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Abstract

In this work, we show an injectivity result and support theorems for integral moments
of a symmetric m-tensor field on a simple, real analytic, Riemannian manifold. Integral
moments of symmetric m-tensor fields were first introduced by Sharafutdinov. First
we generalize a Helgason type support theorem proven by Krishnan and Stefanov
(Inverse Probl Imaging 3(3):453-464, 2009). We use this extended result along with
the first integral moments of a symmetric m-tensor field to prove the aforementioned
results.
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1 Introduction

Let (€2, g) be a compact, simple, real-analytic Riemannian manifold of dimension n
with smooth boundary 0<2. We parametrize the maximal geodesics in €2 with endpoints
on 92 by their starting points and directions.

Set

I_i={(x,§) € TQ|x €99, ] = 1, (£, v(x)) < 0},
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where v(x) is the outer unit normal to 92 at x. Then we define the g-th integral
moment of a symmetric m-tensor field f, 9 f as a function on I'_ by

I(VX,E)
1f(x. &) = fo 4 (e (), 77 (0)d

I(VX,E) i i
= /(; tqﬁl...in1 (Vx,é (t))fog () --- inng (t)dt.

where yy ¢ (1) is the geodesic starting from x in the direction & and /(yy ¢) is the value
of the parameter ¢ at which this geodesic intersects the boundary again.

The above definition of integral moments for symmetric m-tensor fields was first

introduced by Sharafutdinov in the context of R", see [16]. In the same paper, he proved
that if the first (m + 1) integral moments /9 f forg = 0, 1,..., m of a compactly
supported symmetric m-tensor field f are known along all straight lines, then f can
be uniquely recovered.
The zeroth integral moment coincides with the usual geodesic ray transform of a
symmetric m-tensor field. In this work, we are interested in injectivity results and
support theorem for integral moments defined above. Microlocal techniques play a
very crucial role in proving such results. Guillemin first introduced the microlocal
approach in the Radon transform setting, see [7]. Analytic microlocal techniques were
used by Boman and Quinto in [3] to prove support theorems for Radon transforms with
positive real-analytic weights. For more literature on such support theorems, we refer
to the reader [1,2,4-6,13,14,23] and references therein. For the analytic microlocal
techniques used in this paper, we will mainly refer to [11,18-21].

The geodesic ray transform of a symmetric 2-tensor field which in our notation will
be denoted by 1°( ), arises naturally in the context of lens and boundary rigidity prob-
lems and has been studied in e.g. [15,17,19,20]. Support theorems for such transforms
are of independent interest among mathematicians. In [20], the authors prove an s-
injectivity result for symmetric 2-tensor fields. The same proof works for a symmetric
tensor field of any order. That is, if 79( f) = 0 for all geodesics of £ then its solenoidal
part vanishes. A question arises as to what data is sufficient for us to conclude such an
injectivity result for the tensor field f itself. Using the result stated above, we show
thatif 19 f =0forg =0, 1, ..., m for all the geodesics of €2, then f = 0. Injectivity
results for the local geodesic ray transform of a function have been proved in [22]
using new techniques. We also treat the case in which the integral moments are known
for the open set of geodesics that do not intersect a given geodesically convex set. We
do so using the techniques laid out in [11], where the authors prove a Helgason type
support theorem for symmetric 2-tensor fields over simple, real analytic Riemannian
manifolds. We first extend the result in [11] for symmetric m tensor fields. Using this
new result, we prove a stronger version of such support type theorems, i.e. if we know
11f =0forg =0, 1, ..., mover the open set of geodesics not intersecting a convex
set, then it implies that the support of f lies in the convex set. We would also like to
mention that Krishnan already proved such a support theorem for the case of functions
in [9].
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The paper is organized as follows. In Sect. 2, we give the definitions and our main
theorems. Section 3 has some preliminary propositions and lemmas that are needed
for the proof of the main theorems. In Sect. 4, we will prove a Helgason type support
theorem which we state in Sect. 2 and prove the support theorem. In Sect. 5, we
prove the s-injectivity result mentioned above and use it to prove the injectivity of
integral moments. Finally in the “Appendix”, we provide the proof of some lemmas
and inequalities.

2 Definitions and Statements of the Theorems

Definition 1 (Simple manifold) A compact Riemannian manifold (€2, g) with bound-

ary is said to be simple if

(i) The boundary 9€2 is strictly convex: (Vev(x), §) > O foreach & € T, (02) where
v(x) is the unit outward normal to the boundary.

(i1) The map exp, : exp;1 (2) — Q is a diffeomorphism for each x € .

The second condition ensures that any two points x, y in Q are connected by a
unique geodesic in 2 that depends smoothly on x, y. Any simple manifold €2 is
necessarily diffeomorphic to a ball in R”, see [17]. Therefore, in the analysis of simple
manifolds, we can assume that 2 is a domain 2 C R”. We are going to work on a fixed
simple Riemannian manifold (€2, g) with a fixed real analytic atlas. Let S”*(£2) be the
collection of symmetric m-tensor fields defined on €2 and C°° (5" (£2)) be the space
of symmetric m-tensor fields whose components are in C*°(£2). We will assume the
Einstein summation convention and raise and lower indexes using the metric tensor.
The tensors f;,. ;, and fii=im = f; . eiljl...gimin will be thought of as the same
tensors with different representations.

