset I} = {1,...,r1}
and ¢1 = hny/ Nyl e2-
Given N(j—1),1j1 ={lj_1,...,rj—1},and ¢; 1, we choose N(j) > N(j —1)
such that
NGyl = G +1 4.4

and
lhnd,, e < 1/ 4.5)

forall N > N(j). Wesetl; =rj_1+1,r; =max supphy(j,and I; = {l;,...,7;}.
Then hy;)1;; satisfies

Ihnchillee = Ihnghlle — lbnGyLr i lle2 = Js (4.6)

and we see that hN(j)I,/ is non-zero. We set

¢j =hnipl/Ihng)i;lle-

Having constructed all above quantities for all j by induction, we set

o
1
NMn = ¢2r4n—1+ E E¢2k+n*1’ neN.
k=n+1

Since the supports of the ¢y, k € N, are all pairwise disjoint, and we have ||¢x|l,2 = 1,

k € N, it follows that
=1
Il =1+ 3
k=n+1
and consequently that
1< nal}, <7%/6 4.7
foralln € N . We set
Kp = nn/”nn”@, n e N.

Thus, ||k,ll,2 = 1,n € N,and all k,, n € N, have pairwise disjoint supports and hence
are orthogonal.
Forn € Nand s > n we have

YN fn—1)kn = (Kn, AN@54n—1))
= (knlrys 5> IN@S +n—1)) + (Knliy s AN@ +n—1))
+ (kn(1 =Ly )y AN@S +n—1))- (4.8)
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Next, we analyze the three summands on the right hand side of (4.8). For the first term
we have

kndrys ooy AN@s4n—1))| < lknll2 AN @ 4n—1)1rps 4, Ml g2
1
— 2 4+n—1

where we used (4.5) in the last inequality. For the second term we have

1
(knlhys s AN@S 4n—1)) = ————— (P25 4n—1, AN@5 +n—1))
{11 |l 2
S S NSRRI PO
s ll g2
(2 +n—1)/6

ST
where we used (4.6) and (4.7) in the last inequality. The third term gives
(kn(L = 1pps )y AN@s4n—1)) = (Kns AN@s4n—1) (1 — 1y, 1)) =0,

because, according to the definition of rps 1, An 25 4n—1) (k) = Oforallk > rpsy,_1.
Combining all partial results it follows that

2° +n—1V6 1
ST 2 4+n—1’

VN @stn—1)knl =
which shows that for each fixed n € N

lim [y @5 +n—1)kn| = 00. 4.9)
§—> 00

2
We define now the space D = span({«;, }neN)/Z . Since the set {k, },en is a complete
orthonormal system in D we have for the coefficients «, = (f, k)

o0 o0
f= oy, and |[f]7 = lonl*. feD. (4.10)
n=1 n=1

Let f € D, f # 0, be arbitrary but fixed. Further let ng be the smallest natural number
such that o, # 0. Then we have for s € N that

oo
UN@ -1 f = CngUN @ tno-DKng T Y CnYN@ 4no—1)kn- (4.11)
n=ng+1

) Birkhduser



438 J Fourier Anal Appl (2019) 25:427-459

We study the expression ¥y (25 4no—1)kn for n > ng next. We have to distinguish
two cases: ng <n < sandng < s <n.Forng <n < s, we have

YN 4ng—1)Kn = (Kn, AN Q5 4ng—1))
= Wiy g 20 AN 4no=1)) F (Knd by 15 RN @ 4no—1))

+ (e (1 =1y )5 AN @ 4no—1))-

For the first summand we have

1

|<Kn1r2x+n0_2a hN@s 4ng—1)) | < ”Kn”(fz||hN(25+n()—1)1r2x+n0_2”62 < >t 1

where we used (4.5) in the last inequality. For the second summand we have
(kn1Ls 1> AN @ +no-1)) =0,
because k, (k) = 0 for all k € Ips4,,—1. For the third summand we have

(ke (1= Tpys 1) AN @ 4no—1)) = (Kns AN @5 ng—1) (1 = Ly, 1)) =0

because, according to the definition of rs o1, AN @s4ng—1)(k) = 0 for all k >
25 +no—1. Combining all partial results, we see that forng <n < s

1
VN @ fng—1)Kn| < m (4.12)
For ng < s < n we have
YN@ +no—DKn = (Kns AN @5 np—1))
= (Kn (1 =iy, o) AN@ o1 Lras )
= (K An@s4no-D Ly g (1 =1y, ) =0, (4.13)

where we used that k, (k) = 0 for all k < rynyn_2, An@s4no—1)(k) = 0 for all
k > rps4po—1, and the fact that 2° +n9 — 1 <2" +n — 2.
From (4.11) it follows that

o0
[UN @ no—1) f — Cng YN @ +no—1Kno | = Z AN @5 +ng—)Kn
n=no+1
s—1 00
= Z |an1[/N(2°'+no—1)Kn|+Z|anl/fN(2x+no—l)Kn|~
n=np+1 n=s
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The second term equals O due to (4.13), and thanks to (4.12) and the Cauchy—Schwarz
inequality we have

s—1 1 s—1

Z |l YN @5 +ng—1)Knl

n=no+1

s—1
J5
> el < 0 fllee

= s
n=no+1

Thus, we obtain altogether

J5
YN @ tro-1) f = YN @t -1Kno| = S5 11 fllex (4.14)

for all s > ng. Combining (4.9) and (4.14), we finally see that
lim [y @25 4no—1) f] = 00.
§—> 00

