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Abstract
In this paper, we prove that the maximal inequality

∥
∥ sup

|t |<1
|eit�D f (x, y)|∥∥L2

loc(�)
≤ C‖ f ‖Hs

D(�), ∀ f ∈ Hs
D(�)

holds for any s > 1
2 with � = {(x, y) ∈ R

2 | x > 0} and �D = ∂2x + (1 + x)∂2y .
As a direct application, we obtain the pointwise convergence for the free Schrödinger
equation i∂t u + �Du = 0 with initial data u(0) = f inside strictly convex domain.

Keywords Schrödinger operator · Pointwise convergence · Airy function

Mathematics Subject Classification 35Q55 · 33C10 · 42B25

1 Introduction

Let � be the upper right plane {(x, y) ∈ R
2 | x > 0}. Define the Laplacian on � to

be �D = ∂2x + (1 + x)∂2y , together with Dirichlet boundary conditions on ∂� : one
may easily see that �, with the metric inherited from �D , is a strictly convex domain,
we refer the reader to [17,18] about the dispersive estimate and Strichartz estimates
for wave equation in such convex domain. In this paper, we study the following local
maximal inequality

∥
∥ sup

|t |<1
|S(t) f (x, y)|∥∥L2

loc(�)
≤ C‖ f ‖Hs

D(�), ∀ f ∈ Hs
D(�), (1.1)
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where u(t, x, y) := S(t) f (x, y) solves

⎧

⎪⎨

⎪⎩

i∂t u + �Du = 0, (t, x, y) ∈ R × �

u(t, x, y) = 0, (x, y) ∈ ∂�,

u(0, x, y) = f (x, y),

(1.2)

and we define Hs
D(�) as the completion of C∞

c (�) equipped with norm

‖ f ‖2Hs
D(�) := ‖ f ‖2L2(�)

+ ∥
∥(−�D)

s
2 f

∥
∥
2
L2(�)

. (1.3)

Using the standard process of approximation (see Corollary 1.2 below), we obtain the
point-wise convergence by (1.1)

lim
t→0

S(t) f (x, y) = f (x, y), a.e. (x, y) ∈ �, ∀ f ∈ Hs
D(�), (1.4)

We easily check that (1.1) is valid for s > 1 by Sobolev embedding [1]: Hs
D(�) ↪→

L∞(�). In this paper, wewant to look for theminimal s to ensure (1.1). The impetus to
consider this problem stems from a series of recent works of the dispersive operators,
including the Schrödinger operator and the wave operator in the flat space R

d , since
Carleson [8] on theSchrödinger operator.We also refer to [4–6,8–11,19,23–25,27–34].

To be more precise, let us recall the results for maximal operators associated to the
Schrödinger equation in the flat space R

d

∥
∥ sup

|t |<1
|e−i t� f (x)|∥∥L2(B(0,1)) ≤ C‖ f (x)‖Hs (Rd ), (1.5)

where B(0, 1) ⊂ R
d is the unit ball centered at zero. Carleson first raised such problem

in [8], where he answered the d = 1 case with s ≥ 1
4 . This result was shown to be

optimal by Dahlberg and Kenig [11]. In dimension d ≥ 2, Sjölin [29] and Vega [33]
established (1.5)with s > 1

2 independently. In particular, the result can be strengthened
to s = 1

2 by Sjölin [29] when d = 2. Meanwhile, Vega [33] gave a counterexample to
show that (1.5) fails if s < 1

4 .
The maximal inequality (1.5) for dimension two is closely related to the develop-

ment of the Fourier restriction theory. The first breakthrough for s < 1
2 was achieved

by Bourgain [4,5], where he proved that there exists s < 1
2 such that (1.5) holds true.

