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Abstract
Let (X , d, μ) be a space of homogeneous type, with the upper dimension ω, in the
sense of Coifman andWeiss. Assume that η is the smoothness index of the wavelets on
X constructed by Auscher and Hytönen. In this article, when p ∈ (ω/(ω + η), 1], for
the atomic Hardy spaces H p

cw(X) introduced by Coifman andWeiss, the authors estab-
lish their various real-variable characterizations, respectively, in terms of the grand
maximal functions, the radial maximal functions, the non-tangential maximal func-
tions, the various Littlewood–Paley functions and wavelet functions. This completely
answers the question of Coifman and Weiss by showing that no additional (geometri-
cal) condition is necessary to guarantee the radial maximal function characterization
of H1

cw(X) and even of H p
cw(X) with p as above. As applications, the authors obtain

the finite atomic characterizations of H p
cw(X), which further induce some criteria for

the boundedness of sublinear operators on H p
cw(X). Compared with the known results,

the novelty of this article is that μ is not assumed to satisfy the reverse doubling con-
dition and d is only a quasi-metric, moreover, the range p ∈ (ω/(ω + η), 1] is natural
and optimal.

Keywords Space of homogeneous type · Hardy space · Maximal function · Atom ·
Littlewood–Paley function · Wavelet

Mathematics Subject Classification Primary 42B30; Secondary 42B25 · 42B20 ·
30L99

Communicated by Loukas Grafakos.

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11771446,
11571039, 11726621, 11761131002, 11671185 and 11871100). Ji Li is supported by ARC DP 160100153.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-018-09652-y&domain=pdf


2198 Journal of Fourier Analysis and Applications (2019) 25:2197–2267

1 Introduction

The real-variable theory of Hardy spaces plays a fundamental role in harmonic analy-
sis. The classical Hardy space on the n-dimensional Euclidean space Rn was initially
developed by Stein andWeiss [50] and later by Fefferman and Stein [11]. Hardy spaces
H p(Rn) have proved a suitable substitute of Lebesgue spaces L p(Rn)with p ∈ (0, 1]
in the study of the boundedness of operators. Indeed, any element in the Hardy space
can be decomposed into a sum of some basic elements (which are called atoms); see
Coifman [5] for n = 1 and Latter [36] for general n ∈ N. Characterizations of Hardy
spaces via Littlewood–Paley functions were due to Uchiyama [51]. For more study on
classical Hardy spaces onRn , we refer the reader to the well-known monographs [16–
18,41,49]. Modern developments regarding the real-variable theory of Hardy spaces
are so deep and vast that we can only list a few literatures here, for example, the theory
of Hardy spaces associated with operators (see [2,3,10,30]), Hardy spaces with vari-
able exponents (see [44]), the real-variable theory of Musielak–Orlicz Hardy spaces
(see [35,53]), and also Hardy spaces for ball quasi-Banach spaces (see [48]).

In this article, we focus on the real-variable theory of Hardy spaces on spaces of
homogeneous type. It is known that the space of homogeneous type introduced by
Coifman and Weiss [6,7] provides a natural setting for the study of both function
spaces and the boundedness of operators. A quasi-metric space (X , d) is a non-empty
set X equipped with a quasi-metric d, that is, a non-negative function defined on
X × X , satisfying that, for any x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) there exists a constant A0 ∈ [1,∞) such that d(x, z) ≤ A0[d(x, y) + d(y, z)].
The ball B on X centered at x0 ∈ X with radius r ∈ (0,∞) is defined by setting

B := B(x0, r) := {x ∈ X : d(x, x0) < r}.

For any ball B and τ ∈ (0,∞), denote by τ B the ball with the same center as that
of B but of radius τ times that of B. Given a quasi-metric space (X , d) and a non-
negative measure μ, we call (X , d, μ) a space of homogeneous type if μ satisfies the
doubling condition: there exists a positive constant C(μ) ∈ [1,∞) such that, for any
ball B ⊂ X ,

μ(2B) ≤ C(μ)μ(B).

The above doubling condition is equivalent to that, for any ball B and λ ∈ [1,∞),

μ(λB) ≤ C(μ)λ
ωμ(B), (1.1)

whereω := log2 C(μ) is called the upper dimension of X . If A0 = 1, we call (X , d, μ)

a doubling metric measure space.
According to [7, pp. 587–588], we always make the following assumptions through-

out this article. For any point x ∈ X , assume that the balls {B(x, r)}r∈(0,∞) form a
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basis of open neighborhoods of x ; assume that μ is Borel regular, which means that
open sets are measurable and every set A ⊂ X is contained in a Borel set E satisfying
that μ(A) = μ(E); we also assume that μ(B(x, r)) ∈ (0,∞) for any x ∈ X and
r ∈ (0,∞). For the presentation concision, we always assume that (X , d, μ) is non-
atomic [namely, μ({x}) = 0 for any x ∈ X ] and diam(X) := sup{d(x, y) : x, y ∈
X} = ∞. It is known that diam(X) = ∞ implies that μ(X) = ∞ (see, for example,
[45, Lemma 5.1] or [1, Lemma 8.1]).

Let us recall the notion of the atomic Hardy space on spaces of homogeneous type
introduced by Coifman andWeiss [7]. For any α ∈ (0,∞), the Lipschitz space Lα(X)

is defined to be the collection of all measurable functions f such that

‖ f ‖Lα(X) := sup
x �=y

| f (x) − f (y)|
[μ(B(x, d(x, y)))]α < ∞.

Denote by (Lα(X))′ the dual space of Lα(X) equipped with the weak-∗ topology.

Definition 1.1 Let p ∈ (0, 1] and q ∈ (p,∞] ∩ [1,∞]. A function a is called a
(p, q)-atom if

(i) supp a := {x ∈ X : a(x) �= 0} ⊂ B(x0, r) for some x0 ∈ X and r ∈ (0,∞);

(ii) [∫X |a(x)|q dμ(x)] 1
q ≤ [μ(B(x0, r))] 1

q − 1
p ;

(iii)
∫

X a(x) dμ(x) = 0.

The atomic Hardy space H p,q
cw (X) is defined as the subspace of (L1/p−1(X))′ when

p ∈ (0, 1) or of L1(X) when p = 1, which consists of all the elements f admitting
an atomic decomposition

f =
∞∑

j=0

λ j a j , (1.2)

where {a j }∞j=0 are (p, q)-atoms, {λ j }∞j=0 ⊂ C satisfies
∑∞

j=0 |λ j |p < ∞ and the

series in (1.2) converges in (L1/p−1(X))′ when p ∈ (0, 1) or in L1(X) when p = 1.
Define

‖ f ‖H p,q
cw (X) := inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=0

|λ j |p

⎞

⎠

1
p

⎫
⎪⎬

⎪⎭
,

where the infimum is taken over all the decompositions of f as in (1.2).

It was proved in [7] that the atomic Hardy space H p,q
cw (X) is independent of the

choice of q and hence we sometimes write H p
cw(X) for short. It was also proved in

[7] that the dual space of H p
cw(X) is the Lipschitz space L1/p−1(X) when p ∈ (0, 1),

and the space BMO(X) of bounded mean oscillation when p = 1.
It is well known that the most basic result in the real-variable theory of Hardy

spaces is their characterizations in terms of maximal functions. Coifman and Weiss
[7, pp. 641–642] observed that a proof of the duality result between H1(Rn) and
BMO(Rn) from Carleson [4] can be extended to the general setting of spaces of
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homogeneous type provided a certain additional geometrical assumption is added,
fromwhich one can then obtain a radial maximal function characterization of H1

cw(X).
Coifman and Weiss [7, p. 642] then asked that to what extent their geometrical con-
dition is necessary for the validity of the radial maximal function characterization
of H1

cw(X). Since then, lots of efforts are made to build various real-variable char-
acterizations of the atomic Hardy spaces on spaces of homogeneous type with few
geometrical assumptions. In this article, we completely answer the aforementioned
question of Coifman andWeiss by showing that no any additional (geometrical) condi-
tion is necessary to guarantee the radial maximal function characterization of H1

cw(X)

and even of H p
cw(X) with p ≤ 1 but near to 1.

Recall that a triple (X , d, μ) is said to be Ahlfors-n regular if μ(B(x, r)) ∼ rn

for any x ∈ X and r ∈ (0, diam X) with positive equivalence constants independent
of x and r . When (X , d, μ) is Ahlfors-n regular, upon assuming the quasi-metric d
satisfying that there exists θ ∈ (0, 1) such that, for any x, x ′, y ∈ X ,

|d(x, y) − d(x ′, y)| � [d(x, x ′)]θ [d(x, y) + d(x ′, y)]1−θ , (1.3)

Macías and Segovia [43] characterized Hardy spaces via the grandmaximal functions,
andLi [37] obtained another grandmaximal function characterization via test functions
introduced in [28]. Also, Duong and Yan [9] characterized Hardy spaces via the Lusin
area function associated with certain semigroup.

Recall that an RD-space (X , d, μ) is a doubling metric measure space with the
measure μ further satisfying the reverse doubling condition, that is, there exist a
positive constant C̃ ∈ (0, 1] and κ ∈ (0, ω] such that, for any ball B(x, r)with x ∈ X ,
r ∈ (0, diam X/2) and λ ∈ [1, diam X/[2r ]),

C̃λκμ(B(x, r)) ≤ μ(B(x, λr)).

Indeed, any path connected doubling metric measure space is an RD-space (see [27,
57]). Characterizations of Hardy spaces on RD-spaces via various Littlewood–Paley
functions were established in [26,27]. Also, characterizations of Hardy spaces on
RD-spaces via various maximal functions can be found in [20,21,56]. It should be
mentioned that local Hardy spaces can be used to characterize more general scale
of function spaces like Besov and Triebel–Lizorkin spaces on RD-spaces (see [57]).
For a systematic study of Besov and Triebel–Lizorkin spaces on RD-spaces, we refer
the reader to [27]. More on analysis over Ahlfors-n regular metric measure spaces or
RD-spaces can be found in [8,19,22,32–34,54,57,58].

The main motivation of studying the real-variable theory of function spaces and the
boundedness of operators on spaces of homogeneous type comes from the celebrated
work of Auscher and Hytönen [1], in which they constructed an orthonormal wavelet
basis {ψk

α : k ∈ Z, α ∈ Gk} of L2(X) with Hölder continuity exponent η ∈ (0, 1)
and exponential decay by using the system of random dyadic cubes. The first creative
attempt of using the idea of [1] to investigate the real-variable theory ofHardy spaces on
spaces of homogeneous typewas due toHan et al. [23] (see alsoHan et al. [24]). Indeed,
in [23], Hardy spaces via wavelets on spaces of homogeneous type were introduced
and then these spaces proved to have atomic decompositions. The method used in
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[23] is based on a new Calderón reproducing formula on spaces of homogeneous type
(see [23, Proposition 2.5]). But there exists an error in the proof of [23, Proposition
2.5], namely, since the regularity exponent of the approximations of the identity in
[23, p. 3438] is θ [indeed, θ is from the regularity of the quasi-metric d in (1.3)],
it follows that the regularity exponent in [23, (2.6)] should be min{θ, η} and hence
the correct range of p in [23, Proposition 2.5] (indeed, all results of [23]) seems to be
(ω/[ω+min{θ, η}], 1]which is not optimal.Moreover, the criteria of the boundedness
of Calderón–Zygmund operators on the dual of Hardy spaces were established in
[23]. Also, Fu and Yang [14] obtained an unconditional basis of H1

cw(X) and several
equivalent characterizations of H1

cw(X) in terms of wavelets.
Another motivation of this article comes from the Calderón reproducing formulae

established in [29]. Indeed, thework of [29]was partlymotivated by thewavelet theory
of Auscher and Hytönen in [1] and a corresponding wavelet reproducing formula
(which can converge in the distribution space) in [29]. The already existing works
(see [20,26,27,56,57]) regarding Hardy spaces on RD-spaces show the feasibility of
establishing various real-variable characterizations of the atomic Hardy spaces on
spaces of homogeneous type via the Calderón reproducing formulae. It should be
mentioned that a characterization of the atomic Hardy spaces via the Littlewood–
Paley functions was established in [25] via the aforementioned wavelet reproducing
formula; see also [25] for some corresponding conclusions of product Hardy spaces
on spaces of homogeneous type.

In this article, motivated by [23,29], for the atomic Hardy spaces H p
cw(X) with

any p ∈ (ω/[ω + η], 1], we establish their various real-variable characteriza-
tions, respectively, in terms of the grand maximal functions, the radial maximal
functions, the non-tangential maximal functions, the various Littlewood–Paley func-
tions and wavelets. Observe that these characterizations are true for H p

cw(X) with
p ∈ (ω/[ω + η], 1] and X being any space of homogeneous type without any
additional (geometrical) conditions, which completely answers the aforementioned
question asked by Coifman and Weiss [7, p. 642]. As an application, we obtain the
finite atomic characterizations of Hardy spaces, which further induce some criteria for
the boundedness of sublinear operators on Hardy spaces. Compared with the known
results, the novelty of this article is thatμ is not assumed to satisfy the reverse doubling
condition and d is only a quasi-metric. Moreover, the range of p ∈ (ω/(ω + η), 1]
for the various maximal function characterizations and the Littlewood–Paley func-
tion characterizations of the atomic Hardy spaces H p

cw(X) is natural and optimal.
The key tool used through this article is those Calderón reproducing formulae from
[29].

In addition, we point out that, when X is a doubling metric measure space, the
finite atomic characterizations of Hardy spaces are also useful in establishing the
bilinear decomposition of the product space H1

cw(X) × BMO(X) and H p
cw(X) ×

L1/p−1(X), with p ∈ (ω/[ω + η], 1) in [13–15,40], and also in the study of the
endpoint boundedness of commutators generated by Calderón-Zygmund operators
and BMO(X) functions in [38,39].

The organization of this article is as follows.
In Sect. 2, we recall the notions of the space of test functions and the space of

distributions introduced in [26], as well as the random dyadic cubes in [1] and the
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approximation of the identity with exponential decay introduced in [29]. Then we
restate the Calderón reproducing formulae established in [29].

Section 3 concerns Hardy spaces defined via the grand maximal functions, the
radial maximal functions and the non-tangential maximal functions. We show that
these Hardy spaces are all equivalent to the Lebesgue space L p(X) when p ∈ (1,∞]
(see Sect. 3.1), and they are all mutually equivalent when p ∈ (ω/(ω+η), 1] (see Sect.
3.2), all in the sense of equivalent (quasi-)norms. The proof for the latter borrows some
ideas from [56] and uses the Calderón reproducing formulae built in [29]. Moreover,
we prove that the Hardy space H∗,p(X) defined via the grand maximal function is
independent of the choices of the distribution space (Gη

0(β, γ ))′ whenever β, γ ∈
(ω[1/p − 1], η); see Proposition 3.8 below.

Section 4 is devoted to the atomic characterizations of H∗,p(X). Notice that, if a
distribution has an atomic decomposition, then it belongs to H∗,p(X) obviously by
the definition of atoms; see Sect. 4.1. All we remain to do is to establish the converse
relationship. In Sect. 4.2, by modifying the definition of the grand maximal function
f ∗ to f � so that the level set
λ := {x ∈ X : f �(x) > λ}with λ ∈ (0,∞) is open, we
then apply the partition of unity to the open set 
λ and obtain a Calderón–Zygmund
decomposition of f ∈ H∗,p(X). This is further used in Sect. 4.3 to construct an atomic
decomposition of f . In Sect. 4.4, we compare the atomic Hardy spaces H p,q

at (X) with
H p,q
cw (X) and prove that they are exactly the same space in the sense of equivalent

(quasi-)norms.
Section 5 deals with the Littlewood–Paley theory of Hardy spaces. In Sect. 5.1, we

show that the Hardy space H p(X), defined via the Lusin area function, is independent
of the choices of exp-ATIs. In Sect. 5.2, we use the homogeneous continuous Calderón
reproducing formula and the molecular characterizations of the atomic Hardy spaces
(see [39]) to establish the atomic decompositions of elements in H p(X), and then we
connect H p(X) with H∗,p(X). In Sect. 5.3, we characterize Hardy spaces H p(X)

via the Lusin area function with aperture, the Littlewood–Paley g-function and the
Littlewood–Paley g∗

λ-function.
In Sect. 6, we consider the Hardy space H p

w (X) defined via wavelets, which was
introduced in [23]. We improve the result of [25, Theorem 4.3] and prove that H p

w (X)

coincides with H p(X) in the sense of equivalent (quasi-)norms.
In Sect. 7, as an application, we obtain criteria of the boundedness of the sublinear

operators from Hardy spaces to quasi-Banach spaces. To this end, we first establish
the finite atomic characterizations, namely, we show that, if q ∈ (p,∞) ∩ [1,∞),
then ‖ · ‖H p,q

fin (X) and ‖ · ‖H p,q
at (X) are equivalent (quasi)-norms on a dense subspace

H p,q
fin (X) of H p,q

at (X); the above equivalence also holds true on a dense subspace
H p,∞
fin (X) ∩ UC(X) of H p,∞

at (X), where UC(X) denotes the space of all uniformly
continuous functions on X .

At the end of this section, we make some conventions on notation. We always
assume that ω is as in (1.1) and η the smoothness index of wavelets (see [1, Theorem
7.1] or Definition 2.4 below). We assume that δ is a very small positive number, for
example, δ ≤ (2A0)

−10 in order to construct the dyadic cube system and the wavelet
system on X (see [31, Theorem 2.2] or Lemma 2.3 below). For any x, y ∈ X and
r ∈ (0,∞), let
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Vr (x) := μ(B(x, r)) and V (x, y) := μ(B(x, d(x, y))),

where B(x, r) := {y ∈ X : d(x, y) < r}. We always let N := {1, 2, . . .} and
Z+ := N∪ {0}. For any p ∈ [1,∞], we use p′ to denote its conjugate index, namely,
1/p + 1/p′ = 1. The symbol C denotes a positive constant which is independent of
the main parameters, but it may vary from line to line. We also useC(α,β,...) to denote a
positive constant depending on the indicated parameters α, β, …. The symbol A � B
means that there exists a positive constant C such that A ≤ C B. The symbol A ∼ B
is used as an abbreviation of A � B � A. We also use A �α,β,... B to indicate that
here the implicit positive constant depends on α, β, . . . and, similarly, A ∼α,β,... B.
We also use the following convention: If f ≤ Cg and g = h or g ≤ h, we then write
f � g ∼ h or f � g � h, rather than f � g = h or f � g ≤ h. For any s, t ∈ R,
denote the minimum of s and t by s ∧ t . For any finite set J , we use #J to denote its
cardinality. Also, for any set E of X , we use 1E to denote its characteristic function
and E� the set X \ E .

2 Calderón Reproducing Formulae

This section is devoted to recalling Calderón reproducing formulae obtained in [29].
To this end, we first recall the notions of both the space of test functions and the
distribution space.

Definition 2.1 Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A func-
tion f defined on X is called a test function of type (x1, r , β, γ ), denoted by
f ∈ G(x1, r , β, γ ), if there exists a positive constant C such that

(i) (the size condition) for any x ∈ X ,

| f (x)| ≤ C
1

Vr (x1) + V (x1, x)

[
r

r + d(x1, x)

]γ

;

(ii) (the regularity condition) for any x, y ∈ X satisfying d(x, y) ≤ (2A0)
−1[r +

d(x1, x)],

| f (x) − f (y)| ≤ C

[
d(x, y)

r + d(x1, x)

]β 1

Vr (x1) + V (x1, x)

[
r

r + d(x1, x)

]γ

.

For any f ∈ G(x1, r , β, γ ), define the norm

‖ f ‖G(x1,r ,β,γ ) := inf{C ∈ (0,∞) : C satisfies (i) and (ii)}.

Define

G̊(x1, r , β, γ ) :=
{

f ∈ G(x1, r , β, γ ) :
∫

X
f (x) dμ(x) = 0

}

equipped with the norm ‖ · ‖G̊(x1,r ,β,γ )
:= ‖ · ‖G(x1,r ,β,γ ).



2204 Journal of Fourier Analysis and Applications (2019) 25:2197–2267

Observe that the above version of G(x1, r , β, γ ) was originally introduced by Han
et al. [27] (see also [26]).

Fix x0 ∈ X . For any x ∈ X and r ∈ (0,∞), we know that G(x, r , β, γ ) =
G(x0, 1, β, γ ) with equivalent norms, but the positive equivalence constants depend
on x and r . Obviously, G(x0, 1, β, γ ) is a Banach space. In what follows, we simply
write G(β, γ ) := G(x0, 1, β, γ ) and G̊(β, γ ) := G̊(x0, 1, β, γ ).

Fix ε ∈ (0, 1] and β, γ ∈ (0, ε). Let Gε
0(β, γ ) [resp., G̊ε

0(β, γ )] be the completion
of the set G(ε, ε) [resp., G̊(ε, ε)] in G(β, γ ), that is, if f ∈ Gε

0(β, γ ) [resp., f ∈
G̊ε
0(β, γ )], then there exists {φ j }∞j=1 ⊂ G(ε, ε) [resp., {φ j }∞j=1 ⊂ G̊(ε, ε)] such that

‖φ j − f ‖G(β,γ ) → 0 as j → ∞. If f ∈ Gε
0(β, γ ) [resp., f ∈ G̊ε

0(β, γ )], we then let

‖ f ‖Gε
0(β,γ ) := ‖ f ‖G(β,γ ) [resp., ‖ f ‖G̊ε

0(β,γ )
:= ‖ f ‖G(β,γ )].

The dual space (Gε
0(β, γ ))′ [resp., (G̊ε

0(β, γ ))′] is defined to be the set of all contin-
uous linear functionals on Gε

0(β, γ ) [resp., G̊ε
0(β, γ )] and equipped with the weak-∗

topology. The spaces (Gε
0(β, γ ))′ and (G̊ε

0(β, γ ))′ are called the spaces of distributions.
Let L1

loc(X) be the space of all locally integrable functions on X . Denote byM the
Hardy–Littlewood maximal operator, that is, for any f ∈ L1

loc(X) and x ∈ X ,

M( f )(x) := sup
B�x

1

μ(B)

∫

B
| f (y)| dμ(y),

where the supremum is taken over all balls B of X that contain x . For any p ∈ (0,∞],
the Lebesgue space L p(X) is defined to be the set of all μ-measurable functions f
such that

‖ f ‖L p(X) :=
[∫

X
| f (x)|p dμ(x)

] 1
p

< ∞

with the usual modification made when p = ∞; the weak Lebesgue space L p,∞(X)

is defined to be the set of all μ-measurable functions f such that

‖ f ‖L p,∞(X) := sup
λ∈(0,∞)

λ[μ({x ∈ X : | f (x)| > λ})] 1
p < ∞.

It is known (see [7]) that M is bounded on L p(X) when p ∈ (1,∞] and bounded
from L1(X) to L1,∞(X). Then we state some estimates from [27, Lemma 2.1], which
are proved by using (1.1).

Lemma 2.2 Let β, γ ∈ (0,∞).

(i) For any x, y ∈ X and r ∈ (0,∞), V (x, y) ∼ V (y, x) and

Vr (x) + Vr (y) + V (x, y) ∼ Vr (x) + V (x, y)

∼ Vr (y) + V (x, y) ∼ μ(B(x, r + d(x, y))),
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where the positive equivalence constants are independent of x, y and r.
(ii) There exists a positive constant C such that, for any x1 ∈ X and r ∈ (0,∞),

∫

X

1

Vr (x1) + V (x1, x)

[
r

r + d(x1, x)

]γ

dμ(x) ≤ C .

(iii) There exists a positive constant C such that, for any x ∈ X and R ∈ (0,∞),

∫

d(x,y)≤R

1

V (x, y)

[
d(x, y)

R

]β

dμ(y) ≤ C and

∫

d(x,y)≥R

1

V (x, y)

[
R

d(x, y)

]β

dμ(y) ≤ C .

(iv) There exists a positive constant C such that, for any x1 ∈ X and R, r ∈ (0,∞),

∫

d(x,x1)≥R

1

Vr (x1) + V (x1, x)

[
r

r + d(x1, x)

]γ

dμ(x) ≤ C

(
r

r + R

)γ

.

(v) There exists a positive constant C such that, for any r ∈ (0,∞), f ∈ L1
loc(X)

and x ∈ X,

∫

X

1

Vr (x) + V (x, y)

[
r

r + d(x, y)

]γ

| f (y)| dμ(y) ≤ CM( f )(x).

Next we recall the system of dyadic cubes established in [31, Theorem 2.2] (see also
[1]), which is restated in the following version.

Lemma 2.3 Fix constants 0 < c0 ≤ C0 < ∞ and δ ∈ (0, 1) such that 12A3
0C0δ ≤ c0.

Assume that a set of points, {zk
α : k ∈ Z, α ∈ Ak} ⊂ X with Ak for any k ∈ Z being

a countable set of indices, has the following properties: for any k ∈ Z,

(i) d(zk
α, zk

β) ≥ c0δk if α �= β;

(ii) minα∈Ak d(x, zk
α) ≤ C0δ

k for any x ∈ X.

Then there exists a family of sets, {Qk
α : k ∈ Z, α ∈ Ak}, satisfying

(iii) for any k ∈ Z,
⋃

α∈Ak
Qk

α = X and {Qk
α : α ∈ Ak} is disjoint;

(iv) if k, l ∈ Z and l ≥ k, then either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = ∅;

(v) for any k ∈ Z and α ∈ Ak , B(zk
α, c�δ

k) ⊂ Qk
α ⊂ B(zk

α, C�δk), where c� :=
(3A2

0)
−1c0, C� := 2A0C0 and zk

α is called “the center” of Qk
α .

