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Abstract

Let (X, d, ) be a space of homogeneous type, with the upper dimension w, in the
sense of Coifman and Weiss. Assume that 7 is the smoothness index of the wavelets on
X constructed by Auscher and Hytonen. In this article, when p € (o/(w + 1), 1], for
the atomic Hardy spaces HZ%, (X) introduced by Coifman and Weiss, the authors estab-
lish their various real-variable characterizations, respectively, in terms of the grand
maximal functions, the radial maximal functions, the non-tangential maximal func-
tions, the various Littlewood—Paley functions and wavelet functions. This completely
answers the question of Coifman and Weiss by showing that no additional (geometri-
cal) condition is necessary to guarantee the radial maximal function characterization
of Hclw(X ) and even of HX,(X) with p as above. As applications, the authors obtain
the finite atomic characterizations of H&, (X), which further induce some criteria for
the boundedness of sublinear operators on HE (X). Compared with the known results,
the novelty of this article is that x is not assumed to satisfy the reverse doubling con-
dition and d is only a quasi-metric, moreover, the range p € (o/(w + 1), 1] is natural
and optimal.
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1 Introduction

The real-variable theory of Hardy spaces plays a fundamental role in harmonic analy-
sis. The classical Hardy space on the n-dimensional Euclidean space R” was initially
developed by Stein and Weiss [50] and later by Fefferman and Stein [11]. Hardy spaces
H? (R"™) have proved a suitable substitute of Lebesgue spaces L? (R") with p € (0, 1]
in the study of the boundedness of operators. Indeed, any element in the Hardy space
can be decomposed into a sum of some basic elements (which are called atoms); see
Coifman [5] for n = 1 and Latter [36] for general n € N. Characterizations of Hardy
spaces via Littlewood—Paley functions were due to Uchiyama [51]. For more study on
classical Hardy spaces on R"”, we refer the reader to the well-known monographs [ 16—
18,41,49]. Modern developments regarding the real-variable theory of Hardy spaces
are so deep and vast that we can only list a few literatures here, for example, the theory
of Hardy spaces associated with operators (see [2,3,10,30]), Hardy spaces with vari-
able exponents (see [44]), the real-variable theory of Musielak—Orlicz Hardy spaces
(see [35,53]), and also Hardy spaces for ball quasi-Banach spaces (see [48]).

In this article, we focus on the real-variable theory of Hardy spaces on spaces of
homogeneous type. It is known that the space of homogeneous type introduced by
Coifman and Weiss [6,7] provides a natural setting for the study of both function
spaces and the boundedness of operators. A quasi-metric space (X, d) is a non-empty
set X equipped with a quasi-metric d, that is, a non-negative function defined on
X x X, satisfying that, for any x, y, z € X,

(i) d(x,y) =0if and only if x = y;
(i) d(x,y) =d(y,x);
(iii) there exists a constant Ag € [1, 0o) such that d(x, z) < Aold(x, y) +d(y, 2)].

The ball B on X centered at xp € X with radius r € (0, oo) is defined by setting
B :=B(xg,r)  ={xe X: dx,xg) <r}.

For any ball B and t € (0, 00), denote by 7 B the ball with the same center as that
of B but of radius t times that of B. Given a quasi-metric space (X, d) and a non-
negative measure u, we call (X, d, i) a space of homogeneous type if p satisfies the
doubling condition: there exists a positive constant C(,y € [1, co) such that, for any
ball B C X,

n@2B) < Cyyu(B).
The above doubling condition is equivalent to that, for any ball B and A € [1, 00),
WG.B) < Cur”un(B), (1.1
where w := log, C(,) is called the upper dimension of X . If Ag = 1, we call (X, d, )
a doubling metric measure space.
Accordingto [7, pp. 587-588], we always make the following assumptions through-

out this article. For any point x € X, assume that the balls {B(x, r)},¢(0,00) form a
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basis of open neighborhoods of x; assume that y is Borel regular, which means that
open sets are measurable and every set A C X is contained in a Borel set E satisfying
that w(A) = w(E); we also assume that u(B(x,r)) € (0, 00) for any x € X and
r € (0, 00). For the presentation concision, we always assume that (X, d, w) is non-
atomic [namely, u({x}) = O for any x € X] and diam(X) := sup{d(x,y) : x, y €
X} = oo. It is known that diam(X) = oo implies that u(X) = oo (see, for example,
[45, Lemma 5.1] or [1, Lemma 8.1]).

Let us recall the notion of the atomic Hardy space on spaces of homogeneous type
introduced by Coifman and Weiss [7]. For any o € (0, 00), the Lipschitz space Ly (X)
is defined to be the collection of all measurable functions f such that

|f(x) — f)I
x;éy [ (B (x,d(x, y))]¥

1f 2o x) ==

Denote by (Ly (X))’ the dual space of L, (X) equipped with the weak-* topology.

Definition 1.1 Let p € (0,1] and ¢ € (p, 00] N [1, co]. A function a is called a
(p, q)-atom if
(1) suppa:={xe X: alx)#0}C B(xo, r) for some xp € X and r € (0, 00);
(i) [fy la(x)|? du(X)]q < [ (B (xo, r))]
(i) [y a(x)dp(x) =0.
The atomic Hardy space H5y? (X) is defined as the subspace of (£ /p—1(X))" when
p € (0,1) or of Ll(X ) when p = 1, which consists of all the elements f admitting
an atomic decomposition
o
=> kjaj, (1.2)
j=0

where {a]} ~o are (p, g)-atoms, {A; } 2o C C satisfies Z —0l1jl? < oo and the

series in (1.2) converges in (Ll/p_l(X))’ when p € (0, 1) or in L (X) when p = 1.
Define

=

o]

1z =1nf 3 [ 10507 ] ¢

j=0

where the infimum is taken over all the decompositions of f as in (1.2).

It was proved in [7] that the atomic Hardy space H&;’(X) is independent of the
choice of ¢ and hence we sometimes write HE,(X) for short. It was also proved in
[7] that the dual space of HA, (X) is the Lipschitz space Li/p—1(X) when p € (0, 1),
and the space BMO(X) of bounded mean oscillation when p = 1.

It is well known that the most basic result in the real-variable theory of Hardy
spaces is their characterizations in terms of maximal functions. Coifman and Weiss
[7, pp.641-642] observed that a proof of the duality result between H'(R") and
BMO(R") from Carleson [4] can be extended to the general setting of spaces of
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homogeneous type provided a certain additional geometrical assumption is added,
from which one can then obtain a radial maximal function characterization of HJ, (X).
Coifman and Weiss [7, p.642] then asked that to what extent their geometrical con-
dition is necessary for the validity of the radial maximal function characterization
of HL, (X). Since then, lots of efforts are made to build various real-variable char-
acterizations of the atomic Hardy spaces on spaces of homogeneous type with few
geometrical assumptions. In this article, we completely answer the aforementioned
question of Coifman and Weiss by showing that no any additional (geometrical) condi-
tion is necessary to guarantee the radial maximal function characterization of HclW (X)
and even of H%,(X) with p < 1 but near to 1.

Recall that a triple (X, d, n) is said to be Ahlfors-n regular if w(B(x,r)) ~ r"
for any x € X and r € (0, diam X) with positive equivalence constants independent
of x and . When (X, d, u) is Ahlfors-n regular, upon assuming the quasi-metric d
satisfying that there exists & € (0, 1) such that, for any x, x’, y € X,

ld(x,y) —d(x', )| <[dx, x)P[d(x, y) +dx', )17, (1.3)

Macias and Segovia [43] characterized Hardy spaces via the grand maximal functions,
and Li [37] obtained another grand maximal function characterization via test functions
introduced in [28]. Also, Duong and Yan [9] characterized Hardy spaces via the Lusin
area function associated with certain semigroup.

Recall that an RD-space (X, d, t) is a doubling metric measure space with the
measure [ furthel satisfying the reverse doubling condition, that is, there exist a
positive constant C € (0, 1]and k¥ € (0, w] such that, for any ball B(x, r) withx € X,
r € (0,diam X /2) and A € [1, diam X /[2r]),

CAu(B(x,r)) < u(B(x, Ar)).

Indeed, any path connected doubling metric measure space is an RD-space (see [27,
57]). Characterizations of Hardy spaces on RD-spaces via various Littlewood—Paley
functions were established in [26,27]. Also, characterizations of Hardy spaces on
RD-spaces via various maximal functions can be found in [20,21,56]. It should be
mentioned that local Hardy spaces can be used to characterize more general scale
of function spaces like Besov and Triebel-Lizorkin spaces on RD-spaces (see [57]).
For a systematic study of Besov and Triebel-Lizorkin spaces on RD-spaces, we refer
the reader to [27]. More on analysis over Ahlfors-n regular metric measure spaces or
RD-spaces can be found in [8,19,22,32-34,54,57,58].

The main motivation of studying the real-variable theory of function spaces and the
boundedness of operators on spaces of homogeneous type comes from the celebrated
work of Auscher and Hytonen [1], in which they constructed an orthonormal wavelet
basis {1//5 . k€ Z, a € Gi} of L?>(X) with Holder continuity exponent 7 € (0, 1)
and exponential decay by using the system of random dyadic cubes. The first creative
attempt of using the idea of [ 1] to investigate the real-variable theory of Hardy spaces on
spaces of homogeneous type was due to Han et al. [23] (see also Han et al. [24]). Indeed,
in [23], Hardy spaces via wavelets on spaces of homogeneous type were introduced
and then these spaces proved to have atomic decompositions. The method used in
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[23] is based on a new Calderén reproducing formula on spaces of homogeneous type
(see [23, Proposition 2.5]). But there exists an error in the proof of [23, Proposition
2.5], namely, since the regularity exponent of the approximations of the identity in
[23, p.3438] is O [indeed, O is from the regularity of the quasi-metric d in (1.3)],
it follows that the regularity exponent in [23, (2.6)] should be min{6, n} and hence
the correct range of p in [23, Proposition 2.5] (indeed, all results of [23]) seems to be
(w/[w+min{#, n}], 1] which is not optimal. Moreover, the criteria of the boundedness
of Calder6n—Zygmund operators on the dual of Hardy spaces were established in
[23]. Also, Fu and Yang [14] obtained an unconditional basis of HclW (X) and several
equivalent characterizations of HJl (X) in terms of wavelets.

Another motivation of this article comes from the Calderén reproducing formulae
established in [29]. Indeed, the work of [29] was partly motivated by the wavelet theory
of Auscher and Hytonen in [1] and a corresponding wavelet reproducing formula
(which can converge in the distribution space) in [29]. The already existing works
(see [20,26,27,56,57]) regarding Hardy spaces on RD-spaces show the feasibility of
establishing various real-variable characterizations of the atomic Hardy spaces on
spaces of homogeneous type via the Calderén reproducing formulae. It should be
mentioned that a characterization of the atomic Hardy spaces via the Littlewood—
Paley functions was established in [25] via the aforementioned wavelet reproducing
formula; see also [25] for some corresponding conclusions of product Hardy spaces
on spaces of homogeneous type.

In this article, motivated by [23,29], for the atomic Hardy spaces HE,(X) with
any p € (w/[ow + n], 1], we establish their various real-variable characteriza-
tions, respectively, in terms of the grand maximal functions, the radial maximal
functions, the non-tangential maximal functions, the various Littlewood—Paley func-
tions and wavelets. Observe that these characterizations are true for H%, (X) with
p € (o/lw + nl,1] and X being any space of homogeneous type without any
additional (geometrical) conditions, which completely answers the aforementioned
question asked by Coifman and Weiss [7, p.642]. As an application, we obtain the
finite atomic characterizations of Hardy spaces, which further induce some criteria for
the boundedness of sublinear operators on Hardy spaces. Compared with the known
results, the novelty of this article is that u is not assumed to satisfy the reverse doubling
condition and d is only a quasi-metric. Moreover, the range of p € (w/(w + 1), 1]
for the various maximal function characterizations and the Littlewood—Paley func-
tion characterizations of the atomic Hardy spaces Hl,(X) is natural and optimal.
The key tool used through this article is those Calderén reproducing formulae from
[29].

In addition, we point out that, when X is a doubling metric measure space, the
finite atomic characterizations of Hardy spaces are also useful in establishing the
bilinear decomposition of the product space HCIW(X) x BMO(X) and HE, (X) x
Li/p—1(X), with p € (o/[w + 1], 1) in [13-15,40], and also in the study of the
endpoint boundedness of commutators generated by Calderén-Zygmund operators
and BMO(X) functions in [38,39].

The organization of this article is as follows.

In Sect. 2, we recall the notions of the space of test functions and the space of
distributions introduced in [26], as well as the random dyadic cubes in [1] and the
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approximation of the identity with exponential decay introduced in [29]. Then we
restate the Calderén reproducing formulae established in [29].

Section 3 concerns Hardy spaces defined via the grand maximal functions, the
radial maximal functions and the non-tangential maximal functions. We show that
these Hardy spaces are all equivalent to the Lebesgue space L? (X) when p € (1, oo]
(see Sect. 3.1), and they are all mutually equivalent when p € (o/(w+n), 1] (see Sect.
3.2), all in the sense of equivalent (quasi-)norms. The proof for the latter borrows some
ideas from [56] and uses the Calder6n reproducing formulae built in [29]. Moreover,
we prove that the Hardy space H*”(X) defined via the grand maximal function is
independent of the choices of the distribution space (Qg (B,y)) whenever 8, y €
(w[1/p — 1], n); see Proposition 3.8 below.

Section 4 is devoted to the atomic characterizations of H*?(X). Notice that, if a
distribution has an atomic decomposition, then it belongs to H*?(X) obviously by
the definition of atoms; see Sect. 4.1. All we remain to do is to establish the converse
relationship. In Sect. 4.2, by modifying the definition of the grand maximal function
f*to f*sothatthelevel set 2, := {x € X : f*(x) > A} with A € (0, co) is open, we
then apply the partition of unity to the open set €2, and obtain a Calderén—Zygmund
decomposition of f € H*P(X). Thisis further used in Sect. 4.3 to construct an atomic
decomposition of f. In Sect. 4.4, we compare the atomic Hardy spaces H£ “4(X) with
HE?(X) and prove that they are exactly the same space in the sense of equivalent
(quasi-)norms.

Section 5 deals with the Littlewood—Paley theory of Hardy spaces. In Sect. 5.1, we
show that the Hardy space H” (X), defined via the Lusin area function, is independent
of the choices of exp-ATTs. In Sect. 5.2, we use the homogeneous continuous Calderén
reproducing formula and the molecular characterizations of the atomic Hardy spaces
(see [39]) to establish the atomic decompositions of elements in H” (X), and then we
connect H”(X) with H*?(X). In Sect. 5.3, we characterize Hardy spaces H”(X)
via the Lusin area function with aperture, the Littlewood—Paley g-function and the
Littlewood—Paley g;-function.

In Sect. 6, we consider the Hardy space H} (X) defined via wavelets, which was
introduced in [23]. We improve the result of [25, Theorem 4.3] and prove that H£ (X)
coincides with H? (X) in the sense of equivalent (quasi-)norms.

In Sect. 7, as an application, we obtain criteria of the boundedness of the sublinear
operators from Hardy spaces to quasi-Banach spaces. To this end, we first establish
the finite atomic characterizations, namely, we show that, if ¢ € (p, co) N [1, 00),
then || - || HE(X) and | - || HD(x) are equivalent (quasi)-norms on a dense subspace

HPY(X) of HY®(X); the above equivalence also holds true on a dense subspace
HE*(X) N UC(X) of HY ™ (X), where UC(X) denotes the space of all uniformly
continuous functions on X.

At the end of this section, we make some conventions on notation. We always
assume that w is as in (1.1) and n the smoothness index of wavelets (see [1, Theorem
7.1] or Definition 2.4 below). We assume that § is a very small positive number, for
example, § < (2A0) 19 in order to construct the dyadic cube system and the wavelet
system on X (see [31, Theorem 2.2] or Lemma 2.3 below). For any x, y € X and
r € (0, 00), let
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Vr(x) == u(B(x,r)) and V(x,y):= u(B(x,d(x,y))),

where B(x,r) := {y € X : d(x,y) < r}. We always let N := {1,2,...} and
7. := NU{0}. For any p € [1, o], we use p’ to denote its conjugate index, namely,
1/p 4+ 1/p’ = 1. The symbol C denotes a positive constant which is independent of
positive constant depending on the indicated parameters «, f, .... The symbol A < B
means that there exists a positive constant C such that A < CB. The symbol A ~ B
is used as an abbreviation of A < B < A. We also use A Sy ... B to indicate that
here the implicit positive constant depends on «, f, ... and, similarly, A ~, g . B.
We also use the following convention: If f < Cg and g = h or g < h, we then write
f<Sg~horf<g<h,ratherthan f <g=hor f S g <h.Foranys, t € R,
denote the minimum of s and ¢ by s A t. For any finite set J, we use #J to denote its
cardinality. Also, for any set E of X, we use 1g to denote its characteristic function
and EC the set X \ E.

2 Calderon Reproducing Formulae

This section is devoted to recalling Calderén reproducing formulae obtained in [29].
To this end, we first recall the notions of both the space of test functions and the
distribution space.

Definition2.1 Let x; € X, r € (0,00), B8 € (0,1] and y € (0,00). A func-
tion f defined on X is called a fest function of type (xi1,r, B, y), denoted by
f € G(x1,r, B, y), if there exists a positive constant C such that

(1) (the size condition) for any x € X,

1 r !
|f(-x)|§CVr(xl)+V(_xl,x) [r"_d(-xl’x)} ,

(i) (the regularity condition) for any x, y € X satisfying d(x, y) < (2Ao)_1[r +
d(x1, x)],

|f(x>—f(>|<c[ atr, y) T ! [ ’ ]y
= Tdc ol Vvien+veLo lr+deno |

For any f € G(x1,r, B, v), define the norm
| fllgxr,r.,y) = Inf{C € (0, 00) : C satisfies (i) and (ii)}.
Define

G(x1,r, B, y) :={feg<x1,r,ﬂ,y): /Xf(x)du(x)=0}

equipped with the norm || - [l 5y = [l - llgr.r.p.y)-
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Observe that the above version of G(x1, r, B, y) was originally introduced by Han
et al. [27] (see also [26]).

Fix xo € X. Forany x € X and r € (0, 00), we know that G(x,r, B,y) =
G(xo, 1, B, y) with equivalent norms, but the positive equivalence constants depend
on x and r. Obviously, G(xo, 1, B, y)ois a Banacho space. In what follows, we simply
write G(B, y) :=G(xo, 1, B,y) and G(B, y) := G(x0, 1, B, v).