Thereafter, Moyua–Vargas–Vega [25] further developed Tomas-Stein X p,4-space to
obtain that (1.5) holds if s > s0 for some s0 ∈ ( 20

41 ,
40
81

)

. By making use of the bilinear
Restriction estimate for paraboloid, Tao–Vargas [32] and Tao [31] improved the result
to s > 15

32 and s > 2
5 respectively. Recently, observing the localization properties of

Schrödinger waves, Lee [19] obtained the result for s > 3
8 . Shao [30] gave an alterna-

tive proof by using the method of stationary phase and wave packet decomposition.
In [7], Bourgain gave a counterexample to show that s ≥ 1

3 is necessary for (1.5) with
d = 2. By using polynomial partitioning and decoupling method [16], Du–Guth–Li
[13] got the result for s > 1

3 , which is sharp up to the endpoint s = 1
3 .
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Previous to [6], the results about d ≥ 3 remained s > 1
2 , and s ≥ 1

4 was still
believed to be the correct condition for (1.5) in every dimension. The study on this
problem stagnated for several years until the recent work [6], where the 1

2−barrier
was broken for all dimensions. More precisely, Bourgain [6] proved that (1.5) holds
if s > 1

2 − 1
4d . More surprisingly, Bourgain also discovered some counterexamples to

disprove the widely believed assertion on the 1
4−threshold. Specifically, he showed

that s ≥ 1
2 − 1

d is necessary for (1.5) if d ≥ 5. These examples originated essentially
from an observation on arithmetical progressions. Recently, R. Luca and M. Rogers
[20] showed that s ≥ 1

2 − 1
d+2 is necessary for (1.5) if d ≥ 3. More recently, Bourgain

[7] gave a counterexample to see that s < 1
2 − 1

d+2 is necessary for d ≥ 3. Up to
the endpoint, Du–Zhang [14] proved the sharp result for (1.5) in higher dimensions
d ≥ 3. We remark that their result [14] also gives improved results on the size of
divergence set of Schrödinger solutions, the Falconer distance set problem and the
spherical average Fourier decay rates of fractal measures.

Pointwise convergence

Counterexample

d = 1 s ≥ 1
4 Carleson [8] Dahlberg–Kenig [11]s < 1

4

d = 2 s = 3
8+ Bouragin [7], Lee [19], Shao [30]

s > 1
3 Du–Guth–Li [13] Bourgain [7]s < 1

3

d ≥ 3 s > 1
2 Sjölin [29], Vega [33]

s > 1
2 − 1

4d Bourgain [6] s < 1
2 − 1

d , d ≥ 5

Luca-Rogers [20,21], Demeter–Guo [12] s < 1
2 − 1

d+2 , d ≥ 3

Bourgain [7] s < 1
2 − 1

2(d+1)

s > 1
2 − 1

2(d+1) Du–Zhang [14]

d ≥ 1 s ≥ 1
4 Gigante–Soria [15] Radial initial data

Now, we list our main results.

Theorem 1.1 Let s > 1
2 . There holds

∥
∥ sup

|t |<1
|S(t) f |∥∥L2(B((x0,y0),1)∩�)

≤ C‖ f ‖Hs
D(�), ∀ f ∈ Hs

D(�) (1.6)

for any (x0, y0) ∈ �, where B((x0, y0), 1) is the unit ball centered at (x0, y0), with
the metric inherited from �D.

As a consequence of Theorem 1.1, we obtain the point-wise convergence result.

Corollary 1.2 Let s > 1
2 . Then, we have

lim
t→0

S(t) f (x, y) = f (x, y), a.e. (x, y) ∈ �, (1.7)

for any function f ∈ Hs
D(�).
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Theorem 1.3 The convergence property (1.4) requires s ≥ 1
4 .

Remark 1.4 As I know, this is the first result to consider the point-wise convergence
result in convex domain. In the future, we will try to utilize the polynomial partitioning
and decoupling method to improve the result in Theorem 1.1, and describe the size of
divergence set of Schrödinger solutions in convex domain.

We conclude this section by giving some notations which will be used throughout
this paper. To simplify the expression of our inequalities, we introduce some symbols
�, ∼. If X ,Y are nonnegative quantities, we use X � Y or X = O(Y ) to denote the
estimate X ≤ CY for some absolute constant C , and X ∼ Y to denote the estimate
X � Y � X .