Since f € D, f # 0, was chosen arbitrarily, we have proved the spaceability of the
set {f € €%: limsupy_ o ¥y f| = oo} O

5 Spaceability Without the Control of the Boundedness Behavior

In [11] a sufficient condition for the spaceability of the divergence set of a sequence of
linear operators on an arbitrary Banach space was given. For completeness, we state
this theorem next.

Theorem 4 Let By and B be two separable Banach spaces. Assume that {Ty}nNeN
is a sequence of bounded linear operators from B1 into B, satisfying:

(Al) lim SupN—)oo||TN||B|*>BZ =00,

(A2) There exists a bounded linear operator T : B1 — B> as well as a dense subset
M of By such that imy_||Tf — Ty fllg, = 0 forall f € M, and

(A3) There exists an infinite dimensional closed subspace B, of By such that
supyenllTn fllB, = CllfliB, forall f € B;.

Then, the set
{f € By: limsup||Tn fllB, = oo}

N—o0

is spaceable.

Theorem 4 shows that the conditions (A1)-(A3) together are sufficient for the space-
ability of the divergence set. However, the next theorem shows that they are not
necessary, because we can find a sequence of bounded linear operators {Tn}yeN,
satisfying (A1) and (A2), such that the divergence set is spaceable, but (A3) does not
hold. Again we can reduce the problem to sequences of continuous linear functionals
on £2.
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Theorem 5 There exists a sequence of continuous linear functionals {Yn}neN on 22,
satisfying:

(A7) limy— oollYn || = 00, and
(A2’) there exists a dense subspace M C £2 such that limy_, o Y¥n (f) = 0 for all
feM,

such that the set
{f €0’ limsup|yy f| = oo}

N—o00

is spaceable, but

{f € 02: limsup|yy f| < oo} (5.1

N—o00

is not spaceable.

Note that the divergence set

{f € ¢%: limsup|yy f| = oo}

N—o0

in Theorem 5 is spaceable according to Theorem 3. However, since (5.1) is not space-
able, we see that (A3) is not satisfied.

Proof For y > 0, we consider the functionals ¥, : 02 - C,n e N, defined by

Ynf = f(n)ny
Let
1, k=n,
en(k) =
0, k+#n,
denote the standard basis of ¢2. Since we have Yne, = nY, it follows that
lim;,—, oo || ¥ || = o0. Further, for all finite sequences f € 22 we have lim,,_ o0 Ynf =

0. It remains to show that the set

K = {f €’ lim sup|yr, f] < oo}

n—o0

is not spaceable, or, in other words, that K contains no infinite dimensional closed
subspace. We use an indirect proof and assume that there exists an infinite dimensional
closed subspace H; C K. We have f € K if and only if

sup| f(n)|n¥ < oo.
neN

For N € N, let
Py(f,y) = max |f(n)|n.
1<n<N
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{Pn}nen is a sequence of convex homogeneous continuous functionals. For f € H
we have

lim Py (f,y) = sup|f(n)|n” < co.
N—o0 neN

According to the generalized uniform boundedness principle [21] there exists a con-
stant C| such that

Py(f.y) = Cill flle
for all f € Hy, which in turn implies that

suglf(n)lny < Cilifllp (5.2)

forall f € Hj.
We choose y = 2. For M € Nand f € H; we have

M b e
(Zlf(n)|2n2> = (gf(nnzn“n—z)

n=1
1

M 1 2
2 —
< (j;‘g'f(””” ) (; n2>

< = suplf(m)In’. (5.3)
6 neN

It follows that 1

(Z|f(n)|2n2) < o0

n=1

for all f € Hj, and, by (5.3) and (5.2), there exists a constant C, such that

1

o0 2
(Zlf(n)|2n2> <Clfle (5.4)
n=1

forall f € Hj.

