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Abstract
The HRT (Heil–Ramanathan–Topiwala) conjecture asks whether a finite collection
of time-frequency shifts of a non-zero square integrable function on R is linearly
independent. This longstanding conjecture remains largely open even in the case when
the function is assumed to be smooth. Nonetheless, the conjecture has been proved for
some special families of functions and/or special sets of points. The main contribution
of this paper is an inductive approach to investigate the HRT conjecture based on
the following. Suppose that the HRT is true for a given set of N points and a given
function. We identify the set of all new points such that the conjecture remains true
for the same function and the set of N + 1 points obtained by adding one of these new
points to the original set. To achieve this we introduce a real-valued function whose
global maximizers describe when the HRT is true. To motivate this new approach we
re-derive a special case of the HRT for sets of 3 points. Subsequently, we establish
new results for points in (1, n) configurations, and for a family of symmetric (2, 3)
configurations. Furthermore, we use these results and the refinements of other known
ones to prove that the HRT holds for certain families of 4 points.
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1 Introduction

For a, b ∈ R and a function g defined onR, let Mb f (x) = e2π ibx f (x) and Ta f (x) =
f (x − a) be respectively the modulation operator, and the translation operator. Given
a function g ∈ L2(R) and � = {(ak, bk)}Nk=1 ⊂ R

2, we define

G(g,�) = {e2π ibk ·g(· − ak)}Nk=1.

G(g,�) is called a (finite) Weyl–Heisenberg or Gabor system [14]. The HRT conjec-
ture [17,18], states that

Conjecture 1 Given any 0 �= g ∈ L2(R) and � = {(ak, bk)}Nk=1 ⊂ R
2, G(g,�) is a

linearly independent set in L2(R).

To date a definitive answer to the Conjecture has not been given even when one
assumes that the function g is very smooth and decays fast, e.g., when g ∈ S(R), the
space of Schwartz functions on R. In particular, the following (sub-conjecture) is also
open

Conjecture 2 Given any g ∈ S(R), g �= 0 and � = {(ak, bk)}Nk=1 ⊂ R
2, G(g,�) is a

linearly independent set in L2(R).

While the statement of the problem seems simple, a variety of sophisticated tools
such as the ergodic theorems, von Neumann algebra methods, number theory argu-
ments, random Schrödinger operators, harmonic analysis, operator theory, has been
used to prove the few known results. Perhaps the lack of unifying theme in the proofs
of the known results attests to the difficulty of this problem.

The HRT conjecture contains two fundamental data: the function g ∈ L2(R) and
the set of points � = {(ak, bk)}Nk=1 ⊂ R

2. Most of the known results either assume
g ∈ L2 and � is restricted to some special family of points, or that � is very general
and restrictions are imposed on g. We outline all the known results about the HRT
conjecture of which we are aware and we refer to the surveys [17,19] for more details.

Proposition 1 The following statements hold.

(i) Conjecture 1 holds for any � ⊂ R
2, when g is compactly supported, or just

supported within a half-interval (−∞, a], or [a,∞) [18].
(ii) Conjecture 1 holds for any � ⊂ R

2, when g(x) = p(x)e−πx2 where p is a
polynomial [18].

(iii) Conjecture 1 holds for any g ∈ L2(R), when� is a finite set with� ⊂ A(Z2)+ z
where A is a full rank 2 × 2 matrix and z ∈ R

2 [22]. In particular, Conjecture 1
holds when #� ≤ 3 for any g ∈ L2 [18].

(iv) Conjecture 1 holds for any g ∈ L2, when #� = 4 and two of the four points in
� lie on a line and the remaining two points lie on a second parallel line [8,10].

(v) Conjecture 2 holds for any g ∈ S(R), when #� = 4 and three of the four points
in � lie on a line and the fourth point is off this line [8].

(vi) Conjecture 1 holds for any � ⊂ R
2, when limx→∞ |g(x)|ecx2 = 0 for all c > 0

[5].
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(vii) Conjecture 1 holds for any � ⊂ R
2, when limx→∞ |g(x)|ecx log x = 0 for all

c > 0 [5].
(viii) Conjecture 1 holds when g is ultimately positive, and � = {(ak, bk)}Nk=1 ⊂ R

2

is such that {bk}Nk=1 are independent over the rationals Q [3].
(ix) Conjecture 1 holds for any #� = 4, when g is ultimately positive, and g(x) and

g(−x) are ultimately decreasing [3].
(x) Conjecture 1 holds for any g ∈ L2(R), when � consists of collinear points [18].
(xi) Conjecture 1 holds for any g ∈ L2(R), when � consists of N − 1 collinear and

equi-spaced points, with the last point located off this line [18].

Wenote that there is some redundancy in Proposition 1 as part (vii) implies parts (i),
(ii), and (vi). Nonetheless, we include all these results to give an historical perspective
on the HRT conjecture. In addition to these, perturbation arguments [18] have been
used on either the function g or the set � to get related results. A spectral result
related to the HRT has been presented in [1,2], and estimates of frame bounds for
Gabor systems related to the HRT conjecture have appeared in [7,15]. A connection
between the HRT, the Bargmann–Fock space and the Segal–Bargmann transform was
presented in [26]. Other results concerning the HRT can be found in [4,9,25], and for
an overview of the status of the conjecture we refer to [17,19]. When g ∈ L2(Rd),
d ≥ 2, and� ⊂ R

2d not much is known about the conjecture, see [6]. We refer to [24]
for a related problem for pure translation systems, and to [21] for some generalizations
of the conjecture.

A set � of the form given in (iv) or (v) of Proposition 1, is referred to as a (2, 2)
configuration and (1, 3) configuration, respectively. More generally,

Definition 1 An (n,m) configuration is a collection of n + m distinct points in the
plane, such that there exist 2 distinct parallel lines such that one of them contains
exactly n of the points and the other one contains exactly m of the points.

One of the goals of this paper is to present two different approaches to investigate
the HRT conjecture. On the one hand, we prove an extension principle and use it to
attack the HRT conjecture. No such extension or other inductive methods related to
the HRT have ever been proved. More specifically, knowing that the Conjecture holds
for a given function g ∈ L2(R) and a given set � = {(ak, bk)}Nk=1 ⊂ R

2, we identify
the set of all (new) points (a, b) ∈ R

2 \� such that the conjecture remains true for the
same function g and the new set �′ = � ∪ {(a, b)}. On the other hand, we consider
the related restriction principle which asks the following question; knowing that the
HRT is true for a specific set of N +1 points and g, can one establish the conjecture for
a family of N related points and the same function g? To answer these questions we
introduce a real-valued function that is generated by the twodata in theHRTconjecture,
namely, the function g and the set �. As we shall show, this function is derived from
the Gramian of G(g,�) and is based on a fundamental time-frequency analysis tool:
the short-time Fourier transform. Using this function along with refinements of some
of the techniques introduced by Demeter [8] allow us to recover some known results
and establish new ones. In particular, the main contributions of this paper are:

• a proof that HRT conjecture holds for all (1, 3) configurations when g is real-
valued,



Journal of Fourier Analysis and Applications (2019) 25:1874–1901 1877

• a proof that HRT holds for a family of symmetric (2, 3) configurations,
• a proof that HRT holds for a large family of 4 points (not in (1, 3) nor (2, 2)
configurations) and real-valued functions in L2(R).

Furthermore, as a byproduct of our approach we obtain:

• a new proof of HRT for collinear points,
• a new proof of HRT for sets of 3 unit-lattice points and real-valued functions.