2 Preliminaries

2.1 Airy Function

First, we recall a few well-known facts about Airy functions. For z ∈ C, Ai(z) is
defined by

Ai(z) := 1
2π

∫

R

ei(s
3/3−sz) ds = 1

2π

∫

R

cos
( s3
3 − sz

)

ds. (2.1)

This integral is not absolutely convergent, but is well-defined as the Fourier transform
of a temperate distribution. And it is easy to see that Ai(z) satisfies the Airy equation

Ai′′(z) − zAi(z) = 0. (2.2)

For positive z > 0, as z → ∞, we have Ai(z) = O(z−∞), while for negative values

Ai(−z) = e−i π
3 Ai(e−i π

3 z) + ei
π
3 Ai(ei

π
3 z) =: A+(z) + A−(z).

Notice that A−(z) = A+(z̄). We also have asymptotic expansion (e.g. [26])

A−(z) = 1

2
√

π z
1
4

ei
π
4 e− 2

3 i z
3
2 eϒ(z

3
2 ) = z−

1
4 ei

π
4 e− 2

3 i z
3
2
�−(z), (2.3)

with eϒ(z
3
2 ) ∼ (

1 + ∑

k≥1
ckz−

3k
2
) ∼ 2

√
π�−(z) as z → +∞, and the corresponding

expansion for A+, where we define �+(z) := �−(z̄).
Next, we recall some basic properties of Ai(z).

Proposition 2.1 [22] All the zeros of Ai(z) are real and negative, say

Ai(−wk) = 0, −1 > −w1 > −w2 > · · · → −∞. (2.4)
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Moreover,

wk =
(
3
2

(

k − 1
4

)

π
) 2

3 � k
2
3 , ∀ k ≥ 1. (2.5)

Lemma 2.2 [17] There exists C0 such that for L ≥ 1, the following holds true:

sup
b∈R

(
∑

1≤k≤L

k− 1
3 |Ai(b − wk)|2

)

≤ C0L
1
3 . (2.6)

2.2 Eigenfunctions and Sobolev Spaces

In this subsection, we recall some basic properties of Sobolev spaces in the Friedlander
model case as in [17,18]. Let � := {(x, y) ∈ R

2 | x > 0, y ∈ R} denote the half-
spaceR

2+ := R
+×Rwith the Laplacian given by�D = ∂2x +(1+x)∂2y with Dirichlet

boundary condition on ∂�. Taking the Fourier transformation in the y−variable gives

−�D,η = −∂2x + (1 + x)η2.

For η �= 0, − �D,η is a self-adjoint, positive operator on L2([0,∞)) with compact
resolvent. In fact, the potential V (x, η) = (1 + x)η2 is bounded from below, it is
continuous and lim

x→∞ V (x, η) = ∞. Thus, we can consider the form associated with

−∂2x + V (x, η),

Q(v) =
∫ ∞

0

(|∂xv|2 + V (x, η)|v|2)dx,
D(Q) =H1

0 (R+) ∩ {

v ∈ L2(R+), (1 + x)1/2v ∈ L2(R+)
}

,

which is clearly symmetric, closed and bounded from below by a positive constant
c. If c � 1 is chosen such that −�D,η + c is invertible, then (−�D,η + c)−1 sends
L2([0,∞)) in D(Q) and we deduce that (−�D,η + c)−1 is also a self-adjoint and
compact operator. The last assertion follows from the compact inclusion

D(Q) = {

v| ∂xv, (1 + x)1/2v ∈ L2([0,∞)), v(0) = 0
}

↪→ L2([0,∞)).

Thus, we derive from classical spectral theory that there exists a base of eigenfunctions
vk of −�D,η associated to a sequence of eigenvalues λk(η) → ∞. From −�D,ηv =
λv, we get

{

∂2x v = (η2 − λ + xη2)v,

v(0, η) = 0.
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and after a suitable change of variables, we find that an orthonormal basis of
L2([0,+∞)) is given by eigenfunctions

ek(x, η) = fk
η1/3

k1/6
Ai(η

2
3 x − wk) (2.7)

where fk are constants so that

‖ek(·, η)‖L2((0,∞)) = 1,

and ek satisfies

− �D,ηek(x, η) = λk(η)ek(x, η), λk(η) = η2 + wkη
4
3 , (2.8)

with {wk}k being the zeros of Airy’s function in decreasing order, see (2.5).