Fixe € (0, 1]and B, y € (0, €). Let G{(B, ) [resp., G;(B, v)] be the completion
of the set G(e, €) [resp., Q(e, €)] in G(B, y), that is, if f € Qg(ﬂ, y) [resp., f €
ég(ﬂ, )], then there exists {¢j}?i1 C G(e, €) [resp., {qu};’;] - é(e, €)] such that

l¢; — fllgp,y) — 0asj— oo If f € Qg(ﬁ, y) [resp., f € @8(/8, )], we then let

Ifllgsce.v) = N gy [resplflige g, = I1flgep.n]-

The dual space (Gy(B. y))" [resp., (ég (B, ¥))'] is defined to be the set of all contin-
uous linear functionals on gg (B, y) lresp., gg (B, v)] and equipped with the weak-x*

topology. The spaces (G (8, v))" and (@8 (B, y))' are called the spaces of distributions.
Let L (X) be the space of all locally integrable functions on X. Denote by M the

loc

Hardy-Littlewood maximal operator, that is, for any f € LIIOC(X )and x € X,

1
M =
(D00 = b8

/ [fMldr(y),
B

where the supremum is taken over all balls B of X that contain x. For any p € (0, oo],
the Lebesgue space LP(X) is defined to be the set of all x-measurable functions f
such that

1
1fllLr ) = [/le(x)l”du(X)]p < o0

with the usual modification made when p = oo; the weak Lebesgue space LP>*°(X)
is defined to be the set of all u-measurable functions f such that

I rwce) = sup Mu(lx € X 5 1700 > ADI7 < 0.
re(0,00

It is known (see [7]) that M is bounded on L”(X) when p € (1, co] and bounded
from L'(X) to L"°(X). Then we state some estimates from [27, Lemma 2.1], which
are proved by using (1.1).

Lemma 2.2 Let B, y € (0, 00).
(1) Foranyx, y € X andr € (0,00), V(x,y) ~ V(y, x) and

Vi) +Vi(y) +Vix,y) ~ Vex) + Vix, y)
~ Ve +Vx, y) ~ w(Bx, r +d(x, y))),
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where the positive equivalence constants are independent of x, y and r.
(ii) There exists a positive constant C such that, for any x1 € X and r € (0, 00),

Y
/ : [ . ] du(x) < C.
x Vi(x)) +V(x1,x) Lr+d(x,x)

(iii) There exists a positive constant C such that, for any x € X and R € (0, 00),

1 [dx.y7]”
du(y) <C and
dex,y<r V(x, ) R

/ —1 [ R Td y=<c
dxy=r V(x,y) Ld(x,y) HD =

(iv) There exists a positive constant C such that, forany x1 € X and R, r € (0, 00),

1 r Y r Y
/ dpx) <C|{——=) .
deex)=R Vr(x1) +V(xy,x) Lr +d(x1, x) r+R

(v) There exists a positive constant C such that, for any r € (0, 00), f € Llloc(X )
and x € X,

1 r 14
/XV,(x)+V(x,y) [r+d(x,y)i| [fW)ldu(y) < CM(f)(x).

Next we recall the system of dyadic cubes established in [31, Theorem 2.2] (see also
[1]), which is restated in the following version.

Lemma 2.3 Fix constants 0 < cy < Co < coand § € (0, 1) such that IZASCO(S < ¢p.
Assume that a set of points, {z’o‘l c keZ, o € Ay C X with A for any k € Z being
a countable set of indices, has the following properties: for any k € 7Z,
() dch. o) = cod if o # B
(if) mingeq, d(x, z];) < COSkfor any x € X.
Then there exists a family of sets, {Q’é : k €Z, a € Ay}, satisfying
(iii) for any k € Z, Uyeq, Qb = X and {Qf : « € A} is disjoint;
(iv) ifk, | € Zand 1 > k, then either Qfy C Q% or QN O =
(v) forany k € Z and a € Ay, B(Zk, c;6%) c 0F < B(ZK, C*6%), where ¢; =
(3A%)71c0, C':=2A4¢Co and ng is called “the center” of Q{;.

Throughout this article, we keep the notation used in Lemma 2.3. Moreover, for
any k € Z, let

XE= KV er,  Gri=FAr \ A and  YF = (e = DB aeq, -

Next we recall the notion of approximations of the identity with exponential decay
introduced in [29].
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Definition 2.4 A sequence { Q¢ }rcz of bounded linear integral operators on L%(X) is
called an approximation of the identity with exponential decay (for short, exp-ATI)
if there exist constants C, v € (0,00),a € (0, 1] and n € (0, 1) such that, for any
k € Z, the kernel of operator Qy, which is still denoted by Qy, satisfying

(i) (the identity condition) Z,fi 00 Ok =11n L2(X), where [ is the identity oper-

ator on L2(X);
(i) (the size condition) for any x, y € X,

|Ok(x, y)| = C

1 o {_v [d(x,y)}“}
Vo Vo) 2
{ [max{d(x,yk), d(y,«yk)}]a}
X exp | —V ; (2.1)

Sk
(iii) (the regularity condition) for any x, x’, y € X with d(x, x") < &%,

|Qk(x, y) = Ok, M+ Qk (v, X) — Qk(y, X

<C|:d(x,)c/):|'7 1 o {—v |:d(x,y):|a}
U o T o

k k a
s exp {_v [max{d(x,yak), d(y, Y )}} } ; 02

(iv) (the second difference regularity condition) for any x, x’, y, y’ € X with
d(x,x’) <8 and d(y,y") < §*, then

[Qk(x,y) — Qk(x', W1 =[Ok (x, y) — Qr(x', Y)]I
-c [d(x,x’)}” [d(y, y’)}" 1 exp {_v [d(x, y)}”}
- 8k 8k Vst (@) Vi () ok
{ [max{d(x,yk), d(y,yk)}}“}
X exp§—v ; 2.3)

Sk

(v) (the cancelation condition) for any x, y € X,
[ oyt =0 = [ 0u ) duta
X X

1 .
Remark 2.5 By [29, Remark 2.8], we know that the factor —\/W in (2.1),
ﬁ, and max{d(x, ¥%), d(y, Y%}

sk ()
by d(x, ¥*) or by d(y. ¥¥), with exp{—v[£4:219} replaced by exp{—v'[L52]9},
where v/ € (0, v) only depends on a and Ag. Moreover, the condition in Definition
2.4(iii) [resp., (iv)] can be replaced by d(x,x’) < (2A¢)~'[8¥ + d(x, y)] (resp.,

(2.2) and (2.3) can be replaced by m or
&
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d(x,x') < (2A0)72[8F + d(x, y)] and d(y, y') < (2A0)"2[8* + d(x, y)]). For their
proofs, see [29, Proposition 2.9].

With the above exp-ATI, we have the following homogeneous continuous Calderén
reproducing formula established in [29].

Theorem 2. 6 Let {Qilrez be an exp-ATl and B, y € (0,n). Then there exists a
sequence {Qk}keZ of bounded linear operators on L*(X) such that, for any f €

Gy B.v),
Z 010k f.
k=—00

where the series converges in (ég (B, v)). Moreover; there exists a positive constant
C such that, for any k € Z, the kernel of Qy satisfies the following conditions:

(i) foranyx, y € X,

[0t 0] = Cy e ey [Sk +d(x, y>] ’

(i) foranyx, x', y € X withd(x,x") < 2A¢) "' [6¥ +d(x, y)],

|0k (x, y) — Ok, y)|

<c[ d(x, x) T 1 [ sk T.
- SK+dx,y)] Va)+V(x,y) [§+dx,y) ]’

(iii) forany x € X,

/Xék(x,y)dm):o:/xék(y,x)dm).

Next, we recall the homogeneous discrete Calderdn reproducing formulae estab-
lished in [29]. To this end, let jo € N be a sufficiently large integer such that
§h < (2A0)_4C”, where C? is as in Lemma 2.3. Based on Lemma 2.3, for any
k € Z and a € Ay, we let

Nk, @) == {1t € Apyj, : 00 c QF)

and N (k, o) be the car_dinality of the set N(k, «). For any k € Z and a € Ay, we
rearrange the set {Q1§+J0 1€ Nk,a)}as {Qk ’"}N(k %) , whose centers are denoted,

respectively, by {z&™ }N(k @,

Theorem 2.7 Let {Qy}kez be an exp-ATI and B, v € (0,n). Foranyk € Z, o € Ay,
andm € {1, ..., N(k, o)}, suppose that y " is an arbitrary point in Q";*’”. Then, for

any i € {1, 2} there exists a sequence {Q }k__oo of bounded linear operators on
L%(X) such that, for any f € (Qo(ﬂ, )8
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N (k,a)

f& = Z >3 0 (k) fQ o QS dp(y)

k=—o0 acAr m=l1
N (k,)

-3 33 w(el) ol () eur (7).

—oo €A, m=l1

where the equalities converge in (ég (B, y)). Moreover, for any k € Z, the kernels of
Q(l) and é,(cz) satisfy (i), (ii) and (iii) of Theorem 2.6.

To recall the inhomogeneous discrete Calderén reproducing formulae established
in [29], we introduce the following 1-exp-ATI and exp-IATI.

Definition 2.8 A sequence {Py}72 _ . of bounded linear operators on L2(X) is called
an approximation of the identity with exponential decay and integration 1 (for short,
1-exp-ATT) if { P}p2 _  has the following properties:

(i) for any k € Z, Py satisfies (ii), (iii) and (iv) of Definition 2.4 but without the
exponential decay factor

{ [max{d(x,yk),d(y,yk)}]a}
exp{—v 5 :

(i) forany k € Zand x € X, [y Pi(x, y)du(y) = 1= [y Pe(y, x)dp(y);
(iii) for any k € Z, letting Qy := Px — Pyx_1, then { Qg }xez is an exp-ATL

Remark 2.9 The existence of the 1-exp-ATI is guaranteed by [1, Lemma 10.1]. More-
over, by the proofs of [29, Proposition 2.9] and [27, Proposition 2.7(iv)], we know
that, for any f € L*(X), limg_ oo Prf = f in L*(X).

Definition 2.10 A sequence {Qy}72 , of bounded linear operators on L2(X)iscalled an
inhomogeneous approximation of the identity with exponential decay (for short, exp-
IATY) if there exists a 1-exp-ATI {Pk}]fi_oo such that Qg = Pgpand Qy = Py — Pr_
for any k € N.

Next we recall the following inhomogeneous discrete Calderén reproducing for-
mula established in [29].

Theorem 2.11 Let {Qk}lfio be an exp-1ATI and B, y € (0, n). Then there exists a
sequence {Qy}2, of bounded linear operators on L*(X) such that, for any f €

GoB.¥)),

N(0,a)

f()—ZZ Z/ Ok y) du(y) Q8T (f)

k=0 aeAr m=1
N(k,a)

+ Z Yo ow (Qlé’m) Ok (y(’f{’") Qkf(yf.i’m),

k=N+1acA, m=1
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where the equality converges in (gg (B, v)), every yéj*’” is an arbitrary point in Qf;’m
and, forany k € {0, ..., N},

1
041 i= —— [ o .
w(Qe™) Jou™

Moreover, forany k € 7., ék satisfies (i) and (ii) of Theorem 2.6 and, for any x € X,

1 ifke{0,..., N},

/XQk(x,y)du(y)=/){Qk(yvx)dﬂ(y):{0 ifk e {N+1,N+2,...),

where N € N is some fixed constant independent of f and yﬁ’m.

3 Hardy Spaces via Various Maximal Functions

LetB, y € (0,n) and f € (gg(ﬁ, ¥)). Let { Pt }kez be a 1-exp-ATI as in Definition
2.8. Define the radial maximal function M (f) of f by setting

ME(f)(x) = iuglPkf(x)l, Vx e X.

Define the non-tangential maximal function My (f) of f with aperture 6 € (0, 00)
by setting

Mo (f)(x) :==sup sup [P f(y)], Vxe€X.
keZ yeB(x,08%)

Also, define the grand maximal function f* of f by setting

FHx) ==sup{l(f.¢)| : ¢ € GJ(B.y) and

l@llgx.ro.8.y) < 1 for some rg € (0,00)}, Vux € X.

Correspondingly, for any p € (0, oc], the Hardy spaces HP(X), Hé” (X) with 0 €
(0, 00) and H*?(X) are defined, respectively, by setting

BP0 = £ € G38.1) ¢ 1 o) = IMF(Dlrcx) < oo}
ng(x) = {f € (Qg(ﬂ, V))/ : ”f”ng(X) = Mo (HllLrx) < OO}

and
HP(X) = { £ € @3B 1) s Wfllerc = 1f Loy < o]
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Based on [20, Remark 2.9(ii)], we easily observe that, for any f € (gg (B, y)) and
x e X,

ME(Hx) < Ma(f)(x) < Cf*(x), (3.1

where C is a positive constant only depending on 6.

The aim of this section is to prove that the Hardy spaces H ™ (X), ng (X) and
H*P(X) are mutually equivalent when p € (w/(w+ 1), co] in the sense of equivalent
(quasi-)norms (see Sect. 3.2); in particular, they all are equivalent to the Lebesgue space
LP?(X)when p € (1, oo] inthe sense of equivalent norms (see Sect. 3.1). Moreover, we
prove that H* 7 (X) is independent of the choices of the distribution space (Qg B,v))
whenever 8, y € (w(1/p — 1), n); see Proposition 3.8 below.

3.1 Equivalence to the Lebesgue Space LP (X) When p € (1, o0]

In this section, we show that the Hardy spaces H™”(X), HGP(X) and H*P(X) are
all equivalent to the Lebesgue space L?(X), when p € (1, oo], in the sense of both
representing the same distributions and equivalent norms. First we give some basic
properties of H*?(X).

Proposition 3.1 Let p € (0, o0]. Then H*P(X) is a (quasi-)Banach space, which is
continuously embedded into (Qg (B,v)), where B, y € (0, n).

Proof let f € H*P(X)and g € Qg(,B, y) with ||¢|lg(s,,) < 1.Foranyx € B(xo, 1),
by Definition 2.1, we easily know that ||¢[lg(x,1,4,y) < 1 with the implicit positive con-
stant independent of x and hence |{f, ¢)| < f*(x). Therefore, for any ¢ € Qg B,7)
with 8, v € (0, ), we have

(foollP S

~ Vi(xo) JBxo. 1)

[0 du(x) S ||f*||IL?p(X) ~ ||f||i1*,p(x)-

This implies that H* 7 (X) is continuously embedded into (gg B,y)).
To see that H*?(X) is a (quasi-)Banach space, we only prove its completeness.
Indeed, suppose that { f;};2 , in H*7(X) is a Cauchy sequence, which is also a Cauchy

sequence in (Qg(,B, y)) with 8, y € (0, n). By the completeness of (gg(,B, ),
the sequence {fk},‘:il converges to some element f € (gg B,y)) as k — oo. If
@ € gg(ﬁ, y) satisfies ||¢llgx,ry,8,y) < 1 for some x € X and ro € (0, 00), then
S+t — fier ©)] < (fr+1 — fi)*(x) for any k, [ € N. Letting | — oo, we obtain

S = fio o) < liminf (firr — fi)" (o),
which further implies that, for any x € X,

(f = fi* () < liminf (fipr — fi)" ().
By the Fatou lemma, we conclude that

ICf = fO* ey < liminf [|(fisr — O ey — 0
[—00
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as k — oo, which, together with the sublinearity of || - || g+r(x), further implies that
f e H*P(X) and limy— 0 | f — fillg=rx) = 0. Therefore, H*”(X) is complete.
This finishes the proof of Proposition 3.1. O

To show the equivalence of H17(X), Hap (X) and H*?(X) to the Lebesgue space
LP(X) when p € (1, oo] in the sense of both representing the same distributions and
equivalent norms, we need the following technical lemma.

Lemma 3.2 Let {Prlkez be a 1-exp-ATl as in Definition 2.8. Assume that B, y €
(0, n). Then the following statements hold true:

(i) there exists a positive constant C such that, for any k € Z and ¢ € G(B, y),
I Pxellgep.y) < Cliellge.y):
(ii) forany f € G(B,y) and B’ € (0, B), limk—c P f = f in G(B', v);
(iii) if f € Gy(B. ) [resp., f € (Go(B.¥))']. then limyo0 Pif = f in G(B. y)
[resp., (Go(B.¥))'].

Proof The proof of (i) can be obtained by the method used in the proof of [29, Lemma
4.14]. The proof of (ii) is given in [20, Lemma 3.6], whose proof does not rely on the
reverse doubling condition of y and the metric d. We obtain (iii) directly by (i), (ii)
and a standard duality argument. This finishes the proof of Lemma 3.2. O

We have the following proposition.

Proposition 3.3 Ler p € [1,00], B, y € (0,7n) and {Pilkez be a 1-exp-ATL If f €
(Qg(ﬁ, ¥)) belongs to H™P(X), then there exists f € LP(X) such that, for any
9 €GyB. Y

(f.0) = fx FO@) dp(x) (3.2)

and ||f||£p(x) < [IMT(H)lLrx); moreover, if p € [1,00), then, for almost every
x€X, |[f()] < MT(fHx).

Proof Let f € (gg(,B, y)) and MT(f) := supiez | Px f| € LP(X), where { Py }rez is
a 1-exp-ATI as in Definition 2.8. Then { Py f }rcz is uniformly bounded in L”(X). If
p € (1, 00], then p’ € [1, 00) and LY (X) is separable. Thus, by the Banach—Alaoglu
theorem (see, for example, [46, Theorem 3.17]), we find a function f € LP(X)and a
sequence {kj}?il C Z such that kj — oo and Py; f — fas Jj — oo in the weak-x*

topology of L?(X). By this and the Holder inequality, for any g € L? (X), we have

‘ fX F0g(x) du(x)

ZjILH;O‘/XPk_,-f(X)g(X)d/L(X) < IMEDllercollglp x)»

which further implies that || f1|zrx) < IMT () llLrx)-

If p = 1, notice that || sup;cz [P flllL1x) = IMT(F)lL1x) < oc. Then, by the
proof of [52, Theorem II1.C.12], { P f }xe7 is relatively compact in L'(X). Therefore,
by the Eberlin—-Smulian theorem (see [52, IL.C]), we know that { Py f}rcz is weakly
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sequentially compact, that is, there exist a function f elL! (X ) and a subsequence
{Px; f }C>o | such that { Py, f }°° | converges to f weakly in L' (X). As the arguments
for the case p € (1, o], we still have ||f||L1(X) < ||M+(f)||L1(X).

Moreover, for any ¢ € gg(ﬁ, y), by the factgg(ﬂ, y) C LP(X)forany p € [1, oo]
and Lemma 3.2(iii), we conclude that

(f.g) = lim (P, f. ) = lim / Py, () dpn(x) = / Fo0) du).
k—o00 j—oo Jx X
3.3)
Let p € [1,00). Forany j € Nand x € X, we have Pk/. (x,-) € G(n, n) (see the
proof of [29, Proposition 2.10]), which, together with (3.3), implies that

P, () = (f Py (x, ) = fX P, () FO) du(y) = P Fx).

