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Ḣ s,p(RN ) with radial symmetry in m blocks of variables, for m < sp < N . The
estimates are formulated in terms of multiradial monomials. The form of the monomi-
als depends on the structure of the group of block-radial symmetries and the distances
of the given point to the hyperplanes in R

N that contain the singular orbits of the
group. For some exceptional set of parameters the logarithmic factor is needed. Weak
continuity related to the estimates is also considered.

Keywords Multiradial functions · Sobolev spaces · Strauss inequality · Pointwise
estimates

Mathematics Subject Classification Primary 46E35 · Secondary 46B50 · 46N20 ·
42C99

Communicated by Krzysztof Stempak.

Leszek Skrzypczak was supported by National Science Centre, Poland, Grant No. 2014/15/B/ST1/00164.
Research partly supported by Wenner-Gren Foundations.

B Leszek Skrzypczak
lskrzyp@amu.edu.pl

Cyril Tintarev
tammouz@gmail.com

1 Faculty of Mathematics & Computer Science, Adam Mickiewicz University, ul. Umultowska 87,
61-614 Poznan, Poland

2 Uppsala University, P.O.Box 480, 751 06 Uppsala, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-018-9593-7&domain=pdf


322 J Fourier Anal Appl (2019) 25:321–344

1 Introduction

This paper studies embeddings of multiradial subspaces of homogeneous Sobolev
spaces Ḣ s,p intoweighted L∞-spaces. Themain result, Theorem4.1, is themultiradial
analog of the Straus estimate for radial functions. W. Strauss proved in [19] that every
radial function belonging to the inhomogeneous Sobolev spaces H1,2(RN ), N > 2,
is almost everywhere equal to a continuous function and there is a positive constant
C such that

| f (x)| ≤ C |x |− 1−N
2 ‖ f ‖H1,2 .

We refer to [3] for the proof of this inequality and further historical references. To
the best of our knowledge a block-radial symmetry was first considered by L.P.Lions
in [10]. Here the author is interested in the compactness of embeddings of subspaces
of radial and block-radial functions of inhomogeneous Sobolev space. To prove the
compactness one needs some decay of the function at infinity and an inequality similar
to above one involving the inhomogeneous Sobolev norm is proved there. In contrast to
this paper we work with homogeneous spaces and we are looking for the block-radial
counterpart of the following estimate

| f (x)| ≤ C |x |s− N
2 ‖ f ‖Ḣ s,2

that was proved for radial function by Cho and Ozawa in [2], but some preliminary
version can be found in [11]. We refer also to [14] and [13] for comparison of the
behaviour at infinity of the radial function belonging to homogeneous and inhomoge-
neous Sobolev-Besov type spaces respectively.

A preliminary and more coarse pointwise estimate for multiradial functions in
Ḣ1,p(RN ) with the right hand side as in (2.9) below has been previously given by
the authors in Corollary 1, [17], for a subspace of Ḣ1,p(RN ). For a large range of
parameters this subspace is strictly smaller than Ḣ1,p(RN ), and perhaps more signif-
icantly, for a large range of parameters inequality (2.9) is not an optimal estimate. In
this paper we give a pointwise estimate for multiradial functions in Ḣ1,p(RN ) by a
monomial of block radii ri (x), i = 1, . . . ,m, with exponents that differ in different
cones {x ∈ R

N : ri1(x) ≥ · · · ≥ rim (x)}. These monomials are dominated by the
right hand side of (2.9) (where the exponents in the monomial are the same for the
whole space). For exceptional values of parameters, the estimate has to be amended
by an additional logarithmic factor. In addition to the pointwise estimate (which we
also generalize to the spaces Ḣ s,p), and to its optimality, we prove cocompactness of
a related (non-compact) embedding relative to the group of dilations at the origin.

Letm ∈ 1, . . . , N and let γ ∈ N
m be anm-tuple γ = (γ1, . . . , γm), γ1+· · ·+γm =

|γ | = N . The m-tuple γ describes decomposition of R
|γ | = R

γ1 × · · · × R
γm into m

subspaces of dimensions γ1, . . . , γm respectively. Let

SO(γ ) = SO(γ1) × . . . SO(γm) ⊂ SO(N )
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be a group of isometries on R
|γ |. An element g = (g1, . . . , gm), gi ∈ SO(γi ) acts on

x = (x̃1, . . . , x̃m), x̃i ∈ R
γi by x �→ g(x) = (g1(x̃1), . . . , gm(x̃m)). If m = 1 then

SO(γ ) = SO(N ) is a special orthogonal group acting on R
N . If m = N then the

group is trivial since then γ1 = · · · = γm = 1 and SO(1) = {id}.
We will denote a subspace of any space X of functions on R

|γ | consisting of
functions invariant with respect to the action the group SO(γ ) as Xγ . If SO(γ ) =
SO(N ), then we will write Xrad since in that case the subspace consists of radial
functions.

The spaces of our concern here are homogeneous Sobolev spaces of invariant func-
tions Ḣ s,p

γ (R|γ |), s > 0, p > 1, defined as the completion of C∞
0,γ (R|γ |) in the

norm ‖u‖s,p = ‖(−�)su‖p = ‖F−1(|ξ |sFu)‖p, which generalizes the norm ‖∇u‖p

in the case s = 1. The space Ḣ s,p
γ (R|γ |) can be identified as subspace of homoge-

neous Sobolev space Ḣ s,p(R|γ |) defined as the completion of C∞
0 (R|γ |). The space

Ḣ s,p(R|γ |) is a spaces of functions if sp < N , cf. Theorem 3.11 and Proposition 3.41
in [20].

We will work also with the inhomogeneous Sobolev spaces Hs,p(RN ) and their
invariant subspaces Hs,p

γ (RN ). Both spaces are equipped with the norm

‖ f ‖∗
s,p = ‖ f ‖p + ‖ f ‖s,p.

For technical reasons it will be convenient to work also with Besov spaces Bs,p
1 (RN )

and Bs,p∞ (RN ). The spaces can be defined by the real method of interpolation

Bs,p
q (RN ) =

(
H2s,p(RN ), L p(RN )

)
1/2,q

, q = 1,∞.

Many different characterizations of the Besov spaces can be found in [20], in particular
we have

Bs,p
1 (RN ) ↪→ Hs,p(RN ) ↪→ Bs,p∞ (RN ).

The norm of Bs,p
q (RN ) will be denoted as ‖ · ‖s,p,q .

The main technical tool used in the paper is the method of atomic decomposi-
tions. Strauss type inequalities for Sobolev spaces of integer smoothness can be also
proved by more elementary methods, and, as mentioned above, such inequalities were
obtained by authors in [17] s = 1. However, the inequality that could be obtained by a
simpler argument, (2.9), is less sharp than (2.8), and is verified for, generally, a more
narrow class of functions. The main objective of using the approach of this paper was
to refine the estimates of [17] for the classical Sobolev spaces, but as it happened,
generalization to Sobolev spaces of the fractional did not complicate the proofs.