Throughout this article, we keep the notation used in Lemma 2.3. Moreover, for
any k ∈ Z, let

Xk := {zk
α}α∈Ak , Gk := Ak+1 \ Ak and Yk := {zk+1

α }α∈Gk =: {yk
α}α∈Gk .

Next we recall the notion of approximations of the identity with exponential decay
introduced in [29].
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Definition 2.4 A sequence {Qk}k∈Z of bounded linear integral operators on L2(X) is
called an approximation of the identity with exponential decay (for short, exp-ATI)
if there exist constants C, ν ∈ (0,∞), a ∈ (0, 1] and η ∈ (0, 1) such that, for any
k ∈ Z, the kernel of operator Qk , which is still denoted by Qk , satisfying

(i) (the identity condition)
∑∞

k=−∞ Qk = I in L2(X), where I is the identity oper-
ator on L2(X);

(ii) (the size condition) for any x, y ∈ X ,

|Qk(x, y)| ≤ C
1

√
Vδk (x) Vδk (y)

exp

{

−ν

[
d(x, y)

δk

]a}

× exp

{

−ν

[
max{d(x,Yk), d(y,Yk)}

δk

]a
}

; (2.1)

(iii) (the regularity condition) for any x, x ′, y ∈ X with d(x, x ′) ≤ δk ,

|Qk(x, y) − Qk(x ′, y)| + |Qk(y, x) − Qk(y, x ′)|
≤ C

[
d(x, x ′)

δk

]η 1
√

Vδk (x) Vδk (y)
exp

{

−ν

[
d(x, y)

δk

]a}

× exp

{

−ν

[
max{d(x,Yk), d(y,Yk)}

δk

]a
}

; (2.2)

(iv) (the second difference regularity condition) for any x, x ′, y, y′ ∈ X with
d(x, x ′) ≤ δk and d(y, y′) ≤ δk , then

|[Qk(x, y) − Qk(x ′, y)] − [Qk(x, y′) − Qk(x ′, y′)]|
≤ C

[
d(x, x ′)

δk

]η [d(y, y′)
δk

]η 1
√

Vδk (x) Vδk (y)
exp

{

−ν

[
d(x, y)

δk

]a}

× exp

{

−ν

[
max{d(x,Yk), d(y,Yk)}

δk

]a
}

; (2.3)

(v) (the cancelation condition) for any x, y ∈ X ,

∫

X
Qk(x, y′) dμ(y′) = 0 =

∫

X
Qk(x ′, y) dμ(x ′).

Remark 2.5 By [29, Remark 2.8], we know that the factor 1√
V

δk (x)V
δk (y)

in (2.1),

(2.2) and (2.3) can be replaced by 1
V

δk (x)
or 1

V
δk (y)

, and max{d(x,Yk), d(y,Yk)}
by d(x,Yk) or by d(y,Yk), with exp{−ν[ d(x,y)

δk ]a} replaced by exp{−ν′[ d(x,y)

δk ]a},
where ν′ ∈ (0, ν) only depends on a and A0. Moreover, the condition in Definition
2.4(iii) [resp., (iv)] can be replaced by d(x, x ′) ≤ (2A0)

−1[δk + d(x, y)] (resp.,
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d(x, x ′) ≤ (2A0)
−2[δk + d(x, y)] and d(y, y′) ≤ (2A0)

−2[δk + d(x, y)]). For their
proofs, see [29, Proposition 2.9].

With the above exp-ATI, we have the following homogeneous continuous Calderón
reproducing formula established in [29].

Theorem 2.6 Let {Qk}k∈Z be an exp-ATI and β, γ ∈ (0, η). Then there exists a
sequence {Q̃k}k∈Z of bounded linear operators on L2(X) such that, for any f ∈
(G̊η

0(β, γ ))′,

f =
∞∑

k=−∞
Q̃k Qk f ,

where the series converges in (G̊η
0(β, γ ))′. Moreover, there exists a positive constant

C such that, for any k ∈ Z, the kernel of Q̃k satisfies the following conditions:

(i) for any x, y ∈ X,

∣
∣Q̃k(x, y)

∣
∣ ≤ C

1

Vδk (x) + V (x, y)

[
δk

δk + d(x, y)

]γ

;

(ii) for any x, x ′, y ∈ X with d(x, x ′) ≤ (2A0)
−1[δk + d(x, y)],

∣
∣Q̃k(x, y) − Q̃k(x ′, y)

∣
∣

≤ C

[
d(x, x ′)

δk + d(x, y)

]β 1

Vδk (x) + V (x, y)

[
δk

δk + d(x, y)

]γ

;

(iii) for any x ∈ X,

∫

X
Q̃k(x, y) dμ(y) = 0 =

∫

X
Q̃k(y, x) dμ(y).

Next, we recall the homogeneous discrete Calderón reproducing formulae estab-
lished in [29]. To this end, let j0 ∈ N be a sufficiently large integer such that
δ j0 ≤ (2A0)

−4C�, where C� is as in Lemma 2.3. Based on Lemma 2.3, for any
k ∈ Z and α ∈ Ak , we let

N(k, α) := {τ ∈ Ak+ j0 : Qk+ j0
τ ⊂ Qk

α}

and N (k, α) be the cardinality of the set N(k, α). For any k ∈ Z and α ∈ Ak , we
rearrange the set {Qk+ j0

τ : τ ∈ N(k, α)} as {Qk,m
α }N (k,α)

m=1 , whose centers are denoted,

respectively, by {zk,m
α }N (k,α)

m=1 .

Theorem 2.7 Let {Qk}k∈Z be an exp-ATI and β, γ ∈ (0, η). For any k ∈ Z, α ∈ Ak

and m ∈ {1, . . . , N (k, α)}, suppose that yk,m
α is an arbitrary point in Qk,m

α . Then, for

any i ∈ {1, 2}, there exists a sequence {Q̃(i)
k }∞k=−∞ of bounded linear operators on

L2(X) such that, for any f ∈ (G̊η
0(β, γ ))′,
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f (·) =
∞∑

k=−∞

∑

α∈Ak

N (k,α)∑

m=1

Q̃(1)
k

(
·, yk,m

α

) ∫

Qk,m
α

Qk f (y) dμ(y)

=
∞∑

k=−∞

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)
Q̃(2)

k

(
·, yk,m

α

)
Qk f

(
yk,m
α

)
,

where the equalities converge in (G̊η
0(β, γ ))′. Moreover, for any k ∈ Z, the kernels of

Q̃(1)
k and Q̃(2)

k satisfy (i), (ii) and (iii) of Theorem 2.6.

To recall the inhomogeneous discrete Calderón reproducing formulae established
in [29], we introduce the following 1-exp-ATI and exp-IATI.

Definition 2.8 A sequence {Pk}∞k=−∞ of bounded linear operators on L2(X) is called
an approximation of the identity with exponential decay and integration 1 (for short,
1-exp-ATI) if {Pk}∞k=−∞ has the following properties:

(i) for any k ∈ Z, Pk satisfies (ii), (iii) and (iv) of Definition 2.4 but without the
exponential decay factor

exp

{

−ν

[
max{d(x,Yk), d(y,Yk)}

δk

]a
}

;

(ii) for any k ∈ Z and x ∈ X ,
∫

X Pk(x, y) dμ(y) = 1 = ∫
X Pk(y, x) dμ(y);

(iii) for any k ∈ Z, letting Qk := Pk − Pk−1, then {Qk}k∈Z is an exp-ATI.

Remark 2.9 The existence of the 1-exp-ATI is guaranteed by [1, Lemma 10.1]. More-
over, by the proofs of [29, Proposition 2.9] and [27, Proposition 2.7(iv)], we know
that, for any f ∈ L2(X), limk→∞ Pk f = f in L2(X).

Definition 2.10 Asequence {Qk}∞k=0 of bounded linear operators on L2(X) is called an
inhomogeneous approximation of the identity with exponential decay (for short, exp-
IATI) if there exists a 1-exp-ATI {Pk}∞k=−∞ such that Q0 = P0 and Qk = Pk − Pk−1
for any k ∈ N.

Next we recall the following inhomogeneous discrete Calderón reproducing for-
mula established in [29].

Theorem 2.11 Let {Qk}∞k=0 be an exp-IATI and β, γ ∈ (0, η). Then there exists a
sequence {Q̃k}∞k=0 of bounded linear operators on L2(X) such that, for any f ∈
(Gη

0(β, γ ))′,

f (·) =
N∑

k=0

∑

α∈Ak

N (0,α)∑

m=1

∫

Qk,m
α

Q̃k(·, y) dμ(y)Qk,m
α,1 ( f )

+
∞∑

k=N+1

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)
Q̃k

(
·, yk,m

α

)
Qk f

(
yk,m
α

)
,
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where the equality converges in (Gη
0(β, γ ))′, every yk,m

α is an arbitrary point in Qk,m
α

and, for any k ∈ {0, . . . , N },

Qk,m
α,1 ( f ) := 1

μ(Qk,m
α )

∫

Qk,m
α

Qk f (u) dμ(u).

Moreover, for any k ∈ Z+, Q̃k satisfies (i) and (ii) of Theorem 2.6 and, for any x ∈ X,

∫

X
Q̃k(x, y) dμ(y) =

∫

X
Q̃k(y, x) dμ(y) =

{
1 if k ∈ {0, . . . , N },
0 if k ∈ {N + 1, N + 2, . . .},

where N ∈ N is some fixed constant independent of f and yk,m
α .

3 Hardy Spaces via Various Maximal Functions

Let β, γ ∈ (0, η) and f ∈ (Gη
0(β, γ ))′. Let {Pk}k∈Z be a 1-exp-ATI as in Definition

2.8. Define the radial maximal function M+( f ) of f by setting

M+( f )(x) := sup
k∈Z

|Pk f (x)|, ∀ x ∈ X .

Define the non-tangential maximal function Mθ ( f ) of f with aperture θ ∈ (0,∞)

by setting

Mθ ( f )(x) := sup
k∈Z

sup
y∈B(x,θδk )

|Pk f (y)|, ∀ x ∈ X .

Also, define the grand maximal function f ∗ of f by setting

f ∗(x) := sup
{|〈 f , ϕ〉| : ϕ ∈ Gη

0(β, γ ) and

‖ϕ‖G(x,r0,β,γ ) ≤ 1 for some r0 ∈ (0,∞)
}
, ∀ x ∈ X .

Correspondingly, for any p ∈ (0,∞], the Hardy spaces H+,p(X), H p
θ (X) with θ ∈

(0,∞) and H∗,p(X) are defined, respectively, by setting

H+,p(X) :=
{

f ∈ (Gη
0(β, γ )

)′ : ‖ f ‖H+,p(X) := ‖M+( f )‖L p(X) < ∞
}

,

H p
θ (X) :=

{
f ∈ (Gη

0(β, γ )
)′ : ‖ f ‖H p

θ (X) := ‖Mθ ( f )‖L p(X) < ∞
}

and

H∗,p(X) :=
{

f ∈ (Gη
0(β, γ )

)′ : ‖ f ‖H∗,p(X) := ‖ f ∗‖L p(X) < ∞
}

.
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Based on [20, Remark 2.9(ii)], we easily observe that, for any f ∈ (Gη
0(β, γ ))′ and

x ∈ X ,
M+( f )(x) ≤ Mθ ( f )(x) ≤ C f ∗(x), (3.1)

where C is a positive constant only depending on θ .
The aim of this section is to prove that the Hardy spaces H+,p(X), H p

θ (X) and
H∗,p(X) are mutually equivalent when p ∈ (ω/(ω+η),∞] in the sense of equivalent
(quasi-)norms (seeSect. 3.2); in particular, they all are equivalent to theLebesgue space
L p(X)when p ∈ (1,∞] in the sense of equivalent norms (see Sect. 3.1).Moreover, we
prove that H∗,p(X) is independent of the choices of the distribution space (Gη

0(β, γ ))′
whenever β, γ ∈ (ω(1/p − 1), η); see Proposition 3.8 below.

3.1 Equivalence to the Lebesgue Space Lp(X)When p ∈ (1,∞]

In this section, we show that the Hardy spaces H+,p(X), H p
θ (X) and H∗,p(X) are

all equivalent to the Lebesgue space L p(X), when p ∈ (1,∞], in the sense of both
representing the same distributions and equivalent norms. First we give some basic
properties of H∗,p(X).

Proposition 3.1 Let p ∈ (0,∞]. Then H∗,p(X) is a (quasi-)Banach space, which is
continuously embedded into (Gη

0(β, γ ))′, where β, γ ∈ (0, η).

Proof Let f ∈ H∗,p(X) and ϕ ∈ Gη
0(β, γ )with ‖ϕ‖G(β,γ ) ≤ 1. For any x ∈ B(x0, 1),

byDefinition 2.1, we easily know that ‖ϕ‖G(x,1,β,γ ) � 1with the implicit positive con-
stant independent of x and hence |〈 f , ϕ〉| � f ∗(x). Therefore, for any ϕ ∈ Gη

0(β, γ )

with β, γ ∈ (0, η), we have

|〈 f , ϕ〉|p � 1

V1(x0)

∫

B(x0,1)
[ f ∗(x)]p dμ(x) � ‖ f ∗‖p

L p(X) ∼ ‖ f ‖p
H∗,p(X).

This implies that H∗,p(X) is continuously embedded into (Gη
0(β, γ ))′.

To see that H∗,p(X) is a (quasi-)Banach space, we only prove its completeness.
Indeed, suppose that { fk}∞k=1 in H∗,p(X) is a Cauchy sequence, which is also a Cauchy
sequence in (Gη

0(β, γ ))′ with β, γ ∈ (0, η). By the completeness of (Gη
0(β, γ ))′,

the sequence { fk}∞k=1 converges to some element f ∈ (Gη
0(β, γ ))′ as k → ∞. If

ϕ ∈ Gη
0(β, γ ) satisfies ‖ϕ‖G(x,r0,β,γ ) ≤ 1 for some x ∈ X and r0 ∈ (0,∞), then

|〈 fk+l − fk, ϕ〉| ≤ ( fk+l − fk)
∗(x) for any k, l ∈ N. Letting l → ∞, we obtain

|〈 f − fk, ϕ〉| ≤ lim inf
l→∞ ( fk+l − fk)

∗(x),

which further implies that, for any x ∈ X ,

( f − fk)
∗(x) ≤ lim inf

l→∞ ( fk+l − fk)
∗(x).

By the Fatou lemma, we conclude that

‖( f − fk)
∗‖L p(X) ≤ lim inf

l→∞ ‖( fk+l − fk)
∗‖L p(X) → 0
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as k → ∞, which, together with the sublinearity of ‖ · ‖H∗,p(X), further implies that
f ∈ H∗,p(X) and limk→∞ ‖ f − fk‖H∗,p(X) = 0. Therefore, H∗,p(X) is complete.
This finishes the proof of Proposition 3.1. ��

To show the equivalence of H+,p(X), H p
θ (X) and H∗,p(X) to the Lebesgue space

L p(X) when p ∈ (1,∞] in the sense of both representing the same distributions and
equivalent norms, we need the following technical lemma.

Lemma 3.2 Let {Pk}k∈Z be a 1-exp-ATI as in Definition 2.8. Assume that β, γ ∈
(0, η). Then the following statements hold true:

(i) there exists a positive constant C such that, for any k ∈ Z and ϕ ∈ G(β, γ ),
‖Pkϕ‖G(β,γ ) ≤ C‖ϕ‖G(β,γ );

(ii) for any f ∈ G(β, γ ) and β ′ ∈ (0, β), limk→∞ Pk f = f in G(β ′, γ );
(iii) if f ∈ Gη

0(β, γ ) [resp., f ∈ (Gη
0(β, γ ))′], then limk→∞ Pk f = f in Gη

0(β, γ )

[resp., (Gη
0(β, γ ))′].

Proof The proof of (i) can be obtained by the method used in the proof of [29, Lemma
4.14]. The proof of (ii) is given in [20, Lemma 3.6], whose proof does not rely on the
reverse doubling condition of μ and the metric d. We obtain (iii) directly by (i), (ii)
and a standard duality argument. This finishes the proof of Lemma 3.2. ��

We have the following proposition.

Proposition 3.3 Let p ∈ [1,∞], β, γ ∈ (0, η) and {Pk}k∈Z be a 1-exp-ATI. If f ∈
(Gη

0(β, γ ))′ belongs to H+,p(X), then there exists f̃ ∈ L p(X) such that, for any
ϕ ∈ Gη

0(β, γ ),

〈 f , ϕ〉 =
∫

X
f̃ (x)ϕ(x) dμ(x) (3.2)

and ‖ f̃ ‖L p(X) ≤ ‖M+( f )‖L p(X); moreover, if p ∈ [1,∞), then, for almost every
x ∈ X, | f̃ (x)| ≤ M+( f )(x).

Proof Let f ∈ (Gη
0(β, γ ))′ andM+( f ) := supk∈Z |Pk f | ∈ L p(X), where {Pk}k∈Z is

a 1-exp-ATI as in Definition 2.8. Then {Pk f }k∈Z is uniformly bounded in L p(X). If
p ∈ (1,∞], then p′ ∈ [1,∞) and L p′

(X) is separable. Thus, by the Banach–Alaoglu
theorem (see, for example, [46, Theorem 3.17]), we find a function f̃ ∈ L p(X) and a
sequence {k j }∞j=1 ⊂ Z such that k j → ∞ and Pk j f → f̃ as j → ∞ in the weak-∗
topology of L p(X). By this and the Hölder inequality, for any g ∈ L p′

(X), we have

∣
∣
∣
∣

∫

X
f̃ (x)g(x) dμ(x)

∣
∣
∣
∣= lim

j→∞

∣
∣
∣
∣

∫

X
Pk j f (x)g(x) dμ(x)

∣
∣
∣
∣ ≤ ‖M+( f )‖L p(X)‖g‖L p′

(X)
,

which further implies that ‖ f̃ ‖L p(X) ≤ ‖M+( f )‖L p(X).
If p = 1, notice that ‖ supk∈Z |Pk f |‖L1(X) = ‖M+( f )‖L1(X) < ∞. Then, by the

proof of [52, Theorem III.C.12], {Pk f }k∈Z is relatively compact in L1(X). Therefore,
by the Eberlin–S̆mulian theorem (see [52, II.C]), we know that {Pk f }k∈Z is weakly
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sequentially compact, that is, there exist a function f̃ ∈ L1(X) and a subsequence
{Pk j f }∞j=1 such that {Pk j f }∞j=1 converges to f̃ weakly in L1(X). As the arguments

for the case p ∈ (1,∞], we still have ‖ f̃ ‖L1(X) ≤ ‖M+( f )‖L1(X).
Moreover, for anyϕ ∈ Gη

0(β, γ ), by the factGη
0(β, γ ) ⊂ L p(X) for any p ∈ [1,∞]

and Lemma 3.2(iii), we conclude that

〈 f , ϕ〉 = lim
k→∞〈Pk j f , ϕ〉 = lim

j→∞

∫

X
Pk j f (x)ϕ(x) dμ(x) =

∫

X
f̃ (x)ϕ(x) dμ(x).

(3.3)
Let p ∈ [1,∞). For any j ∈ N and x ∈ X , we have Pk j (x, ·) ∈ G(η, η) (see the

proof of [29, Proposition 2.10]), which, together with (3.3), implies that

Pk j f (x) = 〈 f , Pk j (x, ·)〉 =
∫

X
Pk j (x, y) f̃ (y) dμ(y) = Pk j f̃ (x).

From this and [27, Proposition 2.7(iv)], we deduce that {Pk j f } j∈N converges to f̃
in the sense of ‖ · ‖L p(X). Then, by the Riesz theorem, we find a subsequence of
{Pk j f } j∈N, still denoted by {Pk j f } j∈N, such that Pk j f (x) → f̃ (x) as k j → ∞ for
almost every x ∈ X . Therefore, | f̃ (x)| ≤ M+( f )(x) for almost every x ∈ X . This
finishes the proof of Proposition 3.3. ��

Finally, we show the following main result of this section.

Theorem 3.4 Let p ∈ (1,∞] and β, γ ∈ (0, η). Then the following hold true:

(i) if f ∈ (Gη
0(β, γ ))′ belongs to H+,p(X), then there exists f̃ ∈ L p(X) such that

(3.2) holds true and ‖ f̃ ‖L p(X) ≤ ‖ f ‖H+,p(X);
(ii) any f ∈ L p(X) induces a distribution on Gη

0(β, γ ) as in (3.2), still denoted by
f , such that f ∈ H∗,p(X) and ‖ f ‖H∗,p(X) ≤ C‖ f ‖L p(X), where C is a positive
constant independent of f .

Consequently, for any fixed θ ∈ (0,∞), H+,p(X) = H p
θ (X) = H∗,p(X) =

L p(X) in the sense of both representing the same distributions and equivalent norms.

Proof We obtain (i) directly by Proposition 3.3. Now we prove (ii). Suppose that
p ∈ (1,∞] and f ∈ L p(X). Clearly, f induces a distribution on Gη

0(β, γ ) as in (3.2).
By [20, Proposition 3.9],wefind that, for almost every x ∈ X , f ∗(x) � M( f )(x),with
the implicit positive constant independent of f and x . Therefore, from the boundedness
of M on L p(X), we deduce that ‖ f ∗‖L p(X) � ‖M( f )‖L p(X) � ‖ f ‖L p(X). This
finishes the proof of (ii).

By (i), (ii) and (3.1), we obtain H+,p(X) = H p
θ (X) = H∗,p(X) = L p(X), which

completes the proof of Theorem 3.4. ��

3.2 Equivalence of Hardy Spaces Defined via Various Maximal Functions

The main aim of this section concerns the equivalence of Hardy spaces defined via
various maximal functions for the case p ∈ (ω/(ω + η), 1]. Indeed, our goal is to
show the following equivalence theorem.
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Theorem 3.5 Assume that p ∈ (ω/(ω + η), 1] and θ ∈ (0,∞). Then, for any f ∈
(Gη

0(β, γ ))′ with β, γ ∈ (ω(1/p − 1), η),

‖ f ‖H+,p(X) ∼ ‖ f ‖H p
θ (X) ∼ ‖ f ‖H∗,p(X),

with positive equivalence constants independent of f . In other words, H+,p(X) =
H p

θ (X) = H∗,p(X) with equivalent (quasi-)norms.

To prove Theorem 3.5, we borrow some ideas from [56]. To this end, we need the
following two technical lemmas.

Lemma 3.6 Assume that φ ∈ Gη
0(β, γ ) with β, γ ∈ (0, η). Let σ := ∫

X φ(x) dμ(x).

If ψ ∈ G(η, η) with
∫

X ψ(x) dμ(x) = 1, then φ − σψ ∈ G̊η
0(β, γ ).

Proof Since φ ∈ Gη
0(β, γ ) with β, γ ∈ (0, η), it follows that there exists {φn}∞n=1 ⊂

G(η, η) such that limn→∞ ‖φ−φn‖G(β,γ ) = 0. Letting σn := ∫
X φn(x) dμ(x) for any

n ∈ N, by Definition 2.1 and Lemma 2.2(ii), we conclude that limn→∞ |σ − σn| = 0,
where σ := ∫

X φ(x) dμ(x). Let ϕn := φn − σnψ for any n ∈ N. Then ϕn ∈ G̊(η, η)

and

‖φ − σψ − ϕn‖G(β,γ ) ≤ ‖φ − φn‖G(β,γ ) + |σ − σn|‖ψ‖G(β,γ ) → 0 as n → ∞.

Thus, φ − σψ ∈ G̊η
0(β, γ ). This finishes the proof of Lemma 3.6. ��

The next lemma comes from [27, Lemma 5.3], whose proof remains true for a
quasi-metric d and also does not rely on the reverse doubling condition of μ.

Lemma 3.7 Let all the notation be as in Theorem 2.7. Let k, k′ ∈ Z,
{ak,m

α }k∈Z, α∈Ak , m∈{1,...,N (k,α)} ⊂ C, γ ∈ (0, η) and r ∈ (ω/(ω + γ ), 1]. Then there
exists a positive constant C, independent of k, k′, yk,m

α ∈ Qk,m
α and ak,m

α with k ∈ Z,
α ∈ Ak and m ∈ {1, . . . , N (k, α)}, such that, for any x ∈ X,

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

) 1

V
δk∧k′ (x) + V (x, yk,m

α )

[
δk∧k′

δk∧k′ + d(x, yk,m
α )

]γ ∣
∣
∣ak,m

α

∣
∣
∣

≤ Cδ[k−(k∧k′)]ω(1− 1
r )

⎡

⎣M
⎛

⎝
∑

α∈Ak

N (k,α)∑

m=1

∣
∣
∣ak,m

α

∣
∣
∣
r
1Qk,m

α

⎞

⎠ (x)

⎤

⎦

1
r

.

Now we show Theorem 3.5 by using the above two technical lemmas. In what
follows, the symbol ε → 0+ means that ε ∈ (0,∞) and ε → 0.

Proof of Theorem 3.5 Let f ∈ (Gη
0(β, γ ))′ with β, γ ∈ (ω(1/p − 1), η). Fix θ ∈

(0,∞). By (3.1), we have

‖M+( f )‖L p(X) ≤ ‖Mθ ( f )‖L p(X) � ‖ f ∗‖L p(X).