For 0 < k € Z, we define the real Hilbert space H k(S’" (£2)) as a completion of
C°° (8™ (£2)) with respect to the Sobolev norm || - || corresponding to the following
inductively defined inner product (-, -):

([ =NVF Vo1 + (s @ r,sm@) s

where
(fs &) rrsm () =/ Fir oo (08" () dx
Q

and Lo(S"™(2)) = {f € S"(Q) : [[fllasm@) = (Fs PHiysney < o0F =
HO(S™(R)).

It is well known from [17] that any symmetric m-tensor field can be decomposed
uniquely in the following way:

Theorem 1 [17, Theorem 3.3.2] Let 2 be a compact Riemannian manifold with bound-
ary; letk > 1 and m > 0 be integers. For every field f € H*(S™(R)), there exist
uniquely determined f° € H¥(S™()) and v € H**1(§"~1(Q)) such that

f=f+dv, 8 =0, vlso=0
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where d is symmetrized covariant derivative and § is the formal dual of — d. The fields
f* and dv are known as the solenoidal and the potential parts of f respectively.

Let Q be an open, real analytic extension of €2 such that g can also be extended to
a real analytic metric in €. We will also extend all symmetric tensor fields f defined
on Q2 by 0 in Q \ 2. We will think of each maximal geodesic in €2 as a restriction of a
geodesic with distinct endpoints in Q \ Q to Q. Let yx,y) be the geodesic connecting
x and y.

Let A be an open set of geodesics with endpoints in Q \ € such that any
geodesic in .4 is homotopic, within the set A, to a geodesic lying outside €2. Set

of points lying on the geodesics in A is denoted by Q4 ie. Q4 = |J y and
yeA
042 = Q4 N 3. Now we will define what we mean by a geodesically convex

subset.

Definition 2 A subset K of the Riemannian manifold (€2, g) is said to be geodesically
convex if for any two points x € K and y € K, the geodesic connecting them lies
entirely in the set K.

Finally, let &’ (S~2) be the space of compactly supported tensor fields with distribu-
tional components. We can then extend the definition of I by duality on tensor fields
which are distributions in supported in €2, see [11]. Now we are ready to state the
main theorems that we will prove in this article.

Theorem 2 Let f be a symmetric m-tensor field on a simple, real analytic Riemannian
manifold (2, g) with components in &' (?2) and supported in Q2. Let K be a closed
geodesically convex subset of Q. If for each geodesic y not intersecting K, we have
that 1° f(y) = 0 then we can find a (m — 1)-tensor field v with components in
D' (int(2) \ K) such that f = dv in int(Q) \ K and v = 0 in int(Q) \ Q.

Here we would like to mention that this theorem has been shown to be true for the
case m = 21in [11].

Theorem 3 Let f be a symmetric m-tensor field on a simple, real analytic Riemannian
manifold (2, g) with components in &' (§~2) and supported in Q and K be a closed
geodesically convex subset of Q. If for each geodesic y not intersecting K, we have
that 19 f(y) =0forq =0,1,...,m then supp(f) C K.

Theorem 4 Let (2, g) be a simple, real analytic Riemannian manifold and suppose
that g is real analytic in a neighborhood of cl(2). If for a symmetric m-tensor field f
with components in L?(2), we have that 19 f = 0 for q=0,1,....,m, then f =0.

Here we would like to comment that the Theorem 4 also follows as a corollary of
Theorem 3 when f is supported in €2, however as we show in this paper that it can also
be proved independently using s-injectivity of ray transform where we say 1° = I is
s-injective if 1 f = 0 implies f* = 0. In the next section we will prove a proposition
and some lemmas that will be needed for the proofs of our main theorems.
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3 Preliminaries

We will now prove some results which are analogue of some results already proved
for the case of symmetric 2-tensor fields in [11]. These will be needed later in the
proof of our main theorems.

Fix a maximal geodesic yy connecting xo 7# yo in the closure of Q. We construct
normal coordmates x = (x/, x") at xo in Q so that x" is the distance to X0, and =%; 3x,, i
normal to Bx_"" a < n, see [21, Section 2]. In these coordinates, the metric g satlsﬁes
gni = Oni, for all i, and the Christoffel symbols satisfy Fﬁm =TI'? = 0. Under these
coordinates lines of the type x’ = constant are now geodesics with x" as the arc length
parameter.

Let U be a tubular neighborhood of yp in 2, U = {(x/, x") : |x| < €, a(x) <
x" < b(x")}, where Q2 is locally given by x” = a(x’) and x" = b(x'). In the next
proposition, we prove that for a symmetric m-tensor field f, one can always construct
an (m — 1)-tensor field v in U such that for

h:=f—dv
one has
hiy..in_1n =0,  for all possible values of i j and v(x’, a(x")) = 0.