Remark 2.3 (1) As Remark 3.1 in [17], if we denote δx=a to be the Dirac distribution
on R

+, a > 0, then it reads as follows

δx=a =
∑

k≥1

ek(x, η)ek(a, η). (2.9)

(2) fk as in (2.7) has uniform upper bound and lower bound with respect to k. Indeed,
we get by ‖ek(x, η)‖2

L2
x (R

+)
= 1

f 2k
η2/3

k1/3

∫ ∞

0
|Ai(η 2

3 x − wk)|2dx = 1.

By scaling, we have

f 2k
k1/3

∫ ∞

0
|Ai(x − wk)|2dx = 1.

Hence,

f 2k = k
1
3

( ∫ ∞

0
|Ai(x − wk)|2dx

)−1
.

We are reduced to show that there exist constants C1 and C2 such that

C1k
1
3 ≤

∫ ∞

0
|Ai(x − wk)|2 dx ≤ C2k

1
3 . (2.10)
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Using the asymptotic behavior of Airy function: Ai(−z) = O(z− 1
4 ) as z → +∞,

and wk � k
2
3 , we obtain for k sufficiently large

∫ wk−w
1
3
k

0
|Ai(x − wk)|2 dx �

∫ wk−w
1
3
k

0
(wk − x)−

1
2 dx

�2
√

wk − 2 � √
wk � k

1
3 ,

By |Ai(z)| ≤ C(1 + |z|)− 1
4 , we estimate

∫ wk+w
1
3
k

wk−w
1
3
k

|Ai(x − wk)|2 dx � w
1
3
k � k

2
9 .

On the other hand, by the asymptotic behavior of Airy function: Ai(z) = O(z−∞)

as z → +∞, we get

∫ ∞

wk+w
1
3
k

|Ai(x − wk)|2 dx �
∫ ∞

w
1
3
k

x−6 dx � 1.

And so (2.10) follows.
(3) We have by (2.6)

sup
x∈R+

( ∑

1≤k≤L

|ek(x, η)|2
)

≤ C0η
2
3 L

1
3 . (2.11)

For each function f (x, y) ∈ L2(�), taking the Fourier transformation in the
y-variable, and using the fact that {ek(x, η)}k≥1 forms an orthonormal basis of
L2([0,+∞)), we have the expansion formula

f̂ (x, η) =
∞
∑

k=1

f̂k(η)ek(x, η), f̂k(η) =
∫ ∞

0
f̂ (x, η)ek(x, η) dx .

By orthogonality, it gives

‖ f̂ (x, η)‖L2
x (R

+) =
( ∞

∑

k=1

| f̂k(η)|2
) 1

2
.

Therefore, we have by Plancherel theorem

‖ f (x, y)‖L2(�) = ‖ f̂ (x, η)‖L2(R+×R) =
( ∞

∑

k=1

‖ f̂k(η)‖2L2(R)

) 1
2
. (2.12)
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Similarly,

‖ f (x, y)‖Ḣ s
D(�) =

( ∞
∑

k=1

∥
∥λk(η)

s
2 f̂k(η)

∥
∥
2
L2(R)

) 1
2
. (2.13)

3 Proof of Main Theorem

3.1 Proof of Theorem 1.1

First, we recall the dyadic partition of unity, see Proposition 2.10 in Bahouri-Chemin-
Danchin [3].

Proposition 3.1 (Dyadic partition of unity, [3]) Let C be the annulus
{

ξ ∈ R : 3
4 ≤

|ξ | ≤ 8
3

}

. There exist even functions ϕ and ψ , valued in the interval [0, 1], and
suppϕ ⊂ B(0, 4/3), suppψ ⊂ C, and such that

ϕ(ξ) +
∑

j≥0

ψ(2− jξ) = 1, ∀ ξ ∈ R. (3.1)

Applying the dyadic partition of unity (3.1), we estimate

∥
∥
∥ sup

|t |<1
|S(t) f |

∥
∥
∥
L2(B((x0,y0),1)

⋂
�)

≤
∥
∥
∥ sup

|t |<1
|S(t)ϕ(

√−�D) f |
∥
∥
∥
L2(B((x0,y0),1)

