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Abstract
We establish the boundedness on L p(Rn) of oscillatory singular integral operators
whose kernels are the products of an oscillatory factor with bilinear phase and a
Calderón–Zygmund kernel K (x, y) satisfying a Hölder condition. Our results also
hold on weighted L p spaces with Ap weights.
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1 Introduction

In [6], Phong and Stein studied oscillatory singular integrals with bilinear phases as a
hybrid between the Fourier transforms and singular integral operators.
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Let n ∈ N, B = (b jk) be an n × n matrix with real entries. For x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ R

n, let

B(x, y) = x ByT =
n∑

j=1

n∑

k=1

b jk x j yk .

For a singular kernel K (x, y), the oscillatory singular integral operator TB, acting
initially on test functions, is given by

TB f (x) = p.v.
∫

Rn
ei B(x,y)K (x, y) f (y)dy. (1)

Let’s begin by recalling the following:

Theorem 1.1 Let A > 0 and � = {(x, x) : x ∈ R
n}. Suppose that

(i) For all (x, y) ∈ (Rn × R
n)\�,

|K (x, y)| ≤ A

|x − y|n ; (2)

(ii) K (x, y) ∈ C1((Rn × R
n)\�), and for (x, y) ∈ (Rn × R

n)\�

|∇x K (x, y)| + |∇yK (x, y)| ≤ A

|x − y|n+1 ; (3)

(iii)

‖To‖L2(Rn)→L2(Rn) ≤ A, (4)

where

To f (x) = p.v.
∫

Rn
K (x, y) f (y)dy. (5)

Then, for 1 < p < ∞, there exists a positive Cp which may depend on p, n and
A, but is independent of the matrix B, such that

‖TB f ‖L p(Rn) ≤ Cp‖ f ‖L p(Rn) (6)

for all f ∈ L p(Rn).

The above result first appeared in [6, p. 130] for smooth convolutional kernels K ,

while the fact it also holds for C1 nonconvolutional kernels was pointed out in [7, p.
192].

Since the publication of [6], many papers have been written regarding oscillatory
integrals with singular kernels, successfully extending the results of Phong and Stein to
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more general phase functions (see, for example, [1,3,5,7,8]). The focus of the current
paper is to consider the L p boundedness of TB without assuming that K (x, y) is
C1 away from the diagonal [or that K (x, y) has a special form such as K (x, y) =
|x − y|−n�((x − y)/|x − y|)]. The C1 condition on K (x, y) has been generally
viewed as a key assumption due to the historically important role played by van der
Corput type arguments. In our main result presented below, the C1 assumption will
be replaced by a well-known weaker condition of Hölder type on K (x, y).

Theorem 1.2 Let A, δ > 0. Suppose that

(i) For all (x, y) ∈ (Rn × R
n)\�,

|K (x, y)| ≤ A

|x − y|n ; (7)

(ii)

|K (x, y) − K (x ′, y)| ≤ A|x − x ′|δ
(|x − y| + |x ′ − y|)n+δ

(8)

whenever |x − x ′| < (1/2)max{|x − y|, |x ′ − y|}, and

|K (x, y) − K (x, y′)| ≤ A|y − y′|δ
(|x − y| + |x − y′|)n+δ

(9)

whenever |y − y′| < (1/2)max{|x − y|, |x − y′|};
(iii)

‖To‖L2(Rn)→L2(Rn) ≤ A. (10)

Then, for 1 < p < ∞, there exists a positive Cp which may depend on p, n, δ

and A, but is independent of the matrix B, such that

‖TB f ‖L p(Rn) ≤ Cp‖ f ‖L p(Rn) (11)

for all f ∈ L p(Rn).

An extension of the above result to the weighted L p spaces with Ap weights will
be given in Sect. 3.

2 Proof of Theorem 1.2

For B = (b jk)n×n, let

b = max{|b jk | : 1 ≤ j, k ≤ n}. (12)
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If b = 0, then TB = To. It is well-known that, under the conditions (7)–(10), To is
bounded on L p(Rn) for 1 < p < ∞. Thus, from this point on, we may assume that
b > 0.

For m ∈ N, u ∈ R
m and r > 0, let Dm(u, r) = {v ∈ R

m : |v − u| < r}. Let φ be
a real-valued C∞ function on (0,∞) such that 0 ≤ φ ≤ 1,

supp(φ) ⊂
(
1

2
, 4

)
, (13)

and

∑

ν∈Z
φ(2−ν t) = 1 (14)

for all t > 0.
For ν ≥ 0, define the operator Sν by

Sν f (x) =
∫

Rn
ei B(x,y)K (x, y)φ(2−ν

√
b|x − y|) f (y)dy, (15)

and let

Kν(x, y) =
(
2ν

√
b

)n

K

(
2νx√
b

,
2ν y√
b

)
. (16)

It is easy to see that (7)–(10) remain valid with the same constants A and δ if K (x, y)
is substituted by Kν(x, y). Clearly one may also assume that δ < 1.