2214 Journal of Fourier Analysis and Applications (2019) 25:2197–2267

Thus, the proof of Theorem 3.5 is reduced to showing

‖ f ∗‖L p(X) � ‖M+( f )‖L p(X). (3.4)

To obtain (3.4), it suffices to prove that, for some r ∈ (0, p) and any x ∈ X ,

f ∗(x) � M+( f )(x) + {M ([M+( f )
]r )

(x)
} 1

r . (3.5)

If (3.5) holds true, then, by the boundedness of M on L p/r (X), we conclude that

‖ f ∗‖L p(X) � ‖M+( f )‖L p(X) + ∥
∥M ([M+( f )

]r )∥∥
1
r
L p/r (X)

∼ ‖M+( f )‖L p(X),

which proves (3.4).
We now fix x ∈ X and show (3.5). Let {Pk}k∈Z be a 1-exp-ATI. For any k ∈ Z,

define Qk := Pk − Pk−1. Then {Qk}k∈Z is an exp-ATI. Assume for the moment that,
for any ϕ ∈ G̊η

0(β, γ ) with ‖ϕ‖G(x,δl ,β,γ ) ≤ 1 for some l ∈ Z,

|〈 f , ϕ〉| �
{M ([M+( f )

]r )
(x)

} 1
r . (3.6)

We now use (3.6) to show (3.5). For any φ ∈ Gη
0(β, γ ) with ‖φ‖G(x,r0,β,γ ) ≤ 1

for some r0 ∈ (0,∞), choose l ∈ Z such that δl+1 ≤ r0 < δl . Clearly,
‖φ‖G(x,δl ,β,γ ) � 1. Let σ := ∫

X φ(y) dμ(y) and ϕ := φ − σ Pl(x, ·). Notice that∫
X Pl(x, y) dμ(y) = 1 and Pl(x, ·) ∈ G(η, η) (see the proof of [29, Proposition

2.10]). From Lemma 3.6, it follows that ϕ ∈ G̊η
0(β, γ ). Moreover, ‖ϕ‖G(x,δl ,β,γ ) �

‖φ‖G(x,δl ,β,γ ) + |σ |‖Pl(x, ·)‖G(x,δl ,β,γ ) � 1. By (3.6), we know that

|〈 f , φ〉| ≤ |〈 f , ϕ〉| + |σ ||〈 f , Pl(x, ·)〉|
�

{M ([M+( f )
]r )

(x)
} 1

r + |Pl f (x)|
�

{M ([M+( f )
]r )

(x)
} 1

r + M+( f )(x),

which is exactly (3.5).
It remains to prove (3.6). For any ε ∈ (0,∞), choose yk,m

α ∈ Qk,m
α such that

∣
∣
∣Qk f

(
yk,m
α

)∣∣
∣ ≤ inf

z∈Qk,m
α

|Qk f (z)| + ε ≤ 2 inf
z∈Qk,m

α

M+( f )(z) + ε.

Let g := f |G̊η
0(β,γ )

be the restriction of f on G̊η
0(β, γ ). Obviously, g ∈ (G̊η

0(β, γ ))′
and ‖g‖

(G̊η
0(β,γ ))′ ≤ ‖ f ‖(Gη

0(β,γ ))′ . By Theorem 2.7, we conclude that

〈 f , ϕ〉 = 〈g, ϕ〉 =
∞∑

k=−∞

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)
Q̃∗

kϕ
(

yk,m
α

)
Qk g

(
yk,m
α

)
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=
∞∑

k=−∞

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)
Q̃∗

kϕ
(

yk,m
α

)
Qk f

(
yk,m
α

)
,

where Q̃∗
k denotes the dual operator of Q̃k . By the proof of [27, (3.2)], which remains

true for a quasi-metric d and does not rely on the reverse doubling condition of μ, we
find that, for any fixed β ′ ∈ (0, β ∧ γ ) and any k ∈ Z,

∣
∣
∣Q̃∗

kϕ
(

yk,m
α

)∣∣
∣ � δ|k−l|β ′ 1

Vδk∧l (x) + V (x, yk,m
α )

[
δk∧l

δk∧l + d(x, yk,m
α )

]γ

. (3.7)

Choose β ′ ∈ (0, β ∧ γ ) such that ω/(ω + β ′) < p. From this and Lemma 3.7, we
deduce that, for any fixed r ∈ (ω/(ω + β ′), p),

|〈 f , ϕ〉| �
∞∑

k=−∞
δ|k−l|β ′ ∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)

×
inf z∈Qk,m

α
M+( f )(z) + ε

Vδk∧l (x) + V (x, yk,m
α )

[
δk∧l

δk∧l + d(x, yk,m
α )

]γ

�
∞∑

k=−∞
δ|k−l|β ′

δ
[k−(k∧l)]ω

(
1− 1

r

)

×
⎧
⎨

⎩
M

⎛

⎝
∑

α∈Ak

N (k,α)∑

m=1

[

inf
z∈Qk,m

α

M+( f )(z) + ε

]r

1Qk,m
α

⎞

⎠ (x)

⎫
⎬

⎭

1
r

�
∞∑

k=−∞
δ|k−l|β ′

δ
[k−(k∧l)]ω

(
1− 1

r

)
{M ([M+( f ) + ε

]r )
(x)

} 1
r

�
{M ([M+( f )

]r )
(x) + εr} 1

r → {M ([M+( f )
]r )

(x)
} 1

r as ε → 0+.

(3.8)

This proves (3.6) and hence finishes the proof of Theorem 3.5. ��
To conclude this section, we show that the Hardy space H∗,p(X) is independent of

the choices of (Gη
0(β, γ ))′ whenever β, γ ∈ (ω(1/p − 1), η).

Proposition 3.8 Let p ∈ (ω/(ω + η), 1] and β1, β2, γ1, γ2 ∈ (ω(1/p − 1), η). If
f ∈ (Gη

0(β1, γ1))
′ and f ∈ H∗,p(X), then f ∈ (Gη

0(β2, γ2))
′.

Proof Let f ∈ (Gη
0(β1, γ1))

′ with ‖ f ‖H∗,p(X) < ∞. We first prove that there exists
θ ∈ (0,∞) such that, for any ϕ ∈ G(η, η) with ‖ϕ‖G(β2,γ2) ≤ 1,

|〈 f , ϕ〉| � ‖Mθ ( f )‖L p(X). (3.9)
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Notice that ϕ ∈ G(η, η) ⊂ Gη
0(β1, γ1) and f ∈ (Gη

0(β1, γ1))
′. With all the notation

involved as in Theorem 2.11, we have

〈 f , ϕ〉 =
N∑

k=0

∑

α∈A0

N (k,α)∑

m=1

∫

Qk,m
α

Q̃∗
kϕ(y) dμ(y)Qk,m

α,1 ( f )

+
∞∑

k=N+1

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)
Q̃∗

kϕ
(

yk,m
α

)
Qk f

(
yk,m
α

)
=: Z1 + Z2.

Choose θ := 2A0C� with C� as in Lemma 2.3(v). By the definition of Qk,m
α and

Lemma 2.3(v), we have Qk,m
α ⊂ B(zk,m

α , C�δk+ j0) ⊂ B(z, 2A0C�δk) = B(z, θδk)

for any z ∈ Qk,m
α .

Fix x ∈ B(x0, 1). Then ‖ϕ‖G(x,1,β2,γ2) ∼ ‖ϕ‖G(x0,1,β2,γ2) � 1. If k ∈ {0, . . . , N },
then we have ‖ϕ‖G(x,δk ,β2,γ2)

∼ ‖ϕ‖G(x,1,β2,γ2) � 1, where the implicit positive
constants are independent of x but can depend on N . Let β− := min{β1, γ1, β2, γ2}.
By [27, (3.2)], we conclude that, for any y ∈ Qk,m

α ,

∣
∣Q̃∗

kϕ(y)
∣
∣ � 1

V1(x)+V (x, y)

[
1

1+d(x, y)

]β−
∼ 1

V1(x)+V (x, yk,m
α )

[
1

1+d(x, yk,m
α )

]β−
.

Moreover, for any k ∈ {0, . . . , N } and z ∈ Qk,m
α , we have

∣
∣
∣Qk,m

α,1 ( f )

∣
∣
∣ ≤ 1

μ(Qk,m
α )

∫

Qk,m
α

[|Pk f (y)| + |Pk−1 f (y)|] dμ(y) ≤ 2Mθ ( f )(z).

Thus, we obtain

|Z1| �
N∑

k=0

∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

) 1

V1(x) + V (x, yk,m
α )

×
[

1

1 + d(x, yk,m
α )

]β−
inf

z∈Qk,m
α

Mθ ( f )(z). (3.10)

If k ∈ {N + 1, N + 2, . . .}, then |Qk f (yk,m
α )| ≤ 2 inf z∈Qk,m

α
Mθ ( f )(z). Again, by

‖ϕ‖G(x,1,β2,γ2) � 1 and [27, (3.2)], we find that, for any fixed β ′ ∈ (0, β−),

∣
∣
∣Q̃∗

kϕ
(

yk,m
α

)∣∣
∣ � δkβ ′ 1

V1(x) + V (x, yk,m
α )

[
1

1 + d(x, yk,m
α )

]β−
,
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because now k ∈ Z+ and we do not need the cancelation of ϕ. Therefore, we have

|Z2| �
∞∑

k=N+1

δkβ ′ ∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

)

× 1

V1(x) + V (x, yk,m
α )

[
1

1 + d(x, yk,m
α )

]β−
inf

z∈Qk,m
α

Mθ ( f )(z). (3.11)

Following the estimation of (3.8), from (3.10) and (3.11), we deduce that, for some
r ∈ (ω/(ω + η), p),

|〈 f , ϕ〉| �
{M ([Mθ ( f )

]r )
(x)

} 1
r .

Notice that the above inequality holds true for any x ∈ B(x0, 1). Then, by the bound-
edness of M on L p/r (X), we further conclude that

|〈 f , ϕ〉|p � 1

V1(x0)

∫

X

{M ([Mθ ( f )
]r )

(x)
} p

r dμ(x) � ‖Mθ ( f )‖p
L p(X),

which is exactly (3.9).
Combining (3.9) and (3.1), we find that, for any ϕ ∈ G(η, η),

|〈 f , ϕ〉| � ‖Mθ ( f )‖L p(X)‖ϕ‖G(β2,γ2) � ‖ f ‖H∗,p(X)‖ϕ‖G(β2,γ2). (3.12)

Now let g ∈ Gη
0(β2, γ2). By the definition of Gη

0(β2, γ2), we know that there exist
{ϕ j }∞j=1 ⊂ G(η, η) such that ‖g − ϕ j‖G(β2,γ2) → 0 as j → ∞, which implies that
{ϕ j }∞j=1 is a Cauchy sequence inG(β2, γ2). By (3.12), we find that, for any j, k ∈ N,

|〈 f , ϕ j − ϕk〉| � ‖ f ‖H∗,p(X)‖ϕ j − ϕk‖G(β2,γ2).

Therefore, lim j→∞〈 f , ϕ j 〉 exists and the limit is independent of the choice of {ϕ j }∞j=1.
Thus, it is reasonable to define 〈 f , g〉 := lim j→∞〈 f , ϕ j 〉. Moreover, by (3.12), we
conclude that

|〈 f , g〉| = lim
j→∞ |〈 f , ϕ j 〉| � ‖ f ‖H∗,p(X) lim inf

j→∞ ‖ϕ j‖G(β2,γ2)

∼ ‖ f ‖H∗,p(X)‖g‖Gη
0(β2,γ2)

.

This implies f ∈ (Gη
0(β2, γ2))

′ and ‖ f ‖(Gη
0(β2,γ2))

′ � ‖ f ‖H∗,p(X), which completes
the proof of Proposition 3.8. ��

4 GrandMaximal Function Characterizations of Atomic Hardy Spaces

In this section,we establish the atomic characterizations of H∗,p(X)with p ∈ (ω/(ω+
η), 1].
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Definition 4.1 Let p ∈ (ω/(ω + η), 1], q ∈ (p,∞] ∩ [1,∞] and β, γ ∈ (ω(1/p −
1), η). The atomic Hardy space H p,q

at (X) is defined to be the set of all f ∈ (Gη
0(β, γ ))′

such that f = ∑∞
j=1 λ j a j ,where {a j }∞j=1 is a sequenceof (p, q)-atoms and {λ j }∞j=1 ⊂

C satisfies
∑∞

j=1 |λ j |p < ∞. Moreover, let

‖ f ‖H p,q
at (X) := inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=1

|λ j |p

⎞

⎠

1
p

⎫
⎪⎬

⎪⎭
,

where the infimum is taken over all the decompositions of f as above.

Observe that the difference between H p,q
cw (X) and H p,q

at (X) mainly lies on the
choices of distribution spaces. When (X , d, μ) is a doubling metric measure space, it
was proved in [40, Theorem 4.4] that H p,q

cw (X) and H p,q
at (X) coincide with equivalent

(quasi-)norms. Since now d is a quasi-metric, for the completeness of this article, we
include a proof of their equivalence in Sect. 4.4 below.

The main aim in this section is to prove the following conclusion.

Theorem 4.2 Let p ∈ (ω/(ω + η), 1], q ∈ (p,∞] ∩ [1,∞] and β, γ ∈ (ω(1/p −
1), η). As subspaces of (Gη

0(β, γ ))′, H∗,p(X) = H p,q
at (X) with equivalent (quasi-)

norms.

We divide the proof of Theorem 4.2 into three sections. In Sect. 4.1, we prove that
H p,q
at (X) ⊂ H∗,p(X) directly by the definition of H p,q

at (X). The next two sections
mainly dealwith the proof of H∗,p(X) ⊂ H p,q

at (X). In Sect. 4.2,we obtain aCalderón–
Zygmund decomposition for any f ∈ H∗,p(X). Then, in Sect. 4.3, we show that
any f ∈ H∗,p(X) has a (p,∞)-atomic decomposition. In Sect. 4.4, we reveal the
equivalent relationship between H p,q

at (X) and H p,q
cw (X).

4.1 Proof of Hp,q
at (X) ⊂ H∗,p(X)

In this section, we prove H p,q
at (X) ⊂ H∗,p(X), as subspaces of (Gη

0(β, γ ))′ with
β, γ ∈ (ω(1/p − 1), η). To do this, we need the following technical lemma.

Lemma 4.3 Let p ∈ (ω/(ω + η), 1] and q ∈ (p,∞] ∩ [1,∞]. Then there exists a
positive constant C such that, for any (p, q)-atom a supported on B := B(xB, rB),
with xB ∈ X and rB ∈ (0,∞), and any x ∈ X,

a∗(x) ≤ CM(a)(x)1B(xB ,2A0rB )(x) + C

[
rB

d(xB, x)

]β [μ(B)]1− 1
p

V (xB, x)
1[B(xB ,2A0rB )]�(x)

(4.1)

and

‖a∗‖L p(X) ≤ C, (4.2)

where the atom a is viewed as a distribution onGη
0(β, γ ) with β, γ ∈ (ω(1/p−1), η).
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Proof First, we show (4.1). Let ϕ ∈ Gη
0(β, γ ) be such that ‖ϕ‖G(x,r ,β,γ ) ≤ 1 for some

r ∈ (0,∞), where β, γ ∈ (ω(1/p − 1), η). When x ∈ B(xB, 2A0rB), by Lemma
2.2(v), we find that

|〈a, ϕ〉| =
∣
∣
∣
∣

∫

X
a(y)ϕ(y) dμ(y)

∣
∣
∣
∣ ≤

∫

X
|a(y)| 1

Vr (x) + V (x, y)

[
r

r + d(x, y)

]γ

dμ(y)

� M(a)(x),

which consequently implies that a∗(x) � M(a)(x).
Let x /∈ B(xB, 2A0rB). Then, for any y ∈ B, we have d(x, xB) ≥ 2A0rB >

2A0d(xB, y). Therefore, by the definition of (p, q)-atoms and Definition 2.1(ii), we
conclude that

|〈a, ϕ〉| =
∣
∣
∣
∣

∫

B
a(y)ϕ(y) dμ(y)

∣
∣
∣
∣ ≤

∫

B
|a(y)||ϕ(y) − ϕ(xB)| dμ(y)

≤
∫

B
|a(y)|

[
d(xB , y)

r + d(x, xB)

]β 1

Vr (x) + V (x, xB)

[
r

r + d(x, xB)

]γ

dμ(y)

≤
[

rB

d(xB, x)

]β 1

V (x, xB)
‖a‖L1(X) �

[
rB

d(xB, x)

]β [μ(B)]1− 1
p

V (xB, x)
.

Taking the supremum over all such ϕ ∈ Gη
0(β, γ ) satisfying ‖ϕ‖G(x,r ,β,γ ) ≤ 1 for

some r ∈ (0,∞), we obtain (4.1).
Now, we use (4.1) to show (4.2). When q ∈ (1,∞], from the Hölder inequality and

the boundedness ofM on Lq(X), we deduce that

∫

B(xB ,2A0rB )

[M(a)(x)]p dμ(x) ≤ [μ(B(xB, 2A0rB))]1−p/q‖M(a)‖p
Lq (X)

� [μ(B)]1−p/q‖a‖p
Lq (X) � 1.

If q = 1, then, by p ∈ (ω/(ω + η), 1) and the boundedness of M from L1(X) to
L1,∞(X), we conclude that

∫

B(xB ,2A0rB )

[M(a)(x)]p dμ(x)

=
∫ ∞

0
μ({x ∈ B(xB, 2A0rB) : M(a)(x) > λ}) dλp

�
∫ ∞

0
min

{

μ(B),
‖a‖L1(X)

λ

}

dλp

�
∫ ‖a‖L1(X)

/μ(B)

0
μ(B) dλp +

∫ ∞

‖a‖L1(X)
/μ(B)

‖a‖L1(X)λ
−1 dλp

� ‖a‖p
L1(X)

[μ(B)]1−p � 1.
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By the fact β > ω(1/p − 1) and the doubling condition (1.1), we have

∫

d(x,xB )≥2A0rB

[
rB

d(xB, x)

]β p [ 1

μ(B)

]1−p [ 1

V (xB, x)

]p

dμ(x)

�
∞∑

k=1

2−kβ p2kω(1−p)

∫

2k A0rB≤d(x,xB )<2k+1 A0rB

1

V (xB, x)
dμ(x) � 1.

Combining the last three formulae with (4.1), we obtain (4.2), which then completes
the proof of Lemma 4.3. ��
Proof of Hp,q

at (X) ⊂ H∗,p(X)Assume that f ∈ (Gη
0(β, γ ))′ is non-zero and it belongs

to H p,q
at (X) with β, γ ∈ (ω(1/p − 1), η). Then f = ∑∞

j=1 λ j a j , where {a j }∞j=1 are

(p, q)-atoms and {λ j }∞j=1 ⊂ C satisfy
∑∞

j=1 |λ j |p ∼ ‖ f ‖p
H p,q
at (X)

. By the definition

of the grand maximal function, we conclude that, for any x ∈ X ,

f ∗(x) ≤
∞∑

j=1

|λ j |a∗
j (x).

From this and (4.2), we deduce that

‖ f ∗‖p
L p(X) �

∞∑

j=1

|λ j |p
∥
∥
∥a∗

j

∥
∥
∥

L p(X)
�

∞∑

j=1

|λ j |p ∼ ‖ f ‖p
H p,q
at (X)

.

This finishes the proof of H p,q
at (X) ⊂ H∗,p(X). ��

4.2 Calderón–Zygmund Decomposition of Distributions from H∗,p(X)

In this section, we obtain a Calderón–Zygmund decomposition of any f ∈ H∗,p(X).
First we establish a partition of unity for an open set 
 with μ(
) < ∞.

Proposition 4.4 Suppose 
 ⊂ X is a proper open set with μ(
) ∈ (0,∞) and
A ∈ [1,∞). For any x ∈ 
, let

r(x) := d(x,
�)

2AA0
∈ (0,∞).

Then there exist L0 ∈ N and a sequence {xk}k∈I ⊂ 
, where I is a countable index
set, such that

(i) {B(xk, rk/(5A3
0))}k∈I is disjoint. Here and hereafter, rk := r(xk) for any k ∈ I ;

(ii)
⋃

k∈I B(xk, rk) = 
 and B(xk, Ark) ⊂ 
;

(iii) for any x ∈ 
, Ark ≤ d(x,
�) ≤ 3AA2
0rk whenever x ∈ B(xk, rk) and k ∈ I ;

(iv) for any k ∈ I , there exists yk /∈ 
 such that d(xk, yk) < 3AA0rk;
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(v) for any given k ∈ I , the number of balls B(x j , Ar j ) that intersect B(xk, Ark)

is at most L0;
(vi) if, in addition, 
 is bounded, then, for any σ ∈ (0,∞), the set {k ∈ I : rk > σ }

is finite.

Proof We show this proposition by borrowing some ideas from [49, pp. 15–16]. Let
ε := (5A3

0)
−1 and {B(x, εr(x))}x∈
 be a covering of 
. Now we pick the maximal

disjoint subcollection of {B(x, εr(x))}x∈
, denoted by {Bk}k∈I , which is at most
countable, because of (1.1) and μ(
) ∈ (0,∞). For any k ∈ I , denote the center of
Bk by xk and r(xk) by rk . Then we obtain (i).

Properties (iii) and (iv) can be shown by the definition of rk , the details being
omitted. Now we show (ii). Obviously, B(xk, Ark) ⊂ 
 for any k ∈ I . It suffices to
prove that 
 ⊂ ⋃

k∈I B(xk, rk). For any x ∈ 
, since {Bk}k∈I is maximal, it then
follows that there exists k ∈ I such that B(xk, εrk) ∩ B(x, εr(x)) �= ∅. We claim
that rk ≥ r(x)/(4A2

0). If not, then rk < r(x)/(4A2
0). Suppose that x0 ∈ B(xk, εrk) ∩

B(x, εr(x)). Then, for any y ∈ B(xk, 3AA0rk), we have

d(y, x) ≤ A0[d(y, x0) + d(x0, x)] ≤ A2
0[d(y, xk) + d(xk, x0)] + A0d(x0, x)

≤ 6AA3
0rk + A0εr(x)

≤ 3

2
AA0r(x) + 1

5
AA0r(x) = 17

10
AA0r(x)

and hence B(xk, 3AA0rk) ⊂ B(x, 17
10 AA0r(x)) ⊂ 
, which contradicts to (iv). This

proves the claim. Further, by the fact that r(x) ≤ 4A2
0rk , we have

d(x, xk) ≤ A0[d(x, x0) + d(x0, xk)] < A0εr(x) + A0εrk ≤ 5A3
0εrk = rk,

that is, x ∈ B(xk, rk). This finishes the proof of (ii).
Nowwe prove (v). Fix k ∈ I . Suppose that B(x j , Ar j )∩ B(xk, Ark) �= ∅.We claim

that r j ≤ 8A2
0rk . If not, then r j > 8A2

0rk . Choose y0 ∈ B(x j , Ar j ) ∩ B(xk, Ark). For
any y ∈ B(xk, 3AA0rk), we have

d(y, x j ) ≤ A0[d(y, y0) + d(y0, x j )] ≤ A2
0[d(y, xk) + d(xk, y0)] + A0d(y0, x j )

≤ 3AA3
0rk + AA2

0rk + AA0r j ≤ 3

2
AA0r j ,

which further implies that y ∈ B(x j ,
3
2 AA0r j ). Therefore, B(xk, 3AA0rk) ⊂

B(x j ,
3
2 AA0r j ) ⊂ 
, which contradicts to (iv), Thus, we have r j ≤ 8A2

0rk . By
symmetry, we also have rk ≤ 8A2

0r j . Let

J := { j ∈ I : B(x j , Ar j ) ∩ B(xk, Ark) �= ∅}.
Then, for any j ∈ J , d(x j , xk) < AA0(r j + rk) ≤ 9AA3

0rk , which further implies
that

B
(

x j , (5A3
0)

−1r j

)
⊂ B

(
xk, A0

[
d(x j , xk) + (5A3

0)
−1r j

])
⊂ B(xk, 11AA4

0rk).
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Then, from the fact d(x j , xk) � min{r j , rk} and (1.1), we deduce that

μ
(

B
(

x j , (5A3
0)

−1r j

))
∼ μ(B(x j , r j )) ∼ μ(B(xk, rk)) ∼ μ(B(xk, 11AA4

0rk))

with the positive equivalence constants depending on A. Thus, we obtain (v) by (i).
Finally we prove (vi). Since 
 is bounded, it follows that there exist x0 ∈ X and

R ∈ (0,∞) such that 
 ⊂ B(x0, R). If (vi) fails, then there exists σ0 ∈ (0,∞) such
that K := {k ∈ I : rk > σ0R} is infinite. Then, for any k ∈ K ,

μ(B(xk, rk/(5A3
0))) ∼ μ(B(xk, σ0R)) � μ(B(x0, R)) � μ(
) > 0.

By this and (i), we have μ(
) ≥ ∑
k∈K μ(B(xk, rk/(5A3

0))) = ∞. That is a contra-
diction. This proves (vi) and hence finishes the proof of Proposition 4.4. ��
Proposition 4.5 Let 
 ⊂ X be an open set and μ(
) < ∞. Suppose that sequences
{xk}k∈I and {rk}k∈I are as in Proposition 4.4 with A := 16A4

0. Then there exist non-
negative functions {φk}k∈I such that

(i) for any k ∈ I , 0 ≤ φk ≤ 1 and supp φk ⊂ B(xk, 2A0rk);
(ii)

∑
k∈I φk = 1
;

(iii) for any k ∈ I , φk ≥ L−1
0 in B(xk, rk), where L0 is as in Proposition 4.4;

(iv) there exists a positive constant C such that, for any k ∈ I , ‖φk‖G(xk ,rk ,η,η) ≤
CVrk (xk).

Proof By [1, Corollary 4.2], for any k ∈ I , we find a function ψk such that 1B(xk ,rk ) ≤
ψk ≤ 1B(xk ,2A0rk ) and ‖ψk‖Ċη(X) � r−η

k . Here and hereafter, for any s ∈ (0, η] and a
measurable function f , define

‖ f ‖Ċs (X) := sup
x �=y

| f (x) − f (y)|
[d(x, y)]β .