⋂
�)

+
∞
∑

j=0

∥
∥
∥ sup

|t |<1
|S(t)ψ(2− j

√−�D) f |
∥
∥
∥
L2(B((x0,y0),1)

⋂
�)

. (3.2)

Then, we are reduced to show

‖S(t)ϕ(
√−�D) f ‖L∞

t,x,y
≤C‖ f ‖L2(�), (3.3)

∥
∥
∥ sup

|t |<1
|S(t)ψ(2− j

√−�D) f |
∥
∥
∥
L2(B((x0,y0),1)

⋂
�)

≤C2
j
2
∥
∥ψ(2− j

√−�D) f
∥
∥
L2(�)

.

(3.4)

Indeed, plugging (3.3) and (3.4) into (3.2), and using the Cauchy–Schwartz inequality,
we obtain for any s > 1

2
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∥
∥
∥ sup

|t |<1
|S(t) f |

∥
∥
∥
L2(B((x0,y0),1)

⋂
�)

� ‖ f ‖L2(�) +
( ∞

∑

j=0

2 j
∥
∥ψ(2− j

√−�D) f
∥
∥2
L2(�)

) 1
2

� ‖ f ‖L2(�) +
( ∞

∑

j=0

2 j
∞
∑

k=1

∥
∥ψ

(

2− j
√

λk(η)
)

f̂k(η)
∥
∥2
L2(R)

) 1
2

� ‖ f ‖L2(�) +
( ∞

∑

k=1

∥
∥λk(η)

s
2 f̂k(η)

∥
∥
2
L2(R)

) 1
2

� ‖ f ‖Hs
D(�).

First, we consider the contribution from the lower frequency term, i.e. (3.3). Taking
the Fourier transformation in the y-variable, we have

ϕ(
√−�D,η) f̂ (x, η) =

∞
∑

k=1

ϕ
(√

λk(η)
)

f̂k(η)ek(x, η).

By the support property of ϕ, we know that |η| � 1. Then, we obtain by Bernstein’s
inequality in y-variable and (2.11) with L ∼ |η|−2

‖S(t)ϕ(
√−�D) f ‖L∞

y (R) �‖S(t)ϕ(
√−�D) f ‖L2

y(R)

�
∥
∥eit�D,ηϕ

(√−�D,η

)

f̂ (x, η)
∥
∥
L2

η(R)

�
∥
∥
∥

∞
∑

k=1

e−i tλk (η)ϕ
(√

λk(η)
)

f̂k(η)ek(x, η)

∥
∥
∥
L2

η(R)

�
∥
∥
∥

( ∞
∑

k=1

| f̂k(η)|2
) 1

2
( |η|−2

∑

k=1

|ek(x, η)|2
) 1

2
∥
∥
∥
L2

η(R)

�
( ∞

∑

k=1

‖ f̂k(η)‖2L2(R)

) 1
2

�‖ f ‖L2(�).

And so (3.3) follows.
Next, we turn to prove (3.4). Notice that

S(t)ψ(2− j
√−�D) f (x, y)

=
∫

R

eiyηeit�D,ηψ
(

2− j
√−�D,η

)

f̂ (x, η) dη

=
∫

R

eiyη
∞
∑

k=1

e−i tλk (η)ψ(2− j
√

λk(η)) f̂k(η)ek(x, η) dη
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= 2
∫ ∞

0
cos(yρ)

∞
∑

k=1

e−i tλk (ρ)ψ(2− j
√

λk(ρ)) f̂k(ρ)ek(x, ρ) dρ

=
∫ ∞

0
e−i tτ

[

2
∞
∑

k=1

cos
(

yρ(τ, k)
)

ψ(2− j√τ) f̂k
(

ρ(τ, k)
) ∂ρ(τ, k)

∂τ
ek

(

x, ρ(τ, k)
)]

dτ

= F−1
t �→τ

[

2χ[0,∞)(τ )

∞
∑

k=1

cos
(

yρ(τ, k)
)

ψ(2− j√τ) f̂k
(

ρ(τ, k)
) ∂ρ(τ, k)

∂τ
ek

(

x, ρ(τ, k)
)
]