Precise pointwise estimates of radial functions belonging to different inhomoge-
neous spaces with fractional smoothness can be found in [13]. The similar estimates
in the case of homogeneous spaces can be found in [2] and [14]. The applications of
block-radial functions to semi-linear elliptic equations can be found for example in
[4,8,12] and [9].



324 J Fourier Anal Appl (2019) 25:321–344

2 Main Results

In this section we state the pointwise estimate in the generic case, when the function

in Ḣ s,p
γ is dominated by Rm(x)−

1
p rmin(x)s−m/p at the point x belonging to principal

orbits. (cf. (2.8)), where the following notations are used:

r j = r j (x) =
(
x2γ1+···+γ j−1+1 + · · · + x2γ1+···+γ j−1+γ j

)1/2 ;
rmin(x) = min{r1(x), . . . , rm(x)}, x ∈ R

N ;

Rm(x) =
m∏
i=1

ri (x)
γi−1, x ∈ R

N . (2.1)

It is needed, however, to define the exceptional set of parameters for which this
simple estimate does not hold, therefore for any subset J of {1, . . . ,m} we define the
associated effective dimension

dJ =
∑
i∈J

γi + #{i /∈ J } (2.2)

For J � {1, . . . ,m} we also put
RJ (x) =

∏
i /∈J

ri (x)
γi−1 and rJ (x) = min

i /∈J
ri (x). (2.3)

Let m < sp < N , 1 < p. The following expression takes a decisive part in our
estimates.

RJ (x)
−1/prJ (x)

s−dJ /p (2.4)

One can easily check that the expression is a homogeneous function of x of order
s − N

p .

Lemma 2.1 If J ⊂ I � {1, . . . ,m}, dI ≤ sp and RJ (x) > 0 then

RJ (x)
−1/prJ (x)

s−dJ /p ≤ RI (x)
−1/prI (x)

s−dI /p. (2.5)

Proof It is sufficient to consider the case I = J ∪ {io}, io ∈ {1, . . .m} \ J . The rest
follows by iteration. One can easily see that dJ ≤ dI and

RI (x)
−1/prI (x)

s−dI /p = RJ (x)
−1/prI (x)

s−dJ /prio(x)
γio−1

p rI (x)
− γio−1

p .

If rI (x) = rJ (x) then rI (x) ≤ rio(x) and the inequality (2.5) holds.
If rI (x) > rJ (x) then rJ (x) = rio(x). Then

RI (x)
−1/prI (x)

s−dI /p > RJ (x)
−1/prJ (x)

s−dJ /p
(
rI (x)

rio(x)

)s− dI
p

.

This proves (2.5). 
�



J Fourier Anal Appl (2019) 25:321–344 325

Remark 2.2 The notation above brings up the matter of regularity of the functions in
Ḣ s,p

γ (RN ). Let f ∈ Ḣ s,p
γ (RN ), p > 1, m < sp < N . If Rm(x) is bounded away

from zero, then f is locally a Hs,p-function ofm variables r1, . . . , rm and is therefore
continuous in such region since m < sp.

Without loss of generality let us assume that r1(x) ≥ · · · ≥ rm(x). Whenever
r j (x) = · · · = rk(x), also without loss of generality, we assume that γ j ≤ · · · ≤ γk .
Consider a region where Rn(x) = RJ (x), J = {n + 1, . . . ,m}, is bounded away
from zero. In such region, f can be considered locally as a Ḣ s,p-function of dn =
dJ variables r1, . . . , rn, x1+∑n

i=1 γi
, . . . , xN , and therefore f is continuous whenever

Rn(x) �= 0 and dn < sp. Such region contains all orbits of the form � = {x :
rn+1(x) = · · · = rm(x) = 0, ri (x) = ρi > 0, i = 1, . . . n}, and therefore the number
dn can be called effective dimension of such orbits.

Since dn is a monotone decreasing function of n, dm = m, and d0 = N , there
exists n∗ ∈ {1, . . . ,m}, which is the smallest n such that dn < sp. The function f
is continuous whenever dn∗ < sp and Rn∗(x) �= 0, but may be discontinuous at the
orbits where Rn∗ equals 0. The similar statement holds for any permutation of indices.

To any subset J � {1, . . . ,m} we assign a cone domain in R
N defined by

CJ =
{
x ∈ R

N : RJ (x) > 0 and rJ (x) ≥ max
j∈J

r j (x)

}
. (2.6)

Here max j∈J r j (x) = 0 if J = ∅. A given point x can belong to several sets CJ if
rJ (x) coincides with several values of r j (x), j /∈ J . Note however that the expression
(2.4) is independent of the ordering by the values of ri (x) that coincide.

If x ∈ CJ then there exists ix ∈ {1, . . . ,m} \ J such that rix (x) = rJ (x). Let s > 0,
1 < p, m < sp < N and γi ≥ 2. For a given J , s and p we define a subdomain
C(J, s, p) of CJ by

C(J, s, p) = {
x ∈ CJ : sp ≤ dJ∪{ix }

}
. (2.7)

By definition dJ < dJ∪{ix }. So if dJ < sp then C(J, s, p) consists of these points of
CJ , for which sp separates consecutive effective dimensions.

Wefirst give a pointwise estimate for points x that belong to principal SO(γ )-orbits,
i.e. if Rm(x) �= 0, and when sp does not take any of the values dI , I � {1, . . . ,m}, in
particular when sp /∈ N.

Theorem 2.3 Let s > 0, m ∈ N, p > 1, m < sp < N and assume that γi ≥ 2,
i = 1, . . . ,m. Assume also that sp �= dI for any I ⊂ {1, . . . ,m}.
(i) If Rm(x) �= 0 then there exists J � {1, . . . ,m} such that dJ < sp and x ∈
C(J, s, p).
(ii) There exists C > 0, C = C(γ, s, p) such that for any J � {1, . . . ,m} with
dJ < sp, and for every f ∈ Ḣ s,p

γ (RN ), the inequality

| f (x)| ≤ CRJ (x)
−1/prJ (x)

s−dJ /p ‖ f ‖s,p, (2.8)

holds for any x ∈ C(J, s, p).
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The above theorem is the simplified version of Theorem 4.1 in Sect. 4.We formulate
here this version for the convenience of the reader.

We also state a simpler, but more coarse, estimate.

Theorem 2.4 Let s > 0, m ∈ N, p > 1, m < sp < N and assume that γi ≥ 2,
i = 1, . . . ,m. Then there exists C > 0, C = C(γ, s, p) such that for every f ∈
Ḣ s,p

γ (RN ), the inequality

| f (x)| ≤ CRm(x)
s− N

p
N−m ‖ f ‖s,p, (2.9)

holds for all x ∈ R
N such that Rm(x) �= 0.

Remark 2.5 (1) Note that the right-hand side of (2.8) defines on the set
∪J�{1,...,m},dJ<spC(γ, s, p) = {x ∈ R

N : Rm(x) > 0} a continuous positive-

homogeneous function of degree s− N
p . This is the same homogeneity as |x |s−N/p

that appears in the right hand side of the Strauss inequality, which is in fact the
case m = 1 of (2.8) and (2.9).