From this and [27, Proposition 2.7(iv)], we deduce that {Pk f}jen converges to f
in the sense of || - ||r(x). Then, by the Riesz theorem, we find a subsequence of
{Py; [}jen, still denoted by {P; f}jeN, such that Py, f(x) — f(x) as k; — oo for
almost every x € X. Therefore, | f(x)| < M+(f)(x) for almost every x € X. This
finishes the proof of Proposition 3.3. O

Finally, we show the following main result of this section.
Theorem 3.4 Let p € (1,00] and B, y € (0, n). Then the following hold true:

W) if f e (gg B,v)) belongs to HYP(X), then there exists f € LP(X) such that
(3.2) holds true and || fllLrx) < IIf la+r(x)s

(ii) any f € LP(X) induces a distribution on Qg (B, y) as in (3.2), still denoted by
S such that f € H*P(X) and || 1l g=rxy < Cll fllLr(x), where C is a positive
constant independent of f.

Consequently, for any fixed 8 € (0,00), H™P(X) = H@’7 (X) = H*P(X) =
L?(X) in the sense of both representing the same distributions and equivalent norms.

Proof We obtain (i) directly by Proposition 3.3. Now we prove (ii). Suppose that
p € (1,00]and f € L?(X). Clearly, f induces a distribution on gg(ﬂ, y) asin (3.2).
By [20, Proposition 3.9], we find that, for almostevery x € X, f*(x) < M(f)(x), with
the implicit positive constant independent of f and x. Therefore, from the boundedness
of M on L?(X), we deduce that || f*|lzrx)y S IM(Ollierxy S I fllLecx). This
finishes the proof of (ii).

By (i), (ii) and (3.1), we obtain HT7(X) = ng(X) = H*P(X) = LP(X), which
completes the proof of Theorem 3.4. O

3.2 Equivalence of Hardy Spaces Defined via Various Maximal Functions
The main aim of this section concerns the equivalence of Hardy spaces defined via
various maximal functions for the case p € (w/(w + n), 1]. Indeed, our goal is to

show the following equivalence theorem.
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Theorem 3.5 Assume that p € (w/(w+ 1), 1] and 6 € (0, 00). Then, for any f €
(Go(B, v)) with B, v € (w(1/p — 1), 1),

W ey ~ W g ooy ~ W T ).

with positive equivalence constants independent of f. In other words, HTP(X) =
Hep (X) = H*P(X) with equivalent (quasi-)norms.

To prove Theorem 3.5, we borrow some ideas from [56]. To this end, we need the
following two technical lemmas.

Lemma 3.6 Assume that ¢ € gg(ﬂ, y)with B, y € (0,n). Let o := fx ¢ (x) dp(x).
Ifyr € G ) with [ ¥ (x)dpu(x) =1, then g — oy € GJ(B. ¥).

Proof Since ¢ € gg (B, y) with B, y € (0, n), it follows that there exists {¢,}52 | C

G(n, n) such thatlim,, -, |l — Pnllg(s,y) = 0. Letting o, := fX ¢ (x) d(x) for any
n € N, by Definition 2.1 and Lemma 2.2(ii), we conclude that lim,,_, » |00 — 0’,01| =0,
where o := fX ¢(x)du(x). Let ¢, := ¢ — oy for any n € N. Then ¢, € G(n, 1)
and

g — o —wnllgip,y) < ¢ — dullge,y) +lo —onlll¥lige,y) — 0 asn — oo.

Thus, ¢ — o € gg (B, y)- This finishes the proof of Lemma 3.6. O

The next lemma comes from [27, Lemma 5.3], whose proof remains true for a
quasi-metric d and also does not rely on the reverse doubling condition of j.

Lemma3.7 Let all the notation be as in Theorem 2.7. Let k, k' € 1Z,
{ah™Yer, aery, meq1,..Ntay C C. v € (0, n) and r € (0/(w + y), 11. Then there
exists a positive constant C, independent of k, k', yéj*’” € Q(’;’m and ag"" with k € 7,
o€ Arandm € {1,..., Nk, o)}, such that, for any x € X,

N(k,a) 1 8k/\k/ 14
Z Z M (in’”’) o VY T aﬁ’m‘
Py p— Vsew (x) + V(x, yo) [ 8N +d(x, yo'™)

N (k,a) r
< Cslk=kno(=7) | Ag Z Z a(]f[’m‘rle,m (x)

aeA, m=l1

Now we show Theorem 3.5 by using the above two technical lemmas. In what
follows, the symbol € — 0T means that € € (0, oo) and € — 0.

Proof of Theorem 3.5 Let [ € (gg(ﬂ, v)) with B, v € (w(1/p — 1),n). Fix 6 ¢
(0, 00). By (3.1), we have

IME (Ol < IMo(O ey S I Lrx)-
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Thus, the proof of Theorem 3.5 is reduced to showing

Iy S IMT(OlLex)- (3.4

To obtain (3.4), it suffices to prove that, for some r € (0, p) and any x € X,

N

@) SMEHO @) + IM(IMEOT) o). (3.5)

If (3.5) holds true, then, by the boundedness of M on LP/"(X), we conclude that

I * e oo S IME(O e + IM(IMTHT ) x) ~ MOl x).

which proves (3.4).

We now fix x € X and show (3.5). Let { Px}xez be a 1-exp-ATI. For any k € Z,
define Qy := Py — Pr—1. Then {Qg}rez is an exp-ATI. Assume for the moment that,
for any ¢ € GJ(B, y) with l@llge.stp.yy < 1forsomel € Z,

~|—

ool S IM(IMT(H]) ). (3.6)

We now use (3.6) to show (3.5). For any ¢ € gg(,s, y) with |¢llge,ro.8.y) < 1

for some rg € (0,00), choose I € Z such that s+l < ro < P Clearly,
I$llgns gy S 1-Leto := [y ¢(y)du(y) and ¢ := ¢ — o Pi(x, -). Notice that
fx Pi(x,y)du(y) = 1 and P;(x,-) € G(n,n) (see the proof of [29, Proposition
2.10]). From Lemma 3.6, it follows that ¢ € ég(ﬁ, ). Moreover, [|@llg. st ,y) <
IPllgex.st,p.) T 1O P, Mg st gy < 1. By (3.6), we know that
Hfs o) < (sl + o ll(f, Pi(x, )]
1
S {IM(IMENT) (x)}, + P ()]
S MM O] )<x>} + MY () (),

which is exactly (3.5).
It remains to prove (3.6). For any € € (0, c0), choose y(’f;’” € Q’g;m such that

0cf (3em)| = inf 10f@I+e<2 inf ME(D@ +e
zeQk™ 20"

Let g := f|ég(ﬁ,y) be the restriction of f on ég(ﬂ, y). Obviously, g € (@8 B,v))
and ||g||@g(ﬂ’y)), < 1/l p.y)y- By Theorem 2.7, we conclude that

N (ko)

(f.0) = (g. Z > n (Q'é””) Oy (yf.i’”’) Ok (%.i””)

k=—occaeA; m=1
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N (k,x)

— Y XX w2 Gie (hm) 0ur (5.

k=—oco aeA;r m=1

where é; denotes the dual operator of ék. By the proof of [27, (3.2)], which remains
true for a quasi-metric d and does not rely on the reverse doubling condition of u, we
find that, for any fixed 8’ € (0, 8 A ) and any k € Z,

. " 1 skl v
Oie (vhm)| s 8 SNER)
Gi (% Vit () + VG, yo™) | 868+ d(x, y&™)

Choose B’ € (0, B A y) such that w/(w + B') < p. From this and Lemma 3.7, we
deduce that, for any fixed r € (w/(w + 8'), p),

N (k,a)

fw|<26"‘”ﬁ2 > u(ow)

aceAr m=1
nf__gen MY()(2) + e skl '
Vit (X) + V(x, y&™) [ 85N +d(x, y&'™)

< i 5|k71\ﬂ’8[k—(kAl)]w(1_%)
Nk:_oo

N (k,a) r
x AM Z Z |:1nf M+(f)(z)+e:| 1yen | ()

aeA; m=1 ze Q"
<> gk glk=rDlo(1-}) IM(IME () +€]) @)
k=—00
1 , 1
SIMIMEDO]) @) +€} = IM(IMTH]) )} ase — 07
(3.8)
This proves (3.6) and hence finishes the proof of Theorem 3.5. O

To conclude this section, we show that the Hardy space H*”(X) is independent of
the choices of (gg(ﬁ, y))’ whenever 8, y € (w(1/p — 1), ).

Proposition3.8 Let p € (w/(w + n), 1] and B1, B2, y1, v2 € (w(1/p — 1), n). If
f e (@G}Br.y1) and f € H*P(X), then f € (Gy(B2. v2)).

Proof Let f € (Qg(,Bl, yD) with || fllg=rx) < 0o. We first prove that there exists
0 € (0, 00) such that, for any ¢ € G(1, n) with [@lgs,.n) < 1,

o)l S IMa(O) e x)- (3.9)
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Notice that ¢ € G(n, n) C Qg (B1,y1) and f € (gg (B1, y1))'. With all the notation
involved as in Theorem 2.11, we have

N (k,a)
(f.9) ZZ Z/ Ok du() 0L (f)
k=0 aeAy m=1
N(k,o)

+ Z S w(0k™) O (sE™) Ouf (vE™) =21 + 22

k=N+1acA, m=1

Choose 0 := 2A0C" with C as in Lemma 2.3(v). By the definition of Q(’;’m and
Lemma 2.3(v), we have Q%™ C B(zk™, C*6*T/0) C B(z,2A0C"*) = B(z, 08%)
for any z € Q%"

Fix x € B(xo, 1). Then [|¢llg(x,1,6:,72) ~ 1@llGxo,1,82.72) <1.Ifke{0,..., N},
then we have [[¢llg st g,, v~ ellge, 1,8, < 1, where the implicit positive

constants are independent of x but can depend on N. Let f_ := min{By, 1, B2, }2}.
By [27, (3.2)], we conclude that, for any y € Q{;’m,

~, _ 1 1 p- 1 1 -
Q0] 5 Vi)+V(x,y) [l+d(x,y)} Vi)+V(x, yorm |:l+d(x,y§’m)i| '

Moreover, forany k € {0,..., N} and z € Q’;;m, we have
41| = e [ LIPSO+ P fO1dRO) = 20600

Thus, we obtain

N(k,a)

1
|21|<ZZ Z ( Qu )vl(x)+V(x,y§’m)

k=0 ceAr m=1

B
X [;km} 1nf Mo (f)(2). (3.10)
L+d(x,y0") | ze08™

IFk € {N +1,N +2,..}, then [Qx f(y&™)| < 2inf__en Mo(f)(2). Again, by
lellge,1,:,10) S 1and [27, (3.2)], we find that, for any fixed 8" € (0, B-),

1 | P-
‘in e ‘ < 5k ,
( ¢ ) Vitx) + Vix, yg,m) 1+d(x, yé'm)

) Birkhduser
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because now k € Z, and we do not need the cancelation of ¢. Therefore, we have

) N (ko)
DR D S ()
k=N+1 acAr m=1
1 1 -
x — — | inf Me(H@.  (G.D
VIG) + V0 b [T4d0oE™ | ceobr

Following the estimation of (3.8), from (3.10) and (3.11), we deduce that, for some
r € (w/(w+n),p),

o) S IMMHT) @) -

Notice that the above inequality holds true for any x € B(xo, 1). Then, by the bound-
edness of M on LP/"(X), we further conclude that

1
Vi(xo0)

Kol S /X M(IMe(H]) )7 dite) S IMa (N e

which is exactly (3.9).
Combining (3.9) and (3.1), we find that, for any ¢ € G(1, 1),

o)l S IMa(H e olleligpam S 1 lasr o l@llge.pm)- (3.12)

Now let g € G((B2, y2). By the definition of G (B2, y2), we know that there exist
{j}52) € G, n) such that |g — ¢;llg(p,.y») — 0as j — oo, which implies that
{gpj}fl?o:l is a Cauchy sequence in G(B2, ¥2). By (3.12), we find that, for any j, k € N,

foo; — ol S ITflarcolle; — llgssy)-

Therefore, lim ;. oo ( f, ¢;) exists and the limitis independent of the choice of {¢; }i‘; 1
Thus, it is reasonable to define (f, g) := lim; o (f, ¢;). Moreover, by (3.12), we
conclude that

(o8 = lim [(f, @) S Iflaerco liminf |9 llgs,,ym)
]—)OO ]—)OO

~ S e 18llga sy, pm)-

This implies f € (gg(ﬂz, 1))’ and ||f||(gg(ﬁ2,y2))/ S Nl a+px), which completes
the proof of Proposition 3.8. O

4 Grand Maximal Function Characterizations of Atomic Hardy Spaces

In this section, we establish the atomic characterizations of H*'”(X) with p € (w/(w+
m, 11.
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Definition 4.1 Let p € (w/(w+ 1), 1],q € (p,oo]N[l,00] and B, y € (w(1/p —
1), n). The atomic Hardy space H};? (X) is defined to be the setof all £ € (G (B, ¥))
suchthat f = }°7 | 4 ;a;, where {a;}52 | isasequence of (p, ¢)-atomsand {A;}52; C

C satisfies Zj’;l [Aj|P < oo. Moreover, let

=

[ee

”f”[-]l’-‘i X) ‘= inf |)Vj|p s
e (XD

J=1

where the infimum is taken over all the decompositions of f as above.

Observe that the difference between HZ,?(X) and H?(X) mainly lies on the
choices of distribution spaces. When (X, d, i) is a doubling metric measure space, it
was proved in [40, Theorem 4.4] that HL? (X) and H)? (X) coincide with equivalent
(quasi-)norms. Since now d is a quasi-metric, for the completeness of this article, we
include a proof of their equivalence in Sect. 4.4 below.

The main aim in this section is to prove the following conclusion.

Theorem 4.2 Let p € (w/(w+1n), 1], q € (p,oc]N[l,00] and B, y € (w(1/p —
1), n). As subspaces of (gg(ﬁ, v)), H*P(X) = Hﬁ’q(X) with equivalent (quasi-)

normis.

We divide the proof of Theorem 4.2 into three sections. In Sect. 4.1, we prove that
HE?(X) ¢ H*P(X) directly by the definition of H%?(X). The next two sections
mainly deal with the proof of H*?(X) C H/*?(X).In Sect. 4.2, we obtain a Calderén—
Zygmund decomposition for any f € H*P(X). Then, in Sect. 4.3, we show that
any f € H*P(X) has a (p, co)-atomic decomposition. In Sect. 4.4, we reveal the
equivalent relationship between H/(X) and HE? (X).

4.1 ProofofH‘:;q(X) c H*P(X)

In this section, we prove Halz’q(X) C H*P(X), as subspaces of (gg(,B, y))’ with
B, v € (w(1/p — 1), n). To do this, we need the following technical lemma.

Lemma4.3 Let p € (w/(w + n), 1] and g € (p,00] N [1, 0o]. Then there exists a
positive constant C such that, for any (p, q)-atom a supported on B := B(xp,rp),
withxp € X andrp € (0, 00), and any x € X,

g 1P (BN
dxp.x)| Vixg.x) Bas2a0rm)f (x)
(4.1)

a*(x) < CM(a) () 1z, 240r5) () + C [

and
la*llLr(x) < C, 4.2)
where the atom a is viewed as a distribution on gg B, y)withB, y € (w(1/p—1),n).
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Proof First, we show (4.1). Let ¢ € gg(,B, y) be such that [|¢[lg(x,r,8,y) < 1 for some
r € (0,00), where 8, y € (w(1/p —1),n). When x € B(xp,2Aprp), by Lemma
2.2(v), we find that

l{a, )| = ‘/Xa(y)tp(y) du(y)
S Ma)(x),

1 r 4
d
E[X'“(”'er)w(x,y) [r+d<x,y)] o)

which consequently implies that a*(x) < M(a)(x).

Let x ¢ B(xp,2Aorg). Then, for any y € B, we have d(x,xp) > 2Aprp >
2A0d(xp, y). Therefore, by the definition of (p, g)-atoms and Definition 2.1(ii), we
conclude that

l{a, p)| = '[Ba(y)fp(y) du(y)

< fB a0y — o(x5)| di(y)

d(xp, V) B 1 r Y
S/B'“(y)'[rw(x,xm} Vo) + Vr,x) [r+d(x,x3>} 10)

~ldag.x) ] Vonxp) ' E® Y ldag,x) ] Vg.x)

Taking the supremum over all such ¢ € gg (B, ) satisfying [l¢llgx,r.g,y) < 1 for
some r € (0, o), we obtain (4.1).

Now, we use (4.1) to show (4.2). When g € (1, oo], from the Holder inequality and
the boundedness of M on L9(X), we deduce that

/ [M(@)(0)]? dpu(x) < [(B(xp, 2A0re)]' P IM@)|174 x,
B(xp,2A0rp)

S B P ally ) S 1.

If ¢ = 1, then, by p € (w/(w + 1), 1) and the boundedness of M from LY(X) to
L1%°(X), we conclude that

/ M(a)(x)]” du(x)
B(xp,2A0rB)
:[ uw({x € B(xg,2A0rp) : M(a)(x) > A})dA?
0
< [ i, 0]
0 A

lall 1 (x)/1(B) 00 .
5/ ,u(B)d)J’—i—/ lall o)A~ dAr
0 HaHLl(X>/I/"(B)

S llall] o [N 7 S 1.
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By the fact 8 > w(1/p — 1) and the doubling condition (1.1), we have

B Brp 1 ql-p 1 P
[N e B8 e B o) IREEE
d(x,xp)=240rg LA(XB, X) u(B) V(xg, x)

00

1

< 2*1(/3172](0)(1717)‘/ —d,u(x) <1
g 2k Agrp<d(x,xp)<2k+1Agrp Vixp,x)

Combining the last three formulae with (4.1), we obtain (4.2), which then completes
the proof of Lemma 4.3. O

Proof of HY(X) € H*P(X) Assume that f € (G((B, y))' is non-zero and it belongs
to HY (X)) with B, y € (w(1/p — 1), ). Then f = Z;’il Ajaj, where {a;}52 | are
(p. q)-atoms and {2;}52, C C satisfy 27021 |Aj|P ~ ||f||Z£,q(X). By the definition
of the grand maximal function, we conclude that, for any x € X,

fr) < Ihlas ).

j=1

From this and (4.2), we deduce that

o0 o0
* 1P < AP |l g* < NP~ p
1P 100 S 20l (a5, gy S oW ~ 1

J=1 J=1

This finishes the proof of H}?(X) ¢ H*?(X). o

4.2 Calderén-Zygmund Decomposition of Distributions from H*:P (X)

In this section, we obtain a Calder6n—Zygmund decomposition of any f € H*7(X).
First we establish a partition of unity for an open set Q with ©(2) < oo.