Next, we show that H; needs to be finite dimensional, which is a contradiction to
our assumption. Let { f (’”)}meN be an arbitrary bounded sequence of elements in Hj.
Without loss of generality, we assume that || f || 2 < 1,m e N. Since £2 is reflexive,
{£"},,cn has a weakly convergent subsequence. It follows that there exists a f* € £2
and a subsequence {my}xeN of the natural numbers such that

lim £ (n) = f*(n) (5.5)
k—o00
for all n € N. We have || f*|,2 < 1. It follows that

[f*(m)in < Ca, neN, (5.6)
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and
|f™ (m)|n < C2, neN, (5.7)

where we used (5.4). We further have
1
o0 2
(Zl.f""“(n) — f*(n)l2>
n=1
1

M 00 2
(Zlf(’"")(n) — P+ Y 1" m) - f*(n)|2>

n=1 n=M+1
1

M % 00 2
(Zlf('”“(n)—f*(nHz) +< > If(’”“(n)—f*(n)|2> :

n=1 n=M+1

IA

For the second term on the right hand side we obtain

1
00 2
( > |f<'"k>(n)—f*(n>|2>
n=M+1

1

5( > If(’"")(n)lz) +( > |f*(n)|2>

n=M+1 n=M+1

o )} o\

C _— —

2(2 n2> +C2(E n2>
n=M+1 n=M+1

- M

IA

where we used (5.6) and (5.7) in the second to last line. Let € > 0 be arbitrary, and
let M be the smallest natural number such that

2Cy
— <
M

[NSH Q)

Due to (5.5) there exists a kg = ko(€) such that

max | £ (n) — f*(n)] < ﬁ

1<n<M
for all k > k. It follows that

(Zlf(’”“(n) - f*(n)|2> <e

n=1
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for all k > ko. That is, we have norm convergence of the subsequence { f (’”k)}keN.
Thus, every bounded sequence has a norm convergent subsequence, i.e., the unit ball
in Hj is compact. This implies that H; is finite dimensional. O

6 Extension to Other Banach Spaces

We want to use the results from Sect. 4 to prove the s-property for further Banach
spaces. To this end, we start with a general result.

Theorem 6 Let By be a separable Banach space. If By contains an infinite dimen-
sional closed subspace B, that has a basis and the s-property, then By has the

s-property.
Corollary 3 C|[0, 1] has the s-property.

Proof of Corollary 3 According to the Banach—Mazur theorem, there exists an infinite
dimensional closed subspace B; C CJO0, 1] that is isometrically isomorphic to 0.
Since 2 has the s-property, according to Theorem 3, it follows from Lemma 1 that
B has the s-property. Theorem 6 gives the assertion. O

Proof of Theorem 6 Let B, be the infinite dimensional closed subspace of B; that
has a basis and the s-property. Let {e,},cn be a basis of B;. Further, let {¢/y}yen
a sequence of continuous linear functionals on Bj, satisfying properties (A1’) and
(A2), i.e, limsupy_, o ll¥NlB,—~c = o0 and limy .o ¥y f = O for all f € M,
where M is some dense subset of Bj.

We have to distinguish two cases: First, supycnll¥nlp,—~c < 00, and second,
supyenll¥nllg,—~c = oo. In the first case we can use Theorem 4 from [11], which
immediately gives that the set

{feBlz limsup|1ﬂNf|=oo} (6.1)

N—00

is spaceable and thus completes the proof. Hence, we can assume in the following
that we have the second case, i.e., that supycnll¥n [l g, —~c = 0. Let {e;}peny C B]
denote the coefficient functionals of the basis {e,},en. Since M is dense in By, we
can find for every n € N a function f, € M such that

llen — fullg, <

2 el g
It follows that
D lexla;len = fulln, < 3 57 = 5
n=1 n=1

which shows that { f;, },en is a basic sequence in Bj that is equivalent to {e,, },en [14,

Theorem 9]. Let B, = span ({ fn}neN)Bl. Then B, is a infinite dimensional closed
subspace of Bj, which is isomorphic to B, [14, Theorem 5]. Hence, we can use
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Lemma 1 to deduce that B, has the s-property. For f € span({ f,},cn) we have the
representation

L
f = Zaszkl
=1

and it follows that

L
Jim gy f = ;«xk, Jim vy fiy =0,

because f, € M for all n € N. Hence, we have convergence for the dense subset
span({ fu}nen) of B,. Again, we distinguish the two cases: supy yll¥n 5, < 00 and
supyenll¥wllp, = 0o. Inthe first case we can apply Theorem 4 from [11] again, which
immediately gives that the set (6.1) is spaceable and thus completes the proof. Thus, we
can assume that we are in the second case, i.e., that lim sup _, . [[¥'~ |5, = 00 Since
B, has the s-property, there exists an infinite dimensional closed subspace B, , C B,
such that

lim suplyy f| = o0

N—o0

forall f € B ) \ {0}. Clearly, B, 5 is also an infinite dimensional closed subspace of
Bj. Since the sequence of functionals {{/y } yen Was arbitrary, we have completed the
proof. O

Next, we show that the £” spaces, | < p < 00, and cg have the s-property. Later, in
Sect. 7 we will use this result together with Theorem 6 to prove the s-property for the
Paley—Wiener spaces PWE 1 < p < 00, and the Bernstein spaces BY 1< p < Q.

Theorem 7 Let By = {? for some p € (1, 00) or By = cq. Then By has the s-property.