(2) The above mentioned homogeneity implies, with x̂ = x
‖x‖ , that

| f (x)| ≤ CRJ (x̂)
−1/prJ (x̂)

s−dJ /p‖x‖s− N
p ‖ f ‖s,p.

for x ∈ C(J, s, p).
(3) For the case s = 1 the estimate (2.9) for a subspace of Ḣ1,p

γ (RN ) was given
previously as Corollary 1 in [17]. Part (ii) of the corollary extends it to the whole
Ḣ1,p

γ (RN ) under an additional assumption mini γi ≥ p. The authors would also
like to bring it to the attention of the reader that Proposition 1 of [17] that alleges
that the subspace of the functions considered in [17] cannot be generally enlarged
to Ḣ1,p

γ (RN ), contains a computational error (a request for publication an erratum
has been made) and should be ignored.

For certain ranges of parameters inequality (2.8) takes a simpler form. In particular,
if sp is sufficiently close to N (in particular, if m = 1), the estimate is the same as for
radial functions.

Corollary 2.6 Assume the conditions of Theorem 2.3.
(i) If, additionally, sp > N − γi + 1 for all i = 1, . . . ,m, then inequality (2.8)

becomes
| f (x)| ≤ C |x |s−N/p‖ f ‖s,p . (2.10)

(ii) If, on the other hand, sp < m + γi − 1 for all i = 1, . . . ,m, then inequality (2.8)
becomes

| f (x)| ≤ CRm(x)−1/prmin(x)
s−m/p‖ f ‖s,p . (2.11)

Proof We have N − γi + 1 = dJi , Ji = {1, . . . ,m} \ {i}, i = 1, . . . ,m}. Thus the
assumption (i) implies

dJi < sp < N = d{1,...,m}.
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If Rm(x) �= 0 then there exists i such that x ∈ C(Ji , s, p). But in that case rJi (x) =
RJi (x) ∼ ‖x‖. This proofs (i).

Analogously the assumption (ii) implies that x ∈ C(∅, s, p) if Rm(x) �= 0 since
d∅ = m < sp < d{i} for any i . But R∅(x) = Rm(x) and r∅(x) = rmin(x). This proofs
(ii). 
�

The second assertion of Theorem 2.3 is restated in Sect. 4 as Theorem 4.1, and
for the exceptional region characterized by sp = dJ a similar estimate, but with a
logarithmic term, is provided by Theorem 4.2. Corollaries 4.3 and 4.4 simplify the
respective statements of Theorems 4.1 and 4.2 in the bi-radial case (m = 2).

Further results of the paper are dealing with optimality of the estimate in The-
orem 4.1 and with weak continuity properties of the estimate, in Sects. 5 and 6
respectively.

3 Preparations: Atomic Decomposition

We assume that N ≥ 2, γi ≥ 2 for any i = 1, . . . ,m.
To prove our statements we use the approach of atomic decomposition. In the con-

text of Sobolev and Besov spaces the method goes back to the seminal papers by M.
Frazier and B. Jawerth, cf. [6,7]. The atomic decomposition adapted to the radial case
was constructed by J. Epperson and M. Frazier in [5]. Here we use slightly different
approach described in [16]. It should be pointed out that we use the atomic decom-
position of inhomogeneous spaces and afterwards we use the homogeneity argument
to transfer the result to homogeneous spaces. This can be done since estimating func-
tions are homogeneous. In contrast to [5] our atoms are supported on balls not on
annuli centred at zero. Here we recall the main idea of the method, with the needed
modifications, and we refer the reader to [16] for more details.

We start with notions of separation and discretization in R
N since they are needed

for description of the atomic decomposition. Let B(x, r) denote the ball of radius r in
R

N .

Definition 3.1 Let ε > 0 be a positive number, α = 1, 2, . . . be a positive integer and
X a nonempty subset of R

N .
(a) A subset H of X is said to be ε–separation of X , if the distance between any

two distinct points of H is greater than or equal to ε.
(b) A subset H of X is called an (ε, α)–discretization of X if it is an ε–separation

of X and

X ⊂
⋃
x∈H

B(x, αε).

Remark 3.1 1. Both notations are well known and important in geometry eg. cf. [1,
Chapter 4]. Please note, that our notion of discretization is a bit different to that one
in Chavel’s book.

2. Letm be a positive integer. IfH is an (ε, α)–discretization ofR
N andm ≥ α, then

the family {B(x,mε)}x∈H is a uniformly locally finite covering of R
N whose multi-
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plicity is bounded from above by a constant depending on N and m, but independent
of ε.

We describe the needed discretizations related to the group SO(γ ). In this case we
can proceed in the following way. Let {x ( j,i)

k,
 }, 
 = 1, . . . ,max{1, k}γi−1 and k ∈ N0,

be a (2− j , αi )-discretization in R
γi constructed in [15, Sect. 3.2], with values of x ( j,i)

0,0

set instead of zero, as in [15], to |x ( j,i)
0,0 | = 2−2 j .

We put

H j =
{
x ( j)
k,l =

(
x ( j,1)
k1,l1

, . . . , x ( j,m)
km ,lm

)
: ki ∈ N0 , li = 1, . . . ,max{1, ki }γi−1

}
,

and

α = √
nmax

i
{αi }.

The setH j is a (2− j , α)-discretization of R
N Let x ( j)

k,l ∈ H j . Then

SO(γ )
(
x ( j)
k,l

) =
m∏
i=1

SO(γi )
(
x ( j)
ki ,li

)

and

card
(
H j ∩ SO(γ )

(
x ( j)
k,l

)) =
m∏
i=1

max{1, ki }γi−1 = C( j,k) (3.1)

Any point x ( j)
k,l defined above belongs to an orbit of SO(γ ) of the maximal dimen-

sion N − m.
The function a j,k,l is called (1, p)-atom centered at the point x ( j)

k,l ∈ H j if:

supp a j,k,l ⊂ B
(
x ( j)
k,l , α2

− j ), (3.2)

sup
y∈RN

∣∣∂βa j,k,l(y)
∣∣ ≤ 2− j

(
s−|β|− N

p

)
|β| ≤ [s + 1]. (3.3)

Proposition 3.2 Let s > 0 and1 ≤ p, q ≤ ∞. LetH j be a sequence of discretizations
described above. Then
(i) any function f ∈ Bs,p

q,γ (RN ) can be decomposed in the following way

f =
∞∑
j=0

∑
k∈Nm

0

∑
l

s j,k a j,k,l, (convergence in S ′) (3.4)



J Fourier Anal Appl (2019) 25:321–344 329

with

( ∞∑
j=0

( ∑
k∈Nm

0

C( j,k) |s j,k|p
)q/p)1/q

< ∞, s j,k ∈ C (3.5)

(usual change if q = ∞).
(ii) Conversely, any distribution represented by (3.4) with (3.5) belongs to Bs,p

q,γ (RN ).
Moreover the infimum over all possible representations of the expression (3.5) gives

an equivalent norm in Bs,p
q,γ (RN ).