We use the notation U to denote the tubular neighborhood of yy of the same type but
in .

Remark 1 Numbers of n in the suffix of the tensor v, n;,..; Will be clear from the
order of the tensor v. For example, if v is a m-tensor then

Un..niy..iy = Un.. . nij..ig-
i

(m—k)

Proposition 1 Let f be a smooth symmetric m-tensor field then there exists a unique
(m — 1)-tensor field v such that v(x', a(x")) = 0 and for h = f — dv, we have

hiy.im_in =0,  for all possible values of i;.

To prove this proposition, we need the following lemma for which we provide a proof
in the “Appendix”:

Lemma 1 Let v be a symmetric (im — 1)-tensor field. Then for any 0 < k < m, we
have

V) niv i = (m = k) dvp.nip.iy  2(m —k)
n..nig..iy = m dx" m £ inVn..nig..dy..i1p
k Kk
+ 1 Zavn Nig..dy.i . 2 Z Fp . o
m 3x” m ijig N..Rif.df.lg..01p°
=1 l,q=1,l#q
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Now, let us come back to the proof of Proposition 1.

Proof of Proposition 1 Let us first recall the following definition:

. . avll —
(dv)il...im = O'(ll’ ey lm) Bx’m E lmll i1yed]—1 PUI1 i —1

where o is a the symmetrization operator.
Proving

hi,. n=0

-1

is equivalent to proving the existence of an (m — 1)—tensor field v such that

(dv)il...i,,,,ln = fil...imfln-
First, we consider

0Vy..n
ax"

= fnn

We can solve this equation together with the initial condition v, (x", a(x")) = 0 to
get vp. n-

Now, we use this vy, to get v, i for 1 <i < (n — 1) by solving the following
system of equation:

V)i = fuoni

V. ni m 1 Odv,n

= axrt (x) — zrmvn ap(X) = mfn...ni (x) — 1 oaxf

(x)

together with initial conditions vy, _,; (x’, a(x")) = 0.

Proceeding in a similar manner let us assume that for a given k such that 0 <
(k —1) < (m — 1), we have already found v, i, ,..; for which h, i | i =
Sooniv_yiy — @y nip_y..iy = 0.If (k — 1) = (m — 1) then we are done and if not
then we can find v;,__;,. i, in the following manner. Using Lemma 1, we can construct

the following system of equations for i, p;..i; = 0.

avn...nik...zl
axn 22 Flln n.. nlk‘..l[‘..llp( x)
k
1 OV iy
= _n Mfn. nig...i; (X) — ; T(x)

+ 2 Z Fl[lq n.. nlk‘..ll“.lq‘..l]P(x)
Lg=1,l#q
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Finally, we solve the above system of equations with the initial conditions
Vn..nig..iy X', a(x”)) = 0 to get vy _pi,..i, uniquely. We repeat the same process till
k = (m — 1) to prove the proposition. O

Lemma2 Let f be supported in 2, and 1°f(y) = 0 for all maximal geodesics in
U belonging to some neighborhood of the geodesics xo = const. Then v = 0 in
int(U) \ Q.

Proof Firstlet f € C 0 ($2) with support in £2. We will give another invariant definition
of v and use it to conclude our lemma. For any x € U and any & € T U \ {0} so that
Vx,& stays in U, we set

0 , .
ux, §) = / Firin e WL () pim (). M

—(x.§)

where 7_(x, §) < Ois defined by tracing back the geodesic, such that yx ¢ (7—(x, §)) €
oM.

Extend the definition of yy ¢ for & # 0 as a solution of the geodesic equation. Then
u(x, &) is positive homogeneous of order (m — 1) in &. Consider

u(x, 2&) = A" lu(x, &)

. . 8m_1
= Efln-é”""mu(x,ké):(m—1)!u(x,$),
diff. (im — 1) times w.r.t A
m—1
= 5]’1 ...g.—jmflaéjl.auwu(x,g) =m—-Dux,§&), forr=1.

Now, we shall define a symmetric (m — 1)-tensor field v as the following:

1 gm-!
Uiein-1 00 = T g g O E)L . @
Consider forany 0 </ < (m — 1)
3m—l
Vi iy gnn (X) = (m — 1! &N .. ggim—1-19En ... ggn u(x, %’)L:e”
— ! Ji éjl ! '
T m—-1! gt Q&N . QEM—1-1QET ... Q&N u(x, §) e,
I am—l—l b ) ;
= =Dl %0 ~--8$"m*1*1u(x’§)L:en (using homogenity of u).
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Then, we have

Vp.n(X) = u(x, ey).
We will now show that with this definition of v, for h = f — dv, one has

hiy..im_1n = 0, for all possible values of i ;.