Proof Let {¥/n}nen be an arbitrary sequence of continuous linear functionals on By,
satisfying the properties (A1’) and (A2’), i.e., limsupy_, o ¥~ B,—-Cc = 00, and
limy_ oo ¥n f = 0 forall f is some dense subset M of Bj. Let g be the conjugate
index to p, i.e., satisfying 1/p 4+ 1/q = 1. Then we have Bf = ¢4 if B; = (7,
1 < p < 0o, and Bf = ¢! if By = co. Further, let

1, k=n,
en(k) =
0, k#n,

denote the standard basis of £” and cp, and {e};},en C Bf the coefficient functionals
of the basis {e, },cn. We have ||eZ||Bik = 1, n € N. Since M is dense in B we can
find for every n € N an element f;,, € M such that

llen — fullB, < L

Thus, we have

> 1
> lexlia;llen = fulls, = 5.

n=1
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which shows that { f;,},en is a basic sequence in Bj that is equivalent to {ey, },en [14,

Theorem 9]. Let B; = span ({fn}neN)Bl. Then B is an infinite dimensional closed
subspace of Bj that is isomorphic to By [14, Theorem 5]. Further, every f € B, has
the representation

F=Y ) (6.2)
n=1

with a unique sequence of coefficients {a, (f)},en. Since the basis { f,,},en of B is
equivalent to the standard basis {e, },cn of Bj, it follows that there exist two positive
constants C1, and CR such that

1 1

CL (Dan(fnf’) <Ifls, <Cr (Zmn(f)w) (6.3)

n=1 n=I1

forall f € B, if By = £P,1 < p < o0o. If By = ¢ then the above norm has to be
replaced by the maximum norm.

We have to distinguish two cases: First, supynll¥n|5,—~c < 00, and second
supyenll¥nllB,—c = oo. In the first case we can use Theorem 4, which immediately
gives that the set

{f € Bp: limsup|yy f| = oo}
N—o00

is spaceable. Hence, we can assume in the following that we have the second case, i.e.,
that supynll¥n | B,—c = oo. For f € span({fu}nen) we have the representation

L
£=Y"Bufu

=1
and it follows that
L
Jim gy f = I_ZI By lim v fiy = 0.

because f, € M for all n € N. Hence, we have convergence for the dense subset

span({ fu}nen) of B;.

We consider the operator 7: B; — £, f — {0, (f)}sen. From (6.3) we see that
T is a linear bounded operator mapping B onto £” and that T~ is also a linear and
bounded. For o € £7 we consider

e =ynT o
We have Yy, Tf = ¥ f, and it follows that

[N I < I¥yller—clITfller

< ¥nler—clTlig—erll flis,
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—1
< Cr I¥yller—clflis, -
Thus, we have ||yl g,~c < C]jl %X ller— ., which implies that

lim sup| Yy ller—c = oo.
N—o00

Further, we have T f,, = e, i.e., f, = T !le,. Hence, we have

w;tlen = wNT_len =YnNfu

and consequently
lim yye, = 0.
N—o0

According to the Riesz representation theorem there exists a gy € £9 such that

Yo=Y amgyn)

n=1

for all « € £P. We have

1

o q
Iy llerc = (Z]gzv(n)rf) :

n=1

and consequently

m sup (Z|g1v<n>|‘1> = 0.

li
N—o00 =1

Further, we have
Yy (en) = gn(n)

which implies that
lim |gy ()| = 0
N—o00

foralln € N. Using Lemma 4, which follows below, we obtain an infinite dimensional
closed subspace S C ¢” with

lim sup|y | = 0o
N—oo

foralla € S\ {0}. Then B, = T~![S] is an infinite dimensional closed subspace of
B,.For f € Ql, f # 0, we have

Unf=YNT T,
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and, since Tf € S, it follows that

lim sup|yy f| = oo.

N—o00

Hence, B; has the s-property. O
Lemma 4 is a simple extension of Lemma 2.

Lemmad4 Let 1 < g < oo and {gn}nen C €1 be a sequence, satisfying

1. limy—collgnlles = 00 and
2. limy—co gn(k) =0 forallk € N.

Further, let By = coifq = 1and By = ¢P, 1/p+1/q =1,ifq > 1. For N € N,
define
o
ynf =Y flgn®).
k=1
Then the set

{f € By: limsup|yy f| = oo}
N—o00
is spaceable.

Proof The proof is very similar to the proof of Lemma 2. For 1 < p < oo we use
duality and replace the £> norm conditions with £¢ norm conditions. For cq we replace
the £% norm conditions with £! norm conditions. O

7 Applications

In this section we prove the s-property for classes of Paley—Wiener and Bernstein
spaces and present several applications.