The rest of the paper is organized as follows. In Sect. 2, we introduce some of the
technical tools needed to state our results. We then use Bochner’s theorem to provide
a new proof of the HRT conjecture for collinear points (Theorem 2). We also motivate
the extension principle by offering a new proof of the HRT conjecture for 3 points on
the unit lattice and real-valued functions (Proposition 3). In Sect. 3.1 we introduce and
collect the main properties of the extension function which is the basis of the extension
principle we propose. Subsequently, we prove in Sect. 3.2 that there exists at most one
(equivalence class of) (1, n) configuration for which the HRT conjecture could fail
whenever n ≥ 3 (Theorem 4). Furthermore, when the generator is real-valuedwe show
that the HRT holds for all (1, 3) configurations (Theorem 5). In Sect. 3.3 we introduce
the restriction principle. For this case, we refine Demeter’s “conjugate trick” argument
to establish both Conjecture 1 (Theorem 6) and Conjecture 2 (Theorem 7) for a family
of symmetric (2, 3) configurations. Subsequently, we apply the restriction principle
to prove Conjecture 1 for real-valued functions and a related family of 4 points that
are not (1, 3) nor (2, 2) configurations (Corollary 4).

2 Preliminaries andMotivation

In this section,we collect someproperties of the Short-TimeFourier Transform (STFT)
as well as some results concerning positive definite matrices, see Sect. 2.1. Using the
Gramian of G(g,�) and Bochner’s theorem we then give a new proof of the HRT
conjecture for collinear points, see Sect. 2.2. Finally, in Sect. 2.3 we revisit the HRT
for 3 points and provide a new proof of the validity of the conjecture in this case.
This new proof serves as a motivation for the extension principle that we propose. The
methodology we develop below is fundamentally based on the analysis of the Gramian
of G(g,�). In particular, the notions of positive definiteness of functions and matrices
constitute the overarching themes of this methodology.

2.1 Preliminaries

Let f , g ∈ L2(R). The Short-Time Fourier Transform (STFT) of a function f with
respect to a window g is

Vg f (x, y) =
∫
R

f (t) g(t − x) e−2π iyt dt .

It is easy to prove that Vg f is a bounded uniformly continuous function on R
2, and

that
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lim|x |,|y|→∞ Vg f (x, y) = 0;

see [14]. We will also need the following the orthogonality and covariance properties
of the STFT: given gi , fi ,∈ L2(R), i = 1, 2, we have

〈Vg1 f1, Vg2 f2〉 = 〈 f1, f2〉〈g1, g2〉, (1)

and
Vg(TaMb f )(x, y) = e−2π iayVg f (x − a, y − b), (2)

see [14, Lemma 3.1.3], and [14, Theorem 3.2.1].
We will also use the following formula whenever it is well defined:

F2(Vg1 f1Vg2 f2)(ξ, η) = (
V f2 f1Vg2g1

)
(−η, ξ), (3)

where F2 denotes the two dimensional Fourier transform. We refer to [16] for a proof
of this statement.

We need some facts about positive definite matrices. We refer to [20, Section 7. 7]
for details. In particular, given N × N Hermitian matrices A, and B, we write A 
 B
if A − B is positive definite. We will repeatedly use the following theorem.

Theorem 1 [20, Theorem 7.7.6] Let E be an Hermitian N × N matrix such that

E =
[
A B
B∗ C

]
,

where A,C are square matrices. Then, E is positive definite if and only if A is positive
definite and C 
 B∗A−1B.

In our setting,

E = (〈 fk, f�〉)Nk,�=1

will be the Gramian of a set of N functions { fk}Nk=1 ⊂ L2(R). As a consequence, E
is automatically positive semidefinite, i.e., E � 0. Furthermore, A and C will always
be positive definite matrices. In particular, we will consider the case where A is an
(N − 1) × (N − 1) positive definite matrix, C = 1, and B = u will be a vector in
C

N−1. In this case we will make repeated use of the following corollary of Theorem 1.

Corollary 1 With the above notations the following assertions hold:

(1) E � 0 if and only if 〈A−1u, u〉 ≤ 1. Furthermore, E 
 0 if and only if
〈A−1u, u〉 < 1. Consequently, E is singular if and only if 〈A−1u, u〉 = 1.

(2) det E = (1 − 〈A−1u, u〉) det A.

Proof The proof is given in [20, Theorem 7.7.6]. However, we outline it for the sake
of completeness.
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We are given that A is positive definite. Now assume that E is positive semidefinite
and let X = −A−1u. Then

[
I 0
X∗ 1

] [
A u
u∗ 1

] [
I X
0 1

]
=

[
A 0
0 1 − 〈A−1u, u〉

]

is positive semidefinite. Thus 1 ≥ 〈A−1u, u〉. And the converse is trivially seen.
The last two parts easily follow as well. ��

2.2 Revisiting the HRT for Collinear Points

To the best of our knowledge no result on the HRT conjecture has been obtained
through the analysis of the Gramian of G(g,�) = {e2π ibk ·g(· − ak)}Nk=1. Recall that
the Gramian Gg of G(g,�) = {e2π ibk ·g(· − ak)}Nk=1 is the matrix given by

Gg = (〈e2π ibk ·g(· − ak), e
2π ib�·g(· − a�)〉)Nk,�=1

= (e−2π iak (b�−bk )Vgg(a� − ak, b� − bk))
N
k,�=1. (4)

It follows that Gg is positive semidefinite matrix and that the HRT conjecture holds
if and only if Gg is strictly positive definite. In this section, we motivate our approach
to analyze this Gramian by offering a new proof of the HRT conjecture for collinear
points. While this result is well-known [18], the new proof we provide illustrates the
role of positive definiteness vis-a-vis the HRT conjecture. We will need the following
version of Bochner’s theorem, and refer to [13, Theorem4.18] formore on the classical
Bochner’s theorem.We recall that a continuous complex-valued function f : Rd → C

is positive definite if
N∑
j=1

N∑
k=1

c j ck f (x j − xk) ≥ 0 (5)

for any pairwise distinct points x1, x2, ..., xN ∈ R
d , and (ck)Nk=1 ∈ C

N . The function
f is said to be strictly positive if equality holds in (5) only when ck = 0 for all
k = 1, 2, ..., N .

Proposition 2 [11, Proposition 2.1] A continuous complex-valued function f is pos-
itive definite if and only if f = μ̂ where μ is a non-negative finite Borel measure
on R. Furthermore, f is strictly positive definite if and only if there does not exist a
non-zero trigonometric polynomial m vanishing on the support of μ, i.e., such that∫
R
mdμ = 0.

Let � = {(ak, bk)}Nk=1 ⊂ R
2 be a set of collinear points. Then, by rotating and

translating we can assume that� = {(ak, 0)}Nk=1 ⊂ R
2 with a1 = 0, [18]. In this case,

the Gramian of G(g,�) takes the form

Gg = (〈g(· − ak), g(· − a�)〉)Nk,�=1 = (〈ĝ, e−2π i(ak−a�)·ĝ〉)Nk,�=1.

We can now give a new proof of the HRT conjecture when the points are collinear.
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Theorem 2 Let 0 �= g ∈ L2(R), and � = {(ak, 0)}Nk=1 ⊂ R
2 with a0 = 0. Then

G(g,�) = {g(· − ak)}Nk=1

is linearly independent.

Proof For g ∈ L2(R) with ‖g‖2 = 1 let h(ξ) = |ĝ(ξ)|2. We note that h is non-
negative, non-identically 0, and h ∈ L1(R). Let μ be the finite nonnegative Borel
measure whose density with respect to the Lebesgue measure is the function h. The
function � defined by

�(x) = ĥ(x) = μ̂(x) =
∫
R

h(ξ)e−2π i x ·ξdξ

is continuous. Consequently, by Proposition 2, � is positive definite. It remains to
show that � is strictly positive definite. To do this, suppose that m is a non-zero
trigonometric polynomial given by m(x) = ∑K

k=1 cke
2π iξk x where ck are complex

numbers (not all zeros), and ξk are pairwise distinct real numbers. It follows that

K∑
j=1

K∑
k=1

c j ck �(ξ j − ξk) =
K∑
j=1

K∑
k=1

c j ck

∫
R

e−2π i(ξ j−ξk )x dμ(x)

=
∫
R

K∑
j=1

c j e
−2π iξ j x

K∑
k=1

ck e
2π iξk x dμ(x)

=
∫
R

|m(x)|2 dμ(x)

=
∫
R

|m(x)|2 |ĝ(x)|2 dx .