‖ f ‖∗
s,p,q = inf

( ∞∑
j=0

(∑
k

C( j,k) |s j,k|p
)q/p)1/q

∼ ‖ f ‖s,p,q . (3.6)

For the proof we refer to [16], cf. Theorem 1, Lemma 2, Remark 7 and Step 2 of the
proof of Theorem 2 ibidem. A similar proposition holds for the case of non-positive
smoothness index (s ≤ 0), but in this case additional assumptions concerning the
atoms, so call moment conditions, are needed. We refer once more to [16].

4 Pointwise Estimate for Multiradial Functions

In this sectionwewill state and prove themain result in full generality, that is, including
the exceptional cases when a logarithmic term appears. Let s > 0 and 1 < p < ∞ be
such that m < sp < N .

First we consider the case when the value of sp is distinct from the effective dimen-
sion of any orbit.

Theorem 4.1 Let s > 0, m ∈ N, p > 1, m < sp < N. Assume that γi ≥ 2,
i = 1, . . . ,m. Let J � {1, . . . ,m} and dJ < sp. We assume moreover that sp �= dI
for any set I such that J ⊂ I ⊂ {1, . . . ,m}. Then there exists C > 0, C = C(γ, s, p),
such that for every f ∈ Ḣ s,p

γ (RN ), and every x ∈ C(J, s, p) the estimates (2.8) hold.

We now formulate the result for the logarithmic pointwise estimate that occurs in
the regions whose effective dimension coincides with the value of sp.

Theorem 4.2 Let s > 0, m ∈ N, p > 1, m < sp < N. Assume that γi ≥ 2,
i = 1, . . . ,m. Let J � {1, . . . ,m} and dJ < sp.

Then there exists C > 0, C = C(γ, s, p), such that for every f ∈ Ḣ s,p
γ (RN ) and

every x ∈ C(J, s, p)

| f (x)| ≤ C ‖ f ‖s,p

×
{
rJ (x)s−dJ /p RJ (x)−1/p if sp < dJ∪{ix },(
1 + log ‖x‖

rJ (x)

)
rJ (x)s−dJ /p RJ (x)−1/p if sp = dJ∪{ix } .

(4.1)

As the statements of the theorems above are rather complicated, we would like
to give some corollaries with simpler statements. One such corollary is the already
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stated Theorem 2.4. The following two corollaries are straightforward elaborations,
respectively, of Theorem 4.1 and of Theorem 4.2 in the bi-radial case (m = 2).

Corollary 4.3 Let s > 0, m = 2 < sp < N, and assume that γi ≥ 2, i = 1, 2.
(i) If 2 < sp < γ1 + 1 and r2(x) ≥ r1(x) > 0 then

| f (x)| ≤ Cr1(x)
s− γ1+1

p r2(x)
1−γ2
p ‖ f ‖s,p . (4.2)

(ii) If 2 < sp < γ2 + 1 and r1(x) ≥ r2(x) > 0 then

| f (x)| ≤ Cr2(x)
s− γ2+1

p r1(x)
1−γ1
p ‖ f ‖s,p . (4.3)

(iii) Let γ1 + 1 < sp < N, r2(x) > 0 and r2(x) ≥ r1(x) or let γ2 + 1 < sp < N,
r1(x) > 0 and r1(x) ≥ r2(x). Then

| f (x)| ≤ C |x |s− N
p ‖ f ‖s,p. (4.4)

Corollary 4.4 Let s > 0, m = 2 < sp < N, and assume that γi ≥ 2, i = 1, 2.
(i) If sp = γ1 + 1 �= γ2 + 1 then

| f (x)| ≤ C‖ f ‖s,p

⎧⎪⎨
⎪⎩

(
1 + log r2(x)

r1(x)

)
r2(x)

1−γ2
p if r2(x) ≥ r1(x) > 0,

r2(x)
s− γ2+1

p r1(x)
1−γ1
p if r1(x) ≥ r2(x) > 0.

(4.5)

(ii) If sp = γ2 + 1 �= γ1 + 1 then

| f (x)| ≤ C‖ f ‖s,p

⎧⎪⎨
⎪⎩

(
1 + log r1(x)

r2(x)

)
r1(x)

1−γ1
p if r1(x) ≥ r2(x) > 0,

r1(x)
s− γ1+1

p r2(x)
1−γ2
p if r2(x) ≥ r1(x) > 0.

(4.6)

(iii) If sp = γ1 + 1 = γ2 + 1
then

| f (x)| ≤ C‖ f ‖s,p

⎧
⎪⎨
⎪⎩

(
1 + log r2(x)

r1(x)

)
r2(x)

1−γ2
p if r2(x) ≥ r1(x) > 0,

(
1 + log r1(x)

r2(x)

)
r1(x)

1−γ1
p if r1(x) ≥ r2(x) > 0.

(4.7)

In order to prove Theorems 4.1 and 4.2 we rewrite their assertions as the theorem
below for the case when the values ri (x) are ordered in i , and prove the latter instead.

Theorem 4.5 Let s > 0, p > 1, m ∈ N, m < sp < N, and assume that γi ≥ 2,
i = 1, . . . ,m. Let n, 1 ≤ n ≤ m, be the smallest integer such that dn = ∑m

i=n+1 γi +
n < sp. Let x ∈ R

N with r1(x) ≥ r2(x) ≥ . . . rm(x) and Rn(x) > 0.
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If dn−1 > sp then there exists C = C(s, p, γ, n) such that for every f ∈ Ḣ s,p
γ (RN )

| f (x)| ≤ C rn(x)
s−dn/p Rn(x)

−1/p‖ f ‖s,p (4.8)

If dn−1 = sp then there exists C = C(s, p, γ, n) such that for every f ∈ Ḣ s,p
γ (RN )

| f (x)| ≤ C

(
1 + log

rn−1(x)

rn(x)

)
rn(x)

s−dn/p Rn(x)
−1/p‖ f ‖s,p . (4.9)

Proof We first prove the inequalities (4.8) and (4.9) for f ∈ Bs,p∞,γ (RN ) and x �= 0,
max{ri (x) : i = 1, . . . , n} ≤ 1, n ≤ m.

By the assumption x ∈ CJ where J = {n + 1, . . . ,m}. We assume in addition
that ri (x) ≤ 1, i = 1, . . . ,m. If ri (x) > 0, then one can find ji ∈ N such that
2− ji−1 ≤ ri (x) ≤ 2− ji+1. The inequality ri (x) > 0 is satisfied for i = 1, . . . , ν, with
some ν, n ≤ ν ≤ m. We assume that ν is the largest integer with this property. We
may assume that j1 ≤ j2 ≤ · · · ≤ jν .