7.1 Paley-Wiener Space PW!

We start with the Paley—Wiener spaces. The Paley—Wiener space PW5, 0 < o <
00, 1 = p < oo, consists of all functions f with a representation f(z) =
1/@2m) [7, g(w)e'*® dw, z € C, for some g € LP[—0, o). The norm for PW5

is given by
1

1 /" @) d »
I £l pyyr = 3 _Glg o)’ do | .
Observation 1 PW},, 0 < 0 < 00, has the s-property.
Proof Let 0 < o0 < oo be arbitrary but fixed. For n € N, let

sin(w (2t —2"))

, teR.
w(Zt—2m)

qn(t) =

Birkhauser



448 J Fourier Anal Appl (2019) 25:427-459

According to Paley’s theorem [15, p. 104], {gx}nenN is a basic sequence in PW},. Let

1
Dy = span((gnlner) " (7.1)

Then D, is an infinite dimensional closed subspace of PW},. Further, for all f € D,

we have
1 o] k 2 % (o] k 2 %
E(k_z ‘f(%) ) snfnpwés(k_Z ‘f(%) ) ,

where C is a constant that does not depend on f. Hence, D, is isomorphic to £2. From
Theorem 7 we know that £2 has the s-property, and, since D, and 0% are isomorphic,
Lemma 1 implies that D, has the s-property. Thus, PW}, contains an infinite dimen-
sional closed subspace that has a basis and the s-property. It follows from Theorem 6
that PW}, has the s-property. O

7.1.1 Approximation of the Identity

We study the approximation behavior of sampling series next, and use the fact that
PW}T has the s-property to show that the set of divergence is spaceable. We consider
sampling series of the type

o0
Y Fae),
k=—o00
where ¢y, k € 7Z, are certain reconstruction functions and {f;}rcz is the sequence

of real sampling points. We assume that the sequence of sampling points is ordered
strictly increasingly, i.e.,

LIy <Il g <lhhy<h<bh<---,

and, without loss of generality, that #y = 0. Further, we assume that the set of sampling
points {# }xez is the zero set of a function of sine type.

Definition 3 An entire function f of exponential type 7 is said to be of sine type if

the zeros of f are separated and simple, and there exist positive constants A, B, and

H such that Ae™ ! < | f(x +iy)| < Be™¥l whenever x and y are real and |y| > H.
Under the above assumptions on the sequence {tx }xez, the limit

¢@) = -1 lim ] (1—5>

[tk |<N T
k0
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exists for all finite z € C and represents an entire function of exponential type 7, and
the reconstruction functions ¢y, k € Z, are given by

p (1)
= 7.2
PO = e —w 72

There is an important connection between the set of zeros {f; }xcz of a function of
sine type, the basis properties of the system of exponentials {e/®* }; <7, and complete
interpolating sequences, which we will summarize in the following lemma. Please see
[22] and [27] for details.

Lemma 5 [f {t;}re7 is the set of zeros of a function of sine type, then {t;}re7z, is a
complete interpolating sequence for PW%, the system {e'“ };.cy, is a Riesz basis for
L*[—n, ], and {ér}kez is a Riesz basis for PW%.

For a subclass of the just introduced class of sampling patterns, we have an interest-
ing divergence result. This subclass consists of all separated and strictly increasingly
ordered sequences {f}rcz that are the zero set of an entire function ¢ that has the
Fourier-Stieltjes integral representation

S
¢(1) = 2—/ ! du(w), (1.3)
T

-7

where /() is a real function of bounded variation on the interval [—, 7] and has
a jump discontinuity at each endpoint. It can be shown that all functions ¢ with this
property are sine-type functions [27, p. 143], and hence the class of functions ¢ that
we consider here is a subclass of the functions of sine type.

For this subclass, we have the following result [7].

Theorem 8 Let ¢ be a function of sine type that has the representation (7.3), and
whose zeros {ty}rez are all real and ordered increasingly. Let ¢y, k € Z, be the
corresponding reconstruction functions as defined in (7.2). Then there exists a f| €

PWY. such that

lim sup max (7.4)

N—oo !€R

fi0) — Z i@ de()| =

k=—N

Remark 6 Inparticular sin(sr¢) is a sine-type function that has the representation (7.3).
Hence, Theorem 8 implies that

lim sup max
N—o00

(t =k

fie) - Z filk )M‘mo, (15)

i.e., the peak approximation error of the Shannon sampling series with equidistant
sampling points diverges for some signal f] € PW}I.
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The next corollary shows that the sets of divergence in (7.4) and (7.5) are spaceable.

Corollary 4 Under the assumptions and notations of Theorem 8, the set of functions
f1e PW}T that satisfy (7.4) is spaceable.

Proof We consider the operators V¥ : PW}, — B;?O, N e N, defined by

N
ynf =Y )¢

k=—N

Clearly, {{/n}nen is a sequence of bounded linear operators on ’PW}T. For all f in
the dense subset D, C PW}I, which was defined in (7.1), we have limy_ || f —
Uy fl BX, = 0, as the following quick argument shows. We have D, C PW%, and,

since {¢r }ren is a Riesz basis for PW,ZT, it follows that

=0
PW?