This last integral vanishes only when m vanishes on the support of μ, which is the
support of g. We can now conclude that � = ĥ = μ̂ is strictly positive definite.
However, by (4) we see that the Gramian of {g(· − ak)}Nk=1 is exactly the matrix

Gg = (〈g(· − ak), g(· − a�)〉)Nk,�=1 = (�(ak − a�))
N
k,�=1.

Therefore, Gg is strictly positive definite. ��

2.3 Motivation: The Case of Three Points Revisited

We now motivate our approach using the analysis of the Gramian of G(g,�) =
{g(·−ak)e2π ibk ·}3k=1 for 3 points {(ak, bk)}3k=1 ⊂ Z

2. Furthermore,we suppose that the
function g is real-valued.We note that following [18], without loss of generality any set
of three distinct points can be transformed (through area preserving transformations)
into {(0, 0), (0, 1), (a, b)} where (a, b) ∈ Z

2 \ {(0, 0), (0, 1)}. We also know that
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the HRT conjecture is always true for any set of two distinct points. Thus, {g, M1g}
is linearly independent and our task is to show that for any other point (a, b) ∈
Z
2 \ {(0, 0), (0, 1)}, {g, M1g, MbTag} remains linearly independent.
Observe that the Gramian Gg of {g, M1g, MbTag} can be written in the following

block structure:

Gg =
[

A u(a, b)
u(a, b)∗ 1

]
(6)

where

A =
[
1 α

α 1

]
and u(a, b) =

[
Vgg(a, b)

Vgg(a, b − 1)

]

with α = Vgg(0, 1), and u(a, b)∗ denoting the conjugate adjoint of u(a, b). Note
that |α| = |〈g, M1g〉| < ‖g‖2‖M1g‖2 = ‖g‖22 = 1 since {g(·), e2π i ·g(·)} is linearly
independent. We know that Gg is positive semidefinite and we wish to show that it is
strictly positive definite. Appealing to Corolloary 1, we see that

0 ≤ F(a, b) = 〈A−1u(a, b), u(a, b)〉 ≤ 1

and that 0 ≤ F(a, b) < 1 if and only if {g, M1g, MbTag} is linearly independent.
Thus, the function F : R2 → R has range in [0, 1] and 1 is its maximum value.

We can now prove the following result which serves both as a motivation to our
approach and gives a new proof for the HRT conjecture for any 3 points on the integer
lattice.

Proposition 3 Let 0 �= g ∈ L2(R) be a real-valued function with ‖g‖2 = 1, and
� = {(0, 0), (0, 1), (a, b)}, with (a, b) ∈ Z

2 \ {(0, 0), (0, 1)}. Then the function F
defined above achieves its global maximum value 1 only for (a, b) ∈ {(0, 0), (0, 1)}.
Consequently, Conjecture 1 holds for � and g.

The proof of Proposition 3 is based Demeter’s result on (2, 2) configurations, as
well as on a symmetry property of F . It also illustrates the restriction principle that
will be introduced in Sect. 3.3. First we prove the following symmetry of F .

Lemma 1 Suppose that g ∈ L2(R) is real-valued. With the setting above we have

F(a, b) = F(a, 1 − b)

for all (a, b) ∈ Z × R, b �= 1/2, and

F(−a, 1/2) = F(a, 1/2)

for all a ∈ Z.

Proof Let

V =
[
0 1
1 0

]
.
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Then F(a, 1 − b) = 〈A−1u(a, 1 − b), u(a, 1 − b)〉, and

u(a, 1 − b) =
[
Vgg(a, 1 − b)
Vgg(a, b)

]
= V

[
Vgg(a, b)

Vgg(a, b − 1)

]
= Vu(a, b).

Moreover, straightforward computations show that V T A−1V = V A−1V = Ā−1.

Consequently,

F(a, 1 − b) = 〈A−1u(a, 1 − b), u(a, 1 − b)〉 = 〈A−1Vu(a, b), Vu(a, b)〉
= 〈V T A−1Vu(a, b), u(a, b)〉 = 〈 Ā−1u(a, b), u(a, b)〉
= 〈 Ā−1u(a, b), u(a, b)〉 = 〈A−1u(a, b), u(a, b)〉
= F(a, b)

where we have used the fact that A−1 is a positive definite matrix.
When b = 1/2 and a ∈ Z, we see that F(−a, 1/2) = 〈A−1u(−a, 1/2)u(−a,

1/2)〉. but

u(−a, 1/2) =
[
Vgg(−a, 1/2)
Vgg(−a,−1/2)

]
=

[
eπ iaVgg(a, 1/2)

e−π iaVgg(a,−1/2)

]
= Bu(a, b)

where B =
[
eπ ia 0
0 e−π ia

]
. It follows that

F(−a, 1/2) = 〈A−1u(−a, 1/2), u(−a, 1/2)〉 = 〈A−1Bu(a, 1/2), Bu(a, 1/2)〉
= 〈B∗A−1Bu(a, 1/2), u(a, 1/2)〉 = 〈A−1u(a, 1/2), u(a, 1/2)〉
= F(a, 1/2)

where we used the fact that B∗A−1B = A−1. To see why this is the case we observe
that a ∈ Z and a series of computations shows that

B∗A−1B = 1
1−|α|2

[
1 −αe−2π ia

−αe2π ia 1

]
= 1

1−|α|2
[
1 −α

−α 1

]
= A−1.

��
The following argument gives an alternate proof of Proposition 3.

Proof Because {g, M1g, g} and {g, M1g, M1g} are both linearly dependent (repeated
vectors) it follows that F(0, 0) = F(0, 1) = 1.Assume that there exists (a0, b0) ∈ Z×
R\{(0, 0), (0, 1)} such that F(a0, b0) = 1with b0 �= 1/2. In particular, by Corollary 1
the system G(g, {(0, 0), (0, 1), (a0, b0)}) is linearly dependent, i.e., Mb0Ta0g belongs
to the linear span of G(g, {(0, 0), (0, 1)}). Using Lemma 1 we get that F(a0, 1 −
b0) = 1 and therefore M1−b0Ta0g belongs to the linear span of G(g, {(0, 0), (0, 1)}).
Therefore, G(g, {(0, 0), (0, 1), (a0, b0), (a0, 1− b0)}) is also linearly dependent. But
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{(0, 0), (0, 1), (a0, b0), (a0, 1 − b0)} is a (2, 2) configuration and g ∈ L2(R), which
contradicts [10, Theorem 1.4].