We have the following atomic decomposition, cf (3.4):

f =
∞∑
j=0

∑
k∈Nm

0

∑
l

s j,k a j,k,l, (4.10)

of f with

sup
j

( ∑
k

C( j,k) |s j,k|p
)1/p

≤ C‖ f ‖s,p,∞ . (4.11)

If k = (k1, . . . km) ∈ N
m then

C( j,k) = kγ1−1
1 . . . kγm−1

m ∼ 2 j (N−m)r1
(
x ( j)
k,l

)γ1−1
. . . rm

(
x ( j)
k,l

)γm−1
, (4.12)

cf. (3.1). By our construction ri (x
( j)
k,l ) > 0 for any i = 1, . . . ,m and for any point

x ( j)
k,l .
The point x belongs to supp a j,k,l if

max{0, [2 j− ji ] − n0} ≤ ki ≤ [2 j− ji ] + n0 for i = 1, . . . , ν,

0 ≤ ki ≤ n0 for i = ν + 1, . . . ,m, (4.13)

with some fixed n0 ∈ N.
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By the normalization (3.3) of the atoms, condition (3.2) on their supports, and
(4.13), we get

| f (x)| ≤
∞∑
j=0

∑
k,l: x∈supp a j,k,l

|s j,k| |a j,k,l(x)| ≤

≤C
∞∑
j=0

∑

max{0,[2 j− ji ]−n0}≤ki≤[2 j− ji ]+n0
i=1,...,ν

∑
0≤ki≤n0

i=ν+1,...,m

2− j (s−N/p)|s j,k| . (4.14)

Now by (3.5) and (4.14), we get

| f (x)| ≤ C ‖ f ‖s,p,∞

×
∞∑
j=0

∑

max{0,[2 j− ji ]−n0}≤ki≤[2 j− ji ]+n0
i=1,...,ν

∑
0≤ki≤n0

i=ν+1,...,m

C−1/p
j,k 2− j (s−N/p) . (4.15)

In what follows we will omit in writing the last factor ‖ f ‖1,p,∞ from the right
hand side, remembering it as an implicit factor in a multiplicative constant. Taking
into account our estimate (4.12) forC j,k, we can evaluate the sumabove by splitting the
summation in j into ν +1 intervals 0 = j0 ≤ j < j1, j
 ≤ j < j
+1, 
 = 0, . . . ν −1,
and jν ≤ j < ∞. Some of these intervals may be empty, and the corresponding sums
are assigned value zero.

So, taking into account only the atoms whose support contains x , we have

| f (x)| ≤C

( j1−1∑
j=0

+ · · · +
j
+1−1∑
j= j


+ · · · +
∞∑
j= jν

)
2− j (s−N/p)

×
∑

max{[2 j− ji ]−n0,0}≤ki≤[2 j− ji ]+n0
i=1,...,ν

∑
0≤ki≤n0

i=ν+1,...,m

C−1/p
j,k . (4.16)

For j
 ≤ j < j
+1, whenever this is a non-empty interval, we have the summation
over ki of a uniformly finite number of terms. Moreover, for the values of ki involved
in the sum, we have

C−1/p
j,k = k

− γ1−1
p

1 . . . k
− γm−1

p
m ≤ C k

− γ1−1
p

1 . . . k
− γ
−1

p

 , whenever j
 ≤ j, (4.17)

cf. (4.12), and the constant C depends only on the atomic decomposition and n, in
particular it is independent of j, 
 and j
. Thus for any C j,k that appear in the right
hand side of (4.16) we have, given our assumption that ri (x) ≤ 1,

C−1/p
j,k ≤ C


∏
i=1

2(− j+ ji )(γi−1)/p if j
 ≤ j, (4.18)

and the constant C is independent of j, 
 and j
.
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In consequence,

| f (x)| ≤ C
j1−1∑
j=0

2− j (s−N/p) + · · · +

+ C
j
+1−1∑
j= j


2− j (s−N/p)

∏

i=1

2(− j+ ji )(γi−1)/p + · · · +

+ C
∞∑
j= jν

2− j (s−N/p)
ν∏

i=1

2(− j+ ji )(γi−1)/p . (4.19)

If n ≤ 
 < ν then dν ≤ d
 ≤ dn < sp and

j
+1−1∑
j= j


2− j (s−N/p)

∏

i=1

2(− j+ ji )(γi−1)/p ≤ Cr
(x)
sp−d


p R
(x)
−1/p

≤ Crn(x)
sp−dn

p Rn(x)
−1/p, (4.20)

where the last inequality follows from (2.5). Here we use the already introduced
notation d
 = ∑m

i=
+1 γi + 
, 
 = 0, . . . ,m. The similar estimates hold for the sum∑∞
j= jν since dν < sp.
If 0 ≤ 
 < n then dn < d
. Tedious, but elementary computations, which we have

confined to Lemma 4.6 below, show that if sp �= dn−1, then the sums
∑ j
+1−1

j= j

are

dominated by the sum
∑ jn+1−1

j= jn
.

If, however, sp = dn−1, then, again by Lemma 4.6, the terms in (4.19) are estimated
by

C

(
1 + log

rn−1(x)

rn(x)

)
rn(x)

s−dn/p Rn(x)
−1/p.

Note that this function has the same homogeneity sp−N
p as every other term in (4.19),

once we take into account that ps = dn−1.

Note that the term r1(x)
p−N
p is in fact rmax(x)

p−N
p , and since 
∞-norm in R

N is

equivalent to the Euclidean norm, this term is equivalent to |x | p−N
p .

Thus we have proved that

| f (x)| ≤ CQ(x)1/p‖ f ‖s,p,∞, (4.21)

with a function Q, positively homogeneous of degree N − sp that appears in the right
hand side of (4.8) and (4.9), whenever |x | ≤ 1.

Furthermore, by a well-known embedding, the norm in the right hand side is domi-
nated by the Hs,p-norm. Setting f (x) = g(t x)with g ∈ C∞

0 (RN ), |x | ≤ 1, and t > 0
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large, and using homogeneity properties of the norms we get

|g(t x)|p ≤ CQ(t x)
(
‖g‖p

s,p + t−N‖g‖p
p

)
.

setting x = z/t with arbitrary fixed z, and taking the limit at t → ∞, we have

|g(z)|p ≤ CQ(z)‖g‖p
s,p.

Since C∞
0 (RN ) is dense in Ḣ s,p(RN ), (2.8) follows. 
�

In order to complete the argument above we have to prove the following elementary
technical statement. We recall that any sum over an empty set is understood as zero.

Lemma 4.6 Let 1 < n ≤ m and dn < sp ≤ dn−1. Assume that j1 ≤ j2 ≤ · · · ≤ jn,
and that for some q > 0 we have 2− ji−q ≤ ri (x) ≤ 2− ji+q , i = 1, . . . , n.
(i) Let 0 < 
 ≤ n. If sp �= dn−1 then

j
+1−1∑
j= j


2− j
sp−d


p R
(x)
−1/p ≤ C rn(x)

s−dn/p Rn(x)
−1/p (4.22)

(ii) Let 0 < 
 ≤ n. If sp = dn−1 then

j
+1−1∑
j= j


2− j
sp−d


p R
(x)
−1/p ≤ C

(
1 + log

rn−1(x)

rn(x)

)
rn(x)

s− n
p Rn(x)

−1/p. (4.23)

Proof The proof is based on the observation that the sums in (4.22) and (4.23) are
geometric sums and thus are evaluated by the upper term or by the lower term and
by the number of terms if the power is zero. Observe that the mapping 
 �→ d
 is
monotone decreasing on {0, . . . , n} from N to dn .