N
< Jim_ Hf— > Fke

k=—N

N
Jim max \f (1) - k_Z a0

=—N
for all f € D;. Further, from Theorem 8 we see that

lim sup|[|[Yn [l pyy1 _, goo = 00.
Ne>oo T 7,0

Since PW}T has the s-property, it follows that there exists an infinite dimensional
closed subspace B; C PW}T such that lim supN%OO||1p1\/f||37c;o0 =ooforall f € B;.
' O

Remark 7 An interesting question about shift invariance is the following: If the opera-
tors of the sequence {7y } yen are shift invariant, is it then possible to construct a closed
infinite dimensional subspaces with divergence that is additionally shift invariant? As
it turns out, for the kind of operators that we are considering in this paper, this is never
possible [13]. This is a deep result because it is equivalent to Carleson’s theorem on
almost everywhere convergence of Fourier series of L? functions [13].

7.1.2 Approximation of Stable LTI Systems
In addition to the reconstruction of signals from their samples as discussed in

Sect. 7.1.1, the approximation of linear time-invariant (LTI) systems is of practical
relevance. The canonical approximation process in this case is given by

> F@ T o). (7.6)

k=—o00

where T denotes the stable LTI system.
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We briefly review some definitions and facts. A linear system 7T : PWE
PWE, 1 < p < oo, is called stable if the operator T is bounded, i.e., if
T := SuPHfHPWgSI ||Tf||7awg < o0c¢. Furthermore, it is called time-invariant if

(Tf(- —a)@)=(Tf)(t —a)forall f e PWE andt,a € HA% For every stable LTI
system 7T : PW}T — PW}T there exists exactly one function iy € L*[—x, 7] such
that

1 [7 . . .
(TH) = 5 F)hr (@) e do, teR, (1.7)

—7T

forall f € PW}, [8]. Conversely, every function sz € L°°[—m, 7] defines a stable
LTI system T : PW}T — PW},. The operator norm of a stable LTI system 7 is given
by 71l = lhlloo—n.m1-

In [9] it was shown that for any sampling pattern that is a complete interpolating
sequence and all ¢+ € R there exists a stable LTI system 77 : PW}, — PW}T and a
signal f] € PW}, such that the approximation process (7.6) diverges. This result even
holds true in the case of oversampling.

Theorem 9 Let {ty}xcz, C R be an ordered complete interpolating sequence for
PW,ZZ, ¢k as defined in (7.2), and t € R. Then there exists a stable LTI system
Ti: PW}T — PW}T such that for every 0 < o < 7 there exists a signal f| € PW},
such that

N
lij\flnsup (T f)(0) — Z J1(@) (Tigy) (1) | = oo. (7.8)

k=—N

Again we can use the results from this paper to derive that the set of signals creating
divergence is spaceable.

Corollary 5 Under the assumptions and notations of Theorem 9, forany 0 < o < &,
the set of functions f| € PW}T that satisfies (7.8) is spaceable.

Proof Let {t;}xez C R be an ordered complete interpolating sequence for PW?T and
t € R, both arbitrary but fixed. From Theorem 9 we know that there exists a stable
LTI system 77 such that for every 0 < o < 7 there exists a signal f] € PW}, such
that (7.8) holds. Let 0 < o < 7 be arbitrary but fixed. We consider the functionals
Yn: PWL — C, N €N, defined by

N
Unf= Y Fu)(Tig)@).
k=—N

Clearly, {¥/n}nen is a sequence of bounded linear functionals on PW},. For f €
D, C PW?2 we have

N
(THWO = Y fa)(Tig) )

k=—N
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=

N
If— Z Ft) Tk

k=—N

PWL

N
f=> fgr

k=—N

= 1T lleo

’

PW?2

and, since {¢}ren is a Riesz basis for PW%, we further have

=0.
PW?

N
lim Hf— > Faogn

N—o00
k=—N

Thus, it follows that limy_. o |(T1 f)(t) — ¥y f] = O for all f in the dense subset
D, C PW.. Further, from Theorem 9 we see that that

lim sup[|[ ¥y [l pyy1 _, ¢ = 00.
N—o00 7

Since PW}, has the s-property, it follows that there exists an infinite dimensional
closed subspace B C PW}, such that lim supy_, o |¥n f| = coforall f € B\ {0}.
O

7.2 Paley-Wiener Space PW?

Since PW%, 0 < 0 < o0, is isomorphic to £2, which has the s-property, it follows
immediately from Lemma 1 that PW%, has the s-property.

Observation 2 PW?,, 0 < 0 < 00, has the s-property.

Let 7¢ denote the set of all energetically stable LTI systems 7' : PW% — PW?,
with sz € C[—mn, ], and 7¢e denote the set of all energetically stable LTI systems
T: PW% — PW% with ftT € C°[—m, m].

Next, we study the convolution sum

> ft=khrk), (1.9)

k=—o00

where the time variable is in the argument of the function f. It is easy to see that (7.9)
converges uniformly forall f € PW?2 and all stable LTI systems 7': PW2 — PW2.
However, the L2 norm of the convolution sum (7.9) diverges for certain functions and
systems. In [10] it was shown that there exists a spaceable set Vsig C PW% and a
spaceable set Vgys C 7, such that

N 2

Z ft —khr(k)| dr = oo. (7.10)

k=—N

o
lim supf
N—oo J—00
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forall f € Viig, T € Viys.