The last case to consider is to assume that for some a0 �= 0, b0 = 1/2 and
F(a0, 1/2) = 1. But then using Lemma 1 again we see that F(−a0, 1/2) =
F(a0, 1/2) and therefore G(g, {(0, 0), (0, 1), (a0, 1/2), (−a0, 1/2)}) is linearly
dependent. But {(0, 0), (0, 1), (a0, 1/2), (−a0, 1/2)} is also a (2, 2) configuration and
g ∈ L2(R), which contradicts [10, Theorem 1.4]. ��

3 Extension and Restriction Principles to the HRT Conjecture

In this section we describe in its full generality the aforementioned extension principle
for the HRT conjecture. It could also be viewed as an inductive approach to attack the
conjecture. More specifically, suppose that the Conjecture holds for a given function
g ∈ L2(R) and a given set � = {(ak, bk)}Nk=1 ⊂ R

2. We seek all the points (a, b) ∈
R
2 \ � such that the conjecture remains true for the same function g and the new set

�′ = � ∪ {(a, b)}. We investigate this question by using Theorem 1 and Corollary 1
to relate the Gramians of G(g,�′) and G(g,�). In Sect. 3.1 we introduce the main
technical tool to extend the HRT in the sense given above. Subsequently, in Sect. 3.2
we apply this approach to (1, n) configurations. Finally, in Sect. 3.3 we introduce
a related restriction principle that allows us to establish the HRT conjecture for a
family of 4 points and real-valued functions from knowing that the conjecture can be
proved for a related family of symmetric (2, 3) configurations. To establish the latter
result we refine Demeter’s “conjugate trick” arguments to handle this family of (2, 3)
configurations.

3.1 The HRT Extension Principle

Let g ∈ L2(R) with ‖g‖2 = 1. Assume that Conjecture 1 holds for some � =
{(ak, bk)}Nk=1 ⊂ R

2 with (a1, b1) = (0, 0). Let �′ = {(ak, bk)}Nk=1 ∪ {(a, b)} for
(a, b) ∈ R

2.
The Gramian Gg,N+1(a, b) of G(g,�′) = {e2π ibk ·g(·− ak)}Nk=1 ∪{e2π ib·g(·− a)}

has the following block structure:

GN+1 := Gg,N+1(a, b) =
[

GN uN (a, b)
u(a, b)∗ 1

]
(7)

where GN := Gg,N is the Gramian of {e2π ibk ·g(· − ak)}Nk=1, uN (a, b) is a vector in
C

N given by

uN (a, b) =

⎡
⎢⎢⎢⎢⎢⎣

e2π ia1b1Vgg(a, b)
e−2π ia2(b−b2)Vgg(a − a2, b − b2)
e−2π ia3(b−b3)Vgg(a − a3, b − b3)

...

e−2π iaN (b−bN )Vgg(a − aN , b − bN )

⎤
⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎣

Vgg(a, b)
e2π ia2b2Vg(Ta2Mb2g)(a, b)
e2π ia3b3Vg(Ta3Mb3g)(a, b)

...

e2π iaN bN Vg(TaN MbN g)(a, b)

⎤
⎥⎥⎥⎥⎥⎦

(8)

and uN (a, b)∗ is the adjoint of uN (a, b).
Because GN is positive definite, the function FN+1 : R2 → [0,∞] given by

F(a, b) := FN+1(a, b) = 〈G−1
N uN (a, b), uN (a, b)〉 (9)

is well-defined. For simplicity and when the context is clear, we write u(a, b) for
uN (a, b), and F(a, b) for FN (a, b). Note that when N = 2 the function F is simply
the one introduced in the proof of Theorem 3. The following result summarizes the
main properties of F .

Theorem 3 With the above notations assume that GN is a positive definite N × N
matrix. Then, the following statements hold.

(i) 0 ≤ F(a, b) ≤ 1 for all (a, b) ∈ R
2, and moreover, F(ak, bk) = 1 for each

k = 1, ..., N.
(ii) F is uniformly continuous and lim|(a,b)|→∞ F(a, b) = 0.
(iii)

∫∫
R2 F(a, b)dadb = N.

(iv) The Fourier transform F̂ : R2 → C of F given by

F̂(ξ, η) =
∫∫

R2
F(a, b)e−2π i(aξ+bη)dadb,

is strictly positive definite, and integrable.
(v) detGg(a, b) = (1 − F(a, b)) det GN .

Proof (i) The Gramian of Gg(a, b) is positive semidefinite so by Corollary 1 and the
assumption that GN is positive definite, we conclude that

0 ≤ F(a, b) ≤ 1.

Moreover, for (a, b) = (ak, bk)we know that the Gramian is positive semidefinite
as the system is linearly dependent (one element is repeated twice). Thus, we get
the moreover part of the result.

(ii) This follows easily as each coordinate of u(a, b) is a uniformly continuous func-
tion that tends to 0 at infinity.

(iii) Suppose that G−1
g,N = (Bi, j )Ni, j=1. We can now write

F(a, b) = 〈G−1
N u(a, b), u(a, b)〉 =

N∑
k=1

N∑
�=1

Bk,�(u(a, b))� (u(a, b))k

=
N∑

k=1

N∑
�=1

Bk,� e
2π i(a�b�−akbk ) Vg(Ta�

Mb�
g)(a, b) Vg(Tak Mbk g)(a, b).
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Integrating this last formula over R2 and using the orthogonality and covariance
properties of the STFT, i.e., (1) and (2) we have

∫∫
R2

F(a, b)da db =
N∑

k,�=1

Bk,� e
2π i(a�b�−akbk )

×
∫∫

R2
Vg(Ta�

Mb�
g)(a, b) Vg(Tak Mbk g)(a, b) da db

Evaluating the integral leads to
∫∫

R2
Vg(Ta�

Mb�
g)(a, b) Vg(Tak Mbk g)(a, b) da db

= 〈Vg(Ta�
Mb�

g), Vg(Tak Mbk g)〉 = 〈Ta�
Mb�

g, Tak Mbk g〉 〈g, g〉
= 〈Ta�

Mb�
g, Tak Mbk g〉

Consequently,

∫∫
R2

F(a, b)da db =
N∑

k,�=1

Bk,� e
2π i(a�b�−akbk ) 〈Ta�

Mb�
g, Tak Mbk g〉

=
N∑

k,�=1

Bk,� 〈Mb�
Ta�

g, Mbk Tak g〉

=
N∑

k,�=1

Bk,� (GN )�,k

= 1
detGN

N∑
�=1

N∑
k=1

(−1)k+� (GN )�,k detGN ({�}′, {k}′)

= 1
detGN

N∑
�=1

det GN

= N

where we use the fact that Bk,� = (−1)k+�

detGN
detGN ({k}′, {�}′).

(iv) This part follows from the fact that F is nonnegative, not identically 0, continuous,
and integrable.
Using (3), (2), and the notations set in part (iii) we can compute F̂ explicitly

F̂(ξ, η) =
N∑

k=1

N∑
�=1

Bk,�e
2π i(a�b�−akbk )F2(Vg(Ta�

Mb�
g) Vg(Tak Mbk g))(ξ, η)

=
N∑

k=1

N∑
�=1

Bk,� e
2π i(a�b�−akbk)VTak Mbk g

(Ta�
Mb�

g)(−η, ξ) Vgg(−η, ξ)
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=
N∑

k=1

N∑
�=1

Bk,� e
2π i(a�b�−akbk−a�bk ) e−2π i(a�ξ+bkη)

× Vgg(−η − a� + ak, ξ − b� + bk) Vgg(−η, ξ).

It is clear that

∫∫
R2

|F̂(ξ, η)|dξdη ≤
N∑

k=1

N∑
�=1

|Bk,�| < ∞.

(v) Follows from Corollary 1.
��

The following result is a consequence of Theorem 3.

Corollary 2 Let g ∈ L2(R) with ‖g‖2 = 1 and � = {(ak, bk)}Nk=1 ⊂ R
2. Assume that

G(g,�) is linearly independent. Let �′ = {(ak, bk)}Nk=1 ∪ {(a, b)}. Then G(g,�′)
is linearly independent if and only if F(a, b) < 1. Furthermore, there exists R :=
R(�, g) > 0 such that for all (a, b) ∈ R

2 with |(a, b)| > R, then G(g,�′) is linearly
independent where �′ = � ∪ {(a, b)}
Proof The first part follows from part (1) of Corollary 1 and part (i) of Theorem 3.
The existence of R is guaranteed by part (ii) of Theorem 3. ��
Remark 1 (a) By the last part of Corollary 2, the extension function F makes the HRT

conjecture a “local problem”. In other words, once the conjecture is known to be
true for a function g and a set � = {(ak, bk)}Nk=1, it is also automatically true for
�′ = � ∪ {(a, b)} whenever the new point lies outside a ball of radius R. So to
establish the HRT everywhere for �′ we must focus on the “local” properties of
F , that is the restriction of F to the aforementioned ball.