First we prove (i). We have

s − N

p
= s − d0

p
< s − d1

p
< · · · < s − d


p
< · · · s − dn−1

p
< 0 < s − dn

p

If 1 ≤ 
 < n then

j
+1−1∑
j= j


2− j
sp−d


p R−1/p

 ∼ rs−d
/p


+1 R−1/p

 =: T
.
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But d
−1 = d
 + γ
 − 1, s − d


p < 0 and r
−1 ≥ r
 therefore T
−1 ≤ T
. Thus

j
+1−1∑
j= j


2− j
sp−d


p R
(x)
−1/p ≤Crn(x)

s− dn−1
p Rn−1(x)

− 1
p

=Crn(x)
s− dn

p Rn(x)
− 1

p .

Similarly we have

j1−1∑
j=0

2− j sp−N
p = Cr1(x)

sp−d0
p ≤ T1.

Now we prove (ii). We have

s − m

p
< s − d1

p
< · · · < s − dn−1

p
= 0 < s − dn

p
.

If 
 < n − 1 then the same calculations as above show us that

j
+1−1∑
j= j


2− j
sp−d


p R−1/p

 ≤ CRn−1(x)

− 1
p = Crn(x)

s− dn
p Rn(x)

− 1
p .

If 
 = n then

jn+1−1∑
j= jn

2− j sp−dn
p R−1/p


 ≤ Crn(x)
s−dn/p Rn(x)

−1/p,

since sp > dn . The same estimate holds if we sum up from j = jn to infinity.
At the end if 
 = n − 1 then

jn−1∑
j= jn−1

2− j
sp−dn−1

p Rn−1(x)
−1/p = ( jn − jn−1)Rn−1(x)

−1/p

≤ C

(
1 + log2

rn−1(x)

rn(x)

)
Rn−1(x)

−1/p

= C

(
1 + log2

rn−1(x)

rn(x)

)
rn(x)

s−dn/p Rn(x)
−1/p.


�

Proof of Theorem 4.1 and 4.2
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Let x ∈ C(J, s, p). Then these is a permutation j1, . . . jm of the set {1, . . .m} such
that { jk+1, . . . jm} = J and

r j1(x) ≥ · · · ≥ r jk−1(x) ≥ r jk (x) ≥ r jm (x).

and

sp ≤ dJ1 , where J1 = J ∪ {xk−1}.

The arguments used in the proof of Theorem 4.5 show that

| f (x)| ≤ CrJ (x)
s−dJ /p RJ (x)

−1/p‖ f ‖s,p

if sp �= dJ1 , and

| f (x)| ≤ C

(
1 + log

rJ1(x)

rJ (x)

)
rJ (x)

s−dJ1/p RJ (x)
−1/p‖ f ‖s,p,

if sp = dJ1 . 
�

Proof of Theorem 2.4. The assertion of the theorem follows by replacement of the
weight in right hand side of the estimates in Theorems 4.1 and 4.2 by a simpler

expression Rm(x)
s− N

p
N−m that dominates them in all cases. It suffices to carry out the

comparison with the weights in (4.8) and (4.9) under the ordering assumption r1(x) ≥
· · · ≥ rm(x), which is an elementary computation. Indeed, in case of (4.8) we should
prove the inequality

Rm(x)N−sp ≤ Rn(x)
N−m(x)rn(x)

(dn−sp)(N−m), 1 ≤ n ≤ m.

The last inequality is equivalent to

n∏
i=1

ri (x)
(γi−1)(m−sp)

m∏
i=n+1

ri (x)
(γi−1)(N−sp) ≤ rn(x)

(dn−sp)(N−m) . (4.24)

But r j (x) ≤ rn(x) ≤ ri (x) if i ≤ n ≤ j , so

n∏
i=1

ri (x)
(γi−1)(m−sp) ≤rn(x)

(m−np)(γ1+···+γn−n),

m∏
i=n+1

ri (x)
(γi−1)(N−sp) ≤rn(x)

(N−sp)(γn+1+···+γm−m+n).
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The last inequalities imply (4.24). If dn−1 = sp then

n−1∏
i=1

ri (x)
(γi−1)(m−sp) ≤rn−1(x)

(m−sp)(N−sp),

m∏
i=n

ri (x)
(γi−1)(N−sp) ≤rn(x)

(sp−m))(N−sp).

Therefore

Rm(x)N−sp ≤
(
rn−1(x)

rn(x)

)(N−sp)(m−sp)

Rn−1(x)
N−m

≤
(
1 + log

rn−1(x)

rn(x)

)p(m−N )

rn(x)
(dn−sp)(N−m)Rn(x)

N−m,

where we use the elementary inequality 1 + log t ≤ C(a)ta , t ≥ 1, a > 0. 
�
Lemma 4.7 Let s > 0, 1 < p < ∞ and m < sp < N. Let wJ (x), J � {1, . . . ,m},
denote the weight in the right hand side of (2.8) and (4.1) and let

Asp =
⋃

J : dJ<sp

C(J, s, p).

(i) The set Asp is a dense conical subset of R
N .

(ii) If x ∈ C(J, s, p) ∩ C(I, s, p), for some J, I � {1, . . . ,m}, dJ , dI < sp, then

sp �= dJ∪{ jx } , sp �= dI∪{ix } and wJ (x) = wI (x), (4.25)

or

sp = dJ∪{ jx } = dI∪{ix } and wJ (x) = wI (x), . (4.26)

Proof If x ∈ R
N then for some permutation ( j1, . . . , jm) of (1, . . . ,m) we have

r j1(x) ≥ r j2(x) ≥ · · · ≥ r jm (x). (4.27)

Let Jk = { jk+1, . . . , jm}, k = 0, . . . ,m − 1, and Jm = ∅. Then there is exactly one
k > 0 such that dJk < sp ≤ dJk+1 . One can easily see that the set {x ∈ R

N : Rm(x) >

0} is dense in R
N and contained in Asp.

If in (4.27) all inequalities are strict, then the relations (4.27) are satisfied only by one
permutation and in consequence x belongs only to one set C(J, s, p). However if some
equalities occur in (4.27) then another permutation is possible. Let (i1, . . . , im) be such
permutation. We may assume that the last permutation is an inversion of ( j1, . . . , jm)

i.e. im = jm+1 and im+1 = jm for some m. If (4.27) holds for (i1, . . . , im) then
rim (x) = rim+1(x) = r jm (x) = r jm+1(x). So for m �= k we have RJ (x) = RI (x),
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rJ (x) = rI (x) and dJ = dI , dJ∪{ jx } = dI∪{ix }. If m = k then simple calculations
prove (4.25) and (4.26). 
�

It follows from the last lemma that the function

Wsp(x) = wJ (x)
−1, x ∈ C(J, s, p),

is well defined and continuous on the dense set Asp. For any x ∈ R
N the inequalities

(4.27) hold for some permutation. If Jk denotes the same set as above, then x /∈ Asp

implies that r jk (x) = rJk (x) = 0. So if xn → x then Wsp(xn) → 0 if sp < dJk+1 and
Wsp(xn) → (r j1(x) . . . r jk−1(x))

1/p if sp = dJk+1 . Thus Wsp can be extended to the
continuous function on R

N .