Proposition 4.4 Suppose 2 C X is a proper open set with 1(2) € (0, 00) and
A € [1,00). Forany x € L, let

Then there exist Ly € N and a sequence {x}re; C 2, where I is a countable index
set, such that

1) {B(xg, rk/(SAg))}kel is disjoint. Here and hereafter, ry := r(xg) forany k € I;
(i) Uges Bk, ri) = Q and B(xg, Ary) C Q;
(iii) forany x € Q, Ary < d(x, QC) < 3AA(2)rk whenever x € B(xy,ry) andk € I;
(iv) for any k € I, there exists yy ¢ 2 such that d(xy, yr) < 3AAor;
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(v) for any given k € I, the number of balls B(x;, Ar;) that intersect B(xy, Ary)
is at most Lo;
(vi) if, in addition, Q2 is bounded, then, for any o € (0, 00), the set{k € I : r, > o}
is finite.
Proof We show this proposition by borrowing some ideas from [49, pp. 15-16]. Let
€ = (SAS)_1 and {B(x, er(x))}ycq be a covering of 2. Now we pick the maximal
disjoint subcollection of {B(x, €r(x))} eq, denoted by {Bj}rer, which is at most
countable, because of (1.1) and 1 (2) € (0, 00). For any k € I, denote the center of
By by x and r (x;) by ri. Then we obtain (i).

Properties (iii) and (iv) can be shown by the definition of r¢, the details being
omitted. Now we show (ii). Obviously, B(xx, Ary) C 2 for any k € I. It suffices to
prove that Q C (Jgc; B(xk, ri). For any x € , since {By}ie;s is maximal, it then
follows that there exists k € I such that B(xk, €ry) N B(x, €r(x)) # @. We claim
that ry > r(x)/(4A%). If not, then r; < r(x)/(4A(2)). Suppose that xg € B(xg, €rg) N
B(x, er(x)). Then, for any y € B(xg, 3AAory), we have

d(y, x) < Aold(y, x0) + d(x0, x)] < AJ[d(y, xi) + d(xx, x0)] + Aod (x0, X)
< 6AAY L + Ager(x)

3 1 17
< EAAor(x) + gAAor(x) = EAAor(x)

and hence B(xi, 3AAgry) C B(x, %AAor(x)) C 2, which contradicts to (iv). This

proves the claim. Further, by the fact that r(x) < 4A(2)rk, we have
d(x, x¢) < Aold(x, x0) +d(x0, x1)] < Aoer(x) + Aoerx < 5Ajery = r,

that is, x € B(xg, r). This finishes the proof of (ii).

Now we prove (v). Fix k € I. Suppose that B(x, Ar;j)NB(xi, Ary) # . We claim
thatr; < 8A2r.. If not, thenr; > 8A3ri. Choose yo € B(x;, Arj) N B(xy, Ary). For
any y € B(xx, 3AAork), we have

d(y, x;) < Aold(y, yo) +d(yo, x;)1 < A3[d(y, xx) + d (xk, y0)1 + Aod (Yo, x})

3
< 3AArk + AAYrk + AAor; < S Ador;,

which further implies that y € B(x;, %AAorj). Therefore, B(xy,3AAgrr) C
B(x;, %AAorj) C 2, which contradicts to (iv), Thus, we have r; < SA(Z)rk. By
symmetry, we also have r; < SA%r - Let

J ={jel: B(xj,Arj) N B(xk, Arg) #+ @}

Then, forany j € J, d(xj, xx) < AAo(rj +1i) < 9AA(3)rk, which further implies
that

B (w543 7'r}) € B (. Ao [dCxj, v + 54D 1) € Bew, 114adr0).
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Then, from the fact d(x;, x¢) < min{r;, r¢} and (1.1), we deduce that

(B (x50 5AD™ ) ~ (Bt ) ~ (B 1)) ~ w(Bxe, TTAAGR)

with the positive equivalence constants depending on A. Thus, we obtain (v) by (i).

Finally we prove (vi). Since €2 is bounded, it follows that there exist xo € X and
R € (0, 00) such that Q C B(xg, R). If (vi) fails, then there exists oy € (0, o0) such
that K := {k € I : ry > ogR} is infinite. Then, for any k € K,

(B (xk, i/ (SAG)) ~ p(B(xi, o0R)) Z ju(B(xo, R)) Z () > 0.

By this and (i), we have u(2) > Zke?( n(B(x, rk/(SAS))) = 00. That is a contra-
diction. This proves (vi) and hence finishes the proof of Proposition 4.4. O

Proposition 4.5 Let Q C X be an open set and 1 (2) < oo. Suppose that sequences
{xt}ker and {ri}xes are as in Proposition 4.4 with A := 16Ag. Then there exist non-
negative functions {¢y }rey such that

(i) foranyk € 1,0 < ¢ < 1 and supp ¢ C B(xk,2A0rk);
(i) X pes ok = 1o;
>iii) foranyk € I, ¢ > Lal in B(xg, rr), where L is as in Proposition 4.4;
(iv) there exists a positive constant C such that, for any k € I, ||ocll g, rienm <
c Vrk (xx)-

Proof By [1, Corollary 4.2], for any k € I, we find a function v such that 1y, ) <
Y < 1B(x,240r,) and ||1pk||c',7(x) < r,:". Here and hereafter, for any s € (0, n] and a
measurable function f, define

1£O) = FOII

I llesx) = LTRSS

Since A > 2A, from (ii) and (v) of Proposition 4.4, it follows that, for any x € €,
1 <) hey ¥k(x) < Lo.Forany k € I and x € X, let

-1

Vi (x) ZI//]'()C) when x € Q,
jel
0, when x ¢ Q.

br(x) =

Then, for any k € I, we have 0 < ¢ < 1, supp ¢r C B(xx,2Aprr) and
Zke, ¢r(x) = 1 when x € Q. Moreover, for any k € I, we have ¢ > Lal in
B (xy, rr). Thus, we prove (i), (ii) and (iii).

It remains to prove (iv). Fix k € I. For any y € X, we have

1 'k n
<1 <V .
o] < 1By, 240r) (V) S Vi (Xk)Vrk GO V) I:"k Ao y)}

Birkhauser



Journal of Fourier Analysis and Applications (2019) 25:2197-2267 2223

Now we prove that ¢y satisfies the regularity condition. Suppose that d(y, y") <

(2A0) "k + d (e, 1 IF [ (») — r(y)] # 0, then d(xg, ) < (3A0)*rk. If not,
then d(x, y) = (3A0)>ry, so that ¢y (y) = 0 and

d(y, xi) = Ay'd (i, y) —d(y, y) = 2A0) ' d(xk, y) — 2A0) i > 2A0r%

and hence ¢r(y’) = 0, which contradicts to |¢r(y) — ¢x(y)| # 0. Notice that
YWDV (»)—¥;(y")| # Oimplies that y’ € B(xx, 2Aorx) and also y or y’ belongs to
B(xj, 2Aor;), which further implies that B (x, Ary) N B(x;, Arj) # . Then, by the
proof of Proposition 4.4(v), the number of j satisfying ¥ (y") |y (y) — ¥ ()| # 0
is at most Lo and r; ~ ry. Therefore,

_‘ w0 ()

X v X i)
_ ) = 90N ROD 2 jer W5 0) = ¥ 0
T X Vi [ jer ¥ O jes ¥ O]

g /NN
S[d(y,y)] . 3 [M]
'k P rj

{jel: B(xk, Ari)NB(xj, Arj)#0}
/NN
S[d(y,y)]

Tk

~V(x)|: d(y, y) ]’7 1 [ " ]"
I e d G y) | Ve G+ Ve ) L+ dee ) |

|6k (3) — (¥

Then we obtain the desired regularity condition of ¢. This finishes the proof of (iv)
and hence of Proposition 4.5. O

Assume that f € (gg(,s, y)) belongsto f € H*P(X), where p € (w/(w+1n), 1]
and B, y € (w(1/p — 1), n). To obtain the Calderén—-Zygmund decomposition of
f, we apply Propositions 4.4 and 4.5 to the level set {x € X : f*(x) > A} with
A € (0, 00). The encountering problem is that such a level set may not be open even
in the case that d is a metric. To solve this problem in the case that d is a metric, a
variant of the notion of the space of test functions is adopted in [20, Definition 2.5] so
that to ensure that the level set is open (see [20, Remark 2.9]). Here, we borrow some
ideas from [20].

By the proof of [42, Theorem 2], we know that there exist& € (0, 1) and a metric d’
such that &’ ~ d?. Forany x € X and r € (0, 00), define the d’-ball B'(x,r) := {y €
X : d'(x,y) < r}. Then (X, d’, ) is a doubling metric measure space. Moreover,
for any x, y € X and r € (0, 00), we have

w(B(y, r+dx, y)) ~ (B (v, [r +dx, M) ~ (B (v, r? +d'(x,y))),

where the positive equivalence constants are independent of x and . Using the metric
d’, we introduce a variant of the space of test functions as follows.
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Definition4.6 For any x € X, p € (0,00) and B/, ¥y’ € (0,00), define
G(x, p, B, y’) to be the set of all functions f satisfying that there exists a positive
constant C such that

(i) (the size condition) for any y € X,

1 P T
C ;
lfI = w(B'(y, p+d(x,y))) |:,0 +d'(x, y):|

(ii) (the regularity condition) for any y, y' € X satisfying d(y,y") < [p +
d'(x, y)]1/2, then

/

, d'(y,y) ]ﬂ’ 1 [ p ]V
_ C .
0= 70T = [p+d’(y,y’) wB' (. p+d ) Lo+ d &y

Also, define
I fllGe,p,p,y7 = inf{C € (0, 00) : (i) and (ii) hold true}.

By the previous argument, we find that G(x, 7, B, y) = G(x,r?, /6, y/0) with
equivalent norms, where the positive equivalence constants are independent of x and
r.Forany B, y € (0,n) and [ € (Qg (B, 7)), define the modified grand maximal
Junction of f by setting, for any x € X,

£ = sup [, 0 5 @ € GYBL ) With 9]l 0,6,y 0y < 1 for some r € (0,00}
Then f* ~ f* pointwisely on X. For any A € (0, 00) and j € Z, define
Qi=fxeX: ff(x)>1 and Q :=Q,;.

By the argument used in [20, Remark 2.9(ii)], we find that €2, is open under the
topology induced by d’, so is it under the topology induced by d.

Now suppose that p € (w/(w+n), 1], 8,y € (w(1/p—1),n) and f € H*P(X).
Then f* € LP(X) and every Q/ with j € Z has finite measure. Consequently, there
exist {x,f Yker; C X with I; being a countable index set, {r,f}keI_/. C (0,00), Ly € N
and a sequence {¢,f }ker; of non-negative functions satisfying all the conclusions of

Propositions 4.4 and 4.5. For any j € Z and k € I, define @,{ by setting, for any
¢ €Gy(B,y)and x € X,

. . . _1 .
(P (x) = ¢} (x) [/X d),i(Z)dM(Z)} /X[</>(X)—</J(Z)]¢,{(Z)du(1)~

It can be seen that CDI{ is bounded on Qg (B, y) with operator norm depending on j and
k; see [20, Lemma 4.9]. Thus, it makes sense to define a distribution b,ﬂ on Qg(ﬁ ,Y)
by setting, for any ¢ € G/ (8, ¥).

Birkhauser



Journal of Fourier Analysis and Applications (2019) 25:2197-2267 2225

(o} ¢) = (1. 2l (@). @3)

To estimate (b,i)*, we have the following result. For its proof, see, for example, [37,
Lemma 3.7].

Proposition4.7 Forany j € Zandk € I}, b,{ is defined as in (4.3). Then there exists
a positive constant C such that, for any j € Z, k € I; and x € X,

P ~ B

i\ * ; w(B(x], 1)) r]

(bi) ) = €2 e T, L g/ 16t/ e ()
M(B(Xk,rk))+V(Xk,X) Ly —i—d(xk,x) ke 0k

+Cf*(x)13(x,{,16Aér,{)(x)'

The next lemma is exactly [20, Lemma 4.10]. The proof remains true if d is a quasi-
metric and p does not satisfy the reverse doubling condition.

Lemma 4.8 Let B € (0,00), p € (w/(w+ ), ), Lo € Nand I be a countable index
set. Then there exists a positive constant C such that, for any sequences {xy}rc; C X
and {ritker C (0, 00) satisfying 3 yc; 1) < Lo,

Vrk(xk) Tk 8P
/X {Z Vi k) + V(g x) |:rk +d(xk,X)] } dux) < Cu (U B(xk,rk)> .

kel kel

Then, by Proposition 4.7 and Lemma 4.8, we have the following result.

Proposition4.9 Let p € (w/(w +n), 1]. Forany j € Z and k € I}, let b,{ be as in
(4.3). Then there exists a positive constant C such that, for any j € Z,

fx Z b’ (x)] du) < C || 1gi|7p ) s (4.4)

kel;

moreover;, there exists bl € H*P(X) such that b/ = Zke], b,{ in H*P(X) and, for
any x € X, '

joi j p
CONOENINY @(fok’rk)) - [ ; Tk } FCF* ()1 (x);
kel w(Bx, )+ Vixp,x) L rp + d(x,f,x)
4.5)

ifg/ == f — bl forany j € Z, then, for any x € X,

JoJ J

B
— - - - +Cr*1 Qi c(x).
kel ;L(B(x]{,r,g)) + V(x,{,x) r,{ +d(x1{,x)i| 0

(4.6)
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Proof Fix j € Z. We first prove (4.4). Indeed, by Proposition 4.7, we find that

[ () ] o
X ker;
p

i j B
< ij/ ;{(B(x,{» ) . | ri | )
X kel w(Bx, ri)+Vx],x) [ r] +dx]. x)

+ / LF* 1P ).
Uker; B(x],16A%r])

By Proposition 4.4(ii), we have Q/ Uke, B(xk, 16A4 ) Applying this and
Lemma 4.8, the first term in the rlght -hand side of the above formula is bounded
by a harmless positive constant multiple of 2/7 1(2/). Combining this with f* ~ f*
implies that

[ 2 [0) @] anco 2 (@)« [ or ane < 1510 s,

kel

which proves (4.4).
Next we prove (4.5). By (4.4), the dominated convergence theorem qnd the com-
pleteness of H*7(X) (see Proposition 3.1), we know that there exists bl € H*P(X)

such that b/ = Zke I b,i in H*P(X). Moreover, from Proposition 4.7 and Q=
Ukelj B(xj, 16A3r{), we deduce that, for any x € X,

CINOED S CHNE:

kEIj
o i B
Jo /
< o Z w(B(x;,ri)) [ : "k - ] + fF(0)1gi (x).
kel ,U,(B(xk,rk))+V(xk,x) M +dx,x)

This finishes the proof of (4.5).
It remains to prove (4.6). If x € (Q/ )C, then, by (4.5), we conclude that

(e () < f*(x) + B (x)

suy  MBG) [ i TJrf*(x)
o nBOL )+ V0 L +d G x) ’

as desired.
Now we consider the casex € /. Accordmg to Proposmon 4. 4(v) foranyn € [,

we choose a point y; ¢ Q/ satisfying 32A0rn < d(xn, yn) < 48A0rn Since x € Q/,
it follows that there exists kp € I; such that x € B(xko, rko) Let J be the set of
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all n € I; such that B(x,{, 16Aér,{) N B(x,{o, 16Agr,{0) # ). Then, by the proof of
Proposition 4.4(v), #9 < Lo and r,{ ~ r,{o whenevern € 9.

Suppose that ¢ € gg(ﬂ, y) with [[¢llgex,r.p,y) < 1 for some r € (0, 00). We then
estimate (g/, @) by considering the cases r < r,{o and r > r,{o, respectively.

Case l)r < r,fo. In this case, we write

(g 0)=(f.0)= > (bh.g)=(f.0) =Y (bl.o) = Y (i)

nel; neJ ng¢J
= () =Y AT — Y (b ),
nedJ n¢J

where ¢ == (1 -3, . ¢,{)<p and, for any n € 7,
. . _l .
@n = b0 |:/X éi (2) dM(Z)] /;(ﬁl’(z)fﬁﬁ(z) du(z).

We first consider the term Zn¢ j(b,{, ¢). Indeed, from x € B(x,{o, r,{o), it follows
that x ¢ B(x,{, 16A3x,{ ) when n ¢ J. Applying Proposition 4.7 implies that

(b o) < |(22) 0| <2 w(B . i) [ . T’

(B, i) + Vi, x) | rl +dx), x)

and hence
o j B
ZKb/ ¢>‘<2j2 w(B(xn,ri)) |: r :|
ns ~ —— - - - s
ngJ n¢jM(B(xrlzsri{))+V(x;{,x) r;{—i—d(x,{,x)
as desired.

Next we consider the term )+ (f, @n). Notice that ||@,

GG i B < 1. Therefore,

w(B(xi, 1)) r b
1B, i)+ Vxd, x) L +dx), x)

o <
lgeei v pyy < 1-BY

d(xi, yn) ~ rir, we then have || @, |

@l S £ () ~ £+ (o) S 27 ~ 2

where, in the last step, we used the facts that x € B(x,fo, r,ﬁo) and d(x;, x,{o) <

rl + r,fo ~ 1] whenever n € J. Then, summing all n € J, we obtain the desired
estimate.

Finally, we consider the term (f, @). Since ¢ € gg (B, v), it is easy to see that
@ € G} (B, ). Once we have proved that

||§0||g(y]{0’r]{0’ﬁ’y) ~ 11 (47)
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then

_ NN i B r
NS £ () ~ 17 (o) s 2/ ~ 2l e |
H(B(xk(y ’"ko)) + V(xko»x) Tko + d(xko’ X)

as desired. _ _

To prove (4.7), we first consider the size condition. For any z € B(x,io, 16A3r,§0),
by Proposition 4.5, we have Znej q),{ () = Znelj q&,{ (z) = 1 and hence ¢(z) = 0.
When d(z. x},) > 16A%r{ , by the fact d(xj , z) = 2Aod (x, x], ), we have

r,fo +d (z, y,{()) < r,fo + Ap [d (z, X,f()) +d (xzo, y,{o)] < (2Ap)° [r,fo +d (z, x]fo)]

= @49 d (2. x])) = @Ap%d(x. ) = @A +d(x. 0] (48)

and hence pL(B(y,{O, r,fo)) + V(y,{o, 7) < Vi (x) + V(x, z), which, together with the

size condition of ¢ and the fact that » < r,{o, further implies that

- 1 r 14
P < lp@)] < ACERTCNS |:r~|—d(x,z)j|

Jj Y
< 1 : [ Tk } .
WBOL )+ VOl 2 Ll +dGl, )

This finishes the proof of the size condition.
Now we consider the regularity of ¢. Suppose that z, 7/ € X with d(z,7)) <
(24¢)~ 1 [rk +d(z, yko)] Due to the size condition, we only need to consider the case

d(z,2) < (240)” 9[rko +d(z Y )1 I §(2) — §(&) # 0, then cither d(z, xk0> >

16A4 o OF d(, xk ) > 16A4rk , which always implies that d(z, xk ) > 8A3rk0
Indeed if d(z, xk ) < 8A3rk , then d(z yk ) < Aold(z, xk ) + d(xko yko)] <

(2A0)6 and hence d(z, 7)) < (24¢) 2 rkO, which further implies that d(z/, xko)

IA

Aold(Z, Z) +d(z, xko)] < 16A0rk and it is a contraction.