(b) Corollary 2 makes it possible to explore the HRT from a numerical point of view.
Indeed, Theorem 3 and Corollary 2 assert that the HRT for �′ = {(ak, bk)}Nk=1 ∪
{(a, b)} holds if and only if (a, b) is not a global maximizer of F . So in theory,
one only needs to prove that the set of global maximizers of F is �. For a smooth
function g, differential calculus can be used to check this. For example, for the
Gaussian g(x) = 21/4e−πx2 , using [14, Lemma 1.5.2] we get that

Vgg(a, b) = e−π iabe−πa2/2e−πb2/2.

In this case and using � = {(0, 0), (0, 1)} ∪ {(a, b)}, F is simply

F(a, b) = e−π(a2+b2)

1−e−π [1 + eπ(2b−1) − 2eπ(b−1) cos a].

One can then used multivariable calculus to show that the global maximizers of
F are exactly the two points (0, 0) and (0, 1), see Fig. 1.
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Fig. 1 Graph of F for � = {(0, 0), (0, 1)} and g(x) = 21/4e−πx2

More generally, one can numerically analyze the function F to determine its
global maximizers. For example, suppose � = {(0, 0), (1, 0), (0, 1)}. For the Gaus-
sian g(x) = 21/4e−πx2 , Fig. 2 displays the graph of the function F on the square
[−4, 4] × [−4, 4]. This graph illustrates the validity of the HRT in this case, by
showing that the global maximum value of F is only achieved on the set �. Simi-
larly, when g(x) = e−|x |, Fig. 3 displays the graph of the function F on the square
[−4, 4]× [−4, 4]. This graph illustrates the validity of the HRT in this case, by show-
ing that the global maximum value of F is only achieved on the set �. Recall that
the HRT is known to be true for this function and any set of 4 points [3]. Finally,
Fig. 4 displays the graph of the function F on the square [−4, 4] × [−4, 4] when
g(x) = 2−1/2

1+|x | . To the best of our knowledge, the HRT has not been proved for this
function and any set of 4 points. Therefore, Fig. 4 offers some numerical evidence to
the validity of the conjecture in this case. We also refer to Corollary 4 for some new
results in this setting.

3.2 The HRT Conjecture for (1, n) Configurations

In this section, we consider the HRT conjecture for (1, n) configurations and prove
that the conjecture can only fail for at most one such configuration. The proof is
elementary and based on some dimension arguments. We then focus on the case n = 3
and show that when the generator is a real-valued function then Conjecture 1 holds for
all (1, 3). Note that the strongest known results for these configurations assume either
that the 3 collinear points are also equi-spaced, or that the generator is in S(R). The
motivation of the results presented in this section is [23, Theorem 1.3] which states
that the HRT conjecture holds for almost all (in the sense of Lebesgue measure) (1, 3)
configurations. A consequence of our result is that the HRT conjecture can only fail
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Fig. 2 Graph of F for � = {(0, 0), (0, 1), (1, 0)} and g(x) = 21/4e−πx2

Fig. 3 Graph of F for � = {(0, 0), (0, 1), (1, 0)} and g(x) = e−|x |

for at most one (1, 3) configuration up to equivalence. For more on the HRT for (1, 3)
we refer to Demeter’s results [8] and a recent improvement due to Liu [23].

Recall that by using the metaplectic transformations one can show that any (1, n)

configuration has the form {(0, 1)}∪ {(ak, 0)}nk=1 where a1 = 0 and the rest of the aks
are distinct and nonzero [18]. Note that the set of metaplectic transformations in R

2

can be identified with the set of 2× 2 symplectic matrices, which, in turn is SL(2,R)

[12,14]. We say that two (1, n) configurations �1 and �2 are equivalent if and only
if there exists a symplectic matrix A ∈ SL(2,R) such that �2 = A�1. Let the set of
distinct equivalence classes under this relation be denoted by �(1,n). Without any loss
of generality we can assume that
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Fig. 4 Graph of F for � = {(0, 0), (0, 1), (1, 0)} and g(x) = 2−1/2

1+|x |

�(1,n) = {(0, 1)} ∪ {(ak, 0)}nk=1

with a1 = 0 and ak �= 0 for all k = 2, 3, ..., n. To prove that the HRT conjecture holds
for all (1, n) configurations, it is enough to restrict to (1, n) configurations in �(1,n).

Theorem 4 Let n ≥ 3 and g ∈ L2(R) with ‖g‖2 = 1. Suppose that the HRT con-
jecture holds for g and any (1, n − 1) configuration. Then there exists at most one
(equivalence class of) (1, n) configuration �0 ∈ �(1,n) such that G(g,�0) is linearly
dependent. Furthermore, suppose that�0 = {(0, 1)}∪{(ak, 0)}nk=1 ∈ �(1,n) is a (1, n)

configuration such that G(g,�0) is linearly dependent. Let a �= ak for k = 1, ..., n.
Fix any k0 ∈ {1, ..., n} and consider

� = {(0, 1)} ∪ {(a1, 0), (a2, 0), ..., (ak0−1, 0), (a, 0), (ak0+1, 0), ..., (an, 0)}.

Then G(g,�) is linearly independent.

Proof Suppose by contradiction that there exist two distinct (1, n) configurations (or
equivalent classes) �1 and �2 such that G(g,�i ) is linearly dependent for i = 1, 2.
Further, suppose that

�1 = {(0, 1)} ∪ {(ak, 0)}nk=1 and �2 = {(0, 1)} ∪ {(bk, 0)}nk=1

where a1 = b1 = 0 and ai0 �= bi0 for some i0 ∈ {2, ..., n}. Then, one can write

M1g =
n∑

k=1

ckTak g (10)
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where ck �= 0 for each k = 1, ..., n. Indeed, if c� = 0 for some � ∈ {1, ..., n} then
�′

1 = �1 \ {(a�, 0)} will be a (1, n − 1) configuration and (10) will become

M1g =
n∑

k=1, k �=�

ckTak g.

That is G(g,�′
1) will be linearly dependent contradicting one of the assumptions of

the Theorem. Similarly,

M1g =
n∑

k=1

dkTbk g (11)

where dk �= 0 for each k = 1, ..., n. Taking the difference between (10) and (11) and
rearranging leads to

(c1 − d1)g + ci0Tai0 g − di0Tbi0 g +
n∑

k=2, k �=i0

ckTak g −
n∑

k=2, k �=i0

dkTbk g = 0

where i0 was chosen above. But since ci0di0 �= 0 and ai0 �= bi0 , this last equation is
equivalent to the fact that

{g, Tak g, Tbk g : k = 2 ..., n}

is linearly dependent. But this contradicts the fact the HRT conjecture holds for any
0 �= g ∈ L2(R) and the collinear points {(0, 0), (ak, 0), (bk, 0) : k = 2, ..., n}, [18].
Therefore, there can exist at most one (class of equivalence) (1, n) configuration �0
for which G(g,�0) is linearly dependent.

For the last part, suppose that �0 = {(0, 1)} ∪ {(ak, 0)}nk=0 ∈ �(1,n) is such that
G(g,�0) is linearly dependent. Write �0 = �′

0 ∪ {(ak0 , 0)} where

�′
0 = {(0, 1), (0, 0), (a2, 0), ..., (ak0−1, 0), (ak0+1, 0), ..., (an, 0)}.