(t),

where we use a change of variables: τ = λk(ρ) = ρ2 + wkρ
4
3 ∼ 22 j . We utilize

Bernstein’s inequality and Plancherel theorem in time t to get

sup
|t |<1

∣
∣S(t)ψ(2− j

√−�D) f (x, y)
∣
∣
2

≤ 22 j‖S(t)ψ(2− j
√−�D) f (x, y)‖2

L2
t (R)

≤ 22 j+1
∫ ∞

0

∣
∣
∣

∞
∑

k=1

cos
(

yρ(τ, k)
)

ψ(2− j√τ) f̂k
(

ρ(τ, k)
)∂ρ(τ, k)

∂τ
ek

(

x, ρ(τ, k)
)
∣
∣
∣

2
dτ.

By orthogonality, it gives

∥
∥
∥ sup

|t |<1

∣
∣S(t)ψ(2− j

√−�D) f (x, y)
∣
∣

∥
∥
∥

2

L2
x (R

+)

≤ 22 j+1
∫ ∞

0

∫ ∞

0

∣
∣
∣

∞
∑

k=1

cos
(

yρ(τ, k)
)

ψ(2− j√τ) f̂k
(

ρ(τ, k)
)

×∂ρ(τ, k)

∂τ
ek

(

x, ρ(τ, k)
)
∣
∣
∣

2
dx dτ

� 22 j
∞
∑

k=1

∫ ∞

0
|ψ(2− j√τ)|2∣∣ f̂k

(

ρ(τ, k)
)∣
∣
2
∣
∣
∣
∂ρ(τ, k)

∂τ

∣
∣
∣

2
dτ

� 22 j
∞
∑

k=1

∫

ρ

|ψ(2− j
√

λk(ρ))|2∣∣ f̂k
(

ρ
)∣
∣2

∣
∣
∣
∂ρ(τ, k)

∂τ

∣
∣
∣ dρ

� 22 j
∞
∑

k=1

∫

ρ

|ψ(2− j
√

λk(ρ))|2∣∣ f̂k
(

ρ
)∣
∣2

1

2ρ + 4
3wkρ

1
3

dρ

� 2 j
∞
∑

k=1

∥
∥ψ(2− j

√

λk(η)) f̂k(η)
∥
∥
2
L2(R)

� 2 j
∥
∥ψ(2− j

√−�D) f
∥
∥2
L2(�)

,

where we use the changing variable τ = λk(ρ) = ρ2 + wkρ
4
3 and

1

2ρ + 4
3wkρ

1
3

� ρ

λk(ρ)
� 2− j .



Journal of Fourier Analysis and Applications (2019) 25:2021–2036 2031

Thus, using Hölder’s inequality, we obtain

∥
∥
∥ sup

|t |<1
|S(t)ψ(2− j

√−�D) f |
∥
∥
∥
L2(B((x0,y0),1)

⋂
�)

� sup
y∈R

∥
∥
∥ sup

|t |<1
|S(t)ψ(2− j

√−�D) f |
∥
∥
∥
L2
x (R

+)

� 2
j
2
∥
∥ψ(2− j

√−�D) f
∥
∥
L2(�)

.

This implies (3.4).
Therefore, we complete the proof of Theorem 1.1.

3.2 Proof of Corollary 1.2

Fixed f (x, y) ∈ Hs
D(�), we define

�∗ f (x, y) := lim
t→0

S(t) f (x, y) − lim
t→0

S(t) f (x, y) and �∗ f (x, y) := sup
|t |<1

∣
∣S(t) f

∣
∣.

Then, |�∗ f (x, y)| ≤ 2�∗ f (x, y). By the density, we get for each f (x, y) ∈ Hs
D(�),

∀ ε > 0, ∃ g ∈ C∞
c (�), s.t . ‖ f − g‖Hs

D(�) <
ε

3
. (3.5)

Observing that

‖S(t)g − g‖L∞(�) � ‖S(t)g − g‖
H

3
2
D (�)

→ 0, as t → 0,

we obtain �∗g(x) ≡ 0, ∀ g ∈ C∞
c (�). Hence,

�∗ f = �∗( f − g),
∣
∣�∗ f

∣
∣ = ∣

∣�∗( f − g)
∣
∣ ≤ 2�∗( f − g).