Define

0 : .
w(x,§) =/ . Riy i (Vi 6 OV (0) - - 9 (Dt 3

Claim1 Let0 </ < (m — 1) and w(x, &) be defined as above. Then

/

QEIN ... 9E T w(x, §) =0. @

§=ep

Proof of Claim 1 Consider forany 0 <[ < (m — 1),

3! d!
JEI .. 9E w(x, §) = JEN .- 9E ux, §)

81

T 9EN .. 9Ed

0 _ .
/ ( s)(dv)iln.im Ve Oy () -y (ndr

d! 3!

= 9ei .- ggi ux, §) - 9EI - Qg

0
[ (s sl 50 0) an
) dt Leelm—1 s x.,& x.,&

1 1
BT ux, §) - JEN .- 9E
ol (m —1)!

gen e " T oy

(Ujl e Jli i —i—1 (x)g:ll ce élmilil)

l

(Vi1 I 1)

m—1

ad (m—1)!
mw(x,é)‘szg = mu()ﬁf)‘s:e - m V. (X)
(m—1)! (m —1)!
= m Ule.Ajlnmn(x) - m v_jlu.jm.“n(x)
=0.
Thus the Claim 1 is proved. O

) Birkhduser
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Now let us recall the following relation from [17, Section 1.2]:
Guw(x, &) = hiy_i, (x)&" - & (5)

where G = £19,i — Ffifiéf O¢x is the generator of the geodesic flow. After differenti-
ating (5) (m — 1) times w.r.t. £, we get

gm-! ,
e aeim O E) =Ry i (OF
amfl
- WGW(X’ S)L=en =mlhj  j, n(x).

We will prove that the L.H.S. of the above equation is 0 which will complete the proof
our lemma. Consider

IGw(x, &) 0
TEi T pEd < w(x, 5)) 1, oE (E g 3§kw(x 5))

w8 | 0w, §)

IxJ1 +& & gxi
wx, &) i, 0Pwx, §)
lJ dE (S SJ) agk - Fug 5] QETIEK
PGwx, &)  wx,§) | wx,§) Bw(x, &)

i
dENdER T JxhdER dENdx ]2 +é agjlagjzaxi

X 92 (5151) dw(x, &) [k & %_/)3 w(x, &)

ij agjl aE 2 aEk L agjl AERJER
%w(x, £) koini Pwx, §)
J _Iketeg) N2 7
ol agn EE) gt a5 N19Ek rjss AENQE1IEK
_w,§) | wx,E) L Pwx§) p dwlx, §)
= oxiigER dENdx ]2 dENggRgxi T i gk
?w(x, ) - 9%w(x, ) o BPw(x, )
_ k i k i 1k gig]
2r 1/15 3éjzagk 21—‘ijzg 35_;‘13%-/( 1-‘ijég 3§_j13$j233):k'
Using similar calculations, we get
" Gw(x, &)  ;  9"w(x,§)
AE .. EIm-1 =4 dE ... 9EIm—19x1
L 0" w(x, §)
T T ogkogi . agh gl . ggin-
- I lw(x, &)

= oxiOg .. 9E .. 9

) Birkhduser



1496 Journal of Fourier Analysis and Applications (2019) 25:1487-1512

_ Z " lw(x, £)
it askash LLOE L 9E i
k sig] amw(-xv E)
~Tig'e! JERQEN . gEin—1

From the relation above it follows:

" 1Gw(x, £)

sl =0, (Using Claim 1 and ¥, = 0).
e,

Now that we have proved the proposition for the case when f is smooth, it can be
extended to the case when f is a distribution by exactly the same reasoning as in [11,
Lemma 3.1]. O

4 Proofs of Theorems 2 and 3

We will start with proving some lemmas and propositions required to prove our main
theorems.

From now on, we will work with € and we also note that the analytic wavefront
setof f, WF4(f), is contained in the interior of T*$. The canonical projection form
T*Q onto the base 2 will be denoted by .

Lemma3 Let f be a symmetric m-tensor field as above. Let yy be a geodesic of
Q and U, as in the previous section, be a neighborhood of yy in Q. Assume that
WFA(f)N 7Y U) does not contain co-vectors of the type (¢',0), then the analytic
wavefront of h = f — dv, i.e. W F4(h) also does not contain such co-vectors.

Proof Since v and dv have the same analytic wavefront set, so we will prove the
lemma for v. We will prove this by induction by proving it for v, ;.. i, for every
k < (m — 1). Let us first do the analysis for v,,_,. Note that v, can be rewritten as
a convolution with the Heaviside function in the following manner:

xn
Up.n(X) = / Jn.n(x, y”)dyn
—c0
00 ’
=/ Sron(Ge, YDHE" = y"dy".
—00

The analytic wavefront set of the convolution can be found by applying [8, 8.2.16].
Since we have assumed that WF4 () () 7~ 1(U) does not contain co-vectors of the
type (&', 0), hence it will be true for v, _,(x) as well. Now let us assume that the
lemma holds forany 0 < k—1 < (m —1) i.e. v, ni;_,..i; satisfies the same wavefront
conditions. We will show that this implies that the Lemma 3 is true for k. For this
consider the system of ODEs from Lemma 1,

avn OVn..niy...iy z|

-2 Z Fun n.. mk.‘.zh,‘..tlp(x)