Since A ≥ 2A0, from (ii) and (v) of Proposition 4.4, it follows that, for any x ∈ 
,
1 ≤ ∑

k∈I ψk(x) ≤ L0. For any k ∈ I and x ∈ X , let

φk(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

ψk(x)

⎡

⎣
∑

j∈I

ψ j (x)

⎤

⎦

−1

when x ∈ 
,

0, when x /∈ 
.

Then, for any k ∈ I , we have 0 ≤ φk ≤ 1, supp φk ⊂ B(xk, 2A0rk) and∑
k∈I φk(x) = 1 when x ∈ 
. Moreover, for any k ∈ I , we have φk ≥ L−1

0 in
B(xk, rk). Thus, we prove (i), (ii) and (iii).

It remains to prove (iv). Fix k ∈ I . For any y ∈ X , we have

|φk(y)| ≤ 1B(xk ,2A0rk )(y) � Vrk (xk)
1

Vrk (xk) + V (xk, y)

[
rk

rk + d(xk, y)

]η

.
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Now we prove that φk satisfies the regularity condition. Suppose that d(y, y′) ≤
(2A0)

−1[rk + d(xk, y)]. If |φk(y) − φk(y′)| �= 0, then d(xk, y) < (3A0)
2rk . If not,

then d(xk, y) ≥ (3A0)
2rk , so that φk(y) = 0 and

d(y′, xk) ≥ A−1
0 d(xk, y) − d(y, y′) ≥ (2A0)

−1d(xk, y) − (2A0)
−1rk > 2A0rk

and hence φk(y′) = 0, which contradicts to |φk(y) − φk(y′)| �= 0. Notice that
ψk(y′)|ψ j (y)−ψ j (y′)| �= 0 implies that y′ ∈ B(xk, 2A0rk) and also y or y′ belongs to
B(x j , 2A0r j ), which further implies that B(xk, Ark) ∩ B(x j , Ar j ) �= ∅. Then, by the
proof of Proposition 4.4(v), the number of j satisfying ψk(y′)|ψ j (y) − ψ j (y′)| �= 0
is at most L0 and r j ∼ rk . Therefore,

|φk(y) − φk(y′)| =
∣
∣
∣
∣
∣

ψk(y)
∑

j∈I ψ j (y)
− ψk(y′)

∑
j∈I ψ j (y′)

∣
∣
∣
∣
∣

≤ |ψk(y) − ψk(y′)|
∑

j∈I ψ j (y)
+ ψk(y′)

∑
j∈I |ψ j (y) − ψ j (y′)|

[∑ j∈I ψ j (y)][∑ j∈I ψ j (y′)]

�
[

d(y, y′)
rk

]η

+
∑

{ j∈I : B(xk ,Ark )∩B(x j ,Ar j ) �=∅}

[
d(y, y′)

r j

]η

�
[

d(y, y′)
rk

]η

∼ Vrk (xk)

[
d(y, y′)

rk +d(xk, y)

]η 1

Vrk (xk) + V (xk, y)

[
rk

rk + d(xk, y)

]η

.

Then we obtain the desired regularity condition of φk . This finishes the proof of (iv)
and hence of Proposition 4.5. ��

Assume that f ∈ (Gη
0(β, γ ))′ belongs to f ∈ H∗,p(X), where p ∈ (ω/(ω + η), 1]

and β, γ ∈ (ω(1/p − 1), η). To obtain the Calderón–Zygmund decomposition of
f , we apply Propositions 4.4 and 4.5 to the level set {x ∈ X : f ∗(x) > λ} with
λ ∈ (0,∞). The encountering problem is that such a level set may not be open even
in the case that d is a metric. To solve this problem in the case that d is a metric, a
variant of the notion of the space of test functions is adopted in [20, Definition 2.5] so
that to ensure that the level set is open (see [20, Remark 2.9]). Here, we borrow some
ideas from [20].

By the proof of [42, Theorem 2], we know that there exist θ ∈ (0, 1) and a metric d ′
such that d ′ ∼ dθ . For any x ∈ X and r ∈ (0,∞), define the d ′-ball B ′(x, r) := {y ∈
X : d ′(x, y) < r}. Then (X , d ′, μ) is a doubling metric measure space. Moreover,
for any x, y ∈ X and r ∈ (0,∞), we have

μ(B(y, r + d(x, y))) ∼ μ
(
B ′ (y, [r + d(x, y)]θ

)) ∼ μ
(
B ′ (y, r θ + d ′(x, y)

))
,

where the positive equivalence constants are independent of x and r . Using the metric
d ′, we introduce a variant of the space of test functions as follows.
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Definition 4.6 For any x ∈ X , ρ ∈ (0,∞) and β ′, γ ′ ∈ (0,∞), define
G(x, ρ, β ′, γ ′) to be the set of all functions f satisfying that there exists a positive
constant C such that

(i) (the size condition) for any y ∈ X ,

| f (y)| ≤ C
1

μ(B ′(y, ρ + d ′(x, y)))

[
ρ

ρ + d ′(x, y)

]γ ′

;

(ii) (the regularity condition) for any y, y′ ∈ X satisfying d(y, y′) ≤ [ρ +
d ′(x, y)]/2, then

| f (y) − f (y′)| ≤ C

[
d ′(y, y′)

ρ + d ′(y, y′)

]β ′
1

μ(B′(y, ρ + d ′(x, y)))

[
ρ

ρ + d ′(x, y)

]γ ′
.

Also, define

‖ f ‖G(x,ρ,β ′,γ ′) := inf{C ∈ (0,∞) : (i) and (ii) hold true}.

By the previous argument, we find that G(x, r , β, γ ) = G(x, r θ , β/θ, γ /θ) with
equivalent norms, where the positive equivalence constants are independent of x and
r . For any β, γ ∈ (0, η) and f ∈ (Gη

0(β, γ ))′, define the modified grand maximal
function of f by setting, for any x ∈ X ,

f �(x) := sup
{
|〈 f , ϕ〉| : ϕ ∈ Gη

0(β, γ ) with ‖ϕ‖G(x,rθ ,β/θ,γ /θ) ≤ 1 for some r ∈ (0, ∞)
}

.

Then f � ∼ f ∗ pointwisely on X . For any λ ∈ (0,∞) and j ∈ Z, define


λ := {x ∈ X : f �(x) > λ} and 
 j := 
2 j .

By the argument used in [20, Remark 2.9(ii)], we find that 
λ is open under the
topology induced by d ′, so is it under the topology induced by d.

Now suppose that p ∈ (ω/(ω + η), 1], β, γ ∈ (ω(1/p − 1), η) and f ∈ H∗,p(X).
Then f � ∈ L p(X) and every 
 j with j ∈ Z has finite measure. Consequently, there
exist {x j

k }k∈I j ⊂ X with I j being a countable index set, {r j
k }k∈I j ⊂ (0,∞), L0 ∈ N

and a sequence {φ j
k }k∈I j of non-negative functions satisfying all the conclusions of

Propositions 4.4 and 4.5. For any j ∈ Z and k ∈ I j , define �
j
k by setting, for any

ϕ ∈ Gη
0(β, γ ) and x ∈ X ,

�
j
k (ϕ)(x) := φ

j
k (x)

[∫

X
φ

j
k (z) dμ(z)

]−1 ∫

X
[ϕ(x) − ϕ(z)]φ j

k (z) dμ(z).

It can be seen that� j
k is bounded onGη

0(β, γ )with operator norm depending on j and

k; see [20, Lemma 4.9]. Thus, it makes sense to define a distribution b j
k on Gη

0(β, γ )

by setting, for any ϕ ∈ Gη
0(β, γ ),
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〈
b j

k , ϕ
〉
:=

〈
f ,�

j
k (ϕ)

〉
. (4.3)

To estimate (b j
k )∗, we have the following result. For its proof, see, for example, [37,

Lemma 3.7].

Proposition 4.7 For any j ∈ Z and k ∈ I j , b j
k is defined as in (4.3). Then there exists

a positive constant C such that, for any j ∈ Z, k ∈ I j and x ∈ X,

(
b j

k

)∗
(x) ≤ C2 j μ(B(x j

k , r j
k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j

k

r j
k + d(x j

k , x)

]β

1[B(x j
k ,16A4

0r j
k )]�(x)

+C f ∗(x)1
B(x j

k ,16A4
0r j

k )
(x).

The next lemma is exactly [20, Lemma 4.10]. The proof remains true if d is a quasi-
metric and μ does not satisfy the reverse doubling condition.

Lemma 4.8 Let β ∈ (0,∞), p ∈ (ω/(ω+β),∞), L0 ∈ N and I be a countable index
set. Then there exists a positive constant C such that, for any sequences {xk}k∈I ⊂ X
and {rk}k∈I ⊂ (0,∞) satisfying

∑
k∈I 1B(xk ,rk ) ≤ L0,

∫

X

{
∑

k∈I

Vrk (xk)

Vrk (xk) + V (xk, x)

[
rk

rk + d(xk, x)

]β
}p

dμ(x) ≤ Cμ

(
⋃

k∈I

B(xk, rk)

)

.

Then, by Proposition 4.7 and Lemma 4.8, we have the following result.

Proposition 4.9 Let p ∈ (ω/(ω + η), 1]. For any j ∈ Z and k ∈ I j , let b j
k be as in

(4.3). Then there exists a positive constant C such that, for any j ∈ Z,

∫

X

∑

k∈I j

[(
b j

k

)∗
(x)

]p
dμ(x) ≤ C

∥
∥ f ∗1
 j

∥
∥p

L p(X)
; (4.4)

moreover, there exists b j ∈ H∗,p(X) such that b j = ∑
k∈I j

b j
k in H∗,p(X) and, for

any x ∈ X,

(b j )∗(x) ≤ C2 j
∑

k∈I j

μ(B(x j
k , r j

k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j

k

r j
k + d(x j

k , x)

]β

+C f ∗(x)1
 j (x);

(4.5)
if g j := f − b j for any j ∈ Z, then, for any x ∈ X,

(g j )∗(x) ≤ C2 j
∑

k∈I j

μ(B(x j
k , r j

k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j
k

r j
k + d(x j

k , x)

]β

+ C f ∗(x)1
(
 j )�(x).

(4.6)
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Proof Fix j ∈ Z. We first prove (4.4). Indeed, by Proposition 4.7, we find that

∫

X

∑

k∈I j

[(
b j

k

)∗
(x)

]p
dμ(x)

� 2 j p
∫

X

∑

k∈I j

⎧
⎨

⎩

μ(B(x j
k , r j

k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j

k

r j
k + d(x j

k , x)

]β
⎫
⎬

⎭

p

dμ(x)

+
∫

⋃
k∈I j

B(x j
k ,16A4

0r j
k )

[ f ∗(x)]p dμ(x).

By Proposition 4.4(ii), we have 
 j = ⋃
k∈I j

B(x j
k , 16A4

0r j
k ). Applying this and

Lemma 4.8, the first term in the right-hand side of the above formula is bounded
by a harmless positive constant multiple of 2 j pμ(
 j ). Combining this with f ∗ ∼ f �

implies that

∫

X

∑

k∈I j

[(
b j

k

)∗
(x)

]p
dμ(x) � 2 j pμ

(

 j

)
+
∫


 j
[ f ∗(x)]p dμ(x) �

∥
∥ f ∗1
 j

∥
∥p

L p(X)
,

which proves (4.4).
Next we prove (4.5). By (4.4), the dominated convergence theorem and the com-

pleteness of H∗,p(X) (see Proposition 3.1), we know that there exists b j ∈ H∗,p(X)

such that b j = ∑
k∈I j

b j
k in H∗,p(X). Moreover, from Proposition 4.7 and 
 j =

⋃
k∈I j

B(x j
k , 16A4

0r j
k ), we deduce that, for any x ∈ X ,

(b j )∗(x) ≤
∑

k∈I j

(
b j

k

)∗
(x)

� 2 j
∑

k∈I j

μ(B(x j
k , r j

k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j

k

r j
k + d(x j

k , x)

]β

+ f ∗(x)1
 j (x).

This finishes the proof of (4.5).
It remains to prove (4.6). If x ∈ (
 j )�, then, by (4.5), we conclude that

(g j )∗(x) ≤ f ∗(x) + (b j )∗(x)

� 2 j
∑

k∈I j

μ(B(x j
k , r j

k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j

k

r j
k + d(x j

k , x)

]β

+ f ∗(x),

as desired.
Nowwe consider the case x ∈ 
 j . According to Proposition 4.4(v), for any n ∈ I j ,

we choose a point y j
n /∈ 
 j satisfying 32A5

0r j
n ≤ d(x j

n , y j
n ) < 48A5

0r j
n . Since x ∈ 
 j ,

it follows that there exists k0 ∈ I j such that x ∈ B(x j
k0

, r j
k0

). Let J be the set of
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all n ∈ I j such that B(x j
n , 16A4

0r j
n ) ∩ B(x j

k0
, 16A4

0r j
k0

) �= ∅. Then, by the proof of

Proposition 4.4(v), #J ≤ L0 and r j
n ∼ r j

k0
whenever n ∈ J .

Suppose that ϕ ∈ Gη
0(β, γ ) with ‖ϕ‖G(x,r ,β,γ ) ≤ 1 for some r ∈ (0,∞). We then

estimate 〈g j , ϕ〉 by considering the cases r ≤ r j
k0

and r > r j
k0
, respectively.

Case 1) r ≤ r j
k0
. In this case, we write

〈g j , ϕ〉 = 〈 f , ϕ〉 −
∑

n∈I j

〈b j
n , ϕ〉 = 〈 f , ϕ〉 −

∑

n∈J
〈b j

n , ϕ〉 −
∑

n /∈J
〈b j

n , ϕ〉

= 〈 f , ϕ̃〉 −
∑

n∈J
〈 f , ϕ̃n〉 −

∑

n /∈J
〈b j

n , ϕ〉,

where ϕ̃ := (1 − ∑
n∈J φ

j
n )ϕ and, for any n ∈ J ,

ϕ̃n := φ
j
n

[∫

X
φ

j
n (z) dμ(z)

]−1 ∫

X
ϕ(z)φ j

n (z) dμ(z).

We first consider the term
∑

n /∈J 〈b j
n , ϕ〉. Indeed, from x ∈ B(x j

k0
, r j

k0
), it follows

that x /∈ B(x j
n , 16A4

0x j
n ) when n /∈ J . Applying Proposition 4.7 implies that

∣
∣
∣
〈
b j

n , ϕ
〉∣
∣
∣ ≤

∣
∣
∣
(

b j
n

)∗
(x)

∣
∣
∣ � 2 j μ(B(x j

n , r j
n ))

μ(B(x j
n , r j

n )) + V (x j
n , x)

[
r j

n

r j
n + d(x j

n , x)

]β

,

and hence

∑

n /∈J

∣
∣
∣
〈
b j

n , ϕ
〉∣∣
∣ � 2 j

∑

n /∈J

μ(B(x j
n , r j

n ))

μ(B(x j
n , r j

n )) + V (x j
n , x)

[
r j

n

r j
n + d(x j

n , x)

]β

,

as desired.
Next we consider the term

∑
n∈J 〈 f , ϕ̃n〉. Notice that ‖ϕ̃n‖G(x j

n ,r j
n ,β,γ )

� 1. By

d(x j
n , y j

n ) ∼ r j
n , we then have ‖ϕ̃n‖G(y j

n ,r j
n ,β,γ )

� 1. Therefore,

|〈 f , ϕ̃n〉| � f ∗ (y j
n

)
∼ f �

(
y j

n

)
� 2 j ∼ 2 j μ(B(x j

n , r j
n ))

μ(B(x j
n , r j

n )) + V (x j
n , x)

[
r j
n

r j
n + d(x j

n , x)

]β

,

where, in the last step, we used the facts that x ∈ B(x j
k0

, r j
k0

) and d(x j
n , x j

k0
) �

r j
n + r j

k0
∼ r j

n whenever n ∈ J . Then, summing all n ∈ J , we obtain the desired
estimate.

Finally, we consider the term 〈 f , ϕ̃〉. Since ϕ ∈ Gη
0(β, γ ), it is easy to see that

ϕ̃ ∈ Gη
0(β, γ ). Once we have proved that

‖ϕ̃‖G(y j
k0

,r j
k0

,β,γ )
� 1, (4.7)
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then

|〈 f , ϕ̃〉| � f ∗ (y j
k0

)
∼ f �

(
y j

k0

)
� 2 j ∼ 2 j

μ(B(x j
k0

, r j
k0

))

μ(B(x j
k0

, r j
k0

)) + V (x j
k0

, x)

[
r j

k0

r j
k0

+ d(x j
k0

, x)

]β

,

as desired.
To prove (4.7), we first consider the size condition. For any z ∈ B(x j

k0
, 16A4

0r j
k0

),

by Proposition 4.5, we have
∑

n∈J φ
j
n (z) = ∑

n∈I j
φ

j
n (z) = 1 and hence ϕ̃(z) = 0.

When d(z, x j
k0

) ≥ 16A4
0r j

k0
, by the fact d(x j

k0
, z) ≥ 2A0d(x, x j

k0
), we have

r j
k0

+ d
(

z, y j
k0

)
≤ r j

k0
+ A0

[
d
(

z, x j
k0

)
+ d

(
x j

k0
, y j

k0

)]
≤ (2A0)

6
[
r j
k0

+ d
(

z, x j
k0

)]

≤ (2A0)
7d

(
z, x j

k0

)
≤ (2A0)

8d(x, z) ≤ (2A0)
8[r + d(x, z)] (4.8)

and hence μ(B(y j
k0

, r j
k0

)) + V (y j
k0

, z) � Vr (x) + V (x, z), which, together with the

size condition of ϕ and the fact that r ≤ r j
k0
, further implies that

|ϕ̃(z)| ≤ |ϕ(z)| ≤ 1

Vr (x) + V (x, z)

[
r

r + d(x, z)

]γ

� 1

μ(B(y j
k0

, r j
k0

)) + V (y j
k0

, z)

[
r j

k0

r j
k0

+ d(y j
k0

, z)

]γ

.

This finishes the proof of the size condition.
Now we consider the regularity of ϕ̃. Suppose that z, z′ ∈ X with d(z, z′) ≤

(2A0)
−1[r j

k0
+ d(z, y j

k0
)]. Due to the size condition, we only need to consider the case

d(z, z′) ≤ (2A0)
−9[r j

k0
+ d(z, y j

k0
)]. If ϕ̃(z) − ϕ̃(z′) �= 0, then either d(z, x j

k0
) ≥

16A4
0r j

k0
or d(z′, x j

k0
) ≥ 16A4

0r j
k0
, which always implies that d(z, x j

k0
) ≥ 8A3

0r j
k0
.

Indeed, if d(z, x j
k0

) < 8A3
0r j

k0
, then d(z, y j

k0
) ≤ A0[d(z, x j

k0
) + d(x j

k0
, y j

k0
)] <

(2A0)
6r j

k0
and hence d(z, z′) ≤ (2A0)

−2r j
k0
, which further implies that d(z′, x j

k0
) ≤

A0[d(z′, z) + d(z, x j
k0

)] < 16A4
0r j

k0
and it is a contraction.

Notice that d(z, x j
k0

) ≥ 8A3
0r j

k0
, which, together with an argument as in the esti-

mation of (4.8), implies r j
k0

+ d(z, y j
k0

) ≤ (2A0)
8[r + d(z, x)], so that d(z, z′) ≤

(2A0)
−1[r + d(z, x)]. By the definition of ϕ̃, we find that

∣
∣ϕ̃(z) − ϕ̃(z′)

∣
∣ ≤

⎡

⎣1 −
∑

n∈J
φ

j
n (z)

⎤

⎦ |ϕ(z) − ϕ(z′)| + |ϕ(z′)|
∑

n∈J

∣
∣
∣φ

j
n (z) − φ

j
n (z′)

∣
∣
∣ .

Using the regularity condition of ϕ and the fact d(z, z′) ≤ (2A0)
−1[r + d(z, x)],

we obtain
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⎡

⎣1 −
∑

n∈J
φ

j
n (z)

⎤

⎦ |ϕ(z) − ϕ(z′)|

�
[

d(z, z′)
r + d(z, x)

]β 1

Vr (x) + V (x, z)

[
r

r + d(x, z)

]γ

�
[

d(z, z′)
r j

k0
+ d(z, y j

k0
)

]β
1

μ(B(y j
k0

, r j
k0

)) + V (y j
k0

, z)

[
r j

k0

r j
k0

+ d(y j
k0

, z)

]γ

,

where, in the last step, we used r j
k0

+d(z, y j
k0

) � r +d(z, x), r ≤ r j
k0
, x ∈ B(x j

k0
, r j

k0
)

and d(y j
k0

, x j
k0

) ∼ r j
k0
.

We now estimate |ϕ(z′)|∑n∈J |φ j
n (z)−φ

j
n (z′)|. If ϕ(z′)|φ j

n (z)−φ
j
n (z′)| �= 0, then

z′ /∈ B(x j
k0

, 16A4
0r j

k0
) and z or z′ belongs to B(x j

n , 2A0r j
n ). When n ∈ J , we have

r j
n ∼ r j

k0
∼ r j

k0
+ d(y j

k0
, z). Also, r j

k0
+ d(z, y j

k0
) � r + d(z, x) ∼ r + d(z′, x). By

these, #J ≤ L0 and r ≤ r j
k0
, we conclude that

|ϕ(z′)|
∑

n∈J

∣
∣
∣φ

j
n (z) − φ

j
n (z′)

∣
∣
∣

� 1

Vr (x) + V (x, z′)

[
r

r + d(z, x)

]γ ∑

n∈J

[
d(z, z′)

r j
n

]η

�
[

d(z, z′)
r j

k0
+ d(y j

k0
, z)

]β
1

μ(B(y j
k0

, r j
k0

)) + V (y j
k0

, z)

[
r j

k0

r j
k0

+ d(y j
k0

, z)

]γ

.

Thisfinishes the proof of the regularity condition andhenceof (4.7). Thus,we complete
the proof of Case 1).

Case 2) r > r j
k0
. In this case, we write

∣
∣
∣
〈
g j , ϕ

〉∣∣
∣ ≤ |〈 f , ϕ〉| +

∑

n∈J

∣
∣
∣
〈
b j

n , ϕ
〉∣∣
∣ +

∑

n /∈J

∣
∣
∣
〈
b j

n , ϕ
〉∣∣
∣ .

The estimation of
∑

n /∈J |〈b j
n , ϕ〉| has already been given in Case 1).

From x ∈ B(x j
k0

, r j
k0

) and d(y j
k0

, x j
k0

) ∼ r j
k0

� r , it follows that ‖ϕ‖G(y j
k0

,r ,β,γ )
� 1

and hence

|〈 f , ϕ〉| � f ∗ (y j
k0

)
� 2 j ∼ 2 j

μ(B(x j
k0

, r j
k0

))

μ(B(x j
k0

, r j
k0

)) + V (x j
k0

, x)

[
r j

k0

r j
k0

+ d(x j
k0

, x)

]β

.

If n ∈ J , then r j
n ∼ r j

k0
and hence d(y j

n , x j
k0

) � r j
k0
. This, together with the fact

r j
k0

< r and x ∈ B(x j
k0

, r j
k0

), implies that ‖ϕ‖G(y j
n ,r ,β,γ )

� 1. Thus, by Proposition
4.7, we have
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∑

n∈J

∣
∣
∣
〈
b j

n , ϕ
〉∣
∣
∣ �

∑

n∈J

(
b j

n

)∗ (
y j

n

)

� 2 j
∑

n∈J

μ(B(x j
n , r j

n ))

μ(B(x j
n , r j

n )) + V (x j
n , x)

[
r j

n

r j
n + d(x j

n , x)

]β

.

Then we obtain the desired estimate for 〈g j , ϕ〉 in the case r > r j
k0
.

Combining the two cases above, we find that, for any x ∈ 
 j ,

(g j )∗(x) � 2 j
∑

k∈I j

μ(B(x j
k , r j

k ))

μ(B(x j
k , r j

k )) + V (x j
k , x)

[
r j

k

r j
k + d(x j

k , x)

]β

.

Thus, (4.6) holds true. This finishes the proof of Proposition 4.9. ��

4.3 Atomic Characterizations of H∗,p(X)

In this section, we prove H∗,p(X) ⊂ H p,q
at (X) and complete the proof of Theorem

4.2. First, we obtain dense subspaces of H∗,p(X) as follows.

Lemma 4.10 ( [20, Proposition 4.12]) Let p ∈ (ω/(ω+η), 1], β, γ ∈ (ω(1/p−1), η)

and q ∈ [1,∞). If regard H∗,p(X) as a subspace of (Gη
0(β, γ ))′, then Lq(X) ∩

H∗,p(X) is dense in H∗,p(X).

In the next two lemmas, we suppose that f ∈ L2(X) ∩ H∗,p(X). Based on Propo-
sition 3.3 and (3.1), we may follow [20, Remark 4.14] and assume that there exists a
positive constant C such that, for any x ∈ X , | f (x)| ≤ C f ∗(x). With all the notation
as in the previous section, for any j ∈ Z and k ∈ I j , define

m j
k := 1

‖φ j
k ‖L1(X)

∫

X
f (ξ)φ

j
k (ξ) dμ(ξ) and b j

k :=
(

f − m j
k

)
φ

j
k . (4.9)

Then we have the following technical lemma.