By assumption,G(g,�′
0) is linearly independent since�′

0 is a (1, n−1) configuration.
Then byCorollary 2, F(ak0 , 0) = 1where F is the function obtained from theGramian
of G(g,�0) according to Theorem 3.

Now, let a /∈ {0, ak : k = 2, ..., n}. If F(a, 0) = 1 then Tag must belong to
the linear span of {M1g, Tak g : k = 1, ..., n, k �= k0} whose dimension is n. But,
Tak0 g also belongs to this linear span. Therefore, the n + 1 functions g, Tak g, Tag,
k = 2, ..., n belong to an n dimensional space. However, these functions are linearly
independent (because the points are collinear). This is a contradiction, from which we
conclude that F(a, 0) < 1, concluding the proof. ��

In the special case where n = 3 we have the following result.

Corollary 3 Let g ∈ L2(R)with ‖g‖2 = 1. There exists at most one (equivalence class
of) (1, 3) configuration �0 such that G(g,�0) is linearly dependent.
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Proof When n = 3 it is known that the HRT conjecture holds for g and every (1, 2)
configuration [18]. Thus the assumption of Theorem 4 is satisfied and the corollary
follows. ��

If we restrict to real-valued functions, then we can prove a stronger result by ruling
out the existence of the single “bad” (equivalence class of ) (1, 3) configuration given
by Corollary 3.

Theorem 5 Let g ∈ L2(R), ‖g‖2 = 1 be a real-valued function. Let a �= b �= 0 and
set � = {(0, 0), (0, 1), (a, 0), (b, 0)} be a (1, 3) configuration. Then, Conjecture 1
holds for � and g.

Proof Assume by way of contradiction that G(g,�) is linearly dependent. Then, there
exists ck ∈ C

∗, k = 1, 2, 3, such that

c1g + c2M1g + c3Tag = Tbg.

Because, g is real-valued, we see that

Tbg = Tbg = c̄1g + c̄2M−1g + c̄3Tag.

Hence,

(c1 − c̄1)g + c2M1g − c̄2M−1g + (c3 − c̄3)Tag = 0.

Note that c2 �= 0. Hence, this last equation is equivalent to the fact that G(g,�′)
where �′ = {(0, 0), (a, 0), (0, 1), (0,−1)} is linearly dependent. However, because
the points (0, 1), (0, 0) and (0,−1) are equally spaced, �′ is a (1, 3) configuration,
for which Conjecture 1 is known to hold [18]. Therefore, we arrive at a contradiction.

��

3.3 A Restriction Principle for the HRT Conjecture

The goal of this section is to establish Conjecture 1 for a large family of sets of cardi-
nality 4 (that are not (1, 3) nor (2, 2) configurations) when g is a real-valued function.
In addition, we establish similar results for Conjecture 2. In fact, we prove that the
general case for (almost) any 4 points follows from a special family of (3, 2) configu-
rations. This is our restriction principle: proving that Conjecture 1 or Conjecture 2 hold
for this special special family of (3, 2) configurations implies its validity for a large
family 4 points. The proof of the next result is an extension of Demeter’s “conjugate
trick” arguments [8, Theorem 1.5 (b)].

Theorem 6 Let g ∈ L2(R) with ‖g‖2 = 1. Suppose � is a (3, 2) configuration given
by � = {(0, 0), (0, 1), (0,−1), (a, b), (a,−b)} where b �= 0. Then, Conjecture 1
holds for � and g whenever any of the following holds

(i) a, b ∈ Q.
(ii) a ∈ Q but b /∈ Q.
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(iii) a, b /∈ Q but ab ∈ Q, and g is a real-valued function.

Proof We can trivially assume that a �= 0. Indeed, if a = 0 then the points in � will
all lie on the y-axis, that is the points will be collinear, and HRT is known to be true
in this case [18].
(i) Suppose that a = p

q , b = m
n ∈ Q. In this case, we see that � = A�′, where

A =
[

1
q 0

0 1
n

]
and �′ = {(0, 0), (0, n), (0,−n), (p,m), (p,−m)}. In particular, � is a

subset of a lattice and the result follows from [22].
(ii) Next assume that a ∈ Q and b /∈ Q. By using a scaling matrix (a metaplectic
transform) we can assume that � has the following form:

� = {(0, 0), (0, a), (0,−a), (1, b′), (1,−b′)}

with b′ = ba /∈ Q [17]. To simplify the notations we will assume that

� = {(0, 0), (0, a), (0,−a), (1, b), (1,−b)}

with a ∈ Q and b /∈ Q.
Assume by way of contradiction that G(g,�) is linearly dependent. Then, there

exist ck ∈ C, k = 1, 2, 3, and dk ∈ C, for k = 1, 2 such that

c1g + c2Mag + c3M−ag = d1M−bT1g + d2MbT1g. (12)

Observe that ck, dk �= 0 for each k, since the conjecture is true for all (2, 2) configura-
tions, and (1, 3) configurations where the points on the line are equiangular. We may
also assume that c1 ∈ R.

Consequently, we can write (12) as

|P(x)g(x)| = |Q(x)g(x − 1)| a. e. (13)

where P(x) = c1+c2e2π iax +c3e−2π iax and Q(x) = e2π i(−bx+θ)(r1+r2e2π i(2bx+θ ′)

with r1, r2 ∈ (0,∞) and θ, θ ′ ∈ [0, 1). (Here we write d1 = r1e2π iθ and d2 =
r2e2π iθ

′
.)

Furthermore, because 0 �= g ∈ L2(R) we have that

lim|n|→∞ n∈Z g(x − n) = 0 a. e. (14)

and that supp(g) ∩ [0, 1] has a positive measure. Let S ⊂ suppg ∩ [0, 1] be such that
S has positive measure, and such that S + Z contains no zeros of P and Q (this is
possible since the set of such zeros is at most countable). From now on, we assume
that (13) and (14) hold for all x ∈ S.

Next, by the Birkhoff’s pointwise ergodic theorem with 1S , there exists x0 ∈ S and
n′ ∈ N such that x1 = {−x0 − θ ′

b + n′
b } ∈ S. Here and in what follows, we denote a

fractional part of x ∈ R by {x}. Let m = −x0 − θ ′
b + n′

b − x1 = y − x1.
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By iterating (13), it follows that for all N > m

⎧⎪⎪⎨
⎪⎪⎩

|g(x0 + N )| = |g(x0 − 1)|
∏N

n=0 |Q(x0+n)|∏N
n=0 |P(x0+n)|

|g(x1 − N + m)| = |g(x1 − 1)|
∏−1

n=−N+m+1 |P(x1+n)|∏−1
n=−N+m+1 |Q(x1+n)|

(15)

Next, observe that

m∏
n=−N+m

|Q(x1 + n)| =
N∏

n=0

|Q(x0 + n)|.

Consequently,

−1∏
n=−N+m

|Q(x1 + n)| =
m∏

n=−N+m

|Q(x1 + n)| 1∏m
n=0 |Q(x1+n)|

= K
m∏

n=−N+m

|Q(x1 + n)|

= K
N∏

n=0

|Q(x0 + n)|,

where K = 1∏m
n=0 |Q(x1+n)| is a positivefinite constant that depends only onm, x0, n′, b,

and θ ′.
Now assume that a = t/s ∈ Q, then P is s−periodic. Let T (x) = ∏s−1

n=0 |P(x+n)|,
and assume first that T (x1) ≥ T (x0). Then,

−1∏
n=−N+m+1

|P(x1 + n)| = K ′
N∏

n=0

|P(x1 − n)| ≥
N∏

n=0

|P(x0 + n)|

for all N > m, where K ′ = 1
|P(x1)| ∏−N+m

n=−N |P(x1+n)| is a constant independent of N .