Proposition 4.8 Let s > 0, m ∈ N, p > 1, m < sp < N. Assume that γi ≥ 2,
i = 1, . . . ,m. Then for every f ∈ Ḣ s,p

γ (RN ) the function Wsp f is continuous on R
N .

Proof Let f ∈ Ḣ s,p
γ (RN ). The inequalities (2.8) and (4.1) implies

sup
x

Wsp(x)| f (x)| ≤ C‖ f ‖s,p. (4.28)

Smooth compactly supported SO(γ )-invariant functions are dense in Ḣ s,p
γ (RN ). So

there exists a sequence fn of test SO(γ )-invariant functions convergent to f in
Ḣ s,p

γ (RN ). But then by (4.28) the sequence W (x) fn(x) is uniformly convergent to
W (x) f (x). 
�

5 Optimality of the Estimate

We prove that the estimates (2.8) are optimal.

Proposition 5.1 Let m < sp < N and s �= dJ for any J ⊂ {1, . . . ,m}}. There exists
a constant c > 0 such that for all x ∈ R

N such that 0 < ri (x) < 1, i = 1, . . . ,m,
there exists a smooth SO(γ )-invariant function f ∈ Ḣ s,p

γ (RN ), ‖ f ‖ = 1, such that

| f (x)| ≥ c RJ (x)
−1/prJ (x)

s− dJ
p if x ∈ C(J, s, p). (5.1)

Proof Without loss of generality, it suffices to prove the optimality of (4.8). Thismeans
that we assume that r1(x) ≥ · · · ≥ rm(x) > 0. Let n be such that dn < sp < dn−1
dk = ∑m

i=k+1 γi + k. We consider a point z ∈ R
N with ri (z) = 2− ji for some ji ∈ N,

i = 1, . . . ,m satisfying j1 ≤ j2 ≤ · · · ≤ jn = jn+1 = · · · = jm .
Let ψ ∈ C∞

0 (R), supp ψ = [− 1
2 ,

1
2 ] and ψ(t) = 1 if t ∈ [− 1

4 ,
1
4 ]. Consider a

smooth SO(γ )-symmetric function ψ j1,..., jm on R
N defined by

ψ j1,..., jn (x) =
m∏
i=1

ψ
(
2 jn ri (x) − 2 jn− ji

)
.
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The function ψ j1,..., jn is supported in

� j1,..., jn =
{
x ∈ R

N , 2− ji − 2− jn−1 ≤ ri (x) ≤ 2− ji + 2− jn−1, i = 1, . . . ,m

}
,

and ψ j1,..., jn (z) = 1. Moreover,

∣∣∂βψ j1,..., jn (x)
∣∣ ≤ C(|β|)2 jn |β|, x ∈ R

N , β ∈ N
N ,

with some C(|β|) > 0.
Let j0 = jn + q with some q ∈ N sufficiently large to be chosen later. We take the

partition of unity ϕ j0,k,
 subordinated to the covering B(x j0,k,
, α2− j0)k,
 constructed
in Sect. 3. We recall that α > 0 is a fixed positive integer independent of j0. The
covering is uniformly locally finite with the multiplicity constant independent of j0.
Due to the properties of the covering the partition of unity can be chosen in such a
way that

|∂βϕ j0,k,
(x)| ≤ C2 j0|β|

and the constant C depends on multi-index β but it is independent of j0,k, 
. Let us
now choose q such that 1 > α2−q+2 + 2−q+1. If x ∈ B(x j0,k,
, α2− j0) and the ball
B(x j0,k,
, α2− j0) has a nonempty intersection with � j1,..., jn then rn(x) ≥ 2− j0 .

Using the partition of unity we define the following atomic decomposition of
ψ j1,..., jn :

ψ j1,..., jn (x) =
∑
k

∑



cM2 j0(s−N/p) a j0,k,
(x), (5.2)

with atoms

a j0,k,
(x) = c−1
M 2− j0(s−N/p)ϕ j0,k,
(x)ψ j1,..., jn (x).

We can take in the expansion only the nonzero atoms. Such atoms are supported only
in the balls that intersect � j1,..., jn .

Applying the atomic decomposition estimates (cf. (3.4)–(3.6)) we get

‖ψ j1,..., jn‖s,p ≤ C‖ψ j1,..., jn‖s,p,1 ≤ C 2 j0(
sp−N

p )

( ∑
k

C( j0,k)

)1/p

≤ C2 j0(
sp−N

p )2 j0
N−m
p

( ∑
k

r1(x j0,k,
)
γ1−1 . . . rm(x j0,k,
)

γn−1
)1/p

,

(5.3)

where the last inequality follows from (4.12). But

ri (x j0,k,
) ∼ ri (z) and 2− j0 ∼ 2− jn ∼ rn(z) (5.4)

with the constants independent of j0, jn and z.
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The number of elements in the sum over k is uniformly bounded. Therefore (5.4)
implies that

(∑
k

r1(x j0,k,
)
γ1−1 . . . rm(x j0,k,
)

γn−1
)1/p

≤ CRn(z)
1
p rn(z)

dn
p −m

. (5.5)

Now by (5.3) and (5.5) we get

‖ψ j1,..., jn‖s,p ≤ Crn(z)
dn−sp

p Rn(z)
1
p

and the constant C > 0 is independent of z. Now if we put

f (x) = rn(z)
sp−dn

p Rn(z)
− 1

p ψ j1,..., jm (x), (5.6)

then

‖ f ‖s,p ≤ C and f (z) = rn(z)
sp−dn

p Rn(z)
− 1

p .

This proves (5.1). 
�

6 Cocompactness and Defect of Weak Convergence

Inequalities (4.28), define a continuous embedding

Ḣ s,p
γ (RN ) ↪→ L∞(Wsp, R

N ), m < sp < N , γi ≥ 2, (6.1)

where

‖ f ‖∞,Wsp = ‖ f ‖L∞(Wsp,RN ) = ess sup
x∈RN

| f (x)|Wsp(x),

We recall thatWsp is a positively homogeneous function of degree N−sp
p . Embedding

(6.1) is not compact, which can be verified on a sequence

(u j ) j∈Z, u j (x) = g ju := 2 j N−sp
p u0(2

j x), (6.2)

which leaves both norms in (6.1) constant in j , but converges weakly to zero whenever
| j | → ∞. On the other hand, we have compactness of the following trace embedding.