Lemma 4.11 ( [20, Proposition 4.13]) For any j ∈ Z and k ∈ I j , let m j
k and b j

k be as
in (4.9). Then

(i) there exists a positive constant C, independent of j and k ∈ I j , such that

|m j
k | ≤ C2 j ;

(ii) b j
k induces the same distribution as defined in (4.3);

(iii)
∑

k∈I j
b j

k converges to some function b j in L2(X), which induces a distribution

that coincides with b j as in Proposition 4.9;
(iv) let g j := f − b j . Then g j = f 1

(
 j )� + ∑
k∈I j

m j
kφ

j
k . Moreover, there exists a

positive constant C, independent of j , such that, for any x ∈ X, |g j (x)| ≤ C2 j .
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For any j ∈ Z, k ∈ I j and l ∈ I j+1, define

L j+1
k,l := 1

‖φ j+1
l ‖L1(X)

∫

X

[
f (ξ) − m j+1

l

]
φ

j
k (ξ)φ

j+1
l (ξ) dμ(ξ). (4.10)

Then L j+1
k,l has the following properties.

Lemma 4.12 For any j ∈ Z, k ∈ I j and l ∈ I j+1, let L j+1
k,l be as in (4.10). Then

(i) there exists a positive constant C, independent of j , k and l, such that

sup
x∈X

∣
∣
∣L

j+1
k,l φ

j+1
l (x)

∣
∣
∣ ≤ C2 j ;

(ii)
∑

k∈I j

∑
l∈I j+1

L j+1
k,l φ

j+1
l = 0 both in (Gη

0(β, γ ))′ and everywhere.

Proof We first show (i). Indeed, for any j ∈ Z, k ∈ I j , l ∈ I j+1 and x ∈ X ,

∣
∣
∣L

j+1
k,l φ

j+1
l (x)

∣
∣
∣ ≤

∣
∣
∣m

j+1
l

∣
∣
∣φ

j+1
l (x) + φ

j+1
l (x)

∣
∣
∣
∣
∣
∣

∫

X
f (ξ)

φ
j
k (ξ)φ

j+1
l (ξ)

‖φ j+1
l ‖L1(X)

dμ(ξ)

∣
∣
∣
∣
∣
∣
=: Y1 + Y2.

By Lemma 4.11(i) and the definition of φ
j+1

l , it is easy to obtain Y1 � 2 j .

Now we consider Y2. If φ
j
k φ

j+1
l is a non-zero function, then B(x j

k , 2A0r j
k ) ∩

B(x j+1
l , 2A0r j+1

l ) �= ∅, which further implies that r j+1
l ≤ 3A0r j

k . Otherwise, if

r j+1
l > 3A0r j

k , then, for any y ∈ B(x j
k , 48A5

0r j
k ),

d
(

y, x j+1
l

)
≤ A0

[
d
(

y, x j
k

)
+ d

(
x j

k , x j+1
l

)]
< 48A6

0r j
k + A2

0

(
2A0r j

k + 2A0r j+1
l

)

< 16A5
0r j+1

l + 2

3
A2
0r j+1

l + 2A3
0r j+1

l < 20A5
0r j+1

l ,

which implies that B(x j
k , 48A5

0r j
k ) ⊂ B(x j+1

l , 20A5
0r j+1

l ) ⊂ 
 j+1 ⊂ 
 j and hence
contradicts to Proposition 4.4(v).

Define ϕ := φ
j
k φ

j+1
l /‖φ j+1

l ‖L1(X). According to Proposition 4.4(iv) with A :=
16A4

0, we can choose y j+1
l ∈ (
 j+1)� such that d(y j+1

l , x j+1
l ) ≤ 48A5

0r j+1
l . We

now show ϕ ∈ G(y j+1
l , r j+1

l , η, η) and ‖ϕ‖G(y j+1
l ,r j+1

l ,η,η)
� 1. Notice that supp ϕ ⊂

B(x j+1
l , 2A0r j+1

l ). Moreover, by this and the choice of y j+1
l , we conclude that, for

any x ∈ B(x j+1
l , 2A0r j+1

l ),

|ϕ(x)| � |φ j+1
l (x)| � 1

μ(B(x j+1
l , r j+1

l )) + V (x j+1
l , x)

[
r j+1

l

r j+1
l + d(x j+1

l , x)

]η

∼ 1

μ(B(y j+1
l , r j+1

l )) + V (y j+1
l , x)

[
r j+1

l

r j+1
l + d(y j+1

l , x)

]η

.
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This shows the size condition of ϕ.
To consider the regularity condition of ϕ, we suppose that x, x ′ ∈ X satisfying

d(x, x ′) ≤ (2A0)
−1[r j+1

l + d(y j+1
l , x)]. Due to the size condition, we may assume

d(x, x ′) ≤ (2A0)
−3[r j+1

l +d(y j+1
l , x)]. We claim that ϕ(x)−ϕ(x ′) �= 0 implies that

d(x, x j+1
l ) ≤ 96A6

0r j+1
l .

Indeed, if d(x, x j+1
l ) > 96A6

0r j+1
l , then ϕ(x) = 0. By d(x j+1

l , y j+1
l ) ≤

48A5
0r j+1

l , we find that d(x, y j+1
l ) > 48A5

0r j+1
l and hence d(x, x ′) ≤ (2A0)

−2

d(x, y j+1
l ) ≤ (2A0)

−1d(x, x j+1
l ). Consequently, d(x ′, x j+1

l ) ≥ A−1
0 d(x, x j+1

l ) −
d(x, x ′) > 48A5

0r j+1
l and ϕ(x ′) = 0. This contradicts to ϕ(x) − ϕ(x ′) �= 0.

By the above claim, r j+1
l ≤ 3A0r j

k and d(y j+1
l , x j+1

j ) ∼ r j+1
l , we know that

|ϕ(x) − ϕ(x ′)|
� 1

μ(B(x j+1
l , r j+1

l ))

[
φ

j
k (x)

∣
∣
∣φ

j+1
l (x) − φ

j+1
l (x ′)

∣
∣
∣ +

∣
∣
∣φ

j
k (x) − φ

j
k (x ′)

∣
∣
∣φ

j+1
l (x ′)

]

� 1

μ(B(x j+1
l , r j+1

l ))

{[
d(x, x ′)

r j+1
l

]η

+
[

d(x, x ′)
r j
k

]η}

∼
[

d(x, x ′)
r j+1
l + d(y j+1

l , x)

]η
1

μ(B(y j+1
l , r j+1

l )) + V (y j+1
l , x)

[
r j+1
l

r j+1
l + d(y j+1

l , x)

]η

.

Thus, we obtain ϕ ∈ G(y j+1
l , r j+1

l , η, η) and ‖ϕ‖G(y j+1
l ,r j+1

l ,η,η)
� 1, which further

implies that ‖ϕ‖G(y j+1
l ,r j+1

l ,β,γ )
� 1 and hence

Y2 = |〈 f , ϕ〉| � f ∗ (y j+1
l

)
� 2 j .

This finishes the proof of (i).
Next we prove (ii). If L j+1

k,l �= 0, then the proof in (i) implies B(x j
k , 2A0r j

k ) ∩
B(x j+1

l , 2A0r j+1
l ) �= ∅ and r j+1

l ≤ 3A0r j
k . Further, for any y ∈ B(x j+1

l , 2A0r j+1
l ),

we have

d
(

y, x j
k

)
≤ A0

[
d
(

y, x j+1
l

)
+ d

(
x j

k , x j+1
l

)]
< 2A2

0r j+1
l + A2

0

(
2A0r j

k + 2A0r j+1
l

)

< 6A3
0r j

k + 2A3
0r j

k + 6A4
0r j

k ≤ 14A4
0r j

k < 16A4
0r j

k ,

which implies that B(x j+1
l , 2A0r j+1

l ) ⊂ B(x j
k , 16A4

0r j
k ) ⊂ 
 j by Proposition 4.4(v).

Thus, for any k ∈ I j and x ∈ X , we find that

∑

l∈I j+1

∣
∣
∣L

j+1
k,l φ

j+1
l

∣
∣
∣ � 2 j1

B(x j
k ,16A4

0r j
k )

(x) (4.11)
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and hence

∑

k∈I j

∑

l∈I j+1

∣
∣
∣L

j+1
k,l φ

j+1
l (x)

∣
∣
∣ � 2 j

∑

k∈I j

1
B(x j

k ,16A4
0r j

k )
(x) � 2 j1
 j (x).

Consequently,

∑

k∈I j

∑

l∈I j+1

L j+1
k,l φ

j+1
l =

∑

l∈I j+1

⎛

⎝
∑

k∈I j

L j+1
k,l

⎞

⎠φ
j+1
l

=
∑

l∈I j+1

φ
j+1
l

‖φ j+1
l ‖L1(X)

∫

X

[
f (ξ) − m j+1

l

]
φ

j+1
l (ξ)

∑

k∈I j

φ
j
k (ξ) dμ(ξ)

=
∑

l∈I j+1

φ
j+1
l

‖φ j+1
l ‖L1(X)

∫

X

[
f (ξ) − m j+1

l

]
φ

j+1
l (ξ) dμ(ξ)

=
∑

l∈I j+1

φ
j+1
l

‖φ j+1
l ‖L1(X)

∫

X
b j+1

l (ξ) dμ(ξ) = 0.

By the fact that
∑

k∈I j

∑
l∈I j+1

∫
X |L j+1

k,l φ
j+1

l (ξ)| dμ(ξ) � 2 jμ(
 j ) < ∞ and the

dominated convergence theorem,wefind that
∑

k∈I j

∑
l∈I j+1

L j+1
k,l φ

j+1
l = 0 in L1(X)

and hence in (Gη
0(β, γ ))′. This finishes the proof of Lemma 4.12. ��

Now we show the other side of Theorem 4.2.
Proof of H∗,p(X) ⊂ Hp,q

at (X)ByLemma4.10,wefirst suppose f ∈ L2(X)∩H∗,p(X).
We may also assume | f (x)| � f ∗(x) for any x ∈ X . We use the same notation as
in Lemmas 4.11 and 4.12. For any j ∈ N, let h j := g j+1 − g j = b j − b j+1.
Then f − ∑m

j=−m h j = bm+1 + g−m . For any m ∈ Z, by Lemma 4.11, we con-

clude that ‖g−m‖L∞(X) � 2−m . Moreover, by (4.5), we find that ‖(bm+1)∗‖L p(X) �
‖ f ∗1

(
m+1)�‖L p(X) → 0 as m → ∞. Thus, f = ∑∞
j=−∞ h j in (Gη

0(β, γ ))′. Besides,
by the definition of bm

k , we know that supp bm+1 ⊂ 
m+1, which then implies that
∑∞

j=−∞ h j converges almost everywhere. Notice that, by Lemma 4.12(ii), for any
j ∈ Z, we have

h j = b j − b j+1 =
∑

k∈I j

b j
k −

∑

l∈I j+1

b j+1
l +

∑

k∈I j

∑

l∈I j+1

L j+1
k,l φ

j+1
l

=
∑

k∈I j

⎡

⎣b j
k −

∑

l∈I j+1

(
b j+1

l φ
j
k − L j+1

k,l φ
j+1

l

)
⎤

⎦ =:
∑

k∈I j

h j
k , (4.12)

which converges in (Gη
0(β, γ ))′ and almost everywhere. Moreover, for any j ∈ Z and

k ∈ N,
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h j
k = b j

k −
∑

l∈I j+1

(
b j+1

l φ
j
k − L j+1

k,l φ
j+1

l

)

=
(

f − m j
k

)
φ

j
k −

∑

l∈I j+1

[(
f − m j+1

l

)
φ

j
k − L j+1

k,l

]
φ

j+1
l

= f φ
j
k 1(
 j+1)� − m j

kφ
j
k + φ

j
k

∑

l∈I j+1

m j+1
l φ

j+1
l +

∑

l∈I j+1

L j+1
k,l φ

j+1
l .

The fourth term is supported on B j
k := B(x j

k , 16A4
0r j

k ), which is deduced from (4.11).

Thus, supp h j
k ⊂ B j

k .Moreover, byLemmas 4.11(i) and 4.12(i),we conclude that there

exists a positive constant C , independent of j and k, such that ‖h j
k‖L∞(X) ≤ C2 j .

Now, let

λ
j
k := C2 j

[
μ
(

B j
k

)] 1
p

and a j
k :=

(
λ

j
k

)−1
h j

k . (4.13)

Then a j
k is a (p,∞)-atom supported on B j

k and f = ∑∞
j=−∞

∑
k∈I j

λ
j
k a j

k in

(Gη
0(β, γ ))′. Moreover, we have

∞∑

j=−∞

∑

k∈I j

∣
∣
∣λ

j
k

∣
∣
∣

p
�

∞∑

j=−∞
2− j p

∑

k∈I j

μ
(

B j
k

)

�
∞∑

j=−∞
2− j pμ

(

 j

)
∼ ∥

∥ f �
∥
∥p

L p(X)
∼ ∥

∥ f ∗∥∥p
L p(X)

,

which further implies that ‖ f ‖H p,∞
at (X) � ‖ f ‖H∗,p(X).

When f ∈ H∗,p(X), using Lemma 4.10 and a standard density argument and
following the proof in [43, pp. 301–302], we obtain the atomic decomposition of f ,
the details being omitted. This finishes the proof of H∗,p(X) ⊂ H p,q

at (X) and hence
of Theorem 4.2. ��
Remark 4.13 By the argument used in the proof of H∗,p(X) ⊂ H p,q

at (X), we find that,

if f ∈ Lq(X) ∩ H∗,p(X) with q ∈ [1,∞], then f = ∑∞
j=1

∑
k∈I j

h j
k in (Gη

0(β, γ ))′

and almost everywhere, where, for any j ∈ Z and k ∈ I j , h j
k is as in (4.12).

4.4 Relationship Between Hp,q
at (X) and Hp,q

cw (X)

In this section, we consider the relationship between H p,q
at (X) and H p,q

cw (X). To see
this, we need the following two technical lemmas.

Lemma 4.14 ( [7, p. 592]) Let p ∈ (0, 1), q ∈ (p,∞]∩[1,∞] and a be a (p, q)-atom.
Then, for any ϕ ∈ L1/p−1(X), |〈a, ϕ〉| ≤ ‖ϕ‖L1/p−1(X).

Lemma 4.15 Let β ∈ (0, η] and γ ∈ (0,∞). If ϕ ∈ G(β, γ ), then ϕ ∈ Lβ/ω(X)

and there exists a positive constant C, independent of ϕ, such that ‖ϕ‖Lβ/ω(X) ≤
C‖ϕ‖G(β,γ ).
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Proof Suppose that ‖ϕ‖G(β,γ ) ≤ 1. If d(x, y) ≤ (2A0)
−1[1 + d(x0, x)], then, by the

regularity condition of ϕ and (1.1), we have

|ϕ(x) − ϕ(y)| ≤
[

d(x, y)

1 + d(x0, x)

]β 1

V1(x0) + V (x0, x)

[
1

1 + d(x0, x)

]γ

�
[

μ(B(x, d(x, y)))

μ(B(x, 1 + d(x0, x)))

]β/ω

� [V (x, y)]β/ω.

If d(x, y) > (2A0)
−1[1 + d(x0, x)], then, from the size condition of ϕ, we deduce

that

|ϕ(x) − ϕ(y)| � 1 ∼ [μ(B(x0, 1))]β/ω � [μ(B(x0, 1 + d(x0, x)))]β/ω

∼ [μ(B(x, 1 + d(x0, x)))]β/ω � [V (x, y)]β/ω.

Thus, for any x, y ∈ X , we always have |ϕ(x) − ϕ(y)| � ‖ϕ‖G(β,γ )[V (x, y)]β/ω.
This implies ϕ ∈ Lβ/ω(X) and ‖ϕ‖Lβ/ω(X) � ‖ϕ‖G(β,γ ), which completes the proof
of Lemma 4.15. ��

Now we establish the relationship between two kinds of atomic Hardy spaces.

Theorem 4.16 Let p ∈ (ω/(ω + η), 1], q ∈ (p,∞] ∩ [1,∞] and β, γ ∈ (ω(1/p −
1), η). If regard H p,q

at (X) as a subspace of (Gη
0(β, γ ))′, then H p,q

cw (X) = H p,q
at (X)

with equal (quasi-)norms.

Proof We only consider the case p ∈ (ω/(ω + η), 1). The proof of p = 1 is similar
and the details are omitted.

We first prove H p,q
cw (X) ⊂ H p,q

at (X). By Lemma 4.15, we have Gη
0(β, γ ) ⊂

G(ω(1/p − 1), γ ) ⊂ L1/p−1(X) and hence (L1/p−1(X))′ ⊂ (Gη
0(β, γ ))′. For any

f ∈ H p,q
cw (X), by Definition 1.1, we know that there exist (p, q)-atoms {a j }∞j=1 and

{λ j }∞j=1 ⊂ C with
∑∞

j=1 |λ j |p < ∞ such that f = ∑∞
j=1 λ j a j in (L1/p−1(X))′ and

hence in (Gη
0(β, γ ))′. Let g := f |Gη

0(β,γ ). Then, for any ϕ ∈ Gη
0(β, γ ) ⊂ L1/p−1(X),

we have

〈g, ϕ〉 = 〈 f , ϕ〉 =
∞∑

j=1

λ j 〈a j , ϕ〉.

Thus, g = ∑∞
j=1 λ j a j in (Gη

0(β, γ ))′ and ‖g‖H p,q
at (X) ≤ (

∑∞
j=1 |λ j |p)

1
p . If we take

the infimumover all the atomic decompositions of f as above, we obtain ‖g‖H p,q
at (X) ≤

‖ f ‖H p,q
cw (X). Thus, H p,q

cw (X) ⊂ H p,q
at (X).

To show H p,q
cw (X) ⊃ H p,q

at (X), following the proof of [7, p. 593, Theorem B], we
conclude that the dual space of H p,q

at (X) is L1/p−1(X) in the following sense: every
bounded linear functional on H p,q

at (X) is a mapping of the form

f �→
∞∑

j=1

λ j

∫

X
a j (x)g(x) dμ(x),
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where g ∈ L1/p−1(X) and f has an atomic decomposition

f =
∞∑

j=1

λ j a j (4.14)

in (Gη
0(β, γ ))′ with (p, q)-atoms {a j }∞j=1 and {λ j }∞j=1 ⊂ C satisfying

∑∞
j=1 |λ j |p <

∞. Therefore, it is reasonable to define the pair 〈 f , g〉 as follows:

〈 f , g〉 :=
∞∑

j=1

λ j

∫

X
a j (x)g(x) dμ(x).

In this way, we find that (4.14) also converges in (L1/p−1(X))′, and hence f ∈
H p,q
cw (X) and ‖ f ‖H p,q

cw (X) ≤ (
∑∞

j=1 |λ j |p)
1
p . Taking the infimum over all the

atomic decompositions of f as above, we obtain ‖ f ‖H p,q
cw (X) ≤ ‖ f ‖H p,q

at (X). Thus,

H p,q
at (X) ⊂ H p,q

cw (X), which completes the proof of Theorem 4.16. ��

5 Littlewood–Paley Function Characterizations of Atomic Hardy
Spaces

In this section, we consider the Littlewood–Paley function characterizations of Hardy
spaces. Differently from Sects. 3 and 4, we use (G̊η

0(β, γ ))′ as underlying spaces to
introduce Hardy spaces. Let p ∈ (ω/(ω + η), 1], β, γ ∈ (ω(1/p − 1), η), f ∈
(G̊η

0(β, γ ))′ and {Qk}k∈Z be an exp-ATI. For any θ ∈ (0,∞), define the Lusin area
function of f , with aperture θ , Sθ ( f ), by setting, for any x ∈ X ,

Sθ ( f )(x) :=
[ ∞∑

k=−∞

∫

B(x,θδk )

|Qk f (y)|2 dμ(y)

Vθδk (x)

] 1
2

. (5.1)

In particular, when θ = 1, we write Sθ simply as S. Define the Hardy space H p(X)

via the Lusin area function by setting

H p(X) :=
{

f ∈
(
G̊η
0(β, γ )

)′ : ‖ f ‖H p(X) := ‖S( f )‖L p(X) < ∞
}

.

In Sect. 5.1, we show that H p(X) is independent of the choices of exp-ATIs. In Sect.
5.2, we connect H p(X) with H∗,p(X) by considering the molecular and the atomic
characterizations of elements in H p(X). Sect. 5.3 deals with equivalent characteriza-
tions of H p(X) via the Littlewood–Paley g-function

g( f )(x) :=
[ ∞∑

k=−∞
|Qk f (x)|2

] 1
2

(5.2)
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and the Littlewood–Paley g∗
λ-function

g∗
λ( f )(x) :=

{ ∞∑

k=−∞

∫

X
|Qk f (y)|2

[
δk

δk + d(x, y)

]λ
dμ(y)

Vδk (x) + Vδk (y)

} 1
2

, (5.3)

where f ∈ (G̊η
0(β, γ ))′ with β, γ ∈ (ω(1/p − 1), η), x ∈ X and λ ∈ (0,∞).

5.1 Independence of exp-ATIs

In this section, we show that H p(X) is independent of the choices of exp-ATIs. If
E := {Ek}k∈Z and Q := {Qk}k∈Z are two exp-ATIs, then we denote by SE and SQ
the Lusin area functions via E and Q, respectively.

Theorem 5.1 Let E := {Ek}k∈Z and Q := {Qk}k∈Z be two exp-ATIs. Suppose that
p ∈ (ω/(ω+η), 1] and β, γ ∈ (ω(1/p −1), η). Then there exists a positive constant
C such that, for any f ∈ (G̊η

0(β, γ ))′,

C−1‖SQ( f )‖L p(X) ≤ ‖SE( f )‖L p(X) ≤ C‖SQ( f )‖L p(X).

To show Theorem 5.1, the Fefferman–Stein vector-valued maximal inequality is
necessary.

Lemma 5.2 ( [22, Theorem 1.2] or [47, Theorem 1.3]) Suppose that p ∈ (1,∞) and
u ∈ (1,∞]. Then there exists a positive constant C such that, for any sequence { f j }∞j=1
of measurable functions,

∥
∥
∥
∥
∥
∥
∥

⎧
⎨

⎩

∞∑

j=1

[M( f j )]u

⎫
⎬

⎭

1
u

∥
∥
∥
∥
∥
∥
∥

L p(X)

≤ C

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∞∑

j=1

| f j |u
⎞

⎠

1
u

∥
∥
∥
∥
∥
∥
∥

L p(X)

with the usual modification made when u = ∞.

Proof of Theorem 5.1 By symmetry, we only need to prove

‖SE( f )‖L p(X) � ‖SQ( f )‖L p(X).

For any k ∈ Z, f ∈ (G̊η
0(β, γ ))′ with β, γ as in Theorem 5.1, and z ∈ X , define

mk( f )(z) :=
[

1

Vδk (z)

∫

B(z,δk)

|Qk f (u)|2 dμ(u)

] 1
2

.
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Now suppose that l ∈ Z, x ∈ X and y ∈ B(x, δl). By Theorem 2.7, we conclude
that

El f (y) =
∞∑

k=−∞

∑

α∈Ak

N (k,α)∑

m=1

El Q̃k

(
y, yk,m

α

) ∫

Qk,m
α

Qk f (u) dμ(u),

where all the notation is as in Theorem 2.7 and {Q̃k}∞k=−∞ satisfies the conditions of
Theorem 2.7. Notice that, if z ∈ Qk,m

α , then Qk,m
α ⊂ B(z, δk) and μ(Qk,m

α ) ∼ Vδk (z).
Therefore, we have

∣
∣
∣
∣
∣

1

μ(Qk,m
α )

∫

Qk,m
α

Qk f (u) dμ(u)

∣
∣
∣
∣
∣
�

[
1

Vδk (z)

∫

B(z,δk )
|Qk f (u)|2 dμ(y)

] 1
2 ∼ mk( f )(z),

which further implies that

∣
∣
∣
∣
∣

1

μ(Qk,m
α )

∫

Qk,m
α

Qk f (u) dμ(u)

∣
∣
∣
∣
∣
� inf

z∈Qk,m
α

mk( f )(z).

Moreover, by the proof of (3.7), we find that, for any fixed β ′ ∈ (0, β),

∣
∣
∣El Q̃k

(
y, yk,m

α

)∣
∣
∣ � δ|k−l|β ′ 1

Vδk∧l (y) + V (y, yk,m
α )

[
δk∧l

δk∧l + d(y, yk,m
α )

]γ

∼ δ|k−l|β ′ 1

Vδk∧l (x) + V (x, yk,m
α )

[
δk∧l

δk∧l + d(x, yk,m
α )

]γ

,

where only the regularity condition of Q̃k on the first variable is used. Therefore, by
Lemma 3.7, for any fixed r ∈ (ω/(ω + γ ), 1], we have

|El f (y)| �
∞∑

k=−∞
δ|k−l|β ′ ∑

α∈Ak

N (k,α)∑

m=1

μ
(

Qk,m
α

) 1

Vδk∧l (x) + V (x, yk,m
α )

×
[

δk∧l

δk∧l + d(x, yk,m
α )

]γ

inf
z∈Qk,m

α

mk( f )(z)

�
∞∑

k=−∞
δ|k−l|β ′

δ[k−(k∧l)]ω(1− 1
r )

×
⎧
⎨

⎩
M

⎛

⎝
∑

α∈Ak

N (k,α)∑

m=1

inf
z∈Qk,m

α

[mk( f )(z)]r1Qk,m
α

⎞

⎠ (x)

⎫
⎬

⎭

1
r

.
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Choose β ′ and r such that r ∈ (ω/(ω + β ′), p). Then, by the Hölder inequality, we
conclude that

[SE( f )(x)
]2 =

∞∑

l=−∞

∫

B(x,δl )

|El f (y)|2 dy

Vδl (x)

�
∞∑

l=−∞

[ ∞∑

k=−∞
δ|k−l|β ′

δ[k−(k∧l)]ω(1− 1
r )

×
⎧
⎨

⎩
M

⎛

⎝
∑

α∈Ak

N (k,α)∑

m=1

inf
z∈Qk,m

α

[mk( f )(z)]r1Qk,m
α

⎞

⎠ (x)

⎫
⎬

⎭

1
r
⎤

⎥
⎦

2

�
∞∑

l=−∞

∞∑

k=−∞
δ|k−l|β ′

δ[k−(k∧l)]ω(1− 1
r )

×
⎧
⎨

⎩
M

⎛

⎝
∑

α∈Ak

N (k,α)∑

m=1

inf
z∈Qk,m

α

[mk( f )(z)]r1Qk,m
α

⎞

⎠ (x)

⎫
⎬

⎭

2
r

�
∞∑

k=−∞

⎧
⎨

⎩
M

⎛

⎝
∑

α∈Ak

N (k,α)∑

m=1

inf
z∈Qk,m

α

[mk( f )(z)]r1Qk,m
α

⎞

⎠ (x)

⎫
⎬

⎭

2
r

�
∞∑

k=−∞

{M ([mk( f )]r ) (x)
} 2

r .