This results about joint spaceability gives no information about individual space-
ability, i.e., whether for a given system 7 the set of signals f with divergence is
spaceable. The following corollary, which is a consequence of the previous results,
gives an answer to this question.

Corollary 6 Let T: PW% — PW% be an energetically stable LTI system and f €
PW]ZT such that

2

o0
lim sup/ dt = oco. (7.11)
N—oo J—00

Then the set of all functions f € 73)/\/72Z for which (7.11) holds is spaceable.

N
> f—khrk)
k=—N

Proof Let T| be an energetically stable LTI system and f € PW% be such that

2

dt = o0.

N
> Al = khg (k)

k=—N

o0
lim sup /
N—oo J—00
We consider the operators ¥y : PW2 — PW?2, defined by

N
Unf= Y f —khg k).

k=—N

Clearly {¥/n}neN is a sequence of bounded linear operators on PW,ZT. Let

N .
D{ZMM@}

Pt m(t —k)
Then D is a dense subset of PW2. For f € D we have

ITif = VN Flpe

2
I I N
:2_/ f@hr (@) = f(@) Y e ™ hy ()| do
T k=—N
~ 2
L 1 ey [ ]2 A
= hry(@) = Y e hy ()| do
T - k=—N

=1 F 1 oo mmy D Ihr (R,

k|>N
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and it follows that limy o || 71 f — l/fo||7>W2 = 0. Further, from (7.11) we know
that limsupy_, o [¥N I pyy2 _pyp2 = ©0. Since PW% has the s-property, it fol-

lows that there exists an infinite dimensional closed subspace B; C 'PW% such that
limsupy oo l¥n fllpyy2 = oo forall f € B, \ {0). o

The next corollary gives, for a fixed signal f, a statement about the set of systems,
creating divergence.

Corollary 7 Let T € Tce be an energetically stable LTI system and f € 731/\/72r such

that
2

N
7 = bhrk| dr =co. (7.12)

o
lim sup /
N—oo J—00 |, Z_ N
Then the set of all energetically stable LTI systems T € Tce for which (7.12) holds is
spaceable.

For the proof of Corollary 7 we need the following observation.
Observation 3 C¢[—mx, 7] has the s-property.

Proof of Observation 3 Forn € N,letm, = n (l -3/ 2”*1) and define the functions
¢n: [—m, 7] > R by

on+l

%w=r "

0, otherwise.

o = mal, o —myl < 5,

We have ¢,, € C°[—m, ], n € N. Next, consider

————C%[—n,7]
G =span({@plner) .

Then G is a closed subspace of C¢[—, ] and {¢,},en is a basis for G [19, Theo-
rem 5.17]. For f € G we have the representation

o0
f= Zan¢n
n=1
with {&;}nen € co. Further we have || flloo = [[{on}nenlle,- Thus G is isometric

isomorphic to c¢g. Since cg has the s-property according to Theorem 7, it follows from
Lemma 1 that G has the s-property. Finally, Theorem 6 shows that C¢[—, 7] has the
s-property. O

Proof of Corollary 7 Let T1 € Tce be an energetically stable LTI system and f; €
PW?2 such that

2

N
> filt —khg (k)| dr = oco.

k=—N

o
lim supf
N—oo J—00
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We consider the operators ¥y : C¢[—m, 7] — PW%, N € N, defined by

N
Ynhr = Y fi(- —hr k).

k=—N

Clearly {/n}neN is a sequence of bounded linear operators on C¢[—m, 7r]. Let

N
D={ Z ckei“’k:NeN,cke(C}.
k=—N

Then D is a dense subset of C¢[—m, 7 ]. For hy € D we have

2
ITFi = Vnhr (e

2
k4

N
A@hr@) = fitw) Y e hr(k)| do

k=—N
2

2 J o

N
hr(@) = )" e hrk)

k=—N

IA

2
1 Py

L®[—m,m]

and further 5

N
hy(w) — Z e~ hr (k) =0.

k=—N

lim
N—o0

L®[—m,7]

Hence, it follows that limy || T f1 — VhoT”PW% = 0 for all h € D. Further,
from (7.12) we know that lim supy_, oo [N ”Ce[—n,n]—>PW§ = 00. Since C°[—m, 7]
has the s-property, it follows that there exists an infinite dimensional closed subspace
B, C C®[—m, ] such that lim SUPN—>oo||1/hoT||pW§ =ooforallhr € B; \ {0}. O

7.3 Further Spaces

So far we have seen that the spaces cg, £7, 1 < p < oo, C[0, 1], C¢[—m, ], L*[0, 1],
PWCI,, PW?,, 0 < 0 < 00, have the s-property. More Banach spaces that have the
s-property are summarized in the following theorem.