Birkhauser
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K v Loon k
L _ N..nif...0]..0] P o
mf”mmkmll ()C) Z axil ('x) + 2 Z Fi/i,, Un“.nik.“ip“iqmi]p(x) ’
I=1 Lg=L1#q

1
T (m—k)

Un...niy...iy (x,7 a(x,)) =0.
This can be rewritten as :

¥ (D) — A, X" = w,

Ulyncco0 =0

where A is an analytic matrix, 0 = vy._»j,...;; and WF4(w) ) 7~ 1(U) does not have
covectors of the type (&, 0).
By Duhamel’s principle the solution to the above equation is given by:

- X"
v, x") = [T @, X", yHw(x', y")dy”

where @ is analytic. The expression given above for v(x’, x™) can be rewritten as:
D', x") = / SO x" YHE" —yH8(x =y w(y', ydy'dy".

The kernel of the integral operator is given by: ® (x’, x", y")H (x" — y")s(x" — y’).
Note that the frequency set of the analytic wavefront set of the Heaviside and delta
distributions here are perpendicular to each other and hence satisfy Hormander’s non
cancellation condition [8, Theorem 8.5.3]. The lemma then follows from the argument
in [11, Lemma 3.2]. O

4.1 Analyticity Along Conormal Directions

Before moving further, we will need the following proposition which is an analogue
of Proposition 2 from [21] and generalizes that proposition for the case when f is
a symmetric m-tensor field. We will mimic the proof for the case when m = 2 as
given in that paper and adapt the arguments wherever necessary to make it work for a
symmetric tensor field of any order.

Proposition 2 Let Q and f be as above. Let yy be a fixed geodesic through xo normal
to &y where (xq, &) € T*Q\0. Assume (Iof)(y) = 0 for all y in a neighborhood of
Yo and g is analytic in this neighborhood. Let § f = 0 near x¢o. Then

(x0,50) & WFA(f).

Proof For the given geodesic yy that passes through x¢ and is normal to &y, let us
consider a tubular neighborhood U of yy endowed with analytic semi-geodesic coor-
dinates x = (x’, x™) on it. Without loss of generality, assume that xo = 0. Furthermore,
Vx € 9, x' = 0. Note that U ={(x’, x*) : |x'| <€eandl™ <x, <I[T;0 <€ << 1}
in this co-ordinate system. Choose € such that {x : x, = [~,[" and |x/| < €} lies

Birkhauser
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outside Q. Clearly & = (&), 0). Hence our goal is now to show:

(0, 60) € WEA(S).
As stated earlier, we will reproduce the arguments from [21] here for the sake of
completeness. Consider Z = {|x| < 7{ . |xn| = 0} and let the x’ variable be denoted
on Z by z'. Then (z/, 0") are local co-ordinates in nbd(yy) (in the set of geodesics) given

by (7/,0") — Y(z.0),(6',1)- Here, |0’| << 1 (where, the geodesic is in the direction
(0, 1)). By following their arguments verbatim, we get

/ A EOE (6,0 fiy i (b (x,0') . b (x, 0")dx = 0. (6)

Here, (x, 0") — ay (a sequence of functions indexed by N) is analytic and satisfies
0%n| < (CN, a <N, @)
see [21, Equation (38)]. Also, note that »(0,8") = 6 and ay (0, 0") = 1.

Further, let us choose 6 (&) to be a vector depending analytically on & near § = &
and satisfying the following conditions:

0(£)...6=0, 0"()=1 and
0(50) = (0,...,1) = e,

Now, we can rewrite (6) using the above mapping in the following form:
/ MDA (0, 6) iy (D (x, 6) b (x, §)dx = 0. ®)

Here ¢(x,&) = z/...& . This phase function has been shown in [21] to be non-
degenerate in a neighborhood of (0, &) by showing ¢.¢ (0, §) = Id. This also implies
that x — ¢z (x, &) is a diffeomorphism in this neighborhood.

To establish the above condition in a neighborhood of the geodesic yy, one chooses
the co-normal vector

& =e,—1, 1i.e.thecovector (0,0,...,0,1,0) )

and defines

24482+,
e<s)=<sl,...,sn_z,—sl éi"—z ‘5,1>.

This definition of 6 is consistent with the requirement put on 6(¢) as above. One can
then show that the differential of the map & > 6(£) where & € " ! is invertible at
& = en—1, see [21, Equation (44)].

Birkhauser
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Lemma4 [21, Lemma 5] Let, (&) and ¢ (x, &) be as above. Then, 3§ > 0 such that
if

Pe(x,8) = Pe (v, &)
for some x € U, |y| <6, |& — &| < § where & is complex, then y = x.
We study the analytic wavefront set of f using Sjostrand’s complex stationary phase

method. For this assume x, y as in Lemma 4 and |§y — n| < % with € >> 2 and
8 << 1. Multiply (8) by

e = e (13 e00)

where y is the characteristic function of the ball B(0, §) C C" and then integrate w.r.t.
& to get:

f / FPCTENG (e E) Fi (B (x,8) B (v, E)dxdE =0, (10)

In the above equation, 5;\/ = x (& — n)ay is another analytic and elliptic amplitude

for x close to zero and |§ — | < % and

D =—¢p(y.&) +p(x.£) + ’5@ —
Furthermore,

P = ¢ (x,8) — e (v, §) +i(§ —n).