Therefore, from Lemma 5.2, we deduce that

‖SE( f )‖L p(X) �

∥
∥
∥
∥
∥
∥

( ∞∑

k=−∞

{M ([mk( f )]r )} 2
r

) r
2

∥
∥
∥
∥
∥
∥

1
r

L p/r (X)

�

∥
∥
∥
∥
∥
∥

{ ∞∑

k=−∞
[mk( f )]2

} 1
2

∥
∥
∥
∥
∥
∥

L p(X)

∼ ‖SQ( f )‖L p(X).

This finishes the proof of Theorem 5.1. ��

5.2 Atomic Characterizations of Hp(X)

The main aim of this section is to obtain the atomic characterizations of H p(X) when
p ∈ (ω/(ω + η), 1].

For any p ∈ (ω/(ω+η), 1], q ∈ (p,∞]∩[1,∞] and β, γ ∈ (ω(1/p −1), η), we
define the homogeneous atomic Hardy space H̊ p,q

at (X) in the same way as H p,q
at (X),
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butwith the distribution space (Gη
0(β, γ ))′ replaced by (G̊η

0(β, γ ))′. Then the following
relationship between H p,q

at (X) and H̊ p,q
at (X) can be found in [20, Theorem 5.4].

Proposition 5.3 Suppose p ∈ (ω/(ω + η), 1], β, γ ∈ (ω(1/p − 1), η) and q ∈
(p,∞] ∩ [1,∞]. Then H̊ p,q

at (X) = H p,q
at (X) with equivalent (quasi)-norms. More

precisely, if f ∈ H p,q
at (X), then the restriction of f on G̊η

0(β, γ ) belongs to H̊ p,q
at (X);

Conversely, if f ∈ H̊ p,q
at (X), then there exists a unique f̃ ∈ H p,q

at (X) such that f̃ = f
in (G̊η

0(β, γ ))′.
Due to the fact that the kernels Q̃k in the homogeneous continuousCalderón formula

in Theorem 2.6 has no compact support, we can only use Theorem 2.6 to decompose
an element of H p(X) into a linear combination of the following molecules.

Definition 5.4 Suppose that p ∈ (0, 1], q ∈ (p,∞] ∩ [1,∞] and �ε := {εm}∞m=1 ⊂
[0,∞) satisfying

∞∑

m=1

m[εm]p < ∞. (5.4)

A function M ∈ Lq(X) is called a (p, q, �ε)-molecule centered at a ball B := B(x0, r0)
for some x0 ∈ X and r ∈ (0,∞) if M has the following properties:

(i) ‖M1B‖Lq (X) ≤ [μ(B)] 1
q − 1

p ;

(ii) for any m∈N, ‖M1B(x0,δ−mr0)\B(x0,δ−m+1r0)‖Lq (X)≤εm[μ(B(x0, δ−mr0))]
1
q − 1

p ;
(iii)

∫
X M(x) dμ(x) = 0.

By (i) and (ii) of Definition 5.4, the Hölder inequality, (5.4) and the fact p ∈ (0, 1],
we find that, if M satisfies (i) and (ii) of Definition 5.4, then M ∈ L1(X) and hence
Definition 5.4(iii) makes sense.

After carefully checking the proof of [39, Theorem 3.4], we obtain the following
molecular characterization of the atomic Hardy space H p,q

cw (X) of Coifman andWeiss
[7], the details being omitted.

Proposition 5.5 Suppose that p ∈ (0, 1], q ∈ (p,∞] ∩ [1,∞] and �ε := {εl}∞l=1
satisfies (5.4). Then f ∈ (Gη

0(β, γ ))′ belonging to H p,q
cw (X) if and only if there exist

(p, q, �ε)-molecules {M j }∞j=1 and {λ j }∞j=1 ⊂ C, with
∑∞

j=1 |λ j |p < ∞, such that

f =
∞∑

j=1

λ j M j (5.5)

converges in (L1/p−1(X))′ when p ∈ (0, 1) or in L1(X) when p = 1. Moreover, there
exists a positive constant C, independent of f , such that, for any f ∈ H p,q

cw (X),

C−1‖ f ‖H p,q
cw (X) ≤ inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∞∑

j=1

|λ j |p

⎞

⎠

1
p

⎫
⎪⎬

⎪⎭
≤ C‖ f ‖H p,q

cw (X),

where the infimum is taken over all the molecular decompositions of f as in (5.5).
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Let p ∈ (ω/(ω + η), 1] and q ∈ (p,∞] ∩ [1,∞]. By Proposition 5.3, H̊ p,q
at (X) =

H p,q
cw (X) and the already known fact that H p,q

cw (X) is independent of the choice of
q ∈ (p,∞] ∩ [1,∞], we know that H̊ p,q

at (X) = H̊ p,2
at (X). With this observation, we

show H̊ p,q
at (X) ⊂ H p(X) as follows.

Proposition 5.6 Let p ∈ (ω/(ω+η), 1], β, γ ∈ (ω(1/p−1), η), q ∈ (p,∞]∩[1,∞]
and {Qk}k∈Z be an exp-ATI. Let θ ∈ (0,∞) and Sθ be as in (5.1). Then there exists a
positive constant C, independent of θ , such that, for any distribution f ∈ (G̊η

0(β, γ ))′

belonging to H̊ p,2
at (X),

‖Sθ ( f )‖L p(X) ≤ C max
{
θ−ω/2, θω/p

}
‖ f ‖

H̊ p,2
at (X)

. (5.6)

In particular, H̊ p,q
at (X) = H̊ p,2

at (X) ⊂ H p(X).

Proof Let β, γ ∈ (ω(1/p − 1), η). It suffices to show (5.6) for the case θ ∈ [1,∞),
because both (5.6) with θ = 1 and Sθ ( f ) � θ−ω/2S( f ) for any f ∈ (G̊η

0(β, γ ))′
whenever θ ∈ (0, 1) imply that (5.6) also holds true for any θ ∈ (0, 1).

We start with the proof of the fact that the Littlewood–Paley g-function as in (5.2)
is bounded on L2(X). Indeed, for any h ∈ L2(X), we write

‖g(h)‖2L2(X)
=

∞∑

k=−∞

∫

X
|Qkh(z)|2 dμ(z) =

∞∑

k=−∞

〈
Q∗

k Qkh, h
〉
.

By Theorem 2.6 and the proof of [27, (3.2)], we find that, for any fixed β ′ ∈ (0, β∧γ ),
any k1, k2 ∈ Z and x, y ∈ X , we have

∣
∣Qk1 Q∗

k2(x, y)
∣
∣ � δ|k1−k2|β ′ 1

Vδk1∧k2 (x) + V (x, y)

[
δk1∧k2

δk1∧k2 + V (x, y)

]γ

. (5.7)

Notice that, in (5.7), only the regularity of Qk with respect to the second variable is
used. Thus, by Lemma 2.2(v) and the boundedness ofM on L2(X), we conclude that,
for any k1, k2 ∈ Z,

∥
∥(Q∗

k1 Qk1

) (
Q∗

k2 Qk2

)∥∥
L2(X)→L2(X)

�
∥
∥Qk1 Q∗

k2

∥
∥

L2(X)→L2(X)
� δ|k1−k2|β ′

.

Therefore, by the fact that Q∗
k Qk is self-adjoint and the Cotlar–Stein lemma (see [49,

pp. 279–280] and [29, Lemma 4.5]), we obtain the boundedness of
∑∞

k=−∞ Q∗
k Qk on

L2(X) and hence the boundedness of g on L2(X).
Suppose that a is a (p, 2)-atom supported on a ball B := B(x0, r0) with x0 ∈ X

and r0 ∈ (0,∞). By the Fubini theorem and the boundedness of g on L2(X), we find
that

‖Sθ (a)‖L2(X)�

∥
∥
∥
∥
∥
∥

{
∑

k∈Z
|Qka|2

}1/2
∥
∥
∥
∥
∥
∥

L2(X)

∼ ‖g(a)‖L2(X) � ‖a‖L2(X) � [μ(B)] 12− 1
p ,
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which further implies that

∫

B(x0,4A2
0θr0)

[Sθ (a)(x)]p dμ(x)

≤ ‖Sθ (a)‖p
L2(X)

[
μ
(

B
(

x0, 4A2
0θr0

))]1− p
2 � θω(1− p

2 ). (5.8)

Let x /∈ B(x0, 4A2
0θr0) and y ∈ B(x, θδk). Since now θ ∈ [1,∞), for any u ∈

B = B(x0, r0), we have d(u, x0) < (4A2
0θ)−1d(x0, x) < (2A0)

−1[δk + d(x0, y)]
and hence

|Qka(y)| =
∣
∣
∣
∣

∫

X
Qk(y, u)a(u) dμ(u)

∣
∣
∣
∣ ≤

∫

B
|Qk(y, u) − Qk(y, x0)||a(u)| dμ(u)

�
∫

B

[
d(x0, u)

δk + d(x0, y)

]η 1

Vδk (x0) + V (x0, y)

[
δk

δk + d(x0, y)

]γ

|a(u)| dμ(u)

� [μ(B)]1− 1
p

[
r0

δk + d(x0, y)

]η 1

Vδk (x0) + V (x0, y)

[
δk

δk + d(x0, y)

]γ

.

On another hand, if δk < (4A2
0θ)−1d(x0, x), then d(x0, y) ≥ (4A0)

−1d(x0, x) and
hence

|Qka(y)| � [μ(B)]1− 1
p

[
r0

d(x0, x)

]η 1

V (x0, x)

[
δk

d(x0, x)

]γ

,

which further implies that

∑

δk<(4A2
0θ)−1d(x0,x)

∫

B(y,θδk )

|Qka(y)|2 dμ(y)

Vθδk (x)

� [μ(B)]2− 2
p

[
r0

d(x0, x)

]2η [ 1

V (x0, x)

]2 ∑

δk<(4A2
0θ)−1d(x0,x)

[
δk

d(x0, x)

]2γ

� [μ(B)]2− 2
p

[
r0

d(x0, x)

]2η [ 1

V (x0, x)

]2
.

If δk ≥ (4A2
0θ)−1d(x0, x), then V (x0, x) � μ(B(x0, θδk)) � θωVδk (x0) and

|Qka(y)| � θω[μ(B)]1− 1
p

( r0
δk

)η 1

V (x0, x)
,

which further implies that
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∑

δk≥(4A2
0θ)−1d(x0,x)

∫

B(y,θδk )

|Qka(y)|2 dμ(y)

Vθδk (x)

� θ2ω[μ(B)]2− 2
p

[
1

V (x0, x)

]2 ∑

δk≥(4A2
0θ)−1d(x0,x)

( r0
δk

)2η

∼ θ2ω+2η[μ(B)]2− 2
p

[
r0

d(x0, x)

]2η [ 1

V (x0, x)

]2
.

Therefore, when x /∈ B(x0, 4A2
0θr0), we have

Sθ (a)(x) � θω+η[μ(B)]1− 1
p

[
r0

d(x0, x)

]η 1

V (x0, x)
.

Consequently, using p ∈ (η/(ω + η), 1], B = B(x0, r0) and (1.1), we obtain

∫

[B(x0,4A2
0θr0)]�

[Sθ (a)(x)]p dμ(x)

� θ(ω+η)p[μ(B)]p−1
∫

[B(x0,4A2
0θr0)]�

[
r0

d(x0, x)

]pη [
1

V (x0, x)

]p
dμ(x)

� θ pω[μ(B)]p−1
∞∑

j=2

2− j pη

×
∫

(2A0) j θr0≤d(x0,x)<(2A0) j+1θr0

[
1

μ(B(x0, (2A0)
j θr0))

]p
dμ(x)

� θω
∞∑

j=2

2− j[pη−(1−p)ω] � θω. (5.9)

Combining (5.8) and (5.9) implies that, when θ ∈ [1,∞),

‖Sθ (a)‖L p(X) � θω/p. (5.10)

Let f ∈ H̊ p,2
at (X). By the definition of H̊ p,2

at (X), we know that, for any ε ∈ (0,∞),
there exist (p, 2)-atoms {a j }∞j=1 and {λ j }∞j=1 ⊂ C such that f = ∑∞

j=1 λ j a j in

(G̊η
0(β, γ ))′ and

∑∞
j=1 |λ j |p ≤ ‖ f ‖p

H̊ p,2
at (X)

+ ε. By (5.10) and the fact Sθ ( f ) ≤
∑∞

j=1 |λ j |Sθ (a j ), we conclude that

‖Sθ ( f )‖p
L p(X) ≤

∞∑

j=1

|λ j |p‖Sθ (a j )‖p
L p(X) � θω

∞∑

j=1

|λ j |p

� θω[‖ f ‖p

H̊ p,2
at (X)

+ ε] → θω‖ f ‖p

H̊ p,2
at (X)

as ε → 0+. This finishes the proof of (5.6) and hence of Proposition 5.6. ��
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Next, we use Proposition 5.5 to show the following converse of Proposition 5.6.

Proposition 5.7 Let p ∈ (ω/(ω+η), 1], β, γ ∈ (ω(1/p−1), η) and f ∈ (G̊η
0(β, γ ))′

belong to H p(X). Then there exist a sequence {a j }∞j=1 of (p, 2)-atoms and {λ j }∞j=1 ⊂
C such that f = ∑∞

j=1 λ j a j in (G̊η
0(β, γ ))′ and

∑∞
j=1 |λ j |p ≤ C‖ f ‖p

H p(X), where

C is a positive constant independent of f . Consequently, H p(X) ⊂ H̊ p,2
at (X).

Proof Assume that f ∈ (G̊η
0(β, γ ))′ belongs to H p(X). In this proof, to avoid the

confusion of notation between the exp-ATI {Qk}k∈Z and Q ∈ D, we use {Ek}k∈Z to
denote an exp-ATI and then define S( f ) as in (5.1) but with Qk therein replaced by
Ek . Denote by D the set of all dyadic cubes. For any k ∈ Z, we define 
k := {x ∈
X : S( f )(x) > 2k} and

Dk :=
{

Q ∈ D : μ(Q ∩ 
k) >
1

2
μ(Q) and μ(Q ∩ 
k+1) ≤ 1

2
μ(Q)

}

.

It is easy to see that, for any Q ∈ D, there exists a unique k ∈ Z such that Q ∈ Dk .
A dyadic cube Q ∈ Dk is called a maximal cube in Dk if Q′ ∈ D and Q′ ⊃ Q, then
Q′ /∈ Dk . Denote the set of all maximal cubes in Dk at level j ∈ Z by {Q j

τ,k}τ∈I j,k ,

where I j,k ⊂ A j may be empty. The center of Q j
τ,k is denoted by z j

τ,k . Then D =
⋃

j, k∈Z
⋃

τ∈I j,k
{Q ∈ Dk : Q ⊂ Q j

τ,k}.
From now on, we adopt the notation EQ := El and ẼQ := Ẽl whenever Q = Ql+1

α

for some l ∈ Z and α ∈ Al+1. Then, by Theorem 2.6, we find that

f (·) =
∞∑

l=−∞
Ẽl El f (·)

=
∞∑

l=−∞

∑

α∈Al+1

∫

Ql+1
α

Ẽl (·, y)El f (y) dμ(y)

=
∑

Q∈D

∫

Q
ẼQ(·, y)EQ f (y) dμ(y)

=
∞∑

k=−∞

∞∑

j=−∞

∑

τ∈I j,k

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q
ẼQ(·, y)EQ f (y) dμ(y)

=:
∞∑

k=−∞

∞∑

j=−∞

∑

τ∈I j,k

λ
j
τ,kb j

τ,k(·), (5.11)

where all the equalities converge in (G̊η
0(β, γ ))′,

λ
j
τ,k :=

[
μ
(

Q j
τ,k

)] 1
p − 1

2

⎡

⎢
⎣

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q
|EQ f (y)|2 dμ(y)

⎤

⎥
⎦

1
2
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and

b j
τ,k(·) := 1

λ
j
τ,k

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q
ẼQ(·, y)EQ f (y) dμ(y). (5.12)

For any Q ∈ Dk and Q ⊂ Q j
τ,k , assume that Q = Ql+1

α for some l ∈ Z and

α ∈ Al+1. Since δ is assumed to satisfy δ < (2A0)
−10, it then follows that 2A0C�δ < 1

so that Q = Ql+1
α ⊂ B(y, δl) for any y ∈ Q. By this and the fact thatμ(Q ∩
k+1) ≤

1
2μ(Q), we obtain

μ(B(y, δl) ∩ [Q j
τ,k \ 
k+1]) ≥ μ(B(y, δl) ∩ [Q \ 
k+1])

= μ(Q \ 
k+1) ≥ 1

2
μ(Q) ∼ Vδl (y).

Thus, we have

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q
|EQ f (y)|2 dμ(y)

�
∞∑

l= j−1

∑

α∈Al+1, Dk�Ql+1
α ⊂Q j

τ,k

∫

Ql+1
α

μ(B(y, δl ) ∩ (Q j
τ,k \ 
k+1))

Vδl (y)
|El f (y)|2 dμ(y)

�
∞∑

l= j−1

∫

Q j
τ,k

μ(B(y, δl ) ∩ (Q j
τ,k \ 
k+1))

Vδl (y)
|El f (y)|2 dμ(y)

∼
∫

X

∞∑

l= j−1

∫

B(y,δl )∩(Q j
τ,k\
k+1)

|El f (y)|2 dμ(x)

Vδl (y)
dμ(y)

�
∫

Q j
τ,k\
k+1

[S( f )(x)]2 dμ(x) � 22kμ
(

Q j
τ,k

)
.

From this and the fact μ(Q j
τ,k) < 2μ(Q j

τ,k ∩ 
k), it follows that

∞∑

k=−∞

∞∑

j=−∞

∑

τ∈I j,k

(
λ

j
τ,k

)p
�

∞∑

k=−∞
2kp

∞∑

j=−∞

∑

τ∈I j,k

μ
(

Q j
τ,k

)

�
∞∑

k=−∞
2kp

∞∑

j=−∞

∑

τ∈I j,k

μ
(

Q j
τ,k ∩ 
k

)

�
∞∑

k=−∞
2kpμ (
k) ∼ ‖S( f )‖p

L p(X). (5.13)

Choose γ ′ ∈ (ω(1/p − 1), γ ) and let �ε := {δm[γ ′−ω(1/p−1)]}m∈N. Assume for
the moment that every b j

τ,k as in (5.12) is a (p, 2, �ε)-molecule centered at a ball
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B j
τ,k := B(z j

τ,k, 4A2
0δ

j−1), whose proof is given in Lemma 5.8 below. Further, apply-

ing Proposition 5.5, we conclude that ‖b j
τ,k‖H p,2

cw (X)
� 1. Thus, b j

τ,k can be written

as a linear combination of (p, 2)-atoms, which converges in (L1/p−1(X))′ when
p ∈ (ω/(ω + η), 1) or in L1(X) when p = 1, and hence converges in (G̊η

0(β, γ ))′
because G̊η

0(β, γ ) ⊂ L1/p−1(X) (see Lemma 4.15). Invoking this, (5.11) and (5.13),

we find that f ∈ H̊ p,2
at (X) and ‖ f ‖

H̊ p,2
at (X)

� ‖S( f )‖L p(X). This finishes the proof of

Proposition 5.7 modulo the proof of Lemma 5.8. ��

Lemma 5.8 Let all the notation be as in the proof of Proposition 5.7. Then every b j
τ,k

as in (5.12) is a harmless positive constant multiple of a (p, 2, �ε)-molecule centered
at the ball B j

τ,k := B(z j
τ,k, 4A2

0δ
j−1), where �ε := {δm[γ ′−ω(1/p−1)]}m∈N and γ ′ ∈

(ω(1/p − 1), γ ).

Proof Let b j
τ,k be as in (5.12). For any h ∈ L2(X) with ‖h‖L2(X) ≤ 1, by the Fubini

theorem and the Hölder inequality, we conclude that

∣
∣
∣
∣

∫

X
b j
τ,k(x)h(x) dμ(x)

∣
∣
∣
∣

≤ 1

λ
j
τ,k

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q
|EQ f (y)|

∣
∣
∣
∣

∫

X
ẼQ(x, y)h(x) dμ(x)

∣
∣
∣
∣ dμ(y)

≤ 1

λ
j
τ,k

⎡

⎢
⎣

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q
|EQ f (y)|2 dμ(y)

⎤

⎥
⎦

1
2

×
⎡

⎢
⎣

∑

Q∈Dk , Q⊂Q j
τ,k

∫

X

∣
∣Ẽ∗

Qh(y)
∣
∣2 dμ(y)

⎤

⎥
⎦

1
2

≤
[
μ
(

Q j
τ,k

)] 1
2− 1

p ‖g̃(h)‖L2(X),

where g̃(h) := [∑∞
l=−∞ |Ẽ∗

l h|2]1/2. Noticing that the kernel of Ẽ∗
l has the regularity

with respect to the second variable, we follow the argument used in the beginning of
the proof of Proposition 5.6 to deduce that g̃ is bounded on L2(X). Thus, we have

∣
∣
∣
∣

∫

X
b j
τ,k(x)h(x) dμ(x)

∣
∣
∣
∣ �

[
μ
(

Q j
τ,k

)] 1
2− 1

p ‖h‖L2(X) �
[
μ
(

B j
τ,k

)] 1
2− 1

p
.

Taking supremum over all h ∈ L2(X) with ‖h‖L2(X) ≤ 1, we further find that

∥
∥
∥b j

τ,k

∥
∥
∥

L2(X)
�

[
μ
(

B j
τ,k

)] 1
2− 1

p
.
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Let γ ′ ∈ (ω(1/p − 1), γ ). Fix m ∈ N and let Rm := (δ−m B j
τ,k) \ (δ−m+1B j

τ,k).

Then, for any x ∈ Rm , by the Hölder inequality and the size condition of {Ẽl}l∈Z, we
conclude that

∣
∣
∣b

j
τ,k(x)

∣
∣
∣ ≤ 1

λ
j
τ,k

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q

∣
∣ẼQ(x, y)EQ f (y)

∣
∣ dμ(y)

� 1

λ
j
τ,k

∞∑

l= j−1

∑

α∈Al+1, Dk�Ql+1
α ⊂Q j

τ,k

∫

Ql+1
α

1

Vδl (x) + V (x, y)

×
[

δl

δl + d(x, y)

]γ

|El f (y)| dμ(y)

� 1

λ
j
τ,k

⎧
⎪⎨

⎪⎩

∞∑

l= j−1

∑

α∈Al+1, Ql+1
α ⊂Q j

τ,k

∫

Ql+1
α

1

Vδl (x) + V (x, y)

×
[

δl

δl + d(x, y)

]2γ ′

dμ(y)

} 1
2

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

l= j−1

∑

α∈Al+1

Dk�Ql+1
α ⊂Q

j
τ,k

∫

Ql+1
α

1

Vδl (x) + V (x, y)

×
[

δl

δl + d(x, y)

]2(γ−γ ′)
|El f (y)|2 dμ(y)

} 1
2

=: 1

λ
j
τ,k

Y(x)Z(x).

Notice that, for any x ∈ Rm , we have 4A2
0δ

j−m−1 ≤ d(x, z j
τ,k) < 4A2

0δ
j−m−2 and,

for any y ∈ Ql+1
α ⊂ Q j

τ,k , we have δl + d(x, y) ∼ d(x, y) ∼ δ−m+ j and hence

Y(x) �

⎡

⎢
⎣

∞∑

l= j−1

∑

α∈Al+1, Ql+1
α ⊂Q j

τ,k

∫

Ql+1
α

1

μ(B(y, δ−m+ j ))

(
δl

δ−m+ j

)2γ ′

dμ(y)

⎤

⎥
⎦

1
2

�

⎡

⎣
∞∑

l= j−1

(
δl

δ−m+ j

)2γ ′ ∫

Q j
τ,k

1

μ(B(z j
τ,k, δ

−m+ j ))
dμ(y)

⎤

⎦

1
2

� δmγ ′
[

μ(B j
τ,k)

μ(δ−m B j
τ,k)

] 1
2

.
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Thus, for any x ∈ Rm , we have

∣
∣
∣b

j
τ,k(x)

∣
∣
∣ � 1

λ
j
τ,k

δmγ ′
[

μ(B j
τ,k)

μ(δ−m B j
τ,k)

] 1
2

Z(x),

which, together with the Fubini theorem and Lemma 2.2(ii), implies that

∥
∥
∥b j

τ,k1Rm

∥
∥
∥

L2(X)
� 1

λ
j
τ,k

δmγ ′
⎡

⎣
μ(B j

τ,k)

μ(δ−m B j
τ,k)

⎤

⎦

1
2 {∫

Rm

[Z(x)]2 dμ(x)

} 1
2

� 1

λ
j
τ,k

δmγ ′
⎡

⎣
μ(B j

τ,k)

μ(δ−m B j
τ,k)

⎤

⎦

1
2

⎧
⎪⎪⎨

⎪⎪⎩

∑

Q∈Dk , Q⊂Q j
τ,k

∫

Q

∣
∣EQ f (y)

∣
∣2 dμ(y)

⎫
⎪⎪⎬

⎪⎪⎭

1
2

� δmγ ′
⎡

⎣
μ(B j

τ,k)

μ(δ−m B j
τ,k)

⎤

⎦

1
2 [

μ
(

B j
τ,k

)] 1
2− 1

p

� δ
m[γ ′−ω( 1

p −1)] [
μ
(
δ−m B j

τ,k

)] 1
2− 1

p
.