For f ∈ L2(Rn),

‖Sν f ‖2L2(Rn)
=

∫

Rn
Sν f (z)Sν f (z)dz

=
∫

Rn

∫

Rn
Lν(x, y) fν(x) fν(y)dxdy, (17)

where

fν(x) =
(
2ν

√
b

)n/2

f

(
2νx√
b

)
, (18)

Lν(x, y) =
∫

Rn
ei(b

−122ν )B(z,x−y)Kν(z, x)Kν(z, y)φ(|z − x |)φ(|z − y|)dz. (19)

Without loss of generality, we may assume that b = ±b1k0 holds for some

k0 ∈ {1, 2, . . . , n}. For x ∈ R
n, let x̃ = (x2, . . . , xn), P(x) =

∑n

k=1
b1k xk, and

Gν(x, y, z) = Kν(z, x)Kν(z, y)φ(|z − x |)φ(|z − y|). Then,
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|Lν(x, y)| ≤ χDn(0,8)(x − y)

×
∫

Dn−1(x̃,4)∩Dn−1(ỹ,4)

∣∣∣∣
∫

R

ei(b
−122ν )z1P(x−y)Gν(x, y, z)dz1

∣∣∣∣dz̃. (20)

Let s ∈ R. For z = (z1, z̃) ∈ R
n, let z′ = (z1 + s, z̃). We will need the following

inequality:

|Gν(x, y, z) − Gν(x, y, z
′)| ≤ C |s|δ, (21)

where C is independent of s, ν, x, y and z. We will first verify that

|Kν(z, x)φ(|z − x |) − Kν(z
′, x)φ(|z′ − x |)| ≤ C |s|δ (22)

uniformly in s, ν, x and z.
When |s| ≥ 1/4, (22) follows trivially from (7) and (13). Thus, wemay now assume

that |s| < 1/4.
The first case to be examined is when φ(|z − x |) and φ(|z′ − x |) are both nonzero.

Then, we have |z − x | ≥ 1/2, |z′ − x | ≥ 1/2, |z − z′| = |s| < (1/2)|z − x |, and

|Kν(z
′, x)| ≤ C .

Therefore, it follows from (8) that

|Kν(z, x)φ(|z − x |) − Kν(z
′, x)φ(|z′ − x |)|

≤ |Kν(z, x) − Kν(z
′, x)||φ(|z − x |)| + |Kν(z

′, x)||φ(|z − x |) − φ(|z′ − x |)|
≤ C(|z − z′|δ + ‖φ′‖∞|z − z′|) ≤ C |s|δ.

Next, if φ(|z − x |) = 0 and φ(|z′ − x |) = 0, then |z − x | ≥ 1/2 and

|Kν(z, x)φ(|z − x |) − Kν(z
′, x)φ(|z′ − x |)| = |Kν(z, x)||φ(|z − x |) − φ(|z′ − x |)|

≤ C‖φ′‖∞|z − z′| ≤ C |s|δ.

Finally, the case of φ(|z − x |) = 0 and φ(|z′ − x |) = 0 can be treated in the same
manner as above, which completes the proof of (22).

From (22), one gets

|Kν(z, y)φ(|z − y|) − Kν(z′, y)φ(|z′ − y|)| ≤ C |s|δ (23)

uniformly in s, ν, y and z.
By (7), (13), (22) and (23), we have

|Gν(x, y, z) − Gν(x, y, z
′)|

≤ |Kν(z, x)φ(|z − x |) − Kν(z
′, x)φ(|z′ − x |)||Kν(z, y)φ(|z − y|)|
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+ |Kν(z, y)φ(|z − y|) − Kν(z′, y)φ(|z′ − y|)||Kν(z
′, x)φ(|z′ − x |)|

≤ C |s|δ(|Kν(z, y)φ(|z − y|)| + |Kν(z
′, x)φ(|z′ − x |)|) ≤ C |s|δ,

which proves (21).
By letting s = πb[22νP(x − y)]−1 and using (22), we have

∣∣∣∣
∫

R

ei(b
−122ν )z1P(x−y)Gν(x, y, z)dz1

∣∣∣∣

= (1/2)

∣∣∣∣
∫

R

ei(b
−122ν )z1P(x−y)(Gν(x, y, z) − Gν(x, y, z

′))dz1
∣∣∣∣

≤ C |s|δ|D1(x1, 4) ∪ D1(x1 − s, 4)|
≤ C2−2νδbδ

∣∣∣∣
n∑

k=1

b1k(xk − yk)

∣∣∣∣
−δ

. (24)

It follows from (19), (20), (24) and the proposition on p. 182 of [7] that

sup
x∈Rn

∫

Rn
|Lν(x, y)|dy = sup

y∈Rn

∫

Rn
|Lν(x, y)|dx

≤ C2−2νδbδ

∫

Dn(0,8)

∣∣∣∣
n∑

k=1

b1k xk

∣∣∣∣
−δ

dx

≤ C2−2νδ

(
b∑n

k=1 |b1k |
)δ

≤ C2−2νδ. (25)

Thus, by (17), (18) and (25),

‖Sν f ‖L2(Rn) ≤ (C2−2νδ‖ fν‖2L2(Rn)
)1/2 = C2−νδ‖ f ‖L2(Rn).