To apply the stationary phase method we need to know the critical points of & +— .
For x and y as in Lemma 4 above, we have:

(i) If y = x, 3 a unique real critical point £, = 7
(i1) If y # x, there are no real critical points
(iii) Also by Lemma 4, if y # x, there is a unique complex critical point if |x — y| <
8/C1 and no critical points for |[x — y| > §/C¢ for some constants Cop and Cy
with C; > Cy.

Define, ¥ (x, y, ) := ®(&.). Thenatx =y
@D Yy(x,x,m) = —=¢e(x, ) (A1) Yu(x, x, ) = ¢ (x,m) (i) Y(x, x, 1) =0.
Now, we split the x integral in (10) into integration over {x : |x — y| > §/Cop} for
some Cp > 1 and its complement. Since, |®g| has a positive lower bound for {x :
|x —y| > 8/Co} and there are no critical points of £ +— @ in this set, we can estimate
that integral in the following manner: First note that, ¢/*®®§) — %eimo‘f ),
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Integrating by parts N times repeatedly with respect to £ together with (7) and using
the fact that |£ — n| = § on the boundary, we get (please see “Appendix” for details)

CN

N
‘ / / FYOTEDE (B f (B (x, £ B G, s)dxds' < c(—)
lx—y|>8/Co A

L oNe b an

We choose N < A/Ce < N + 1 to get an exponential error on the right. Now in
estimating the integral

‘ / eMPOXEM Gy (x E) fiy i,y (OB (x, ) B (x, E)dxdE |, (12)
|[x—y[<8/Co
we use [18, Theorem 2.8] and [18, Remark 2.10] to conclude:

/| e M £ ()BT (x, @ h)dx = O(e M C) (13)
x—yI=8/Co

where o = (y, n) and B is a classical analytical symbol with principal part h®...Qb.
See “Appendix” below for a proof of estimates (13).

Let, B = (y, u) where, u = ¢,(y,n) = n+ O(5). At y = 0, we have u = .
Also @ — B is a diffeomorphism following similar analysis as in [21, Section 4]. If
we write ¢ = «(8), then the above equation becomes:

/ ) VP £ (x) B (x, By Mdx = O(e M C) (14)
[x=y[=8/Co

where i satisfies (i), (ii) and (iii), and B is a classical analytical symbol as before and

Yy, x,m) =—u, Yy(x,x,n)=p and Y(x,x,n) =0.
The symbols in (14) satisfy:

ap(B)(0,0, 1) =0(1) ® ... ® O (1) = 6" (1)

and in particular,
op(B)(0,0,&) =€, ®...Qey,.

Let,0; = e,,6>,...,0y be N = ("+;Z_2) unit vectors at xo = 0 which lie in the
hyperplane perpendicular to &y. We will also assume that {GlQm }lN: | are independent,
where © is a symmetrized product of vectors. The existence of such unit vectors
in any open set can be shown. We can therefore assume that 6, belongs in a small

neighborhood around 01 = ¢,,. Then we can rotate the axes a little such that £y = el
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and 6, = e, and do the same construction as above. This givesus N = ("+:Z_2) phase

functions (), and as many number of analytic symbols for which (14) is true i.e.

/ MVOER £ (x) Bé’;;"m (x, B; Mdx = O(e©) (15)
[x—y|<8/Co

where
op(Bp)(0,0, ) =0,(W) ®...®0,(nw), p=1,...,N up toelliptic factors.

Now we use the fact that § f = 0 near xg. Let xo(x) be a smooth cutoff function near
x = 0 such that it is identically 1 in some neighborhood of x = 0. On integrating

1
7 exp(iAyry (x, B) xo(x)8f =0

w.r.t. x and after an integration by parts, we get

/I e VO fi iy (OC (x, i 1)dx
xX=y|= 0
=0 ije{l,...,n}and j =1,...,(m — 1) (16)

for B, = y small enough and where op(C")(0, 0, &) = (£9)"". This gives us addi-
tional N = (";’f}z) equations such that the system of N + N = ('H'z_l) Egs. (15),
(16) can be viewed as a tensor valued operator on f. We claim that the symbol for this
operator is elliptic at (0, 0, &y). Indeed, to show that the symbol is elliptic at (0, 0, &y)
amounts to showing that the only solution to the following system of equations is

f=0:
0.0 fi.i, =0, forallp={l,....N} (17)

Em i i =0, forl <ij <---<ip_j <n. (18)

Using conditions on 6, and &, it is proved in [10] that above system of equations will
imply f = 0. O

For the more general case, when § f is microlocally analytic at (xg, &), we use the
same arguments as above, except that we multiply (14) by an appropriate cut-off near
(x0, x0, &) and use integration by parts as explained in [11, Section 4] to conclude
the following proposition:

Proposition 3 Let Q, f and yy be as in the statement of Proposition 2. If (xo, &) ¢
W F4(8 f) (where & is normal to the geodesic yy at xq), and I° f (y) = 0 for all y in
a nbd. of yo, then (xo, &) ¢ WFA(f).