The cancelation of b j
τ,k follows directly from that of Ẽl , the details being omitted.

Letting εm := δ
m[γ ′−ω( 1

p −1)] for any m ∈ N, we find that {εm}∞m=1 satisfies (5.4)

and b j
τ,k is a harmless positive constant multiple of a (p, 2, �ε)-molecule. This finishes

the proof of Lemma 5.8. ��
Combining Propositions 5.6 and 5.7, we immediately obtain the following main

result of this section, the details being omitted.

Theorem 5.9 Suppose that p ∈ (ω/(ω + η), 1], β, γ ∈ (ω(1/p − 1), η) and q ∈
(p,∞] ∩ [1,∞]. As subspaces of (G̊η

0(β, γ ))′, it holds true that H̊ p,q
at (X) = H p(X)

with equivalent (quasi-)norms.

5.3 Hardy Spaces via Various Littlewood–Paley Functions

In this section, we characterize Hardy spaces H p(X) via the Lusin area functions with
apertures, the Littlewood–Paley g-functions and the Littlewood–Paley g∗

λ-functions,
respectively. We first consider the Littlewood–Paley g-function characterizations.

Theorem 5.10 Let p ∈ (ω/(ω+η), 1] and β, γ ∈ (ω(1/p −1), η). Then there exists
a constant C ∈ [1,∞) such that, for any f ∈ (G̊η

0(β, γ ))′,

C−1‖ f ‖H p(X) ≤ ‖g( f )‖L p(X) ≤ C‖ f ‖H p(X). (5.14)
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Proof Let f ∈ (G̊η
0(β, γ ))′ with β, γ ∈ (ω(1/p−1), η). With {Qk}k∈Z being an exp-

ATI, we define S( f ) and g( f ), respectively, as in (5.1) and (5.3). If f ∈ H p(X) =
H̊ p,2
at (X), then, following the proof of (5.6), we also obtain

‖g( f )‖L p(X) � ‖ f ‖
H̊ p,2
at (X)

∼ ‖ f ‖H p(X).

To finish the proof of (5.14), it remains to prove ‖ f ‖H p(X) � ‖g( f )‖L p(X). Indeed,
for any x ∈ X , we have

S( f )(x) =
⎡

⎣
∑

k∈Z

∑

α∈Ak

N (k,α)∑

m=1

∫

B(x,δk )

|Qk f (y)|21Qk,m
α

(x)
dμ(y)

Vδk (x)

⎤

⎦

1
2

≤
⎧
⎨

⎩

∑

k∈Z

∑

α∈Ak

N (k,α)∑

m=1

[

sup
z∈B(zk,m

α ,δk−1)

|Qk f (z)|2
]

1Qk,m
α

(x)

⎫
⎬

⎭

1
2

, (5.15)

where Qk,m
α is as in Sect. 2 and zk,m

α the center of Qk,m
α . With all the notation as in

Theorem 2.7, we know that, for any z ∈ B(zk,m
α , δk−1),

Qk f (z) =
∑

k′∈Z

∑

α′∈Ak′

N (k′,α′)∑

m′=1

μ
(

Qk′,m′
α′

)
Qk Q̃k′

(
z, yk′,m′

α′
)

Qk′ f
(

yk′,m′
α′

)
,

where yk′,m′
α′ is an arbitrary point in Qk′,m′

α′ . Fix β ′ ∈ (0, β ∧ γ ). Then, similarly to the
proof of (3.7) (see also [27, (3.2)]), we conclude that, for any z ∈ B(zk,m

α , δk−1)

∣
∣
∣Qk Q̃k′

(
z, yk′,m′

α′
)∣∣
∣ � δ|k−k′|β ′ 1

V
δk∧k′ (z) + V (z, yk′,m′

α′ )

[
1

δk∧k′ + d(z, yk′,m′
α′ )

]γ

.

(5.16)
The variable z in (5.16) can be replaced by any x ∈ Qk,m

α , because max{d(z, x),

d(z, zk,m
α )} � δk � δk∧k′

. Further, from Lemma 3.7, we deduce that, for any fixed
r ∈ (ω/(ω + η), 1], any k′ ∈ Z and z ∈ B(zk,m

α , δk−1),

∣
∣
∣
∣
∣
∣

∑

α′∈Ak′

N (k′,α′)∑

m′=1

μ
(

Qk′,m′
α′

)
Qk Q̃k′

(
z, yk′,m′

α′
)

Qk′ f
(

yk′,m′
α′

)
∣
∣
∣
∣
∣
∣

� δ(k∧k′−k)ω( 1r −1)

⎡

⎣M
⎛

⎝
∑

α′∈Ak′

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠ (x)

⎤

⎦

1
r
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and hence

|Qk f (z)| �
∑

k′∈Z
δ|k−k′|β ′

δ(k∧k′−k)ω( 1r −1)

×
⎡

⎣M
⎛

⎝
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠ (x)

⎤

⎦

1
r

. (5.17)

Combining (5.15) and (5.17), choosing r and β ′ such that r ∈ (ω/(ω + β ′), p) and
applying the Hölder inequality, we further conclude that, for any x ∈ X ,

[S( f )(x)]2 �
∑

k∈Z

∑

α∈Ak

N (k,α)∑

m=1

⎧
⎪⎨

⎪⎩

∑

k′∈Z
δ|k−k′|β ′

δ(k∧k′−k)ω( 1r −1)

×
⎡

⎣M
⎛

⎝
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠ (x)

⎤

⎦

1
r

1Qk,m
α

(x)

⎫
⎪⎬

⎪⎭

2

�
∑

k∈Z

∑

α∈Ak

N (k,α)∑

m=1

∑

k′∈Z
δ|k−k′|β ′

δ(k∧k′−k)ω( 1r −1)

×
⎡

⎣M
⎛

⎝
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠ (x)

⎤

⎦

2
r

1Qk,m
α

(x)

�
∑

k∈Z

∑

k′∈Z
δ|k−k′|[β ′−ω( 1r −1)]

⎡

⎣M
⎛

⎝
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠ (x)

⎤

⎦

2
r

�
∑

k′∈Z

⎡

⎣M
⎛

⎝
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠ (x)

⎤

⎦

2
r

.

From this and Lemma 5.2, we deduce that

‖ f ‖H p(X) = ‖[S( f )]r‖
1
r
L p/r (X)

�

∥
∥
∥
∥
∥
∥
∥
∥

⎧
⎪⎨

⎪⎩

∑

k′∈Z

⎡

⎣M
⎛

⎝
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
r
1

Qk′,m′
α′

⎞

⎠

⎤

⎦

2
r

⎫
⎪⎬

⎪⎭

r
2
∥
∥
∥
∥
∥
∥
∥
∥

1
r

L p/r (X)
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�

∥
∥
∥
∥
∥
∥
∥
∥

⎧
⎪⎨

⎪⎩

∑

k′∈Z

⎡

⎣
∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣
∣
∣
r
1

Qk′,m′
α′

⎤

⎦

2
r

⎫
⎪⎬

⎪⎭

r
2
∥
∥
∥
∥
∥
∥
∥
∥

1
r

L p/r (X)

∼

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∑

k′∈Z

∑

α′∈Ak′

N (k′,α′)∑

m′=1

∣
∣
∣Qk′ f

(
yk′,m′
α′

)∣∣
∣
2
1

Qk′,m′
α′

⎤

⎦

1
2

∥
∥
∥
∥
∥
∥
∥

L p(X)

.

By this and the arbitrariness of yk′,m′
α′ , we finally conclude that

‖ f ‖H p(X) �

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∑

k′∈Z

∑

α′∈Ak′

N (k′,α′)∑

m′=1

inf
z∈Qk′,m′

α′

∣
∣Qk′ f (z)

∣
∣2 1

Qk′,m′
α′

⎤

⎦

1
2
∥
∥
∥
∥
∥
∥
∥

L p(X)

� ‖g( f )‖L p(X).

This finishes the proof of ‖ f ‖H p(X) � ‖g( f )‖L p(X) and hence of Theorem 5.10. ��
To consider the g∗

λ-function characterization of H p(X), we need a new kind of
Littlewood–Paley functions. For any β, γ ∈ (0, η), θ ∈ (0,∞) and f ∈ (G̊η

0(β, γ ))′,
define theLittlewood–Paley auxiliary functionS(1)

θ ( f ) of f with aperture θ by setting,
for any x ∈ X ,

S(1)
θ ( f )(x) :=

[ ∞∑

k=−∞

∫

B(y,δk )

|Qk f (y)|2 dμ(y)

Vδk (y)

]1/2

. (5.18)

It is obvious that, for any f ∈ (G̊η
0(β, γ ))′, S(1)

1 ( f ) ∼ S( f ) and, for any θ ∈ [1,∞),
by the Fubini theorem, we have

∥
∥
∥S(1)

θ ( f )

∥
∥
∥

L2(X)
� θω/2‖S( f )‖L2(X) ∼ θω/2

∥
∥
∥S(1)

1 ( f )

∥
∥
∥

L2(X)
,

with the implicit positive constants independent of f . For the case p ∈ (0, 2), we have
the following lemma.

Lemma 5.11 Let β, γ ∈ (0, η) and p ∈ (0, 2). Then there exists a positive constant
C such that, for any θ ∈ [1,∞) and f ∈ (G̊η

0(β, γ ))′,
∥
∥
∥S(1)

θ ( f )

∥
∥
∥

L p(X)
≤ Cθω/p

∥
∥
∥S(1)

1 ( f )

∥
∥
∥

L p(X)
. (5.19)

Proof For any θ ∈ [1,∞), any non-negative function g and any x ∈ X , define

M̃(g)(x) := sup
k∈Z

sup
d(x,y)<θδk

1

Vδk (y)

∫

B(y,δk )

g(z) dμ(z).
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Notice that, for any k ∈ Z, y ∈ B(x, θδk) and z ∈ B(y, δk),

d(x, z) ≤ A0[d(x, y) + d(y, z)] < 2A0θδk,

which further implies B(y, δk) ⊂ B(x, 2A0θδk). By this and (1.1), we find that, for
any k ∈ Z, x ∈ X and y ∈ B(x, θδk),

1

Vδk (y)

∫

B(y,δk )

g(z) dμ(z) ≤ V2A0θδk (x)

Vδk (y)

1

V2A0θδk (x)

∫

B(x,2A0θδk)

g(z) dμ(z)

�
V2A0θδk (y)

Vδk (y)
M(g)(x) � θωM(g)(x),

which, together with the boundedness ofM from L1(X) to L1,∞(X), further implies
that, for any r ∈ (0,∞),

μ
({

x ∈ X : M̃(g)(x) > r
})

� θω

r
‖g‖L1(X). (5.20)

For any t ∈ (0,∞) and f ∈ (G̊η
0(β, γ ))′ with β, γ ∈ (0, η), define Et := {x ∈

X : S(1)
1 ( f )(x) > t} and Ẽt := {x ∈ X : M̃(1Et )(x) > 1/2}. We claim that, for any

t ∈ (0,∞),

∫

Ẽ�
t

[
S(1)

θ ( f )(x)
]2

dμ(x) � θω

∫

E�
t

[
S(1)
1 ( f )(x)

]2
dμ(x). (5.21)

Assuming this for the moment, we continue the proof of (5.19). Indeed, by the Cheby-
shev inequality, (5.20) and (5.21), we find that, for any t ∈ (0,∞),

μ
({

x ∈ X : S(1)
θ ( f )(x) > t

})
≤ μ

(
Ẽt

) + μ
({

x ∈ Ẽ�
t : S(1)

θ ( f )(x) > t
})

� θωμ (Et ) + t−2
∫

Ẽ�
t

[
S(1)

θ ( f )(x)
]2

dμ(x)

� θωμ (Et ) + t−2θω

∫

E�
t

[
S(1)
1 ( f )(x)

]2
dμ(x)

� θω

[

μ (Et ) + t−2
∫ t

0
sμ(Es) ds

]

.

By this, the Tonelli theorem and the fact p ∈ (0, 2), we conclude that

∥
∥
∥S(1)

θ ( f )

∥
∥
∥

p

L p(X)
= p

∫ ∞
0

t p−1μ
({

x ∈ X : S(1)
θ ( f )(x) > t

})
dt

� θω

[∫ ∞
0

t p−1μ (Et ) dt +
∫ ∞
0

t p−3
∫ t

0
sμ(Es) ds dt

]

∼ θω
∥
∥
∥S(1)

1 ( f )

∥
∥
∥

p

L p(X)
+ θω

∫ ∞
0

sμ(Es)

∫ ∞
s

t p−3 dt ds
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∼ θω
∥
∥
∥S(1)

1 ( f )

∥
∥
∥

p

L p(X)
+ θω

∫ ∞
0

s p−1μ(Es) ds ∼ θω
∥
∥
∥S(1)

1 ( f )

∥
∥
∥

p

L p(X)
.

This finishes the proof of (5.19) under the assumption (5.21).
It remains to show (5.21). Fix t ∈ (0,∞) and, for any y ∈ X , let ρ(y) :=

infx∈Ẽ�
t

d(x, y). Then, for any k ∈ Z and x, y ∈ X , x ∈ Ẽ�
λ ∩ B(y, θδk) implies that

ρ(y) < θδk . By this and the Tonelli theorem, we find that

∫

Ẽ�
t

[
S(1)

θ ( f )(x)
]2

dμ(x) =
∫

Ẽ�
t

∞∑

k=−∞

∫

B(x,θδk )

|Qk f (y)|2 dμ(y)

Vδk (y)
dμ(x)

=
∞∑

k=−∞

∫

ρ(y)<θδk
|Qk f (y)|2μ

(
Ẽ�

t ∩ B(y, θδk)
) dμ(y)

Vδk (y)

� θω
∞∑

k=−∞

∫

ρ(y)<θδk
|Qk f (y)|2μ(B(y, δk))

dμ(y)

Vδk (y)
.

(5.22)

When ρ(y) < θδk , we have Ẽ�
t ∩ B(y, θδk) �= ∅. Choose y0 ∈ Ẽ�

t ∩ B(y, θδk). Then
we have

μ(Et ∩ B(y, δk)) =
∫

B(y,δk )

1Et (z) dμ(z) ≤ μ(B(y, δk))M̃ (
1Et

)
(y0)

≤ 1

2
μ(B(y, δk)).

Thus, μ(E�
t ∩ B(y, δk)) ≥ 1

2μ(B(y, δk)). By this, (5.22) and the Tonelli theorem, we
further conclude that

∫

Ẽ�
t

[
S(1)

θ ( f )(x)
]2

dμ(x) � θω
∞∑

k=−∞

∫

ρ(y)<θδk
|Qk f (y)|2μ(B(y, δk))

dμ(y)

Vδk (y)

� θω
∞∑

k=−∞

∫

X
|Qk f (y)|2μ

(
E�

t ∩ B(y, δk)
) dμ(y)

Vδk (y)

∼
∞∑

k=−∞

∫

E�
t

∫

B(x,δk )

|Qk f (y)|2 dμ(y)

Vδk (y)
dμ(x)

∼ θω

∫

E�
t

[
S(1)
1 ( f )(x)

]2
dμ(x).

This finishes the proof of (5.21) and hence of Lemma 5.11. ��
Using Lemma 5.11, we now establish the Littlewood–Paley g∗

λ-function character-
ization of H p(X) when p ∈ (ω/(ω + η), 1].
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Theorem 5.12 Let p ∈ (ω/(ω +η), 1], β, γ ∈ (ω(1/p − 1), η) and λ ∈ (2ω/p,∞).
Then there exists a constant C ∈ [1,∞) such that, for any f ∈ (G̊η

0(β, γ ))′,

C−1‖ f ‖H p(X) ≤ ‖g∗
λ( f )‖L p(X) ≤ C‖ f ‖H p(X). (5.23)

Proof Fix p ∈ (ω/(ω + η), 1] and λ ∈ (2ω/p,∞). For any f ∈ (G̊η
0(β, γ ))′ with

β, γ ∈ (ω(1/p − 1), η), by the definition of g∗
λ( f ) [see (5.3)], we find that

[S( f )]2 �
[
g∗
λ( f )

]2 �
∞∑

j=0

2(1− j)λ
[
S(1)
2 j ( f )

]2
. (5.24)

By (5.24), we easily obtain the first inequality of (5.23). For the second one, by (5.24),
the fact p < 2, (5.19) and λ > 2ω/p, we conclude that, for any f ∈ (G̊η

0(β, γ ))′ with
β, γ ∈ (ω(1/p − 1), η),

∥
∥g∗

λ( f )
∥
∥p

L p(X)
=

∥
∥
∥
[
g∗
λ( f )

]2
∥
∥
∥

p/2

L p/2(X)
�

∞∑

j=0

2− jλp/2
∥
∥
∥
∥

[
S(1)
2 j ( f )

]2
∥
∥
∥
∥

p/2

L p/2(X)

∼
∞∑

j=0

2− jλp/2
∥
∥
∥S(1)

2 j ( f )

∥
∥
∥

p

L p(X)
�

∥
∥
∥S(1)

1 ( f )

∥
∥
∥

p

L p(X)

∞∑

j=0

2− jλp/22 jω

∼ ‖S( f )‖p
L p(X).

This finishes the proof of the second inequality of (5.23) and hence of Theorem 5.12.
��

Remark 5.13 If X is a homogeneous group, Folland and Stein [12, Corollary 7.4]
showed that, for any given p ∈ (0, 2] and any f ∈ S ′(X), ‖g∗

λ( f )‖L p(X) ≤
C‖S( f )‖L p(X) whenever λ ∈ (2ω/p,∞) with the positive constant C independent
of f by observing that λ in (5.3) equals to 2λ with λ as in the Littlewood–Paley
g∗
λ-function in [12], where S ′(X) denotes the space of tempered distributions on X .

Observe that Theorem 5.12 in this case coincides with Folland and Stein [12, Corol-
lary 7.4], whose range of λ is the known best possible. Moreover, Lemma 5.11 and its
proof have their own interest in dealing with Littlewood–Paley g∗

λ-functions on spaces
of homogeneous type. For example, using this method, one can improve the range of
λ in [26, Proposition 3.4(ii)] to (2n/p,∞), which then coincides with Theorem 5.12
and whose range of λ is then the known best possible.

6 Wavelet Characterizations of Hardy Spaces

In this section, we characterize the Hardy space H p(X) via the wavelet orthogonal
system {ψk

α : k ∈ Z, α ∈ Gk} introduced in [1, Theorem 7.1]. The sequence {Dk}k∈Z
of operators on L2(X) associated with integral kernels
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Dk(x, y) :=
∑

α∈Gk

ψk
α(x)ψk

α(y), ∀ x, y ∈ X (6.1)

turns out to be an exp-ATI; see [25,29]. Thus, all the conclusions in Sect. 5 hold true
for {Dk}k∈Z.

For any f ∈ (G̊η
0(β, γ ))′ with β, γ ∈ (0, η), define the wavelet Littlewood–Paley

function S( f ) by setting, for any x ∈ X ,

S( f )(x) :=
⎧
⎨

⎩

∑

k∈Z

∑

α∈Gk

[
μ
(

Qk+1
α

)]−1 ∣∣
∣
〈
ψk

α, f
〉∣∣
∣
2
1Qk+1

α
(x)

⎫
⎬

⎭

1
2

.

For any p ∈ (0,∞), define the corresponding wavelet Hardy space H p
w (X) by

H p
w (X) :=

{

f ∈
(
G̊η
0(β, γ )

)′ : ‖ f ‖H p
w (X) := ‖S( f )‖L p(X) < ∞

}

.

For any p ∈ (ω/(ω + η),∞), the L p(X)-norm equivalence between the wavelet
Littlewood–Paley function S( f ) and the Littlewood–Paley g-function g( f ) was
proved in [25, Theorem 4.3] whenever f is a distribution. The proof of [25, The-
orem 4.3] seems problematic because the authors therein used an unknown fact that,
when f ∈ (G̊(β, γ ))′ and n ∈ N,

∑

|k|≤n

∑

α∈Gk

〈
f , ψk

α

〉
ψk

α ∈ L2(X). (6.2)

Although (6.2) may not be true for distributions, it is obviously true when f ∈ L2(X).
Indeed, the argument used in the proof of [25, Theorem 4.3] proves the following
result.

Theorem 6.1 Suppose p ∈ (ω/(ω + η),∞) and β, γ ∈ (0, η). Then there exists a
positive constant C such that, for any f ∈ (G̊η

0(β, γ ))′,

‖G( f )‖L p(X) ≤ C‖S( f )‖L p(X) (6.3)

and, if f ∈ L2(X), then

C−1‖S( f )‖L p(X) ≤ ‖G( f )‖L p(X) ≤ C‖S( f )‖L p(X). (6.4)

Here and hereafter, G( f ) is defined as in (5.2), but with Qk therein replaced by Dk in
(6.1).

To show that (6.4) holds true for all distributions, we need the following basic
property of H p

w (X).

Proposition 6.2 Let p ∈ (ω/(ω + η), 1] and β, γ ∈ (ω(1/p − 1), η). Then H p
w (X)

is a (quasi-) Banach space that can be continuously embedded into (G̊η
0(β, γ ))′.
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Proof Assume that f ∈ (G̊η
0(β, γ ))′ belongs to H p

w (X). By (6.3), Theorems 5.10 and
5.9, we have ‖ f ‖

H̊ p,2
at (X)

� ‖ f ‖H p
w (X). Consequently, for any ε ∈ (0,∞), there exist

(p, 2)-atoms {a j }∞j=1 and {λ j }∞j=1 ⊂ C satisfying (
∑∞

j=1 |λ j |p)
1
p ≤ ‖ f ‖

H̊ p,2
at (X)

+ ε

such that f = ∑∞
j=1 λ j a j in (G̊η

0(β, γ ))′. Combining this with Lemmas 4.14 and

4.15, we find that, for any ϕ ∈ G̊η
0(β, γ ),

|〈 f , ϕ〉| ≤
∞∑

j=1

|λ j ||〈a j , ϕ〉| �
∞∑

j=1

|λ j |‖ϕ‖L1/p−1(X) � ‖ϕ‖G̊η
0(β,γ )

⎡

⎣
∞∑

j=1

|λ j |p

⎤

⎦

1/p

� ‖ϕ‖G̊η
0(β,γ )

[‖ f ‖H p
w (X) + ε].

Letting ε → 0+, we obtain ‖ f ‖
(G̊η

0(β,γ ))′ � ‖ f ‖H p
w (X). Thus, H p

w (X) can be contin-

uously embedded into (G̊η
0(β, γ ))′.

To prove that H p
w (X) is a (quasi-)Banach space, we only prove its completeness.

Let { fn}∞n=1 be a Cauchy sequence in H p
w (X). Then { fn}∞n=1 is also a Cauchy sequence

in (G̊η
0(β, γ ))′, so it converges to some element f in (G̊η

0(β, γ ))′. For any n ∈ N and
x ∈ X , applying the Fatou lemma twice, we conclude that

S( f − fn)(x) = S
(
lim

m→∞[ fm − fn]
)

(x)

=
⎡

⎣
∑

k∈Z

∑

α∈Gk

{
μ(Qk+1

α )
}−1 ∣∣

∣
〈
ψk

α, lim
m→∞[ fm − fn]

〉∣
∣
∣
2
1Qk+1

α
(x)

⎤

⎦

1
2

=
⎡

⎣
∑

k∈Z

∑

α∈Gk

lim
m→∞

{
μ(Qk+1

α )
}−1 ∣∣

∣
〈
ψk

α, fm − fn

〉∣∣
∣
2
1Qk+1

α
(x)

⎤

⎦

1
2

≤ lim inf
m→∞

⎡

⎣
∑

k∈Z

∑

α∈Gk

{
μ(Qk+1

α )
}−1 ∣∣

∣
〈
ψk

α, fm − fn

〉∣∣
∣
2
1Qk+1

α
(x)

⎤

⎦

1
2

= lim inf
m→∞ S( fm − fn)(x)

and hence

‖ f − fn‖p
H p
w (X)

=
∫

X
[S( f − fn)(x)]p dμ(x)

≤
∫

X
lim inf
m→∞ [S( fm − fn)(x)]p dμ(x)

≤ lim inf
m→∞

∫

X
[S( fm − fn)(x)]p dμ(x) = lim inf

m→∞ ‖ fm − fn‖p
H p
w (X)

.
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Letting n → ∞, wefind that f ∈ H p
w (X) and limn→∞ ‖ f − fn‖H p

w (X) = 0. Therefore,

H p
w (X) is complete. This finishes the proof of Proposition 6.2. ��

Applying Theorem 6.1 and Proposition 6.2, we establish the following wavelet
characterizations of Hardy spaces.

Theorem 6.3 Suppose p ∈ (ω/(ω+η), 1] and β, γ ∈ (ω(1/p −1), η). As subspaces
of (G̊η

0(β, γ ))′, H p(X) = H p
w (X) with equivalent (quasi-)norms.