Consequently, for N > m,

|g(x1 − N + m)| = |g(x1 − 1)|
∏−1

n=−N+m |P(x1+n)|∏−1
n=−N+m |Q(x1+n)|

≥ C |g(x1 − 1)|
∏N

n=0 |P(x0+n)|∏N
n=0 |Q(x0+n)|

≥ C |g(x1 − 1)||g(x0 − 1)||g(x0 + N )|−1

where C is a constant that depends only on x0,m, r1, r2, c1, c2, and c3. But this last
inequality contradicts (14).
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Now if instead, T (x0) ≥ T (x1). We will have

−1∏
n=−N+m

|P(x0 + n)| ≥
N∏

n=0

|P(x1 + n)|

for all N > m,

−1∏
n=−N+m

|Q(x0 + n)| �
N∏

n=0

|Q(x1 + n)|,

where we used the notation A � B to denote B/c ≤ A ≤ cB for some constant c that
depends only on x0,m, r1, and r2.

For N > m,

|g(x0 − N + m)| ≥ C |g(x0 − 1)|
∏N

n=0 |P(x1+n)|∏N
n=0 |Q(x1+n)| ,

and

|g(x1 + N )| = |g(x1 − 1)|
∏N

n=0 |Q(x1+n)|∏N
n=0 |P(x1+n)| .

Consequently, for N > m,

|g(x0 − N + m)| ≥ C |g(x0 − 1)||g(x1 − 1)||g(x1 + N )|−1,

where C is a constant that depends only on x0,m, r1, r2, c1, c2, and c3. But this last
inequality contradicts (14).

We conclude that (12) cannot hold unless, ck = 0 for k = 1, 2, 3 and dk = 0 for
k = 1, 2.
(iii) Similar to case (ii), and using a metaplectic transform we can assume that � is of
the form � = {(0, 0), (0, a), (0,−a), (1, b), (1, b)} with a /∈ Q, b ∈ Q.

We now proceed as in part (ii) and assume that (12) holds. Since, g is assumed to
be real-valued we see by taking the complex conjugate of (12) that

c1g + c2M−ag + c3Mag − d1M−bT1g − d2MbT1g = 0.

taking the difference between this last equation and (12) , we obtain

(c2 − c3)Mag + (c3 − c2)M−ag + (d2 − d1)MbT1g + (d1 − d2)M−bT1g = 0.

Now, the points {(0, a), (0,−a), (1, b), (1,−b)} form a (2, 2) configuration and the
HRT conjecture is true in this case. Therefore, c3 = c̄2, d2 = d̄1. Consequently, we let
c1 = c ∈ R, c2 = re2π iθ , and d1 = r ′e2π iθ ′

, where r , r ′ ∈ (0,∞) and θ, θ ′ ∈ [0, 1).
Therefore, (13) holds with P(x) = c + 2r cos 2π(ax + θ) and Q(x) =

2r ′ cos 2π(bx + θ ′). In particular, Q is a s−periodic function if we let b = t/s ∈ Q.
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Reversing the role of the polynomials P and Q in the proof of (ii) establishes the result
in this last case. ��
Remark 2 We note that the case a /∈ Q and b ∈ Q is equivalent (by a metaplectic
transformation) to a, b, ab /∈ Q. This is the only case we have not been able to
address. However, if we assume that g is smoother, then we can handle this case as
well, see Theorem 7 below.

We can now prove the following result for a family of 4 points inR2 and real-valued
functions. This illustrates the restriction principle we announced in the introduction.
Indeed, to establish the HRT conjecture for the family of sets of four points we use the
fact the conjecture was proved for the above family of symmetric (2, 3) configurations.
More specifically, the following result holds. Note that any set of four distinct points
can be transformed into {(0, 0), (0, 1), (s, 0), (a, b)}.
Corollary 4 Let g ∈ L2(R), ‖g‖2 = 1 be a real-valued function. Suppose that � =
{(0, 0), (0, 1), (s, 0), (a, b)} ⊂ R

2 be a subset of four distinct points. Conjecture 1
holds for � and g, whenever any of the following holds

(i) a, b ∈ Q.
(ii) a ∈ Q but b /∈ Q.
(iii) a, b /∈ Q but ab ∈ Q

Proof If ab = 0 then, we are done by invoking Theorem 5. So we assume that ab �= 0,
and suppose by contradiction that there exist nonzero coefficients c1, c2, c3 such that

Tsg = c1g + c2M1g + c3MbTag.

This implies that

Tsg = c̄1g + c̄2M−1g + c̄3M−bTag.

Hence,

(c1 − c1)g + c2M1g − c2M−1g + c3MbTag − c̄3M−bTag = 0.

Consequently, G(g,�) with � = {(0, 0), (0, 1), (0,−1), (a, b), (a,−b)} is linearly
dependent, which, contradicts Theorem 6. ��
Example 1 We recall the following conjecture.

Conjecture 3 [17, Conjecture 9.2]. Suppose � = {(0, 0), (0, 1), (1, 0), (√2,
√
2)},

and if 0 �= g ∈ L2(R) with ‖g‖2 = 1 then G(g,�) is linearly independent.

An application of Corollary 4 settles this conjecture in the special case where g
is real-valued. Indeed, this follows from part (iii) of Corollary 4 by taking s = 1,
a = b = √

2 /∈ Q.
If we assume that the function g is smoother, i.e., g ∈ S(R) then we can extend [8,

Theorem 1.3] from (2, 2) configurations to certain symmetric (3, 2) configurations.
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It must be noted that the arguments given below were originally introduced in [8,
Theorem 1.3].1 For the sake of completeness we give the details of the proof below.

Theorem 7 Let g ∈ S(R), ‖g‖2 = 1. Suppose � is a (3, 2) configuration given by
� = {(0, 0), (0, 1), (0,−1), (a, b), (a,−b)} where b �= 0. Then, Conjecture 2 holds
for � and g whenever any of the following holds

(i) a, b ∈ Q.
(ii) a ∈ Q but b /∈ Q.
(iii) a, b, ab /∈ Q.
(iv) a, b /∈ Q but ab ∈ Q, and g is a real-valued function.

Proof The proof is divided in a number of cases.
(i), (ii), (iv) follow from Theorem 6.
(iii) Suppose that a, b /∈ Q. Furthermore, assume that ab /∈ Q. Using

a metaplectic transformation, we may assume that � is of the form � =
{(0, 0), (0, a), (0,−a), (1, b), (1, b)}, with a, b, b/a /∈ Q. The rest of the proof is
an extension of [8, Theorem 1.3].

We follow the proof of part (ii) of Theorem 6 and argue by contradiction. In
particular, we assume that (12), (13), and (14) hold for all x ∈ I , where I ⊂ supp(g)∩
[0, 1] is a set of positive measure. Recall that P(x) = c1 + c2e2π iax + c3e−2π iax

and Q(x) = e2π i(−bx+θ)(r1 + r2e2π i(2bx+θ ′)) where r1, r2 ∈ (0,∞), θ, θ ′ ∈ [0, 1),
c1 ∈ R, c2, c3 ∈ C with ck �= 0 for k = 1, 2, 3.

We first prove that
|−c1±

√
c21−4c2c3|

2|c2| �= 1. Suppose by way of contradiction that

|−c1±
√
c21−4c2c3|

2|c2| = 1. This implies that P(x) = 0 has real solutions of the form

xk = ω + k
a

for some ω ∈ R and k ∈ Z.
Next we prove that Q must also have some real roots. Indeed, assume that Q(x) �= 0
for all x ∈ R. Since a /∈ Q we can choose k ∈ Z with xk > 0 and {xk} ∈ I (recall that
{u} is the fractional part of u). Note that g({xk}) �= 0. We now use (13) to get

0 = |P(xk)||g(xk)| = |Q(xk)||g(xk − 1)|

Thus g(xk − 1) = 0. We can continue this iteration to show that g(xk − n) = 0 for
all n > 0. Consequently, g({xk}) = 0 which is a contradiction. Therefore, Q has real
roots of the form

yn = ω′ + n
2b

for some ω′ ∈ R and n ∈ Z.