The rest of the argument from [11] applies as it is and thereby we prove Theorem
2. We will briefly outline the ideas here for the sake of completeness. We will first
need to show that the following analogue of [11, Theorem 2.2(a)] holds for the case
of symmetric m-tensor fields as well:
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Theorem 5 Let f be as above. Then 1° f (y) = 0 for each geodesic y in A, if and only
if for each geodesic yy € A there exists aneighborhood U of yp and an (m — 1)-tensor
field v € D’(Qu) such that f = dv in Qu, and v = 0 outside .

The “if” part follows from the Fundamental Theorem of Calculus. Note also that one
can first prove the theorem for f suchthat f = f* in Q2 and then use the decomposition
theorem (see Theorem 1), to prove it for any general f. To prove the “only if” part
of the theorem assume that yy is a geodesic in the set A, where A is defined in Sect.
2. This means y can be continuously deformed to a geodesic lying outside €2 and
tangent to 9. Hence by extending all geodesics in €2 to maximal geodesics in €2,
we know that there must exist two continuous curves a(t), b(t), t € [0, 1] such that
Y(a(0),b(0)) 1s tangent to 2, Y(a(r),b(1)) € A and Y(a(1),b(1)) 18 0. Using [12, Theorem
Al], one can show that the Theorem 5 is at least true in a small neighborhood of 92 i.e.
in some neighborhood of the geodesics y(4(r),n()) for 0 < ¢t < 2ty for some 1y << 1.
More precisely,

Lemma5 [11, Lemma 5.1] There exists a neighborhood V of 92 such thatVx € V,
dist(x, 02) < €q for some €y > 0 and a unique vy such that f = dvgin V, vg =0
on 02 and vy is analytic in V, up to the boundary 92.

Note that the above implies that in V, the tensor field » = f — dv as constructed in
Proposition 1 is zero. We will now construct a sequence of neighborhoods beginning
with a neighborhood of y(,(0),»(0)) and up to a neighborhood of y(4(1),5(1)) for which
the locally defined tensor field h = f —dv is zero. However to implement this program
we need the following theorem due to Sato—Kawai—Kashiwara, see e.g. [14] or [23]:

Lemma 6 [23,Lemma3.1] Let f € Dy’ (). Let xo € Q and let U be a neighborhood
of xo. Assume that S is a C* submanifold of  and xo € supp(f) N S. Furthermore,
let S divide U into two open connected sets and assume that f = 0 on one of these
open sets. Let & € Nj:o (S)\O, then (x9,&) € WFA(f).

Consider the cone of all vectors in Tu(t)fi at an angle less than € with ])Lu(t),b(t)] for
some small properly chosen €. The cone C¢(¢) with its vertex at a(t) € 9€2 is then the
image of the above cone of vectors under the exponential map. We choose € > 0 such
that

1. Coc(t) C QA, vt € [0, 1].

2. Cc(t) C [VforO <t <ty where [V = VU(Q\Q)

3. No geodesic inside the cone cl(Ca (1)), tg < t < 1, with vertex at a(t) is tangent
to 082.

For any ¢, let us construct a tensor field /; in Ca(?) just as in Proposition 1. Recall
that the support of A, lies in 2. Since C.(¢) C Vior0<rt< to then by Lemma 5 we
have h; = 0 in Cc(t) C V. Hence the set {t € [0, 1] : hy = 01in Cc(¢)} is non empty.
Let* = sup{t € [0, 1] : h; = 0 in C¢(2)}. We will show: t* = 1. This will imply that
there exists a neighborhood U of ¥y and a (m — 1) tensor field v € D’ (5&) such that
h = f — dv = 0 there.

Assume t* < 1. Then h;+ = 0 in Cc(t*) because h;+ = 0 outside 2. If this
were not true, one could find a cone Cc(f) for some 7 < t* such that C.(f) N Q C
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Cac (t*) N Q and such that i (7) is not zero in Ce(f). Next we will show that i« = 0
in Co(¢t*). This gives us a contradiction, because on increasing ¢* slightly to 7, we
can get Ce(1) N Q C Coe(t*) N Q such that A, is zero in this Cc(¢). Here we would
like to mention that /; as constructed from a tensor field for which f = f* is locally
unique in any open cone in which /; = 0. (This follows from the fact that the solution
of §dv = § f° = 0 and v|3q = 0 is unique in such cones, see also [11, section 5]). In
particular, if i;+ = 0 in Coc (t*) and Ce(r) N Q2 C Coc (t*) N 2, then h; = 0 in Ce(2)
which contradicts the choice for t*. To fulfill our program, consider 4+ in Cp¢ (¢*). As
stated earlier, i, = 0in C(t*). Let € < g < 2¢ be such that C¢, (t*) is the first cone
whose boundary intersects supp(h+). If no such €p can be found then we are done.
Letg € supp(hy+) N0C¢ (). Clearly g ¢ <2, because A+ = 0 outside . So g is an
interior point of Q. In fz, G fiyovimy = O X)iy...i,y_, Where x is the characteristic
function of 2. Recall that we are working with such tensor fields for which f = f¥,
and, one knows that such a tensor field is analytic near d€2, up to 92, see [11, Section
5]. Now,