This together with (1.6) and (3.5) yields that

∥
∥�∗ f

∥
∥
L2
loc(�)

≤ 2
∥
∥�∗( f − g)

∥
∥
L2
loc(�)

� ‖ f − g‖Hs
D(�) < ε. (3.6)

We obtain�∗ f = 0, a.e. (x, y) ∈ �, since ε is arbitrary. And so the limits lim
t→0

S(t) f

exists almost everywhere. On the other hand, by the orthonormal basis of L2([0,∞)),
we have

f̂ (x, η) =
∞
∑

k=1

f̂k(η)ek(x, η), f̂k(η) =
∫ ∞

0
f̂ (x, η)ek(x, η) dx,

and

‖ f ‖2Hs
D(�) =‖ f̂ (x, η)‖2L2(R+×R)

+ ∥
∥(−�D,η)

s
2 f̂ (x, η)

∥
∥2
L2(R+×R)
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=
∞
∑

k=1

‖ f̂k(η)‖2L2(R)
+

∞
∑

k=1

∥
∥λk(η)

s
2 f̂k(η)

∥
∥2
L2(R)

,

with ek(x, η), λk(η) and �D,η defined in Sect. 2. Thus, for any ε > 0, there exists
N > 0 and R > 0 such that

∞
∑

k=N

‖ f̂k(η)‖2L2(R)
+

∞
∑

k=1

‖ f̂k(η)‖2L2(|η|>R)
<

ε

2
.

Then, for |t | < cε

‖ f ‖2
L2(�)

(R2+N
2
3 R

4
3 )
, we estimate

∥
∥S(t) f − f

∥
∥2
L2(�)

=∥
∥eit�D,η f̂ (x, η) − f̂ (x, η)

∥
∥2
L2(R+×R)

=
∞
∑

k=1

∥
∥
(

eitλk (η) − 1
)

f̂k(η)
∥
∥
2
L2(R)

≤
N

∑

k=1

∥
∥
(

eitλk (η) − 1
)

f̂k(η)
∥
∥2
L2(R)

+
∞
∑

k=N

‖ f̂k(η)‖2L2(R)

≤
N

∑

k=1

∥
∥
(

eitλk (η) − 1
)

f̂k(η)
∥
∥
2
L2(|η|≤R)

+
N

∑

k=1

∥
∥ f̂k(η)

∥
∥
2
L2(|η|>R)

+
∞
∑

k=N

‖ f̂k(η)‖2L2(R)
< ε,

where we use the fact that

N
∑

k=1

∥
∥
(

eitλk (η) − 1
)

f̂k(η)
∥
∥2
L2(|η|≤R)

≤ sup
1≤k≤N
|η|≤R

∣
∣eitλk (η) − 1

∣
∣

∞
∑

k=1

‖ f̂k(η)‖2L2(R)
< ε

in the last inequality. This implies

lim
t→0

∥
∥S(t) f − f

∥
∥
L2 = 0.

Therefore, (1.7) follows by the fact that the limit lim
t→0

S(t) f exists almost everywhere.

3.3 Proof of Theorem 1.3

Let φk ∈ C∞
c ([2k, 2k + 2

k
2 ]), k = 1, 2, . . . , and

0 ≤ φk ≤ 1,
∣
∣
∣
di

dxi
φk(x)

∣
∣
∣ ≤ C2− k

2 i .
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Taking

gk(x, y) = F−1(φk(η)e2k+2(x, η)
)

,

then, we have

eit�D gk(x, y) =
∫

R

ei(yη−tλ2k+2 (η))φk(η)e2k+2(x, η) dη.