1 The proof given in [8, Theorem 1.3] contains a few inaccuracies that were fixed by C. Demeter and posted
on Math Arxiv as arXiv:1006.0732.

http://arxiv.org/abs/1006.0732
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Furthermore, the zeros of P and Q must share a Z−orbit. Indeed, if this was not the
case, we must have that xk − yn /∈ Z for all n, k ∈ Z. However, a repeated use of (13)
will lead to the following contradiction. For any k ∈ Z we have 0 = |P(xk)||g(xk)| =
|Q(xk)||g(xk − 1)|. Since xk = xk − 0 is not a root of Q we see that g(xk − 1) = 0.
Continuing in this fashion we see that g(xk − n) = 0 for all n > 0. Which is a
contradiction. In fact, there must exist n �= n′ ∈ Z and m,m′ ∈ Z such that

xn − ym, xn′ − ym′ ∈ Z.

By taking the difference between these two numbers we see that

N
a + M

2b = k

for some N , M, k ∈ Z. Using the fact that a, b /∈ Q we arrive at the conclusion that
all N , M satisfying this equation must be of the form N = �N0 and M = �M0 for
some fixed N0, M0 ∈ Z \ {0} and arbitrary � ∈ Z. In addition, all n,m ∈ Z such that
xn − ym ∈ Z must be of the form

{
n = n0 + �N0
m = m0 + �M0,

for some fixed n0,m0, N0, M0 ∈ Z, N0, M0 �= 0 and arbitrary � ∈ Z. We also point
out that for each xn there is at most one ym such that xn − ym ∈ Z.
Let x� = ω0 + � N0

a be a zero of P where ω0 = ω + n0
a , and y� be the zero of Q such

that x� − y� ∈ Z. Note that y� = ω′
0 + �M0

2b where ω′
0 = ω′ + m0

2b . Because
N0
a �= M0

2b ,
we can choose � ∈ Z such that one of the following three alternatives holds:

• 0 < x� < y�
• x� < 0 < y�
• x� < y� < 0

If we assume that the first alternative holds, by ergodicity, we can choose � ∈ Z

such that u� = {x�} = {y�} ∈ I . Note that g(u�) �= 0 and using the recursion (13) and
the fact that Q is nonzero on the orbit before y�, we see that g(u� + 1) �= 0, which
implies that g(u� + 2) �= 0. We can continue all the way to g(u� + n) �= 0 where
n ∈ Z is such that u� + n + 1 = x�. Applying (13) one more time will give

0 = |P(x�)||g(x�)| = |Q(x�)||g(u� + n)| �= 0

It follows that infx∈R |P(x)| > 0. Similarly, we show that inf x∈R |Q(x)| > 0.
Consequently,ψ(x) = ln |c1+c2e2π i x +c3e−2π i x | and φ(x) = ln |r1+r2e2π i(2x+θ ′)|
are well-defined and continuous on R

Using (12) and (14) we see that for each x, z ∈ I

lim
N→∞

N∑
n=1

φ(bx + bn) −
N∑

n=1

ψ(ax + an) = −∞ (16)
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and

lim
N→∞

−1∑
n=−N

φ(bz + bn) −
−1∑

n=−N

ψ(az + an) = ∞ (17)

We now use the approximation of a by rational and the fact |ψ ′| � 1 to control
parts of the above sums.

Let pk, qk relatively prime integers, q → ∞ such that

|a − pk
qk

| ≤ 1
q2k

.

Furthermore,

|na − npk
qk

| ≤ 1
qk

, −qk ≤ n ≤ qk .

By a Riemann sum approximation we see that

∣∣∣∣
qk∑
n=1

ψ(ax + an) − qk

∫ 1

0
ψ

∣∣∣∣ = O(1)

and

∣∣∣∣
−1∑

n=−qk

ψ(ax + an) − qk

∫ 1

0
ψ

∣∣∣∣ = O(1)

for each x ∈ [0, 1]. Consequently, for each y, z ∈ I we have

∣∣∣∣
qk∑
n=1

ψ(ay + an) −
−1∑

n=−qk

ψ(az + an)

∣∣∣∣ = O(1). (18)

Now using Birkhoff’s pointwise ergodic theorem for 1I , we can choose x ∈ I ,
n′ ∈ N such that z := {−x − θ ′

b + n′
2b } ∈ I . Let y := −x − θ ′

b + n′
2b and m = y − z.

Then

−1+m∑
n=−N+m

φ(bz + bn) =
N∑

n=1

φ(by − bn) =
N∑

n=1

φ(bx + bn).

Observe that for each N

−1∑
n=−N

φ(bz + bn) =
−N+m−1∑
n=−N

φ(bz + bn) +
−1+m∑

n=−N+m

φ(bz + bn) +
−1∑
n=m

φ(bz + bn)

=
N∑

n=1

φ(bx + bn) +
−N+m−1∑
n=−N

φ(bz + bn) +
−1∑
n=m

φ(bz + bn)
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Consequently, for each N

∣∣∣∣
−1∑

n=−N

φ(bz + bn) −
N∑

n=1

φ(bx + bn)

∣∣∣∣ =
∣∣∣∣
−N+m−1∑
n=−N

φ(bz + bn) +
−1∑
n=m

φ(bz + bn)

∣∣∣∣
= O(1) (19)

where we bound the last sum by a constant that depends only onm, z, and b. However,
(16)–(19) cannot simultaneously hold. This completes the proof. ��

Wenote that as observed in [8, Theorem1.3], rather than assuming that g ∈ S(R)we
could assume that g ∈ L2(R) is continuous and is such that lim|n|→∞ n∈Z |g(x−n)| =
0 for all x ∈ [0, 1].
Remark 3 Suppose that g ∈ S(R) is real-valued. In addition to the cases covered by
Corollary 4, Theorem 7 can be used to settle Conjecture 2 when a, b, ab /∈ Q.

Remark 4 We summarize what is known about the HRT for 4 points. In R
2, a set �

consisting of four distinct points in R
2 can be such that:

(1) The four points are collinear, in which case their convex hull is a line segment,
(2) The four points form a (1, 3) configuration, in which case their convex hull is a

triangle,
(3) The four points form a (2, 2) configuration, in which case their convex hull is a

trapezoid, or
(4) The four points are in none of the previous three categories, in which case their

convex hull is a general quadrilateral.

• In the first case Conjecture 1 holds for any g ∈ L2(R) [18].
• In the second case Conjecture 2 holds for any g ∈ S(R) [8]. However, if g ∈ L2,
Conjecture 1 is true when the three collinear points are also equispaced [18]. More
generally, [8] has condition under which the conjecture remains true, and, in fact,
Conjecture 1 holds for almost all (1, 3) configurations. The results of this paper
allow us to conclude that when g ∈ L2 is also real-valued then Conjecture 1 for
all (1, 3) configurations.

• For the third case, Conjecture 1 holds for any g ∈ L2(R) [10].
• In the last case, to the best of our knowledge both Conjectures 1 and 2 remain open.
However, when g(x) = e−|x |ε with ε > 0 Conjecture 1 holds for any set of 4 points
[3]. In fact, when g decays faster than any exponential the HRT conjecture has
been established not only in dimension one, but also in higher dimensions [3,5,6].
In this paper we showed that when g ∈ L2(R) is real-valued Conjecture 1 holds
for a family of four distinct points.

But is still unclear whether the HRT holds for any 4 points and every g ∈ L2(R).
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