Notice that d(z, xk ) > 8A3rk , which, together with an argument as in the esti-
mation of (4.8), implies rkO + d(z, ka) < 2A0)%[r + d(z, x)], so that d(z, 7) <
A~ Mr +d(z, x)1. By the definition of @, we find that

5 =3 < [ 1= 1@ | lp@) — o) + 1) Y |#1() — ¢ (D).

neJ neJ

Using the regularity condition of ¢ and the fact d(z, z’) < (2A¢)~'[r + d(z, x)],
we obtain
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1= "6l | o) — (@)
neJ

<[ d(z,7) r 1 [ r }V
~lr+dizx)| V,x)+Vx,2) | r+dx,2)

B 14
<|: d(z,z) ] 1 |: it ]
Ll @yl ] nBOL A+ VOL o Ll +del o]

where, ip the'last step, we used r,ﬁo +d(z, y,fo) Sr4d(z, x),r < r,fo, X € B(x,io, r,fo)
and d(y,'(’o, x;(’o) ~ r,'(’o.

We now estimate [¢(z')| 3,7 1 (2) — ¢ (). If ()¢5, (2) — $3 (z')] # O, then
7 ¢ B(x,{o, 16A3r,'(’0) and z or 7’ belongs to B(x;,2Aor;). When n € J, we have

rl o~ rl{o ~ r]fo + d(y,fo, z).. Also, r,fo +d(z, y,{o) <r+d(z,x)~r+dE, x). By

these, #9 < Lpand r < r,fo, we conclude that

o)y

neqJ

Svwvves i) 2%
~V(x)+V(x,Z) L r+d(z,x) = r)

D1 (2) — b1 (2)

/ J Y
Tl +dol o] wBOL )+ VoL D L, +dG.2)

This finishes the proof of the regularity condition and hence of (4.7). Thus, we complete
the proof of Case 1).

Case2)r > r,fo. In this case, we write
(g7 0)| = 107 01+ 3 (b o)+ 3 |{oid o) -
nedJ n¢gJ

The estimation of Zn¢ 7 |(b,£, ¢)| has already been given in Case 1).
From x € B(x,go, r,fo) andd(y,go,x,go) ~ ,go < r, it follows that ||<p||g(yi ) <1
7B

and hence

1(BOR T)) [ ri ]
H(Bx i) + Vg, 0 L +d, 0

oS (vh) S 27 ~ 2

If n € , then r,{ ~ r,{o and hence d (y,{ , x,{o) < r,{o. This, together with the fact

r,{o <randx € B (x,{o, r,go), implies that ||¢|| 1. Thus, by Proposition

; <
GQOn.r.By) ~
4.7, we have
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> [t = X2 (1) (%)

nedJ neJ

D I [ i T.

neg (B, 1)) + V(. x) il +d (] x)

Then we obtain the desired estimate for (g/, ¢) in the case r > r,fo.
Combining the two cases above, we find that, for any x € Q/,

() () < 27 Z M(B(x,f,r,i)) |: | rl . ] ‘
kel ,u,(B(xk, T 1))+ V(xk,x) r,f + d(x,ﬁ,x)

Thus, (4.6) holds true. This finishes the proof of Proposition 4.9. O

4.3 Atomic Characterizations of H*:P (X)

In this section, we prove H*?(X) C Ha’z “1(X) and complete the proof of Theorem
4.2. First, we obtain dense subspaces of H*”(X) as follows.

Lemma 4.10 ([20, Proposition4.12]) Let p € (w/(w+1n), 1], 8, ¥ € (w(1/p—1), 1)
and g € [1,00). If regard H*P(X) as a subspace of (gg(,B, v)), then L4(X) N
H*P(X) is dense in H*? (X).

In the next two lemmas, we suppose that f € LZ(X )N H*P(X). Based on Propo-
sition 3.3 and (3.1), we may follow [20, Remark 4.14] and assume that there exists a
positive constant C such that, for any x € X, | f(x)| < Cf*(x). With all the notation
as in the previous section, for any j € Z and k € I}, define

= — / FE8[E du@) and bl = (f-mi)el. @9
i N1 x) /X

Then we have the following technical lemma.

Lemma 4.1 ([20, Proposition 4.13]) For any j € Z and k € 1, let m] and b}, be as
in (4.9). Then

(i) there exists a positive constant C, independent of j and k € 1;, such that
mi| < C2J;
(i) b,{ induces the same distribution as defined in (4.3);
(ii1) Zke I b,{ converges to some function bl in L2(X ), which induces a distribution
that coincides with b’ as in Proposition 4.9;
(iv) let g/ := f —bJ. Then g/ = fl(gzj)c + Zkel_,- m,ﬂaﬁ,{ Moreover, there exists a
positive constant C, independent of j, such that, for any x € X, |g’ (x)| < C2/.
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Forany j € Z,k € I; and [ € I;1, define

1
U= [ [ro -n"|l@d ©dne. @0
oy " N /X

Then L,{jl has the following properties.

Lemma4.12 Forany j € Z, k € Ij andl € 14, let L,]Jl be as in (4.10). Then

(1) there exists a positive constant C, independent of j, k and 1, such that

sup |L ]+1¢J+1(X) < C2/;
xeX

(i1) Zkelj Zleljﬂ ’+1¢/+1 =0 both in (gg(,B, v))' and everywhere.
Proof We first show (i). Indeed, for any j € Z, k € Ij,l€ljyiandx € X,

]+1
/Xf(é)w du)| =: Y| + Ya.

j+1 1 1 1 1
L @] = mf o o+ 0/ o) 1
I ||L1(X)

By Lemma 4.11(i) and the definition of ¢ J+l , it is easy to obtain Y1 < 2/.

Now we consider Y. If ¢k' gb /1 s a non-zero fU.IlCthIl then B(xk , 2A0rk’ )N
B(x’ 1 2Aor’ 1) % @, which further implies that r] o 3Agrj. Otherwise, if
1 > 3A0rk,then forany y € B(xk,48A(5)rk),

d (y, xlj+1) < Ag [d (y, x,{) +d (xk [JH)] < 48A0rk + AO (2A0rk + 2A0r1+1)

2
<1643 "1+ SAp] T r 23T < 20437

which implies that B(x/,4843r{)  B(x/*',20437/™") c @/*! c @/ and hence
contradicts to Proposition 4.4(v).
Define ¢ = ¢k¢f“ /||¢>f+1 1 (x)- According to Proposition 4.4(iv) with A :=

16A§, we can choose y/ e (@) such that aI(yJJrl J“) < 48A3r H] . We

]+1 j+1

now show ¢ € G(y; ri ", n,n)and ||g0||g(y,+1 < 1. Notice that supp o C
'l

rl" n.m)
B(x{ 1 240 r’ *1) Moreover, by this and the choice of yl *1we conclude that, for
any x € B(x,“ 2401,

+1 1 /! !
lo)| S 1o] ™ (01 S WBGT ) Ve, x)|: N )]

1 lj+1 n
wBO!T ATy vl o LT v aoi o |
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This shows the size condition of ¢.

To consider the regularity condition of ¢, we suppose that x, x’ € X satisfying
d(x,x") < 2Ag)~ 1[r]H + d(yjJrl x)]. Due to the size condition, we may assume
d(x,x') < 2Ao)3[r f“+d(yf“ x)]. We claim that ¢ (x) — ¢(x') # 0 implies that
dx, x/™") < 96ASr f“.

Indeed, if d(x, x]+]) > 9648/ T then ¢(x) = 0. By d(x/™',y/™h <
48A3r/ 1!, we find that d(x, yf+ ‘) > 48Agr/+ ! and hence d(x, x') < (2Ag)~2
dix, y/ ™ < (2A0) 'd(x, x} ™). Consequently, d(x', x/ ™) > AF'd(x, /™) —
d(x,x') > 48A5 and go(x/) = 0. This contradicts to ¢(x) — (p(x/) # 0.

By the above clalm rl < 3A0rk and d(y/+1, ;-H) ZJ—H we know that
lp(x) — p(x)]
1
< j+1 Jj+1 j+1 /
S [ol o]/ @ = /T | + o] 00 = s{ )| 6T )]

_ 1 {|:d(x,x’):| . |:d(x,x/):|n}
~ u(B(xJ-H rlj-i-l)) rlj+l r]{

|: d(x, x") i|n 1 |: IJH i|n
j+l+d(y]+l X) /L(B(ijrl ]+]))+V( jJrl7 X) j+1+d( ]+1’ ) :

2

Thus, we obtain ¢ € Q(y’Jrl r/“, n, n) and ||g0||g(y,+1 o < 1, which further

implies that ||<p|| GOi T ) S < 1 and hence

Ya=I(f 0l S £ (5) s 27,

This finishes the proof of (i). ' ‘
Next we prove (ii). If LjJrl # 0, then the proof in (i) implies B(x],2Aor{) N

B(xH_1 2A0r H_1) # () and rlﬁ_1 < 3A0r,{. Further, for any y € B(xle, 2A0rlj+1),
we have

d(voxl) = aofd (vox/ )+ (e /1) < 243/ + 43 (2407 + 2407/ )

< 6A0rk + 2A0rk +6A0rk < 14A0rk < 16Agrk,

which implies that B(x/ 7', 2A0r/ ™) € B(x], 16A4r!) C @ by Proposition 4.4(v).
Thus, for any k € I; and x € X, we find that

j+l o j+l . .
Z’L ¢ ’N IB(x,{,léAgr,{)(x) 1D

lEIj.H
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and hence
1, j+1
> X [H e 0] $2 0 10 sy @) S 2.
keljlelj kel;
Consequently,

25 ey (5o

keljleljg leljy1 \kel

- ¥

leljqy ”d)l ||L1(X)

>

Ielj I/ 1 cx)

-y / b @) due) = 0.

leljqy ”d)l ||L1(X) X

¢]+1 1
[ [re=ni"]ei"© ¥ el @ ane

kel;

¢/+1
[ [r©-ni ™ol ©due

j+1
¢

By the fact that Zkelj ZIE,H] Jx | Lj+l¢j+l(§)|du(§) < 2/ (%) < oo and the
dominated convergence theorem, we find that 3 . 37/c/ L”lqsﬁrl =0in L1 (X)
and hence in (gg (B, y))'. This finishes the proof of Lemma 4.12. O

Now we show the other side of Theorem 4.2.

Proofof H*P(X) C Hff(X) By Lemma4.10, we first suppose f € L>(X)NH*?(X).
We may also assume | f(x)] < f*(x) for any x € X. We use the same notation as
in Lemmas 4.11 and 4.12. For any j € N, let h/ = g/*! — g/ = p/ — p/+1,
Then f — Zj__m h/ = b™*! 4 ¢~ For any m € Z, by Lemma 4.11, we con-
clude that [|[g =" ||z (x) < 27™. Moreover, by (4.5), we find that [|(5" ) *[|Lrx) S
I F*1 guingllLeey — 0asm — co. Thus, f = Z?i_oo h’in (GJ(B, v))'. Besides,
by the definition of b}", we know that supp »” ! C Q™!  which then implies that
Z?‘;foo h’ converges almost everywhere. Notice that, by Lemma 4.12(ii), for any
j € Z, we have

W o=pl — pit! = sz Z bJ'H + Z Z LJ+1 /+1

kel; leljig keljleljg
— J J+L Jj+1 H—l J
= o= X (el - Lo | = Yonl, 4.12)
kel leljy kel

which converges in (gg (B, y))’ and almost everywhere. Moreover, for any j € Z and
keN,
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j_ i JHL G L]
h = by — Z (bz P — Lii ¢ )

leljt
j j j+1 j i+1 i+1
= (f-m) ol 3 [(r-mi*) ol — L] o]
€ljt1
‘ AL N -
= foilgre —midl o Y omi Vel T+ > LT

leljy leljyy

The fourth term is supported on B,{ = B(x,{, 16Agr,{), which is deduced from (4.11).
Thus, supp h ,i CcB k/ .Moreover, by Lemmas 4.11(i) and 4.12(i), we conclude that there

exists a positive constant C, independent of j and k, such that ||h‘,£ lroox)y < Cc2/.
Now, let

M =2 [ (B,f)]% and aj = (,\i)_l nl. (4.13)

Then a,f is a (p, co)-atom supported on B,f and f = Z?‘;ioo Zkeli Aia]{ in
(G4 (B, ¥))'. Moreover, we have

S YR s Y 2 Y u(s)

j=—o00kel; Jj=—00 kel;
o
S 2 2 (@) ~ 1 W ~ 1 gy
j=—00

which further implies that ”f”H’f’“(X) SN la=rx)-

When f € H*P(X), using Lemma 4.10 and a standard density argument and
following the proof in [43, pp.301-302], we obtain the atomic decomposition of f,
the details being omitted. This finishes the proof of H*?(X) C Ha’:’q (X) and hence
of Theorem 4.2. ]
Remark 4.13 By the argument used in the proof of H*?(X) C HJ?(X), we find that,
if f e L9(X)N H*P(X) with g € [1, oo], then f = Z?L_Zkelj h,’C in (gg(ﬂ, 7))

and almost everywhere, where, for any j € Z and k € I}, hljc is as in (4.12).

4.4 Relationship Between H:t’q(X) and Hg‘;\,q(X)

In this section, we consider the relationship between Hﬁ 4(x) and HE2(X). To see
this, we need the following two technical lemmas.

Lemma4.14 ([7,p.592]) Let p € (0, 1), q € (p, oo]N[1, o0l anda be a (p, q)-atom.
Then, for any ¢ € Li;,—1(X), {a, o)| < llellz,),-1x)-

Lemma4.15 Let f € (0,n]l and y € (0,00). If ¢ € G(B, ), then ¢ € Lg;(X)
and there exists a positive constant C, independent of ¢, such that ||¢ll £, (x) <

Cllellges.y)-
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Proof Suppose that [l¢llgg,,) < 1. Ifd(x, y) < (240)7'[1 4+ d(x, x)], then, by the
regularity condition of ¢ and (1.1), we have

000 = 9 = o r : il
¢ P = T o0 | Vito) + Vxo. ) | 1+ d(xo, %)

<[ p(B(x,d(x, y)))
~ Lu(B(x, 1+d(xo, x)))

Blw
} SV(x, p1Fre.

If d(x,y) > (2A0)~'[1 + d(xg, x)], then, from the size condition of ¢, we deduce
that

lp(x) — )| <1~ [(B(xo, NP < [(B(xo, 1+ d(x0, x)))1F/®
~ (B (x, 14 d(xo, )NIP® <[V (x, 1P/

Thus, for any x, y € X, we always have |p(x) — ()| < ll@llgs. [V (x, »)1P/@.
This implies ¢ € Lg/,(X) and |l@ll £, (x) < llellgs.y), which completes the proof
of Lemma 4.15. O

Now we establish the relationship between two kinds of atomic Hardy spaces.
Theorem 4.16 Let p € (w/(w+1n), 1], g € (p,oo]lN[l,00]and B, y € (w(1/p —
), ). If regard HY (X) as a subspace of (GJ(B, y))', then HE! (X) = HL (X)
with equal (quasi-)norms.

Proof We only consider the case p € (w/(w + 1), 1). The proof of p = 1 is similar
and the details are omitted.

We first prove H&?(X) € HJ?(X). By Lemma 4.15, we have G((B,y) C

G@(1/p — 1), y) C Li/p—1(X) and hence (L1/,—1(X)) C (G4(B. ). For any
f e HE(X), by Definition 1.1, we know that there exist (p, ¢)-atoms {a j};?ozl and

{2,152, € C with Z?o:] |A;|? < oo such that f = Z?’;l Ajajin (Li/p—1(X)) and
hence in (gg(ﬁ, v)) . Let g := f|§8(ﬁ,y)' Then, for any ¢ € gg(ﬁ, Y) C Lip-1(X),
we have

0]

(g.0)=(f,0) =) %rjla;, ).

j=1

1
Thus, g = Y52 Aja; in (Gy(B. v)) and gl yracxy < (252, 12j1P) 7 If we take
the infimum over all the atomic decompositions of f as above, we obtain || g || HP(x) =
Il £l 29 (x)- Thus, HE(X) ¢ HE 9 (X).
To show HE(X) D Hﬁ’q (X), following the proof of [7, p.593, Theorem B], we
conclude that the dual space of H"?(X) is £1/,—1(X) in the following sense: every
bounded linear functional on H?(X) is a mapping of the form

f ZA;/Xaj(xm(x)du(x),
Jj=1
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where g € L1/,-1(X) and f has an atomic decomposition
oo
=3 (4.14)
j=1

in (G}(B, y)) with (p, g)-atoms {a;}32, and {%;}32, C C satisfying 2?021 IAj1P <
oo. Therefore, it is reasonable to define the pair ( f, g) as follows:

(f.8) =) % /X aj(x)g(x) dpu(x).
j=1

In this way, we find that (4.14) also converges in (Li/,—1(X))’, and hence f €
1

HEA(X) and ”f”Hé’vﬂ(X) < (Z;’;l [+;17)?. Taking the infimum over all the

atomic decompositions of f as above, we obtain || f|| HEI(x) = WAl HP9 (X)" Thus,

HP9(X) c HE'(X), which completes the proof of Theorem 4.16. o

5 Littlewood-Paley Function Characterizations of Atomic Hardy
Spaces

In this section, we consider the Littlewood—Paley function characterizations of Hardy
spaces. Differently from Sects. 3 and 4, we use (ég (B, y)) as underlying spaces to
introduce Hardy spaces. Let p € (w/(w + 1), 1], B, ¥y € (w(l/p — 1),n), f €
(Qg (B,v)) and {Qp}rez be an exp-ATI. For any 6 € (0, 00), define the Lusin area
Sfunction of f, with aperture 8, Sg(f), by setting, for any x € X,

%
2 du«(y)} ' 5.1)

So(f)(x) = L;oo /B | QTP T

In particular, when 8 = 1, we write Sy simply as S. Define the Hardy space HP (X)
via the Lusin area function by setting

HP(X) := {f € (éﬁ(ﬂ, )/))/2 I fllarx) = IS(HILrx) < OO}-

In Sect. 5.1, we show that H” (X) is independent of the choices of exp-ATIs. In Sect.
5.2, we connect H?(X) with H*”(X) by considering the molecular and the atomic
characterizations of elements in H” (X). Sect. 5.3 deals with equivalent characteriza-
tions of H?(X) via the Littlewood—Paley g-function

1

] 2
g(f)x) = [ > |Qkf(x)|2:| (5.2)

k=—o00
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and the Littlewood—Paley g5 -function

1

x sk Y duy) .
* o 2
8. (1)) = {kzzoo/x'Q"f(”' [ak+d<x,y>] @+ v | o &Y

where f € (ég(ﬂ, v)) with B, v € (w(l/p —1),1),x € X and A € (0, c0).

5.1 Independence of exp-ATls

In this section, we show that H”(X) is independent of the choices of exp-ATIs. If
& = {Ei}rez and Q := {Qy}kez are two exp-ATls, then we denote by Sg and Sg
the Lusin area functions via & and Q, respectively.

Theorem 5.1 Let & := {Ei}rez and Q := {Q}kez be two exp-ATls. Suppose that
p € (w/(w+n),1]and B, Y€ (w(1/p—1), n). Then there exists a positive constant
C such that, for any f € (Qg(,B, ),

C M ISaN ey < I1Se(H)Lrxy < CIISQU) Lrx)-

To show Theorem 5.1, the Fefferman—Stein vector-valued maximal inequality is
necessary.