Theorem 10 The following Banach space have the s-property:

1. The Bernstein spaces BE, 1 < p < 00,
2. LP[—m, ], 1 < p < o0,
3. The Paley—Wiener spaces PWY%, 1 < p < oo.

Proof 1.For 1 < p < oo, BY is isomorphic to £7 [22, p. 152], and £” has the s-
property according to Theorem 7. 2. Let 1 < p < oo and let r,, n € N, denote the
Rademacher functions scaled to [—z, 7r]. Further, let
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LP[—m,m)

D = span({r,}nen)

D is a closed subspace of L?[—m, 7], and, by Khintchine’s inequality [23, p. 66], D
has a basis and is isomorphic to £%. Hence, by Theorem 6, Lemma 1, and the fact that
£? has the s property (Theorem 7), it follows that L”[—, 7] has the s property. 3. The
s-property of the Paley—Wiener space PW%, 1 < p < oo, follows from the fact that
PWE is isomorphic to L?[—m, 7] and Lemma 1. O

Appendix: Equivalence of Questions 1 and 2

In this section, we show the equivalence of Questions 1 and 2. We start with reducing
Question 1 to a simpler question.

Theorem 11 The answer to Question 1 is positive for arbitrary separable Banach
spaces By, By if and only if the answer to Question 1 is positive for arbitrary closed
subspaces By, By of C[0, 1].

Proof =: This direction is trivial, because every closed subspace of C[0, 1] is a
Banach space.

«: Let By and B; two arbitrary separable Banach spaces, and assume that the
assumptions of Question 1 are fulfilled. According to the Banach—-Mazur theorem
[4,24] there exist closed subspaces Hj, Hy of C[0, 1] and isometric isomorphisms
Uy, Uy suchthat U;(B)) = H;, 1 =1, 2.

T.Tx
Bl — B

UIJ« le

¢, TS
H — Hj

LetT¢=UsoT oU; " and T, = Uz 0 Ty o U, N € N, both of which map from
Hy into Hy. We have | T\l s~y = IT1|5, 5, and | T§ 1,1, = ITn 5,5,
N e N. According to our assumption there exists a dense subset M C Bj such that

lim [Ty f —Tfllg, =0
N—o00

for all f € M. It follows that M, := U (M) is dense in H| and that for all f € M.
we have

lim ||T,f,f— T°fllm, =0.
N—o0

The assertion for arbitrary closed subspaces of C[0, 1], which we assume to be true,
gives that there exists an infinite dimensional closed subspace H; C H; such that

lim sup|| Ty, f I, = 00
N—o0
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forall f € Hj \ {0}. It follows that By = U ! Hj is an infinite dimensional closed
subspace of Bj, and that we have

limsup|Ty fllp, = 00
N—o00

forall f € By \ {0}. o

We want to further reduce the question by showing that the structure of the space
Bs is not particularly significant; it suffices to consider By = C. This leads us to the
following question.

Question 3 Let By be a closed subspace of C[0, 1] and {Yn}neN a sequence of
continuous linear functionals on By, satisfying

(AI’) limsupy_, oo VNIl B, —C = 00, and
(A2’) there exists a continuous linear functional : By — C as well as a dense
subset M C By such that imy_, oo ¥n f = ¥ f forall f € M.

Is the set

{f € By: limsup|yy f| = oo}
N—o00

spaceable?

Theorem 12 The answer to Question 1 is positive if and only if the answer to Ques-
tion 3 is positive.
Proof =: If the answer to Question 1 is positive, then the assertion is true for arbitrary
separable Banach spaces B and B,, and thus, in particular for B; being an arbitrary
closed subspace of C[0, 1] and B, = C.

«: Let By, B be two arbitrary closed subspaces of C[0, 1]. The set of all f € B;

satisfying lim supy_, o ITn f llc[o,1] = oo is aresidual set. Hence, thereexista f € B
and two sequences { Ny }reny C N and {fx}xen C [0, 1], such that

lim |(Tn, f)(1)| = oo.
k— 00
Further, there exists a t, € [0, 1] and a subsequence {k;};cn such that
lim |t, — ty,| = 0.
[— 00
We consider the functionals

vif =T, Ht), 1 eN.

For f € M we have that for all € > 0 there exists a [y = [o(¢) such that
TN, f = Tflicrony < €
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for all [ > ly. Since T f is continuous, there exists a /1 = [1(¢) such that

(Tf)(t) = (Tl < €

for all/ > [. Hence, for all [ > max{ly, [;} we have

|(Tny, H)(tg) = (THH)] < 2e.

Therefore, we have for all f € M that
lim ¥ f =y,
[— 00
where ¥ f = (T f)(t,). Thus, the set
{f € Byp: limsup|y; f| = oo}
[— o0
is spaceable. Further, we have

TNy, fllcto.ny = 1Y fl, €N,

and therefore spaceability of the set

{f € By: limsup||Ty fllB, = oo}

N—o0
O

Next we show that it is sufficient to consider specific sequences of linear functionals,
which is the the final simplification.

Corollary 8 The answer to Question 1 is positive if and only if Question 3 can be
answered positively for all sequences of functionals {{y } yen Withlimy_, oo YN (f) =
Oforall f € M.

Proof Choose ¥y, = ¥y — V. O
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