Writing �(η) := yη − tλ2k+2(η) − 2
3 z(η, x)

3
2 with z(η, x) = w2k+2 − η

2
3 x , then

�′(η) = y − t
(

2η + 4
3w2k+2η

1
3
) + 2

3 z(η, x)
1
2 η− 1

3 x . For 1
2 ≤ x, y ≤ 1, taking

t(x, y) = y + 2
3 z(η0, x)

1
2 η

− 1
3

0 x

2η0 + 4
3w2k+2η

1
3
0

, η0 = 2k + 2
k
2−1,

we get �′(η0) = 0 and

∣
∣�(η) − �(η0)

∣
∣ ≤ sup

η̄

|�′(η̄)| · |η − η0| ≤ 1
2 , ∀ η ∈ [2k, 2k + 2

k
2 ]. (3.7)

By (2.7), (2.3) and Remark 2.3, we get for all η ∈ [2k, 2k + 2
k
2 ] and |x | ≤ 1

z :=w2k+2 − η
2
3 x � 2

2
3 k, e2k+2(x, η) = f2k+2

η
1
3

2
k+2
6

Ai(−z),

Ai(−z) =A−(z) + A+(z), A+(z) = A−(z),

A−(z) =z−
1
4 ei

π
4 e− 2

3 i z
3
2
�−(z), 2

√
π�−(z) ∼

⎛

⎝1 +
∑

k≥1

ckz
− 3k

2

⎞

⎠

Thus,

eit(y)�D gk(x, y)

=
∫

R

ei(yη−tλ2k+2 (η))φk(η) f2k+2
η

1
3

2
k+2
6

[

A+ + A−
]

(z(η, x)) dη

= ei
π
4 ei�(η0)

∫

R

ei[�(η)−�(η0)]φk(η) f2k+2
η

1
3

2
k+2
3

�−(z(η, x)) dη

+ e−i π
4

∫

R

ei(yη−tλ2k+2 (η)+ 2
3 z(η,x)

3
2 ) f2k+2φk(η)

η
1
3

2
k+2
3

�+(z(η, x)) dη

:= I1 + I2.



2034 Journal of Fourier Analysis and Applications (2019) 25:2021–2036

From (3.7), we know that

|I1| =
∣
∣
∣

∫

R

ei[�(η)−�(η0)]φk(η) f2k+2
η

1
3

2
k+2
6

z(η, x)−
1
4 �−(z(η, x)) dη

∣
∣
∣ � 2

k
2 .

Since |∂η[yη − tλ2k+2(η) + 2
3 z(η, x)

3
2 ]| ≥ c0 > 0, and |∂2η [yη − tλ2k+2(η) +

2
3 z(η, x)

3
2 ]| ≤ C2−k, and

∣
∣
∣∂η

[

f2k+2φk(η)
η

1
3

2
k+2
3

�+(z(η, x))
]∣
∣
∣ ≤ C2−k,

we estimate by integrating by parts

|I2| =
∣
∣
∣

∫

R

ei(yη−tλ2k+2 (η)+ 2
3 z(η,x)

3
2 ) f2k+2φk(η)

η
1
3

2
k+2
3

�+(z(η, x)) dη

∣
∣
∣ � 2− k

2 .

Hence,

∣
∣eit(y)�D gk(x, y)

∣
∣ ≥ |I1| − |I2| �2

k
2 , ∀ 1

2 ≤ x, y ≤ 1. (3.8)

On the other hand,

‖gk(x, y)‖Hs
D(�) � 2k(s+

1
4 ). (3.9)

Now, we argue by contradiction. We assume that the convergence property (1.4)
holds for any function f ∈ Hs

D(�) with s < 1
4 . Then, by the same argument as in [2,

Lemma C.1], we have

∣
∣
∣

{

(x, y) ∈ � : 1
2 ≤ y ≤ 1, |x | ≤ 1, sup

0<t<1
|eit�D f (x, y)| > λ

}
∣
∣
∣ ≤ C

(‖ f ‖Hs
D(�)

λ

)2
.

This together with (3.8) and (3.9) implies for λ = 2
k
2

1

2
≤

∣
∣
∣

{

(x, y) ∈ � : 1
2 ≤ y ≤ 1, |x | ≤ 1, sup

0<t<1
|eit�D gk(x, y)| > 2

k
2
}
∣
∣
∣

≤C
(‖gk‖Hs

D(�)

2
k
2

)2

≤C22k(s−
1
4 ),

which is a contradiction as k → +∞, as long as s < 1
4 . Therefore, we conclude

Theorem 1.3.
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