Lemma 5.2 ([22, Theorem 1.2] or [47, Theorem 1.3]) Suppose that p € (1, 00) and
u € (1, oo]. Then there exists a positive constant C such that, for any sequence { f };?Ozl
of measurable functions,

u

==

D IMFNI”

j=1

o
<c D11
j=1

LP(X) - LP(X)
with the usual modification made when u = oo.

Proof of Theorem 5.1 By symmetry, we only need to prove
ISe(N ety S 1Sa(HllLrx)-

Foranyk € Z, f € @8(,3, y))’ with 8, y as in Theorem 5.1, and z € X, define

1

) |Qkf<u)|2du(u>]2 .

mi(f)(z) = [

Vi (2) JB(z,s¢
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Now suppose that/ € Z,x € X and y € B(x, 8’). By Theorem 2.7, we conclude
that

N (ko)

Eif(y) = Z > Bl (b f Qu f () dp(u),

k=—occaeAry m=1

where all the notation is as in Theorem 2.7 and {ék},fi_ oo Satisfies the conditions of

Theorem 2.7. Notice that, if z € QK™ then Q8™ C B(z, 8¥) and ju(QX"™) ~ Vi (2).
Therefore, we have

1

IQkf(u)Izdu(y)T ~ m ().

d <
Orfwydu@)| < |:V8k(Z) B(z,8%)

i
w(Qkmy Jokm

which further implies that

f Ouf W) du(w)| S _inf mi(NQ

‘ (05™

Moreover, by the proof of (3.7), we find that, for any fixed 8’ € (0, B),

1 8/{/\1 4
E Q < Slk— np'
12k k,m kAL k,m
Vsinr () + V(y, ya) [ 8N +d(y, ya')

Sl 1 sknl v
Vi (X) + V Cx, yomy | 858 4 d (e, yomy |7

where only the regularity condition of O on the first variable is used. Therefore, by
Lemma 3.7, for any fixed r € (w/(w + y), 1], we have

N (k,a)

E < slk—118’ ( ) 1
ELFO) S k;oo agk ,; ) e TV
sknl Y .
) |:8“’ +d(x, yf.j””)} zelgg'" @
oo
< Y gkl glhmtenDlo(=h
k=—00

<

N (ko)

Z Z lnf [mk(f)(z)]rl km (.X)

aeA; m=1 ze Qg™

) Birkhduser
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Choose B’ and r such that r € (w/(w + B'), p). Then, by the Holder inequality, we
conclude that

o0
dy
Se(H0)] f ELf O o=
[ Z_ZOO B(x,8) Vi (x)
o0 o
<y [Z k=11’ lk—(knDlo(1—7)
|=—00 Lk=—00
192
N (k,a) r
x T M Z Z mf [mk(f)(z)]rl ko (x)
aeAr m=1 ZEQ“
o0 o
S Y Y skl gl aDlo—p)
l=—00 k=—00
2
N (k,a) g
ML YD D inf m(H@F gen | (x)
aeA;y m=l1 ze 0"
o0 N(k,a) ;
S YoM X Y inf (D@ e | ()
k=—00 acAr m=1 ZEQO(
> 2
< DY M(ImHT) o}
k=—o00
Therefore, from Lemma 5.2, we deduce that
ol
o] 2 2"
ISe(NlLrx) S ( Z {M([mk(f)]r)}’>
k=—o00 LPIT(X)
o0 3
S { > [mk<f)12} ~ ISa(Hllzrx)-
k= Lr(X)
This finishes the proof of Theorem 5.1. O

5.2 Atomic Characterizations of HP (X)

The main aim of this section is to obtain the atomic characterizations of H” (X) when
p € (/(w+n),1].

Forany p € (o/(w+1n), 1],q € (p,o0]N[l,00]land B, y € (w(1/p—1), 1), we
define the homogeneous atomic Hardy space HY'? (X) in the same way as H:7(X),
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but with the distribution space (G (8, y))’ replaced by (G{ (8, ))'- Then the following
relationship between H*¢ (X) and H?(X) can be found in [20, Theorem 5.4].

Proposition 5.3 Suppose p € (w/(w + 1), 1], B, v € (w(1/p — 1),n) and q €
(p,o0] N[1, 00]. Then I-(’Ia':’q (X) = H;z’q(X) with equivalent (quasi)-norms. More
precisely, if f € Ha’:’q (X), then the restriction of f on Qg (B, y) belongs to ﬁzﬁ’q (X),
Conversely, if f € ﬁlzf:’q (X), then there exists a unique f € Hzf:’q (X) such that f =f
in (Gy(B. )

Due to the fact that the kernels @  in the homogeneous continuous Calderén formula

in Theorem 2.6 has no compact support, we can only use Theorem 2.6 to decompose
an element of H” (X) into a linear combination of the following molecules.

Definition 5.4 Suppose that p € (0,1], g € (p,00] N[, 0] and € := {emlor, C
[0, oo) satisfying

o
> mlen)? < oo. (5.4)
m=1
A function M € L9(X)iscalleda (p, ¢, €)-molecule centered ataball B := B (x, o)
for some xp € X and r € (0, 0o) if M has the following properties:

@) IM1g]000 < [(B)]7 7

1
(ii) for any meN, [M1p ) s-mr)\B(xg,6-m+ o) | L2 (X) S€mIp(B(x0, 8" ro))]7 73
(i) [y M(x)du(x) =0.

By (i) and (ii) of Definition 5.4, the Holder inequality, (5.4) and the fact p € (0, 1],
we find that, if M satisfies (i) and (ii) of Definition 5.4, then M € L'(X) and hence
Definition 5.4(iii) makes sense.

After carefully checking the proof of [39, Theorem 3.4], we obtain the following
molecular characterization of the atomic Hardy space HE(X) of Coifman and Weiss
[7], the details being omitted.

Proposition 5.5 Suppose that p € (0,1), g € (p,o0] N [1,00] and € = {el}?i]
satisfies (5.4). Then f € (Qg (B, y)) belonging to HEI(X) if and only if there exist
(p, q, €)-molecules {M;}52, and {33352, C C, with Zj’il [Aj17 < oo, such that

f=Y M (5.5)
j=1

converges in (Li/p—1(X)) when p € (0, 1) orin LY(X) when p = 1. Moreover, there
exists a positive constant C, independent of f, such that, for any f € HE?(X),

=

o0

—1 .

C M gz ) <inf | D 12517 < Clif gz x)
j=1

where the infimum is taken over all the molecular decompositions of f as in (5.5).
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Let p € (0/(w+1n), 11and g € (p, o0] N[1, 0o]. By Proposition 5.3, HYY (X) =
HE?(X) and the already known fact that H%,? (X) is independent of the choice of
q € (p,o0] N[1, co], we know that I:I;:’q(X) = Iflzﬁ’z(X). With this observation, we
show HE(X) ¢ HP(X) as follows.

Proposition 5.6 Let p € (w/(w+n), 1], B, v € (w(1/p—1),1),q € (p, cc]N[1, 0]
and { Qi }rez be an exp-ATL Let 6 € (0, 00) and Sy be as in (5.1). Then there exists a
positive constant C, independent of 0, such that, for any distribution f € (gg B, )

belonging to I-OI;:’Z(X),
—0/2 g/
1S () llzr(xy < C max {9 wls g p} ||f||H£2(X) (5.6)

In particular, H? (X) = H?*(X) € HP(X).

Proof Let B, y € (w(1/p — 1), n). It suffices to show (5.6) for the case 6 € [1, 00),
because both (5.6) with & = 1 and Sy(f) < 6*/2S(f) for any f € (Gi(B, )
whenever 6 € (0, 1) imply that (5.6) also holds true for any 6 € (0, 1).

We start with the proof of the fact that the Littlewood—Paley g-function as in (5.2)
is bounded on L2(X ). Indeed, for any & € L2(X ), we write

0]

le 2 = 3 /X 0h@P du) = Y (QF Ok h).

k=—00 k=—00

By Theorem 2.6 and the proof of [27, (3.2)], we find that, for any fixed 8’ € (0, BAY),
any ki, ko € Zand x, y € X, we have

k1 Ak 14
|0k, Of, (x, y)| < slhi—half’ ! o . 6T
R ~ Vitinky (X) + V (x, y) [ A7 4V (x, y)

Notice that, in (5.7), only the regularity of Oy with respect to the second variable is
used. Thus, by Lemma 2.2(v) and the boundedness of M on L?(X), we conclude that,
for any k1, ky € Z,

||(Qi1 le) (QZZ ka) ”LZ(X)_)LZ(X) S ” le Q:z ||L2(X)—>L2(X) 5 3|k1—k2|ﬁ’_

Therefore, by the fact that Q: Qy is self-adjoint and the Cotlar—Stein lemma (see [49,
pp- 279-280] and [29, Lemma 4.5]), we obtain the boundedness of Z,fi_ o0 QZ QO on
L?(X) and hence the boundedness of g on L*(X).

Suppose that a is a (p, 2)-atom supported on a ball B := B(xg, ro) with xo € X
and rg € (0, 0o). By the Fubini theorem and the boundedness of g on L2(X ), we find
that

1
P?

12

1

1S5 (@)l 22005 {Z |Qka|2} ~lg@lp2x) S llallz2ee S [n(B)12
keZ LZ(X)
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which further implies that

/ [So (@)1 diu(x)
B(x0,4A30r0)

1-2

< IS0@ g, [ 1 (B (x0.4430m0) ) |7 s 0205 (5.8)

Let x ¢ B(xo, 4A(2)9r0) and y € B(x, 058%). Since now 6 € [1, 00), for any u €
B = B(xq, ro), we have d(u, xo) < (4A30)"'d(xo,x) < (2A0)~'[6* + d(x0. )]
and hence

|Qka<y)|=‘fx Ok (y, walu) duu(u) s/B|Qk<y,u>—Qk<y,xo)||a<u)|du(u>

dxg,u) 1" 1 sk v
<
N/B[swd(xo,y)} Vi (30) + V (x0. ) [5k+d(XO,y)} it

< (B)]l_ﬁ[ r0 T 1 sk 12
~ K+ d(xg.y) ] Vo) + Vxo,y) | K +d(xg.y) |

On another hand, if §* < (4A430)~'d(xo, x), then d(xo, y) > (4A¢)~'d(xo, x) and
hence

n k Y
|Qka()’)|5[ﬂ(3)]1;’|: 0 } : [ 5 ]
A0 | Voo Ldto,»)

which further implies that

3 |Qraty)? L)

k Vysi (x
sk <(4A20)~1d (x0,%) B(.66%) bo (%)

2n 2 k 2y
S P ) )
~ Bl [d(xo,x)} [on,x) 2 d(x0, )

8k <(4A%6)~1d (xo,x)

< B 22 1o 2 1 2
S B [d(xo,x)} [V(xo,x)} '

If 8% > (4A36)~'d(x0, x), then V (xg, x) < (B (x0, 08%)) < 0“ Ve (x0) and

1 1
|Qka()| < 6°1u(B)' ’ (;Lli)ﬂ V(x0,x)’

which further implies that
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3 |Qra(y) 2 )

k Vysi (x
§k>(4A20)~1d (x0,%) B(.66%) bok (%)

2w 2—% 1 2 1o\ 21
< 0%°[u(B)] [—V(xo,x)} 3 (S—k)

8k>(4A360)~1d (xo.x)

2n 2
~ p2w+2n 2—]27 o 1
o) [d(xo,x)] [on,x)} '

Therefore, when x ¢ B (xg, 4A%9r0), we have

So(a)(x) < 0 u(B)] " | —0 -
o(a)(x) S (n(B)] |:d(xo,X):| V(xp, x)"

Consequently, using p € (n/(w + 1), 1], B = B(xg, r9) and (1.1), we obtain

/ 5 [Sp (@) (x)]? du(x)
[B(x0,4A2070)1C

PN 1 p
< 9(w+n)P[M(3)]P—1/ |: 0 ] |: ] du(x)
[B(x0,4A420r0)1C L d(x0, X) V(xo, x)

o
UL TI0:) L e

j=2
1 P
X / [ - :| du(x)
(240)70ro=<d(xg,x)<(2Ag)i+16rg L L(B(x0, (2A0)/ 0rp))
oo
<@ Z 7 —Jlpn—(=pjw] <. (5.9)
j=2

Combining (5.8) and (5.9) implies that, when 6 € [1, 00),
ISs (@)l Lrx) < 677 (5.10)

Let f € ﬁa’:’z(X). By the definition of ﬁali’z(X),we know that, for any € € (0, 00),
there exist (p, 2)-atoms {aj}?il and {)»j}?ozl C C such that f = Z?il)‘jaj in

GB.v)) and Y0, 1317 < I£I7 .+ e By (5.10) and the fact S(f) <

P2 (X)
Z?‘;l |2 ;1S (a;), we conclude that

o0 o0

1S6 (T iy = D AP ISa @)IT 5y S 62 1217
j=1 j=1

SOUSI o, +e€l—=0°1FIE,

~ B2 (X) AL (X)

as € — 0. This finishes the proof of (5.6) and hence of Proposition 5.6. O
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Next, we use Proposition 5.5 to show the following converse of Proposition 5.6.
Proposition 5.7 Let p € (w/(w+1), 11, 8, 7 € (@(1/p—1). m) and f € G)(B. 7))
belong to HP (X). Then there exist a sequence {a }?‘;1 of (p, 2)-atoms and {A };?OZ] C
C such that f = Z?‘;l Ajaj in (@g(ﬁ, y)) and 2?021 AP < C||f|IZ,,(X), where
C is a positive constant independent of f. Consequently, HP (X) C fl;:’z(X ).

Proof Assume that f € (ég(ﬂ, ¥)) belongs to H”(X). In this proof, to avoid the
confusion of notation between the exp-ATI { Ok }xez and O € D, we use {Ej }xez to
denote an exp-ATI and then define S(f) as in (5.1) but with Qy therein replaced by

E. Denote by D the set of all dyadic cubes. For any k € Z, we define Qi := {x €
X : S(f)(x) > 2%} and

1 1
Dy = {Q €D: w(@N8x) > u(Q) and u(Q N &xy1) = EM(Q)}'

It is easy to see that, for any Q € D, there exists a unique k € Z such that Q € Dy.
A dyadic cube Q € Dy is called a maximal cube in Dy if Q" € Dand Q" D Q, then
Q' ¢ Dy. Denote the set of all maximal cubes in Dy, at level j € Z by {Qi’k},el_i,k,

where I ; C A; may be empty. The center of Qi « 18 denoted by zi’ ¢ Then D =
Uj, kez Urel,-,k{Q €Dx: 0C Qi,k}'

From now on, we adopt the notation E¢ := E; and E 0= E; whenever Q = Q!
for some [ € Z and o € A;41. Then, by Theorem 2.6, we find that

fO =Y EEf©

[=—00

o0
= > Zf EiC ) ELf () du(y)

Ql+l
I=—oc0caeA4+1 o

-3 /Q EoC.»EQf()du(y)
QeD

=Y XY ¥ [ EetnEeroran

k=—o0 j=—ooT€l; ey, QCQi.k 0

o0 o0 X X
= Z Z Z )‘i,kbi,k(')’ (S.11)

k=—00 j=—00t€lj

where all the equalities converge in (gg B,v)),

do=[n(e)] ] X /Q Eo () dn(y)

0eDy. 0Ol
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and
. 1 ~
bl ()= = Z / Eo(.Egf(y)du(y). (5.12)
vk geny, 0col,

For any Q € Dy and Q C Qi’k, assume that Q = ijl for some [ € 7Z and

o € Arqq.Since § is assumed to satisfy § < (240)~19 it then follows that2A¢C?8 < 1
sothat O = Q4!  B(y, 8') forany y € Q. By this and the fact that £(Q N Qy41) <
%/L(Q), we obtain

W(B(y. 8 N1QL N\ Q1)) = w(B(y.8") NIQ\ ur1])

1
= 1@\ Sr1) 2 Su(Q) ~ Vs ().

Thus, we have

> [ iEeroPanw)
QeDy, 0cQl, ©

o 1(B(y,8) N (07 \ Qi)
D3 > / d B f P du(y)

2 S Vi (y)
I=j—1 a6ﬂ1+1,Dk9Qé+1CQ£.k :

w(B(y, 8N (@) \ Qi)
< T, E f 2d
1 E] 1/ V() [E; fD)I7du(y)

/ f ELf 0P s D) 11y
X 1 5571 BOSHNQL ) Vst ()
< / . ISP du) 2% (0],).

0! \ Qi ’

From this and the fact x(Q? ) < 2,(Q) , N @), it follows that

S 2y Z,U«(Qikﬂﬂk)
=—00 j=—oot€lj |

S Z 270 Q) ~ IS pxy- (5:13)
k=—00

Choose y' € (w(1/p — 1),y) and let € := {8’"[7’/_“’(1/1’_1) }men. Assume for
the moment that every b’ Tk S in (5.12) is a (p, 2, €)-molecule centered at a ball
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Bg‘ = B(zi . 4A%8j ~1), whose proof is given in Lemma 5.8 below. Further, apply-

ing Proposition 5.5, we conclude that ||bi il 1. Thus, b’ ;. can be written

p.2
as a linear combination of (p, 2)-atoms, wlﬁch()c(())nverges in (£ /p,l(X))’ when
p € (@/(w+n), 1) orin L'(X) when p = 1, and hence converges in (G{ (8, ¥))’
because ég(ﬂ, v) C Li/p—1(X) (see Lemma 4.15). Invoking this, (5.11) and (5.13),
we find that f € 1_"1;:,2()() and ||f||ﬁ£,z(x) SISO Lr(x)- This finishes the proof of

Proposition 5.7 modulo the proof of Lemma 5.8. O

Lemma 5.8 Let all the notation be as in the proof of Proposition 5.7. Then every b]
as in (5.12) is a harmless positive constant multiple of a (p, 2, €)-molecule centered

at the ball Bf = B(zf’k,4A281 D), where € := {§mlv'=o(/p=Dly v and y' €
(w(1/p—1), y)

Proof Let bi’k be as in (5.12). For any h € L*(X) with 2l 2(x) < 1, by the Fubini
theorem and the Holder inequality, we conclude that

‘/ (DA (x) dpa(x)

<— ¥ / |EQf(Y)|’ / Eq(x, wh(x)du(x)| du(y)
)‘fk 0eDy. 0CO!, ¢ X
>
1 2
E d
| X [ iresorao

©k | 0enr. 0col,

| X[ 1Bk duo)
QeDy. 0CO!,

B (Qi,k)]%_’l’ [HOIERE

where g(h) :=[> 72 |E[*h|2]1/ 2. Noticing that the kernel of El* has the regularity
with respect to the second variable, we follow the argument used in the beginning of
the proof of Proposition 5.6 to deduce that g is bounded on L?(X). Thus, we have

IA

1 1_ 1

1
i o
Sle(@)] " e s [w(BL)] 7

Taking supremum over all & € L2(X) with || A 12(x) < 1, we further find that

< [ (8L4)]
2 ™ [/L( Tk

‘ /X bl (0)h(x) dpu(x)

=
<=

A

‘btk
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Let y’ € ((1/p — 1), ). Fixm € Nand let R,, := (8B )\ (67"*1B/ ).
Then, for any x € R,,, by the Holder inequality and the size condition of {El}lez, we
conclude that

‘ 1
O L / |[Eo(e. »Eo f(] dn(y)
vk geoy, QCQ
! 1
Ez j 2 j /er‘ Vi (1) + V(x, y)

=i laeA . D20 col,

o0
S

81 Y
X [—} [Erf (0] di(y)
y)

8t +d(x,
2 /1+1 V,sz(x)+V(x y)

Yoedn. 0 col,

| 00
<
S X
ok |I=j—

1

2y 2
51+d( } du(y)}

|1? Z Jewwevey

Dst{j‘ch

1

2(y—v") ) 2
51+d(x y)] [E1f ()] du(y)}

— —Y(x)Z(x)
)‘r,k

Notice that, for any x € R,,, we have 4A%8j_’"_1 <d(x, zi O < 4A%6j_’”_2 and,
forany y € QH'1 C Qr > W€ have 8t +d(x,y) ~d(x,y) ~ 8™t and hence

1

, 2

00 1 51 2
Yx) S S Z Z /H—I w(B(y, 6~ m+])) <5 m+]> an

| =i w0 col,

i st 1
S <—) / - — du(y)
SN 0], u(B(zl,, 87m+)))

j 2
< gmv' |: H(B: 1) :|
~ _ j -

n(6-"Bl )

) Birkhduser
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Thus, for any x € R,,, we have
. 1
‘b]k(x)‘ g [MT Z(x).
22k w@=" B )
which, together with the Fubini theorem and Lemma 2.2(ii), implies that

41
2 1

. U | Bl 2
b.‘i,klRm L2(X S T‘Smy 7“(/ / ZeoP dM(X)}
O A (wemBy | VR
_ , 3 %
| (B! ) z
ST g | | el e
_M( r,k)_ QeDy, QCQi,k

1
J 2 11
<5m)/’|: H(BZ ) } [M<B/’k>]77
~ — J T,
w68l )
L1

< gy’ —o(=D] [M (57’"35 k)]f—p .