Lemma 6.1 Let A1 = {x ∈ R
N : 1 < |x | < 2}, p > 1, m < sp < N, γi ≥ 2,

i = 1, . . . ,m, then for every s′ ∈ (s/p, s) the embedding

Ḣ s,p
γ (RN ) ↪→ L∞(Ws′ p, A1) (6.3)

is compact.
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Proof Let A′
1 = {x ∈ R

N : 1/2 < |x | < 4} and let χ ∈ C∞
0 (A′

1) be a func-
tion that equals 1 on A1. Then for every s′ ∈ (s/p, s) the multiplication operator

(Tu)(x) = χ(x)u(x) is a compact operator T : Ḣ s,p
γ (RN ) → Ḣ s′,p

γ (RN ). Since

the embedding Ḣ s′,p
γ (RN ) ↪→ L∞(Ws′ p, R

N ) is continuous, T is a compact oper-
ator from Ḣ s,p

γ (RN ) to L∞(Ws′ p, R
N ), which implies that the trace embedding

Ḣ s,p
γ (RN ) ↪→ L∞(Ws′ p, A1) is compact. 
�

The following counterexample shows that the assertion of Lemma 6.1 becomes false
if we replace s′ with s.

Proposition 6.2 Let m < sp < N and s �= dJ for any J ⊂ {1, . . . ,m}}. Let A =
{x ∈ R

N : c1 < |x | < c2}, 0 < c1 < c2 < ∞. There exists a sequence ( fk)k of
SO(γ )-invariant functions such that:
(a) ( fk)k is a bounded sequence in Ḣ s,p

γ (RN ),
(b) supp fk ⊂ A for any k,
(c) ( fk)k does not contain a subsequence convergent in L∞(Wsp, A).

Proof Let dn < rn(x) < dn−1. We take a sequence

(x (k))k ⊂ A ∩ {x : r1(x) ≥ . . . ≥ rm(x)}

such that:

rn(x
(k)) = 2−ik , ik ∈ N, ik < ik+1 and ik → ∞ if k → ∞. (6.4)

Let fk be a function (5.6) constructed in the proof of Proposition5.1 with z = x (k).
Then the sequence is bounded in Ḣ s,p

γ (RN ). But

‖ fk1 − fk2‖∞,Wsp = sup
x

|ψk1(x) − ψk2(x)| > |ψk1(x
(k1)) − ψk2(x

(k1))| = 1 ,

if k1 �= K − 2. Here ψk is the function ψ j1,..., jn used in the definition of the function
fk , cf. the proof of Proposition 5.1. 
�

We recall the notation of cocompact embeddings. Let G be a group of bijective
linear isometries of a reflexive Banach space X . We say that the sequence (un) in X is
G-weakly convergent to 0 if gnun ⇀ 0 for any choice of the sequence (gn) ⊂ G. A
continuous embedding of a reflexive Banach space X into a normed linear space Y is
called cocompact relative to the group G, if any sequence (un) in X , that is G-weakly
convergent to 0, converges to zero in the norm of Y . Embedding (6.1) is not cocompact
relative to the group of dilations (6.2). Sequence ( fk)k provided by Proposition 6.2 has
the property that for any sequence of dilations (g jk )k of the form (6.2), the sequence
(g jk fk)k is weakly convergent to zero without vanishing in the L∞(Wsp, R

N )-norm.
We conjecture that there is a group of bijective linear isometries on Ḣ s,p

γ (larger than
the set of dilations (6.2)) relative to which the embedding (6.1) becomes cocompact.
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On the other hand, replacing Wsp with another homogeneous weight of the same
degree N−sp

p ,

Ws;s′ p(x) = Ws′ p (x/|x |) |x | N−sp
p , s′ ∈ (s/p, s),

as stated in the theorem below, yields a cocompact embedding. The newweightWs;s′ p
is bounded by a constant multiple ofWsp, and therefore the embedding Ḣ s,p

γ (RN ) ↪→
L∞(Ws;s′ p, R

N ) is continuous. On the other hand, Ws;s′ p is equivalent to Wsp and

to |x | N−sp
p on the set {x ∈ R

N : min{r1(x), . . . , rm(x)} ≥ ε max{r1(x), . . . , rm(x)}}
with any fixed ε > 0.

Theorem 6.3 Assume that p > 1, m < sp < N, γi ≥ 2, i = 1, . . . ,m. Then the
embedding Ḣ s,p

γ (RN ) ↪→ L∞(Ws;s′ p, R
N ) is cocompact relative to the group

G =
{
g j ∈ L

(
Ḣ s,p

γ (RN ), Ḣ s,p
γ (RN )

) : g j ( f )(x) = 2 j N−sp
p f (2 j x), j ∈ Z

}
.

Proof Let (un)n ⊂ Ḣ s,p and assume that for any sequence ( jn) of integers, vn :=
2 jn

N−sp
p un(2 jn ·) ⇀ 0. Assume that xn ∈ R

N is such that that

∣∣un(xn)Ws;s′ p(xn)
∣∣ ≥ 1

2
‖un‖∞,Ws;s′ p .

Let us choose ( jn) so that 2 jn ≤ |x | ≤ 2 jn+1. Then, taking into account homogeneity
of Ws;s′ p, we have

‖un‖∞,Ws;s′ p ≤ 2
∣∣un(xn)Ws;s′ p(xn)

∣∣
= 2

∣∣vn(2− jn xn)Ws;s′ p(2− jn xn)
∣∣ ≤ 2 sup

1<|y|<2

∣∣vn(y)Ws;s′ p(y)
∣∣ → 0,

since vn ⇀ 0, the weights Ws;s′ p and Ws′ p are equivalent on A1, and the embedding
Hs,p

γ (A1) ↪→ L∞(Ws′ p, A1) is compact by Lemma 6.1. 
�

As a consequence we have the following structural result for bounded multiradial
sequences. The theorem is an immediate consequence of profile decomposition in
[18](Definition 2.5 and Theorem 2.6), taking into account that the equivalent norm of
Ḣ s,p(RN ) defined by means of the Littlewood-Paley decomposition satisfies Opial’s
condition.

Theorem 6.4 Assume that p > 1, m < sp < N, γi ≥ 2, i = 1, . . . ,m. Any bounded
sequence (uk)k∈N in Ḣ s,p

γ (RN ) has a renamed subsequence such that there exist

sequences ( j (n)
k )k∈N and functions w(n) ∈ Ḣ1,p

γ (RN ), n ∈ N, such that the following
holds:
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2− j (n)
k

N−sp
p uk(2

− j (n)
k ·) ⇀ w(n),

∣∣ j (n)
k − j (m)

k

∣∣ → ∞ whenever m �= n,

‖w(n)‖s,p → 0 as n → ∞,

uk −
∑
n∈N

2 j (n)
k

N−sp
p w(n)

(
2 j (n)

k · ) → 0 in L∞(
Ws;s′ p, R

N )
,m/p < s′ < s,

and the series in the last relation converges unconditionally and uniformly with respect
to k.
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