Proof Due to (6.3), Theorems 5.10 and 5.9, we obtain H p
w (X) ⊂ H p(X) and

‖ · ‖H p(X) � ‖ · ‖H p
w (X).

It remains to show H p(X) ⊂ H p
w(X). To this end, by Theorem 5.9, we conclude

that L2(X) ∩ H p(X) is dense in H p(X). Thus, for any f ∈ H p(X), there exist
{ fn}∞n=1 ⊂ L2(X) ∩ H p(X) such that limn→∞ ‖ f − fn‖H p(X) = 0. Obviously,
{ fn}∞n=1 is a Cauchy sequence of H p(X). Noticing that { fn}∞n=1 ⊂ L2(X), we use
(6.4) and Theorem 5.10 to conclude that

‖ fm − fn‖H p
w (X) = ‖S( fm − fn)‖L p(X) ∼ ‖G( fm − fn)‖L p(X)

∼ ‖ fm − fn‖H p(X) → 0

as m, n → ∞, so that { fn}∞n=1 is also a Cauchy sequence of H p
w (X). By Proposi-

tion 6.2, there exists f̃ ∈ H p
w (X) such that fn → f̃ as n → ∞ in H p

w (X), also
in (G̊η

0(β, γ ))′. Meanwhile, fn → f as n → ∞ in H p(X), also in (G̊η
0(β, γ ))′.

Therefore, f̃ = f in (G̊η
0(β, γ ))′ and f ∈ H p

w (X). Moreover,

‖ f ‖p
H p
w (X)

≤ ‖ f − fn‖p
H p
w (X)

+ ‖ fn‖p
H p
w (X)

∼ ‖ f − fn‖p
H p
w (X)

+ ‖ fn‖p
H p(X)

� ‖ f ‖p
H p(X)

when n is sufficiently large. Thus, we obtain H p(X) ⊂ H p
w (X) and ‖ · ‖H p

w (X) �
‖ · ‖H p(X). This finishes the proof of Theorem 6.3. ��

7 Criteria of the Boundedness of Sublinear Operators

Let p ∈ (ω/(ω + η), 1]. By the argument used in Sects. 3–6, we conclude that the
Hardy spaces H+,p(X), H p

θ (X) with θ ∈ (0,∞), H∗,p(X), H p,q
at (X), H p,q

cw (X),
H̊ p,q
at (X) with q ∈ (p,∞] ∩ [1,∞] and H p

w (X) are essentially the same space in
the sense of equivalent (quasi-)norms. From now on, we simply use H p(X) to denote
anyone of them if there is no confusion. In this section, we establish some criteria of
the boundedness of sublinear operators on Hardy spaces via first establishing finite
atomic characterizations of H p(X).
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7.1 Finite Atomic Characterizations of Hardy Spaces

For any p ∈ (ω/(ω + η), 1] and q ∈ (p,∞] ∩ [1,∞], we say f ∈ H p,q
fin (X) if there

exist N ∈ N, a sequence {a j }N
j=1 of (p, q)-atoms and {λ j }N

j=1 ⊂ C such that

f =
N∑

j=1

λ j a j .

Also, define

‖ f ‖H p,q
fin (X) := inf

⎧
⎪⎨

⎪⎩

⎛

⎝
N∑

j=1

∣
∣λ j

∣
∣p

⎞

⎠

1
p

⎫
⎪⎬

⎪⎭
,

where the infimum is taken over all the decompositions of f as above. It is easy to see
that H p,q

fin (X) is a dense subset of H p,q
at (X) and ‖ · ‖H p,q

at (X) ≤ ‖ · ‖H p,q
fin (X). Denote

by the symbol UC(X) the space of all uniformly continuous functions on X , that is, a
function f ∈ UC(X) if and only if, for any fixed ε ∈ (0,∞), there exists σ ∈ (0,∞)

such that | f (x) − f (y)| < ε whenever d(x, y) < σ . The next theorem characterizes
H p,q
at (X) via H p,q

fin (X).

Theorem 7.1 Suppose p ∈ (ω/(ω + η), 1]. Then the following statements hold true:

(i) if q ∈ (p,∞) ∩ [1,∞), then ‖ · ‖H p,q
fin (X) and ‖ · ‖H p,q

at (X) are equivalent (quasi)-

norms on H p,q
fin (X);

(ii) ‖·‖H p,∞
fin (X) and ‖·‖H p,∞

at (X) are equivalent (quasi)-norms on H p,q
fin (X)∩UC(X);

(iii) H p,∞
fin (X) ∩ UC(X) is a dense subspace of H p,∞

at (X).

Proof First, we prove (i). It suffices to show that ‖ f ‖H p,q
fin (X) � ‖ f ‖H p,q

at
for any

f ∈ H p,q
fin (X)with q ∈ (p,∞)∩[1,∞).Wemay aswell assume that ‖ f ‖H∗,p(X) = 1.

Let all the notation be as in the proof that H∗,p(X) ⊂ H p,q
at (X) of Theorem 4.2. Then

f =
∑

j∈Z

∑

k∈I j

λ
j
k a j

k =
∑

j∈Z

∑

k∈I j

h j
k =

∑

j∈Z
h j

both in (Gη
0(β, γ ))′ and almost everywhere. Here and hereafter, for any j ∈ Z and

k ∈ I j , the quantities h j , h
j
k , λ

j
k and a j

k are as in (4.12) and (4.13). Since f ∈ H p,q
fin (X),

it follows that there exist x1 ∈ X and R ∈ (0,∞) such that supp f ⊂ B(x1, R). We
claim that there exists a positive constant c̃ such that, for any x /∈ B(x1, 16A4

0R),

f �(x) ≤ c̃[μ(B(x1, R))]− 1
p . (7.1)

We admit (7.1) temporarily and use it to prove (i) and (ii). Let j ′ be the maximal

integer such that 2 j ≤ c̃[μ(B(x1, R))]− 1
p and define
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h :=
∑

j≤ j ′

∑

k∈I j

λ
j
k a j

k and � :=
∑

j> j ′

∑

k∈I j

λ
j
k a j

k . (7.2)

In what follows, for the sake of convenience, we elide the fact whether or not I j is
finite and simply write the summation

∑
k∈I j

in (7.2) as
∑∞

k=1. If j > j ′, then 
 j =
{x ∈ X : f �(x) > 2 j } ⊂ B(x1, 16A4

0R), which implies that supp � ⊂ B(x1, 16A4
0R)

because supp a j
k ⊂ 
 j . From f = h+�, it then follows that supp h ⊂ B(x1, 16A4

0R).
Noticing that

‖h‖L∞(X) ≤
∑

j≤ j ′

∥
∥
∥h j

∥
∥
∥

L∞(X)
�

∑

j≤ j ′
2 j ∼ [μ(B(x1, R))]− 1

p

and
∫

X h(x) dμ(x) = 0, we conclude that h is a harmless constant multiple of a
(p,∞)-atom.

Next we deal with �. For any N := (N1, N2) ∈ N
2, define

�N :=
N1∑

j= j ′+1

N2∑

k=1

λ
j
k a j

k =
N1∑

j= j ′+1

N2∑

k=1

h j
k .

Then �N is a finite linear combination of (p,∞)-atoms and
∑N1

j= j ′+1

∑N2
k=1 |λ j

k |p � 1.

Notice that supp (� − �N ) ⊂ B(x1, 16A4
0R) and

∫
X [�(x) − �N (x)] dμ(x) = 0. It

suffices to show that ‖� − �N ‖Lq (X) → 0 can be sufficiently small when N1 and N2

are big enough. Noticing that � = ∑∞
j=N1+1 h j + ∑N1

j= j ′+1

∑∞
k=1 h j

k , we have

‖� − �N ‖Lq (X) ≤
∥
∥
∥
∥
∥
∥

∞∑

j=N1+1

h j

∥
∥
∥
∥
∥
∥

Lq (X)

+
N1∑

j= j ′+1

∥
∥
∥
∥
∥
∥

∞∑

k=N2+1

h j
k

∥
∥
∥
∥
∥
∥

Lq (X)

.

For any j ∈ Z and k ∈ N, we recall that supp h j
k ⊂ B j

k ⊂ 
 j and ‖h j‖L∞(X) � 2 j .
By f = ∑∞

j=−∞ h j and supp (
∑∞

j=N1+1 h j ) ⊂ 
N1 , we conclude that, for any

z ∈ 
N1 ,

∣
∣
∣
∣
∣
∣

∞∑

j=N1+1

h j (z)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

f (z) −
∑

j≤N1

h j (z)

∣
∣
∣
∣
∣
∣
≤ | f (z)| +

∑

j≤N1

∣
∣
∣h j (z)

∣
∣
∣ � | f (z)| + 2N1 .

Notice that, by [20, Proposition 3.9], there exists a constant C̃ > 1 such that f � ≤
C̃M( f ). With f1 := f 1{x∈X : | f (x)|>2N1−1/C̃} and f2 := f − f1, we have

2N1qμ
(

N1

)
≤ 2N1qμ

({
x ∈ X : C̃M( f )(x) > 2N1

})

≤ 2N1qμ
({

x ∈ X : C̃M( f1)(x) > 2N1−1
})

� ‖ f1‖q
Lq (X) → 0
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as N1 → ∞, because M is bounded from Lq(X) to Lq,∞(X) and f ∈ H p,q
fin (X) ⊂

Lq(X). Therefore,

∥
∥
∥
∥
∥
∥

∞∑

j=N1+1

h j

∥
∥
∥
∥
∥
∥

q

Lq (X)

�
∫


N1

[
| f (z)|q + 2N1q

]
dμ(z)

�
∥
∥ f 1
N1

∥
∥q

Lq (X)
+ 2N1qμ

(

N1

)
→ 0

as N1 → ∞. Then, for any ε ∈ (0,∞), we choose N1 ∈ N such that
‖∑∞

j=N1+1 h j‖Lq (X) < ε/2.

If we fix N1 ∈ N and N1 ≥ j > j ′, then the fact
∑∞

k=1 |h j
k | � 2 j1
 j ∈ Lq(X)

implies that

lim
N2→0

∥
∥
∥
∥
∥
∥

∞∑

k=N2+1

h j
k

∥
∥
∥
∥
∥
∥

Lq (X)

= 0.

So, we further choose N2 ∈ N such that
∑N1

j= j ′+1 ‖∑∞
k=N2+1 h j

k‖Lq (X) < ε/2. In this
way, we have ‖� − �N ‖Lq (X) < ε for large N . Then there exist a positive constant
C�, independent of N and ε, and a (p, q)-atom a(N ) such that � − �N = C�εa(N ).
Therefore, we obtain ‖ f ‖H p,q

fin (X) � 1 ∼ ‖ f ‖H p,q
at (X) and complete the proof of (i)

under the assumption (7.1).
To obtain (ii), we only need to prove that ‖ f ‖H p,∞

fin (X) � ‖ f ‖H p,∞
at

whenever

f ∈ H p,∞
fin (X) ∩ UC(X). We may also assume that ‖ f ‖H∗,p(X) = 1. Notice that f ∈

L∞(X) and ‖ f �‖L∞(X) � ‖M( f )‖L∞(X) ≤ c0‖ f ‖L∞(X), where c0 is a positive con-
stant independent of f . Let j ′′ > j ′ be the largest integer such that 2 j ≤ c0‖ f ‖L∞(X).

Wewrite f = h+�with h as in (7.2) but now � = ∑
j ′< j≤ j ′′

∑∞
k=1 h j

k . As in the proof
of (i), we know that h is a harmless positive constant multiple of some (p,∞)-atom.

Now we consider �. Notice that f ∈ UC(X). Then, for any ε ∈ (0,∞), there exists
σ ∈ (0,∞) such that | f (x) − f (y)| ≤ ε whenever d(x, y) ≤ σ . Split � = �σ

1 + �σ
2

with

�σ
1 :=

∑

( j,k)∈G1

h j
k =

∑

( j,k)∈G1

λ
j
k a j

k and �σ
2 :=

∑

( j,k)∈G2

h j
k ,

where

G1 := {( j, k) : 12A3
0r j

k ≥ σ, j ′ < j ≤ j ′′} and

G2 := {( j, k) : 12A3
0r j

k < σ, j ′ < j ≤ j ′′}.

Notice that, for any j ′ < j ≤ j ′′, 
 j is bounded. Thus, by Proposition 4.4(vi), we
find that G1 is a finite set, which further implies that �σ

1 is a finite linear combination
of (p,∞)-atoms and
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∑

( j,k)∈G1

∣
∣
∣λ

j
k

∣
∣
∣

p
� 1.

To consider �σ
2 , it is obvious that supp �σ

2 ⊂ B(x1, 16A4
0R) and that

∫
X �σ

2 (x) dμ(x) =
0, so it remains to estimate ‖�σ

2 ‖L∞(X). For any ( j, k) ∈ G2, applying the definition

of h j
k in (4.12) implies that

∣
∣
∣h

j
k

∣
∣
∣ ≤

∣
∣
∣b

j
k

∣
∣
∣ +

∑

l∈I j+1

∣
∣
∣b

j+1
l φ

j
k

∣
∣
∣ +

∑

l∈I j+1

∣
∣
∣L

j+1
k,l φ

j+1
l

∣
∣
∣ .

By the definition of b j
k , we have supp b j

k ⊂ B(x j
k , 2A0r j

k ). Moreover, for any x ∈
B(x j

k , 2A0r j
k ),

∣
∣
∣b

j
k (x)

∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣

f (x) − 1

‖φ j
k ‖L1(X)

∫

B(x j
k ,2A0r j

k )
f (ξ)φ

j
k (ξ) dμ(ξ)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣ f (x) − f

(
x j

k

)∣∣
∣ + 1

‖φ j
k ‖L1(X)

∫

B(x j
k ,2A0r j

k )

∣
∣
∣ f (ξ) − f

(
x j

k

)∣∣
∣φ

j
k (ξ) dμ(ξ) � ε.

(7.3)

If b j+1
l φ

j
k �= 0, then B(x j

k , 2A0r j
k ) ∩ B(x j+1

l , 2A0r j+1
l ) �= ∅, which further implies

that r j+1
l ≤ 6A2

0r j
k . Thus, for any x ∈ B(x j+1

l , 2A0r j+1
l ), we have d(x, x j+1

l ) <

12A3
0r j

k and hence an argument similar to the estimation of (7.3) gives

∣
∣
∣b

j+1
l (x)

∣
∣
∣ =

∣
∣
∣
∣
∣

f (x) − 1

‖φ j+1
l ‖L1(X)

∫

B(x j+1
l ,2A0r j+1

l )

f (ξ)φ
j+1

l (ξ) dμ(ξ)

∣
∣
∣
∣
∣
φ

j+1
l (x)

� εφ
j+1

l (x),

so that

∑

l∈I j+1

∣
∣
∣b

j+1
l (x)φ

j
k (x)

∣
∣
∣ � εφ

j
k (x)

∑

l∈I j+1

φ
j+1

l (x) ∼ εφ
j
k (x) � ε.

Using the definition of L j+1
k,l and arguing similarly to the estimation of (7.3), we

conclude that, for any x ∈ X ,

∑

l∈I j+1

∣
∣
∣L

j+1
k,l φ

j
k (x)

∣
∣
∣ � ε,

where L j+1
k,l is as in (4.10). Summarizing all gives ‖h j

k‖L∞(X) � ε. Recalling that

supp h j
k ⊂ B j

k and
∑∞

k=1 1B j
k

≤ L0, we obtain ‖�σ
2 ‖L∞(X) � ε. Therefore, there
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exist a positive constant C̃�, independent of σ and ε, and a (p,∞)-atom a(σ ) such that
�σ
2 = C̃�εa(σ ). This proves that ‖ f ‖H p,∞

fin (X) � 1 and hence finishes the proof of (ii)
under the assumption (7.1).

Now we prove (7.1). Let x /∈ B(x1, 16A4
0R). Suppose that ϕ ∈ Gη

0(β, γ ) with
‖ϕ‖G(x,r ,β,γ ) � 1 for some r ∈ (0,∞). First we consider the case r ≥ 4A2

0d(x, x1)/3.
For any y ∈ B(x, d(x, x1)), we have ‖ϕ‖G(y,r ,β,γ ) � 1, which implies that |〈 f , ϕ〉| �
f ∗(y) and hence

|〈 f , ϕ〉| �
{

1

μ(B(x, d(x, x1)))

∫

B(x,d(x,x1))

[
f ∗(y)

]p dμ(y)

} 1
p

� [μ(B(x1, R))]− 1
p .

(7.4)
Next we consider the case r < 4A2

0d(x1, x)/3. Choose a function ξ satisfying
1B(x1,(2A0)−4d(x1,x)) ≤ ξ ≤ 1B(x1,(2A0)−3d(x1,x)) and ‖ξ‖Ċη(X) � [d(x1, x)]−η. Since
supp f ⊂ B(x1, R), it follows that f ξ = f . Let ϕ̃ := ϕξ . For any y ∈ B(x, d(x, x1)),
assuming for the moment that

‖ϕ̃‖G(y,r ,β,γ ) � 1, (7.5)

we obtain

|〈 f , ϕ〉| =
∣
∣
∣
∣

∫

X
f (z)ϕ(z) dμ(z)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X
f (z)ξ(z)ϕ(z) dμ(z)

∣
∣
∣
∣ = |〈 f , ϕ̃〉| � f ∗(y),

which implies that (7.4) remains true in this case. Therefore, by the arbitrariness of ϕ

and the fact that f ∗ ∼ f �, we obtain (7.1).
Now we fix y ∈ B(x1, d(x1, x)) and prove (7.5). First we consider the size con-

dition. Indeed, if ϕ̃(z) �= 0, then d(z, x1) < (2A0)
−3d(x1, x) and hence d(z, y) <

(16A2
0/7)d(x, z), which implies that

|ϕ̃(z)| ≤ |ϕ(z)| ≤ 1

Vr (x) + V (x, z)

[
r

r + d(x, z)

]γ

∼ 1

Vr (y) + V (y, z)

[
r

r + d(y, z)

]γ

.

To consider the regularity condition of ϕ̃, wemay assume that d(z, z′) ≤ (2A0)
−10[r +

d(y, z)] due to the size condition. For the case d(z, x1) > (2A0)
−1d(x1, x), we have

ϕ̃(z) = 0 and, by y ∈ B(x1, d(x1, x)) and r < 4A2
0d(x1, x)/3, we further obtain

d(z, z′) ≤ (2A0)
−10[r + d(y, z)] ≤ (2A0)

−10[r + A0d(y, x1) + A0d(x1, z)]
≤ (2A0)

−10[4A2
0d(x1, x) + A0d(x1, z)] ≤ (2A0)

−2d(x1, z),

which further implies that d(z′, x1) ≥ 1
A0

d(x1, z) − d(z, z′) ≥ (2A0)
−2d(x1, x) and

hence ϕ̃(z′) = 0. So we only need to consider the case d(z, x1) ≤ (2A0)
−1d(x1, x).

Then we have (2A0)
−1d(x1, x) ≤ d(z, x) ≤ 2A0d(x1, x) and
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d(y, z) ≤ A2
0[d(y, x1) + d(x1, x) + d(x, z)] ≤ 2A2

0d(x1, x)

+A2
0d(x, z) ≤ (2A0)

3d(x, z),

which implies that d(z, z′) ≤ (2A0)
−1[r + d(x, z)] and r + d(y, z) � min{r +

d(x, z), r + d(x, z′), d(x1, x)}. Therefore, by the regularity of ϕ and the definition of
ξ , we conclude that

∣
∣ϕ̃(z) − ϕ̃(z′)

∣
∣ ≤ ξ(z)|ϕ(z) − ϕ(z′)| + |ϕ(z′)||ξ(z) − ξ(z′)|

�
[

d(z, z′)
r + d(x, z)

]β 1

Vr (x) + V (x, z)

[
r

r + d(x, z)

]γ

+ 1

Vr (x) + V (x, z′)

[
r

r + d(x, z′)

]γ [
d(z, z′)
d(x1, x)

]β

�
[

d(z, z′)
r + d(y, z)

]β 1

Vr (y) + V (y, z)

[
r

r + d(y, z)

]γ

.

This proves (7.5) and hence finishes the proofs of (i) and (ii).
Nowwe prove (iii). According to [23, pp. 3347–3348] (see also [27, Theorem 2.6]),

there exists a sequence {Sk}k∈Z of bounded operators on L2(X) with their kernels
satisfying the following conditions:

(i) Sk(x, y) = 0 if d(x, y) ≥ C�δ
k and, for any x, y ∈ X ,

|Sk(x, y)| � 1

Vδk (x) + Vδk (y)
,

where C� is a fixed positive constant greater than 1;
(ii) for any x, x ′, y ∈ X with d(x, x ′) ≤ C�δ

k ,

|Sk(x, y) − Sk(x ′, y)| + |Sk(y, x) − Sk(y, x ′)| �
[

d(x, x ′)
δk

]θ 1

Vδk (x) + Vδk (y)
,

where θ is as in [23, Theorem 2.4];
(iii) for any x ∈ X ,

∫
X Sk(x, y) dμ(y) = 1 = ∫

X Sk(y, x) dμ(y).

For any g ∈ ⋃
p∈[1,∞] L p(X) and x ∈ X , define

Sk g(x) :=
∫

X
Sk(x, y)g(y) dμ(y).

Then, for any (p,∞)-atom a supported on B(z, r) with z ∈ X and r ∈ (0,∞), we
observe that Ska has the following properties:

(a) ‖Ska‖L∞(X) � ‖a‖L∞(X) and limk→∞ ‖Ska − a‖L2(X) = 0;
(b) when k is sufficiently large, supp Sk(a) ⊂ B(z, 2A0r);
(c)

∫
X Ska(x) dμ(x) = 0;

(d) Ska ∈ UC(X).
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Consequently, Ska is a harmless constant multiple of a (p,∞)-atom and hence of
a (p, 2)-atom. Thus, ‖Ska − a‖H p,∞

at (X) ∼ ‖Ska − a‖
H p,2
at (X)

→ 0 as k → ∞.

For any f ∈ H p,∞
at (X), there exists a sequence { fn}n∈N ⊂ H p,∞

fin (X) such that
limn→∞ ‖ fn − f ‖H p,q

at (X) = 0. Then, for any n ∈ N, by the above (a)–(d), we find

that Sk( fn) ∈ H p,∞
fin (X) ∩ UC(X) and that limk→∞ ‖Sk fn − fn‖H p,∞

at (X) = 0. This
proves that ‖Sk fn − f ‖H p,∞

at (X) → 0 as n, k → ∞, which completes the proof of
(iii) and hence of Theorem 7.1. ��

7.2 Criteria of the Boundedness of Sublinear Operators on Hardy Spaces

In this section, applying the finite atomic characterizations of Hardy spaces, we obtain
two criteria on the boundedness of sublinear operators on Hardy spaces.

Recall that a complete vector space B is called a quasi-Banach space if its quasi-
norm ‖ · ‖B satisfies the following condition:

(i) for any f ∈ B, ‖ f ‖B = 0 if and only if f is the zero element in B;
(ii) for any λ ∈ C and f ∈ B, ‖λ f ‖B = |λ|‖ f ‖B;
(iii) there exists C ∈ [1,∞) such that, for any f , g ∈ B, ‖ f + g‖B ≤ C(‖ f ‖B +

‖g‖B).

Next we recall the definition of r -quasi-Banach spaces (see, for example, [20,35,53–
55]).

Definition 7.2 Suppose that r ∈ (0, 1] and Br is a quasi-Banach space with its quasi-
norm ‖·‖Br . The spaceBr is called an r -quasi-Banach space if there exists κ ∈ [1,∞)

such that, for any m ∈ N and { f j }m
j=1 ⊂ Br ,

∥
∥
∥
∥
∥
∥

m∑

j=1

f j

∥
∥
∥
∥
∥
∥

r

Br

≤ κ

m∑

j=1

‖ f j‖r
Br

.

Obviously, when p ∈ (0, 1], L p(X) and H∗,p(X) are p-quasi-Banach-spaces. Let
Y be a linear space and Br an r -quasi-Banach space with r ∈ (0, 1]. An operator
T : Y → Br is said to be Br -sublinear if there exists a positive constant κ ∈ [1,∞)

such that

(i) for any f , g ∈ Y, ‖T ( f ) − T (g)‖Br ≤ κ‖T ( f − g)‖Br ;
(ii) for any m ∈ N, { f j }m

j=1 ⊂ Y and {λ j }m
j=1 ⊂ C,

∥
∥
∥
∥
∥
∥

T

⎛

⎝
m∑

j=1

λ j f j

⎞

⎠

∥
∥
∥
∥
∥
∥

r

Br

≤ κ

m∑

j=1

|λ j |r‖T ( f j )‖r
Br

(see, for example, [35, Definition 2.5], [53, Definition 1.6.7], [55, Remark 1.1(3)],
[54, Definition 1.6] and [20, Definition 5.8]).

The next theorem gives us some criteria for Br -sublinear operators that can be
extended to boundedBr -sublinear operators fromHardy spaces toBr . It can be proved
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by following the proof of [20, Theorem 5.9] with some slight modifications, the details
being omitted.

Theorem 7.3 Let p ∈ (ω/(ω + η), 1] and r ∈ [p, 1]. Suppose that Br is an r-quasi-
Banach space and either of the following holds true:

(i) q ∈ (p,∞) ∩ [1,∞) and T : H p,q
fin (X) → Br is a Br -sublinear operator with

sup{‖T (a)‖Br : a is any (p, q)-atom} < ∞;

(ii) T : H p,∞
fin (X) ∩ UC(X) → Br is a Br -sublinear operator with

sup{‖T (a)‖Br : a is any (p,∞)-atom} < ∞.

Then T can be uniquely extended to a bounded Br -sublinear operator from H p,q
at (X)

to Br .
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