~

The cancelation of bi, ¢ follows directly from that of E;, the details being omitted.

/ 1
Letting €, := 8" =G for any m € N, we find that {em)50_, satisfies (5.4)
and b’ 7.« 18 @ harmless positive constant multiple of a (p, 2, €)-molecule. This finishes
the proof of Lemma 5.8. O

Combining Propositions 5.6 and 5.7, we immediately obtain the following main
result of this section, the details being omitted.

Theorem 5.9 Suppose that p € (a)/o(a) +n),1], B, v € (w(l/p —1),n) and q €
(p, ool N [1, oo]. As subspaces of (Qg(ﬂ, y))', it holds true that Hj;’q(X) = H’(X)
with equivalent (quasi-)norms.

5.3 Hardy Spaces via Various Littlewood-Paley Functions
In this section, we characterize Hardy spaces H” (X) via the Lusin area functions with
apertures, the Littlewood-Paley g-functions and the Littlewood—Paley g}-functions,

respectively. We first consider the Littlewood—Paley g-function characterizations.

Theorem 5.10 Let p € (w/(w+1n), 1] and B, y € (@(1/p—=1),n). Then there exists
a constant C € [1, 00) such that, for any [ € (Qo(ﬂ ),

C U fllmrco < lg(H e < CllFllapx0)- (5.14)
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Proof Let f € (ég(,B, y)) with B8, y € (w(1/p—1), n). With { Qy }rcz being an exp-
ATI, we define S(f) and g(f), respectively, as in (5.1) and (5.3). If f € H’(X) =

I-OI;:’Z(X ), then, following the proof of (5.6), we also obtain
18CHLrco S 17 g2, ~ 1 lanco)-

To finish the proof of (5.14), it remains to prove || fllurx) S lg(f)llLrcx). Indeed,
for any x € X, we have

N (ko)

d
SHE =Y > > fB (x’ak)|Qkf(y>|21Q5m(x>V;—g))

keZ acAr m=1

1
2

Nk,a)
<12 > Z[ sup |Qkf<z)|2]1Q§,m(x> (515

keZ acAr, m=1 zeB(zg'm,Bk’l)

where Q% is as in Sect. 2 and z&" the center of Q%™. With all the notation as in
Theorem 2.7, we know that, for any z € B(z’g/’”, 6"’1),

Nk ')

Quf@=)_ > > u (Q];//m/) 0« O (Z, ysi’m/) O f (yf;ﬁ’”) :

kelZa'eAy m'=l1

where yi/,’ml is an arbitrary point in Q]:,’m,. Fix B8’ € (0, B A y). Then, similarly to the
proof of (3.7) (see also [27, (3.2)]), we conclude that, for any z € B(z’g;m, sk=1y

Y
~ —; R’ 1 1
Km lk—k'|B
‘Qka’(Z:)’/ )‘58 ! ! / ! ! M
¢ Ve (2) + V (2, Yo" [ 8 4+ d(z, y5™)

(5.16)
The variable z in (5.16) can be replaced by any x € Q{;»m, because max{d(z, x),
d(z, z’;”")} < 8k < 8k Further, from Lemma 3.7, we deduce that, for any fixed
r e (w/(w+n),1],any k' € Zand z € B(zk™, sk 1),

N

Z Z M (Ql;//’m/> 0« Or (Z, yf;ﬁ””/) O f (ys’/,w)

U/Eﬂk/ m'=1

~|—

’_ 1_ Km"\|"
Ss(kAk k)w(, 1) M Z ‘Qk’f(ya”m>‘ 1Qk’,,m’ ()C)

a’'eAy
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and hence

10k /@I S Y sIHI sk b=
k'eZ

N o) v

M X o ()] g | @ 1)

a'eAy m'=1

Combining (5.15) and (5.17), choosing r and B’ such that r € (w/(w + B'), p) and
applying the Holder inequality, we further conclude that, for any x € X,

N (k,a)

SHEOP SIS S Y shwIF sk oo -0

keZ aeAr m=1

k'€l
N o) o ;
X [M ( Z Z ‘Qk/f <y§/’m )‘ le/,.m’) (x)} IQ/&m()C)
a’e?{kr m'=1 o

N (k,a)

s Z Z Z Z5‘k_k/|ﬂ/8(k/\k/—k)w(%_1)

keZ aeA, m=1 k'eZ

2
(8 E e (e e o] e
o' €Ay m'=1 o

. N o) , %

—KNB —w(L— k/, ’

< ZZ(SII( KB~ =D | pq Z Z ‘Qk/f(ya, m)‘ lgk’;'"’ )
keZ k'eZ “

a'eAy m'=1

2

N(k/,ot/) ’ ’ r "

sy MY X e OB 1w @ |
K eZ “

€Ay m'=l1

From this and Lemma 5.2, we deduce that

1
1 e = NSHOY e
il
N ') , r
k/,/
S M X X fowr (8] 16w
KeZ a'eAy m'=1 “
LP/T(X)
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oL
N o) % g
Syl 2o Z‘Qkf( )) ot
KeZl | a'eAy m'=1
LP/7(X)
N(k',a) 2
Ay S e ) e
| KeZ o' €Ay m'=1 “
LP(X)

By this and the arbitrariness of y{::’m,, we finally conclude that

1
N o)

2
I lmrco) S [Z > > inf |Qkff(z)| 1 k} SlgHllzeex)-
LP(X)

KeZo'eAy m'=1 zeQ

This finishes the proof of || f | zrx) < 11(f)IlLr(x) and hence of Theorem 5.10. O

To consider the g}-function characterization of H”(X), we need a new kind of
Littlewood—Paley functions. For any 8, y € (0,1),0 € (0,00) and f € (ég B,v)),

define the Littlewood—Paley auxiliary function Sél ) (f) of f withaperture 6 by setting,
forany x € X,

SV () = [

d
Z/ 10cf )P “gﬂ . 5.18)

k=—o00

It is obvious that, for any f € (G (B, ¥)), SV (f) ~ S(f) and, for any 6 € [1, 00),
by the Fubini theorem, we have

S OISl 2y ~ 072 | S ()

s

L2x) ™ L2x)’

with the implicit positive constants independent of f. For the case p € (0, 2), we have
the following lemma.

Lemma5.11 Let B, y € (0,n) and p € (0,2). Then there exists a positive constant
C such that, forany 0 € [1,00) and f € (gg(ﬂ, ),

Hsg”(f)’ (5.19)

< coe” |V (p)|

LP(X) LP(X)

Proof For any 0 € [1, 00), any non-negative function g and any x € X, define

M(g)(x) :==sup  sup 2(2)du(z).

keZ d(x,y)<0sk Vs (y) B(y,8%)
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Notice that, for any k € Z, y € B(x, 08%) and z € B(y, §),
d(x,2) < Aold(x, y) +d(y, 2)] < 24065",

which further implies B(y, 85y C B(x,2A008%). By this and (1.1), we find that, for
anyk € Z,x € X and y € B(x, 05%),

V. t(x) 1
8(2) du(z) < —u%
Vs (¥) JB(y.8%) Vs () Vauesk (X) JBx, 24066k

< Vo005 (¥)
Ve (y)

2(2)du(z)

M(g)(x) S 0“M(g)(x),

which, together with the boundedness of M from L' (X) to L'-*°(X), further implies
that, for any r € (0, 00),

w

~ 0
w(freX: M@ >r}) S —lgllui): (5.20)

For any 1 € (0,00) and f € (Gy(B, y)) with B, y € (0, n), define E, := {x €
X S(ll)(f)(x) > t}and I:f, ={xeX: ;\VA(IE,)(x) > 1/2}. We claim that, for any
t € (0, 00),

2 2
/N s @] due s e / sV @] dunew. 2
E; E;

Assuming this for the moment, we continue the proof of (5.19). Indeed, by the Cheby-
shev inequality, (5.20) and (5.21), we find that, for any ¢ € (0, 00),

% ({x €eX: S(gl)(f)(x) > t}) < ,u(g[) +u (Ix € Etc : Sél)(f)(x) > t])

2
sovutEn+r [ [SPw] duw
E

t

2
sovuEn -+ [ [sPem] due
E;

t
sov w2 [Csuas].
0

By this, the Tonelli theorem and the fact p € (0, 2), we conclude that

p

Rl

= p/oootp_lu({x €X: Sél)(f)(x) > t}) dt

(o) o t
<6® [/ P W (Ep) dt+/ ﬂ’—3/ su(Es)dsdt:|
0 0 0

~oo |SOA|”  woe [T suEs [T 3 ara
[ 07 ) snED | s
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~o0v | s’

® p—1 ~ @ || gD
. 0/0 sP u(Eg) ds ~ 6 HS )

LP(X) '

This finishes the proof of (5.19) under the assumption (5.21).
It remains to show (5.21). Fix t € (0,00) and, for any y € X, let p(y) =
nfxeig d(x,y). Then,forany k € Zandx, ye X, x € EE N B(y, 95") implies that
t

p(y) < o8k, By this and the Tonelli theorem, we find that

'] aww=[ 3 | L dw)
fgn[ b (f)(x)] 1 (x) EFk;oo B(X’%k)|Qkf()’)| TGy 41

t

o0

= [ o oPe (B 0 B8
p(y)<68k

ke=—

du(y)
Vs (y)

du(y)
Vs (v)
(5.22)

0]

< Q@ 2 (B ,Bk
S0 ) /p(yk%kmkf(yn n(B(y. 5)

k=—00

When p(y) < 8%, we have EC N B(y, 05%) # 0. Choose yo € EC N B(y, 06%). Then
we have
(N B(y, 89) = /B gy (@@ = uBO, SNM (1) o)
Y,

1 k
= Fu(B(y,d%).

[\

Thus, £(EC N B(y, 8)) > Tu(B(y, 8%)). By this, (5.22) and the Tonelli theorem, we
further conclude that

o0

2
/E S| anew ser Y / 104 F O Pi(B(y, 8y S

o Y D) <O8F Vi ()

§ c PNS))
> /IQkf()’)IM(E NB(y.8h) Vo)

k=—o00

M(y)
. d
k:Z_jOO/EF/BM 10k f I Tty S

~o7 [ [ ] duco

This finishes the proof of (5.21) and hence of Lemma 5.11. O

Using Lemma 5.11, we now establish the Littlewood—Paley g} -function character-
ization of H”(X) when p € (w/(w + 1), 1].
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Theorem 5.12 Let p € (w/(w+1n), 11, B, y € (w(1/p—1), 1) andk € Qw/p, 00).
Then there exists a constant C € [1, 00) such that, for any f € (QO B,v)),

C N Flurcry < gk (Ol < Clfllarxo- (5.23)

Proof Fix p € (w/(w + n),1] and A € Qw/p, 00). For any f € @g(f}, ¥))" with
B, v € (w(1/p — 1), ), by the definition of g;f(f) [see (5.3)], we find that

SR S [N 3207 [sVn] (5.24)

j=0

By (5.24), we easily obtain the first inequality of (5.23). For the secondo one, by (5.24),
the fact p < 2, (5.19) and A > 2w/ p, we conclude that, for any f € (Qg(ﬂ, v))’ with
/37 Y € (w(l/p - 1)’ 77),

00 /2
j )]
85O ny = I3y, Sy por s ] .
~ Zz JjAp/2 HS(l)(f)‘ Lp(X) H (D(f)‘ LP(X) Zz jAp/zzlw

~ ||S(f)||Lp(X)~

This finishes the proof of the second inequality of (5.23) and hence of Theorem 5.12.
O

Remark 5.13 1If X is a homogeneous group, Folland and Stein [12, Corollary 7.4]
showed that, for any given p € (0,2] and any f € .%'(X), s (Hllerxy =<
CIS(H)llLr(x) whenever A € (2w/p, oo) with the positive constant C independent
of f by observing that A in (5.3) equals to 2A with A as in the Littlewood—Paley
g5 -function in [12], where .’ ’(X) denotes the space of tempered distributions on X.
Observe that Theorem 5.12 in this case coincides with Folland and Stein [12, Corol-
lary 7.4], whose range of A is the known best possible. Moreover, Lemma 5.11 and its
proof have their own interest in dealing with Littlewood—Paley g} -functions on spaces
of homogeneous type. For example, using this method, one can improve the range of
A in [26, Proposition 3.4(ii)] to (2n/p, co), which then coincides with Theorem 5.12
and whose range of A is then the known best possible.

6 Wavelet Characterizations of Hardy Spaces
In this section, we characterize the Hardy space H?(X) via the wavelet orthogonal
system {wk k € Z, a € Gi} introduced in [1, Theorem 7.1]. The sequence { D }xe7,

of operators on LQ(X ) associated with integral kernels
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Di(x,y) = Y YE@Ys(), VYx, yeX 6.1)

Olegk

turns out to be an exp-ATT; see [25,29]. Thus, all the conclusions in Sect. 5 hold true

for {Direz.
For any f € (gg (B, y)) with B, y € (0, n), define the wavelet Littlewood—Paley
Sunction S(f) by setting, for any x € X,

1

2

sch@ =133 [u (28] |fuk £ 150000

keZ aeGy

For any p € (0, 00), define the corresponding wavelet Hardy space HE (X) by

HY(X) = {f e (G56.) 1 lgon = IS(Hllrx) < oo} .

For any p € (w/(w + 1), 00), the L? (X)-norm equivalence between the wavelet
Littlewood—Paley function S(f) and the Littlewood—Paley g-function g(f) was
proved in [25, Theorem 4.3] whenever f is a distribution. The proof of [25, The-
orem 4.3] seems problematic because the authors therein used an unknown fact that,
when f € (G(B,7)) andn € N,

> (rovd)vk e 2, 62)

[k|<n aeGk

Although (6.2) may not be true for distributions, it is obviously true when f € L?(X).
Indeed, the argument used in the proof of [25, Theorem 4.3] proves the following
result.

Theorem 6.1 Suppose p € (w/(w + n), 00) and B, y € (0, n). Then there exists a
positive constant C such that, for any f € (Qg B.v)),

IG(H) ey < CUS(HIILr(x) (6.3)

and, if f € LZ(X), then

CMSH e < IGHNLrex) < CUSLrx)- (6.4)

Here and hereafter, G(f) is defined as in (5.2), but with Qy therein replaced by Dy in
6.1).

To show that (6.4) holds true for all distributions, we need the following basic
property of HY (X).

Proposition 6.2 Let p € (w/(w + 1), 11 and B, y € (w(1/p = 1), n). Then Hy (X)
is a (quasi-) Banach space that can be continuously embedded into (Qg B,y)).
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Proof Assume that f € (éo(,B ¥))’ belongs to HY (X). By (6.3), Theorems 5.10 and
5.9, we have ||f||Hp 20x) S ||f||H"(X) Consequently, for any € € (0, 00), there exist
(p, 2)-atoms {aj}oo ; and {A; } | C C satisfying (Z] 1A |P)p < ||f||sz(X) +€
such that f = ijl Ajaj in (Qo(ﬂ, y))’. Combining this with Lemmas 4.14 and

4.15, we find that, for any ¢ € ég(ﬂ, ¥),

l/p

o o0 o0
< > 1jllaz @) < D2 1l Ly, 00 < W0l | 21417
j=1 j=1 j=1

S0l UL g ) + €1

Letting € — 07, we obtain ||f||(§,7(}3 RS ||f||Hp(X) Thus, HY (X) can be contin-

uously embedded into (ég B,y)).
To prove that Hj (X) is a (quasi-)Banach space, we only prove its completeness.
Let { f,};2 ; be a Cauchy sequence in HY(X).Then { f,,}oo | is also a Cauchy sequence

in (Qg (B, y))', so it converges to some element f in (QO (B,y)) . For any n € N and
x € X, applying the Fatou lemma twice, we conclude that

SO = f)) =S ( tim [ = ful) @)

1
2

=Y > {M(Qﬁ“)}_l Ktlfé,‘,mlgnoo[fm — fn]>‘21Q§+1(x)
| kKEZ aeGy
1
2
[ 2% tim fu@t D) vk g - ) 1@
| kKEZ aeGy
1
<timinf | Y0 3 [t ) |(uk s 1) 150 @) 2
keZ aeGk

= liminf S(f,,, — fn)(x)
m—00
and hence

If—= ntIHp(X) fX[S(f—fn)(X)]” dpu(x)

=< / liminf [S(fm — f) (017 dp(x)
X

m— 00

< liminf fx [SCf = F) OV dpae) = Hminf || for = fullp -
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Lettingn — oo, wefind that f € HY (X)andlim, o || f — fn ”H\,‘;(X) = 0. Therefore,
HY (X) is complete. This finishes the proof of Proposition 6.2. O

Applying Theorem 6.1 and Proposition 6.2, we establish the following wavelet
characterizations of Hardy spaces.