By (7) and (13), we have

‖Sν f ‖L1(Rn) ≤ C‖ f ‖L1(Rn).

By first interpolating between L1 and L2 and then using a duality argument, we obtain
that, for 1 < p < ∞ and ν ∈ N,

‖Sν f ‖L p(Rn) ≤ C2−νδp‖ f ‖L p(Rn), (26)

where δp is the positive number given by

δp =

⎧
⎪⎨

⎪⎩

2δ(p−1)
p if 1 < p ≤ 2,

2δ
p if 2 < p < ∞.
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Let

ψ(t) =
0∑

ν=−∞
φ(2−ν t),

and

S̃ f (x) =
∫

Rn
ei B(x,y)K (x, y)ψ(

√
b|x − y|) f (y)dy. (27)

Since

supp(ψ) ⊆ [0, 4],

the localization technique described on pp. 118–119 of [6] can be used to get

‖S̃ f ‖L p(Rn) ≤ Cp‖ f ‖L p(Rn) (28)

for 1 < p < ∞. Since the argument, after proper scaling, uses the size condition (2)
but not the smoothness condition (3), we will omit the details of the proof of (28).

It follows from (14), (26) and (28) that

‖TB f ‖L p(Rn) ≤ ‖S̃ f ‖L p(Rn) +
∞∑

ν=1

‖Sν f ‖L p(Rn)

≤ Cp

(
1 +

∞∑

ν=1

2−νδp

)
‖ f ‖L p(Rn) = Cp‖ f ‖L p(Rn).

Theorem 1.2 is proved.

3 Weighted Lp Spaces

Theorem 1.2 can be extended to the weighted L p spaces with the Muckenhoupt Ap

weights. First, let us recall the definition of Ap weights for 1 < p < ∞. Let w(·) be
a nonnegative, locally integrable function on Rn .

Definition 3.1 For 1 < p < ∞, w is said to be in the Muckenhoupt weight class
Ap(R

n) if there exists a constant C > 0 such that

(
1

|Q|
∫

Q
w(y)dy

)(
1

|Q|
∫

Q
w(y)−1/(p−1)dy

)p−1

≤ C (29)

holds for all cubes Q inRn . The smallest such constant C in (29) is the corresponding
Ap constant of w.
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We recall that Ap1(R
n) ⊂ Ap2(R

n) when p1 < p2 and

Lemma 3.1 [2] Let p ∈ (1,∞) and w ∈ Ap(R
n). Then there exists a θ ∈ (0, 1) such

that w1+θ ∈ Ap(R
n). Both θ and the Ap constant of w1+θ depend on n, p and the

Ap constant of w only.

Let L p
w(Rn) =

{
f :

∫

Rn
| f (x)|pw(x)dx < ∞

}
and

‖ f ‖L p
w(Rn) =

( ∫

Rn
| f (x)|pw(x)dx

)1/p

.

Then, we have the following:

Theorem 3.1 Let the operator TB be given as in Theorem 1.2, p ∈ (1,∞) and w ∈
Ap(R

n). Then there exists a positive Cp,w which may depend on p, n, δ, A and the
Ap constant of w, but is independent of the matrix B, such that

‖TB f ‖L p
w(Rn) ≤ Cp,w‖ f ‖L p

w(Rn) (30)

for all f ∈ L p
w(Rn).

We will end the paper with a brief description of the proof of Theorem 3.1.
First, a weighted version of (28) follows from the L p

w boundedness of To (see [4, p.
712]) and an application of the localization technique mentioned earlier. Essentially
all one needs now is to find a weighted analogue of (26), which can be done as follows.

By Lemma 3.1, there exists a θ > 0 such that w1+θ ∈ Ap(R
n). By (7), (13) and

(15), we have

|Sν f (x)| ≤ CMHL f (x), (31)

where MHL denotes the Hardy–Littlewood maximal operator. Thus,

‖Sν f ‖L p

w1+θ (Rn) ≤ Cp,w‖ f ‖L p

w1+θ (Rn). (32)

By using (26), (32) and an interpolation with change of measures (see [9]), one obtains
that

‖Sν f ‖L p
w(Rn) ≤ Cp,w2

−νδpθ/(1+θ)‖ f ‖L p
w(Rn)

for all ν ∈ N. The rest of the details are omitted.
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