Theorem 6.3 Suppose p € (w/(w+n), 1]land B, y € (w(1/p—1), n). As subspaces
of (Q B,y)), HP(X) = HYE (X) with equivalent (quasi-)norms.

Proof Due to (6.3), Theorems 5.10 and 5.9, we obtain H} (X) ¢ H?(X) and
Il - ”H”(X) S, Il - ”HVC(X)-

It remains to show H”(X) C HJ (X). To this end, by Theorem 5.9, we conclude
that L2(X) N H?(X) is dense in H?(X). Thus, for any f € HP(X), there exist
{fulo2, C L*(X) N HP(X) such that lim,— o || f — fullurcxy = 0. Obviously,
{fu152, is a Cauchy sequence of H”(X). Noticing that {f,};°, C L%(X), we use
(6.4) and Theorem 5.10 to conclude that

I fn = Fallgp oy = 1SCm — f)llecxy ~ NG (Fm — fa)llLrx)
~ N fm = fullar)y = 0

as m, n — 00, so that {fn}n 1 1s also a Cauchy sequence of HY (X). By Proposi-
tion 62 there exists f € HY(X) such that fn — f as n — oo in HP(X) also
in (g (B, y))’ Meanwhile, f, — f asn — oo in HP(X), also in (go(ﬁ ).

Therefore, f = fin (go(ﬂ, y)) and f € HE (X). Moreover,

11y = W = Fulllg s+ 1l g~ 1F = Fall g oy + 1l

S

when 7 is sufficiently large. Thus, we obtain H”(X) C H&(X) and || - I 2 ox) <
Il - | P (x)- This finishes the proof of Theorem 6.3. O

7 Criteria of the Boundedness of Sublinear Operators

Let p € (w/(w + 1), 1]. By the argument used in Sects. 3—-6, we conclude that the
Hardy spaces H7(X), HY(X) with 6 € (0, 00), H*?(X), HY?(X), HE' (X),
F'I;:’q (X) with g € (p,00] N[1, 0] and HPE(X) are essentially the same space in
the sense of equivalent (quasi-)norms. From now on, we simply use H” (X) to denote
anyone of them if there is no confusion. In this section, we establish some criteria of
the boundedness of sublinear operators on Hardy spaces via first establishing finite
atomic characterizations of H? (X).
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7.1 Finite Atomic Characterizations of Hardy Spaces

Forany p € (w/(w+n),11and g € (p, ool N[1, c0l, we say f € H ' (X) if there
exist N € N, a sequence {aj}jyzl of (p, g)-atoms and {)‘j}?;l C C such that

N
f= ijaj.
j=1
Also, define

L
P

N
£ gy = inf 4 [ D2 12517 ) ¢
j=1

where the infimum is taken over all the decompositions of f as above. It is easy to see
that Hé’riq (X) is a dense subset of HY?(X) and || - ||H£"1(x) <I- ||Hf_ﬁ;q (x)- Denote
by the symbol UC(X) the space of all uniformly continuous functions on X, that is, a
function f € UC(X) if and only if, for any fixed € € (0, 00), there exists o € (0, c0)
such that | f(x) — f(y)| < € whenever d(x, y) < o. The next theorem characterizes
HY(X) via HD(X).

Theorem 7.1 Suppose p € (w/(w + 1), 1]. Then the following statements hold true:

(i) ifq € (p,00)N[1, 00), then | - ”Hé"q(X) and || - ”H,’{"’(X) are equivalent (quasi)-

norms on Hé’r;q (X);
@G |-l HE™ () and || - || HP™(x) 4re equivalent (quasi)-norms on Hé’dq (X)NUC(X),

(i) H ™ (X) N'UC(X) is a dense subspace of HY > (X).
Proof First, we prove (i). It suffices to show that ||f||Hf§""(X) < ||f||H;:.q for any

f e Hé]n’q(X) withg € (p, c0)N[1, o). We may as well assume that || f|| g«rx) = 1.
Let all the notation be as in the proof that H*? (X) C HZ{Z’q (X) of Theorem 4.2. Then

f=22 kel = 3 = h;

Je€Z kel Je€Z kel JEZ

both in (gg (B, ) and almost everywhere. Here and hereafter, for any j € Z and
k € I;,the quantities /1 j, h‘,i, )»i and a,f areasin (4.12) and (4.13). Since f € Hé’n’q (X),
it follows that there exist x; € X and R € (0, oo) such that supp f C B(x1, R). We
claim that there exists a positive constant ¢ such that, for any x ¢ B(x, 16A3R),

£ o) < EAp(Br, R)I 7. .1

We admit (7.1) temporarily and use it to prove (i) and (ii). Let j” be the maximal
. _1
integer such that 2/ < ¢[u(B(x1, R))] » and define
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h = Z Z A,{a,{ and ¢ := Z Z A,{a,{. (7.2)

Jj<j kel j>Jj kel

In what follows, for the sake of convenience, we elide the fact whether or not 7 j is
finite and simply write the summation ), 1, in(7.2) as Yooy Ifj > j/ then Q/ =
{x € X: f*(x) > 2/} C B(x1, 16A§R), whichimplies that supp ¢ C B(xy, I6A}R)
because supp aj C Q/.From f = h+¢, it then follows thatsupp & C B(x1, I6AQR).
Noticing that

. : _1
oo < 32 (1], £ 202 ~ u(B. RIS
i=j' iy’

and f y h(x)du(x) = 0, we conclude that & is a harmless constant multiple of a
(p, oo)-atom.
Next we deal with £. For any N := (N1, N2) € N2, define

Np N> o N1 N> ]
e 3 Sl = 3 Sl
j=j'+1 k=1 j=Jj+1 k=1

Then £y is a finite linear combination of (p, co)-atoms and Z;\lj,ﬂ Z]ivil |A£ 7 < 1.

Notice that supp (£ — £y) C B(xy, 16A3R) and fX[Z(x) —LIy(x)]du(x) = 0. 1t
suffices to show that ||[£ — £x|lza(x) — O can be sufficiently small when Ny and N>

are big enough. Noticing that £ = Y52 . h/ + Z;V;j’ﬂ pBrat h,{, we have

00 Ny o0 )
e —eylliacn < | D> A + > > K
j=Ni+1 L4(X) j=j'"+1 | k=Ny+1 L(X)

Forany j € Zandk € N, we recall that supp h,]; C B,f C ©/ and ||hj||Loo(X) <2/,
By [ = Y52 k' and supp (352, 1 h/) € @Y1, we conclude that, for any
zeQM,

YW@= f@- Y M| <If@l+ ) (hf(z)\ SIf@+2M.

J=Ni1+1 J=<Ni J=<N1

Notice that, by [20, Proposition 3.9], there exists a constant C > 1 such that fr<
CM(f). With f1:= [l cx |poo=2m-1/¢) and f2 := f — fi, we have

2Ny, (QNI) <2May ({x eX: CM(f)x)>2M })

<2May, ({x eX: CM(f)(x) > 2N‘_1}) S IilZe = 0
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as N| — o0, because M is bounded from L?(X) to L9-*°(X) and f € Hifn’q(X) C
LY9(X). Therefore,

00 q
DN BN N [FICTR A PE

- QM
Jj=Ni+1 La(X)

N HfIQNI ”iq(x) + leqN (QNI) -0

as Ny — 0. Then, for any € € (0,00), we choose Ni € N such that
I3 N1 W ey < €/2. _

If we fix Ny € Nand Ny > j > j/, then the fact ) o, |h{| < 2/1g; € LI(X)
implies that

0 .
lim Wl =o.
KL DR
k=Ny+1 L9(X)

So, we further choose N, € N such that Zj,\lj,ﬂ (DI hi llLa(x) < €/2. Inthis
way, we have ||[£ — £y|lLa(x) < € for large N. Then there exist a positive constant
Cy, independent of N and €, and a (p, g)-atom ay) such that £ — £y = Cheaqy).
Therefore, we obtain || f| HEA (X) <1~ |fl HP (X) and complete the proof of (i)
under the assumption (7.1).

To obtain (ii), we only need to prove that || f|| HE™ (%) < \fI HP™ whenever
f e Hé)[;oo(X) N UC(X). We may also assume that || f || g=rx) = 1. Notice that f €
LX) and || f*]lLeox) S M) llLexy < coll fllLee(x), where cg is a positive con-
stant independent of f. Let j” > j’ be the largest integer such that 2/ < ¢o|| £l oo (x)-
We write f = h+{ withhasin (7.2)butnow £ = 3", ;v D12 hy. Asin the proof
of (i), we know that 4 is a harmless positive constant multiple of some (p, co)-atom.

Now we consider £. Notice that f € UC(X). Then, for any € € (0, 00), there exists
o € (0, 00) such that | f(x) — f(y)| < € whenever d(x, y) < o.Split £ = £ + £5
with

0] = Z hi = Z )\,{az and (= Z hi,

(. kel (J.k)eG (J,k)eGa
where

Gy :={(j,k): 124}r] =0, j/<j<j"} and

Gy={(j. k) : 124%r] <o, j/ <j<j")
Notice that, for any j/ < j < j”, @/ is bounded. Thus, by Proposition 4.4(vi), we
find that G is a finite set, which further implies that E‘l’ is a finite linear combination

of (p, oo)-atoms and
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i|P
J
K[ <t
(j.keGy

To consider £9, itis obvious that supp £5 C B(x1, 16A3R) and that fx 5 (x)du(x) =
0, so it remains to estimate ||£5 || (x). For any (j, k) € G2, applying the definition
of h,ﬁ in (4.12) implies that

‘hi‘f‘bi“*‘ Z ‘b{H(P;f’-i- ’L/+1 J+l’.

€lji leljtg

By the definition of b! , we have supp b,{ C B(x;f , 2A0r,{ ). Moreover, for any x €
B(x],2A0r]),

1
fx) = 7/ f($)¢k(5)du(é)
B(xk 2A0rk

1971106,

. 1
< |rew-r ()| + o /B<x,g,onr,{>

[bie| <

— 1 ()| ol ©dn® s e
(13)
15/ ¢] # 0, then B(x{, 2A0r{) N B(x/ ™", 2A0r/*")  #, which further implies

that rl]Jrl < 6A}r{. Thus, for any x € B()cjJrl 2A0rlj+1), we have d(x, xjH) <

12A3rk and hence an argument similar to the estimation of (7.3) gives

| = o - —L / FE¢ T E duE)| ¢l (0
‘ : ‘ ”¢]+1”L1(X) B/ ™ 240 ™) 8
S el ™),
so that
>t wsw| sedim 3 ot o ~ g se
leljq lelj

Using the definition of L,j:lrl and arguing similarly to the estimation of (7.3), we
conclude that, for any x € X,

> |l s s e

le[/+1

where L,{jl is as in (4.10). Summarizing all gives ||h]{||L00(X) < €. Recalling that
supp h,{ C B,{ and Z,fil le < Lo, we obtain [[£5|[z(x) < €. Therefore, there
k
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exist a Bositive constant a,, independent of o and €, and a (p, 0o0)-atom a ) such that
£ = Cyea(y). This proves that ”f”Hfﬁ;oo(X) < 1 and hence finishes the proof of (ii)
under the assumption (7.1).

Now we prove (7.1). Let x ¢ B(xy, 16A4R) Suppose that ¢ € Q%(/S y) with
lellge,r.p.y) S 1forsomer € (0, 0o). First we consider the case » > 4A od(x, x1)/3.
Forany y € B(x, d(x, x1)), we have ||¢llg(y.r g, S 1, which implies that Kf, o) <
f*(y) and hence

1
v _1
[F*»m]” du(y)}p SIw(B(xy, R 7.
(7.4)
Next we consider the case r < 4A2d(x1,x)/3 Choose a function & satisfying

IB(XI QA)4d(x1,x)) = £ = IB(Xl (2A0)73d(x1,x)) and ”5”07()() [d(x1,x)]7". Since
supp f C B(x1, R),itfollowsthat f& = f.Let@ := p&.Forany y € B(x, d(x, x1)),
assuming for the moment that

1

< _
AR {M(B(x,d(x,m))) B(x,d(x,x1))

”a”g(y,r”ﬁ,y) ,-S 11 (75)

we obtain

I(f, o)l = ‘/x f @) dp(z)

= Vx F@E@e@du@)|=f. &) S fF(),

which implies that (7.4) remains true in this case. Therefore, by the arbitrariness of ¢
and the fact that f* ~ f*, we obtain (7.1).

Now we fix y € B(x1,d(x1,x)) and prove (7.5). First we consider the size con-
dition. Indeed, if $(z) # 0, then d(z, x1) < (2A¢) 3d(x1, x) and hence d(z, y) <
(16A /7)d(x, z), which implies that

- 1 r 4
@I =@l = v v o [r T z>]

oo o)
Vi) +V(y,2) Lr+dy,2)]

To consider the regularity condition of &, we may assume thatd(z, z’) < (240) ™ '[r+
d(y, z)] due to the size condition. For the case d(z, x1) > (2A¢) " 'd(x1, x), we have
¢(z) =0and,by y € B(x1,d(x1,x)) and r < 4A%d(x1, x)/3, we further obtain

d(z,7) < 2A0) " lr +d(y.2)] < 2A0)™"°lr + Aod (v, x1) + Apd (x1, 2)]
< (2A40) "[4AGd (x1, x) + Aod(x1, 2)] < (2A0) 2d(x1. 2),
which further implies that d(z/, x1) > Alod(xl, 7) —d(z,7) > (2A¢) 2d(x, x) and
hence @(z') = 0. So we only need to consider the case d(z, x1) < (24¢) " 'd(x1, x).

Then we have (2A¢)~'d(x], x) < d(z, x) < 2Aod(x], x) and
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d(y,z) < A3[d(y, x1) +d(x1, x) +d(x, 2)] < 2Ad(x1, x)
+A3d(x,2) < 2A0)d(x, 2),

which implies that d(z,z") < A~ r +d(x,2)] and r + d(y, 2) < min{r +

d(x,z),r +d(x,7'),d(x1, x)}. Therefore, by the regularity of ¢ and the definition of
&, we conclude that

16() — ()| <E@Ip() — o] + leE)1E@) — £E)]

diz.z) 71 I i

~ |:r+d(x,z)} Vi(x)+Vi(x,2) [r +d(x,z) |
n 1 |: r 1|V |:d(z, )]
Vix) + V(x,Z) | r+d(x, 7)) d(x1,x) |

™

<[ d(z,7) r 1 [ ro
~Mlr+dy, ]| Vi) + VO, Llr+dy,.2) ]

This proves (7.5) and hence finishes the proofs of (i) and (ii).

Now we prove (iii). According to [23, pp. 3347-3348] (see also [27, Theorem 2.6]),
there exists a sequence {Si}rez of bounded operators on L?(X) with their kernels
satisfying the following conditions:

() Sk(x,y) =0ifd(x,y) > C38* and, for any x, y € X,

1

Sk (x, < -
R ATES )

where Cy is a fixed positive constant greater than 1;
(ii) forany x, x’, y € X withd(x, x") < Cﬁ3k,

d(x,x’):|9 1

_ / _ / <
ISk (e, y) = Si(x™, I+ 1Sk (v, x) = Sk (y, X)) N[ 5 Vo) + V)’

where 6 is as in [23, Theorem 2.4];
(iii) forany x € X, [y Sp(x, y)du(y) =1 = [y Sk (v, x) du(y).
Forany g € U (1,00 L (X) and x € X, define

Sig(x) :=/XSk(x,y)g(y) du(y).

Then, for any (p, oo)-atom a supported on B(z,r) with z € X and r € (0, 00), we
observe that Sxa has the following properties:

@) lISkallLex) < llallze(x) and limg— oo [|Ska — all2xy = 0;
(b) when £ is sufficiently large, supp Si(a) C B(z,2A0or);

(©) [y Ska(x)du(x) = 0;

(d) Sxa € UC(X).
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Consequently, Sxa is a harmless constant multiple of a (p, co)-atom and hence of
a (p, 2)-atom. Thus, ||Sxa — a||H§§*°°(X) ~ ||Ska — a||Ha1:,z(X) — 0 as k — oo.
For any f € Hzﬁ’oo(X), there exists a sequence { f}neny C Hé)n’oo(X) such that
lim,— oo || fn — f||Hpt,q x) = 0. Then, for any n € N, by the above (a)—(d), we find
that Sk (f,) € Hffn’oo(X) N UC(X) and that limg_, || Sk fr — fn||H’{*°°(X) = 0. This
proves that || Sk f, — fII HP®(x) ™ 0 asn, k — oo, which compfetes the proof of
(iii) and hence of Theorem 7.1. O

7.2 Criteria of the Boundedness of Sublinear Operators on Hardy Spaces

In this section, applying the finite atomic characterizations of Hardy spaces, we obtain
two criteria on the boundedness of sublinear operators on Hardy spaces.

Recall that a complete vector space 8 is called a quasi-Banach space if its quasi-
norm || - ||g satisfies the following condition:

(1) forany f € B, | f|lg = 0 if and only if f is the zero element in B;
(ii) forany » € Cand f € B, A fllg = |Alll flls;
(iii) there exists C € [1, oo) such that, forany f, g € B, || f + gllg < C(| fllg +
lglls).
Next we recall the definition of r-quasi-Banach spaces (see, for example, [20,35,53—
55]).

Definition 7.2 Suppose that r € (0, 1] and B, is a quasi-Banach space with its quasi-
norm || -||g, . The space B, is called an r-quasi-Banach space if there exists k € [1, 00)
such that, for any m € N and {]‘]-}’}1:1 C B,

r

> fi
j=1

m
<k £l
j=1

B,

Obviously, when p € (0, 1], L?(X) and H*”(X) are p-quasi-Banach-spaces. Let
Y be a linear space and B, an r-quasi-Banach space with r € (0, 1]. An operator
T : Y — B, is said to be B, -sublinear if there exists a positive constant x € [1, co)
such that

() forany f, g € Y, IT(f) —T@lg, <«IT(f —ls;
(i) forany m e N, {f;}7_; C Y and {A;}7_, C C,

r
m m
TS nf || <e DIty
j=1 g =l

(see, for example, [35, Definition 2.5], [53, Definition 1.6.7], [55, Remark 1.1(3)],
[54, Definition 1.6] and [20, Definition 5.8]).

The next theorem gives us some criteria for $B,-sublinear operators that can be
extended to bounded B, -sublinear operators from Hardy spaces to B,.. It can be proved
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by following the proof of [20, Theorem 5.9] with some slight modifications, the details
being omitted.

Theorem7.3 Let p € (w/(w + 1), 1] and r € [p, 1]. Suppose that B, is an r-quasi-
Banach space and either of the following holds true:

(1) g € (p,oo)N[l,00)and T : Hffn’q (X) — 8B, is a By-sublinear operator with

sup{|| T (a)llg, : aisany (p, q)-atom} < o0;

@) T : Hffr;oo(X) NUC(X) — B, is a B,-sublinear operator with

sup{||T (a)llg, : ais any (p, 00)-atom} < 00.

Then T can be uniquely extended to a bounded B, -sublinear operator from H;: 1(X)
to B,.
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