G s = (Ve 0) &7
= (Xkaisl.‘.im_lj) gjk + ff,.,,im_,jgjkaX

— £S J
- f‘ilmim—ljV X

= _fisl...im,ljvj8397 here 8y represents surface measure on 9€2.
This shows that the analytic wavefront set of § f is in N*(9€2). Let y be the geodesic in
€2 on the surface of dC,(¢*) that contains ¢. Because N*y does not intersect N*9<2,
by Proposition 3 and by Lemma 3, & has no analytic singularities in N*. Consider
a small open set W containing ¢ which is divided by the surface of dC¢,(¢*) into
two open connected sets as in the statement of Lemma 6 and /,+ = 0 in one of these
open sets. Since the co-normals to Ce,(t*) at g are not in W F4(h;), this implies
q ¢ supp(hs) by the Sato—Kawai—Kashiwara theorem mentioned above. This shows
that i+ = 0 in Coe (¢+*) which in turn implies t* = 1. This proves Lemma 5.

Using the condition that any closed path with a base point on 92 is homotopic to a
point lying on 92 and using the geometric arguments in Section 6 of [11] along with
Lemma 5, we conclude the proof of Theorem 2.

Remark 2 The symmetric (m — 1)-tensor field v also has components in &’ (§~2) and is
supported in 2 just like the symmetric m-tensor field f.

4.2 Proof of Theorem 3

In order to prove Theorem 3, we need the following lemma:
Lemma7 Foranyl <k <m, if f = dv with v|yq = 0. Then I* f = —kI*1v.

Proof Consider
I*f(y) = Idv)(y)
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1(y) . . .
:/(; t(dv)i, i, (@) .y @) Ly (2)dt

I(y) o d . y
= fo iy iy () -y @) (0)d
= {tFviy iy (Y@@ Ly @)

I(y) . .
- k/ Ml @)y ) Ly (dr
0

= —kI*"Tu(y),

where first term in the second last equality is 0 because of our assumption v|3q = 0.
Thus, we have our lemma. O

Proof of Theorem 3 Let us come back to the proof of Theorem 3. As we know from
Theorem 2 that if 1° f(y) = If(y) = 0 for each geodesic y not intersecting K then
there exist (m — 1)-tensor field v; which is 0 on the boundary 92 such that f = dv;
on 2\ K. And from Lemma 7, we know

I'f(y) = I'@u)(y) = —1%v1(y).

Again using Theorem 2 we conclude that there exist (m — 2)—tensor field v, such that
v1 = dvy and v2|yq = 0. Using Theorem 2 along with Lemma 7 (72 — 2) more times,
we have

1" f(y) = m! (=)™ 1%, (y) =0

where v, is O-tensor i.e. a function. Now using [9, Theorem 1], we can conclude
v, = 0on Q\ K. And since f = d"v,, on an open connected set 2 \ K therefore f
isalsoOon 2\ K. O

5 Proof of Theorem 4

As we mentioned in Sect. 2 that Theorem 4 also follows as a corollary of Theorem 3
when f is supported in 2. However, we prove it here independently using s-injectivity
of the geodesic ray transform.

To prove Theorem 4, we will need the s-injectivity of the ray transform for sym-
metric m-tensor fields. The proof of s-injectivity for symmetric 2-tensor fields is given
in [20]. The same proof will also work for symmetric tensor fields of any order. For
details, we will refer the reader to [20, Sections 2,3,4]. Hence we have,

Theorem 6 [20, Theorem 1.4] Let (2, g) be a compact, simple real analytic Rie-
mannian manifold with smooth boundary and f be a symmetric m-tensor field with
components in L*>(Q). If I° f (y) = 0 for all y which are geodesics in Q, then f* =0
in .
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Theorem 7 Let Q2 be a compact simple Riemannian manifold with boundary. Letm > 0
and p = m be integers. Then for any f € L2 (8™ (), there exist uniquely determined
Vo, ..., Uy withv; € H'(S™"'Q) fori =0, 1, ..., m such that

m
f= Zdi vi, withv; solenoidal for0 <i <m — 1
i=0

l
and for each0 <i <m — 1, Zdjvm_i+j =0onof2.
j=0

Proof This follows from a repeated application of [17, Theorem 3.3.2]. O

Proof of Theorem 4 We have from Theorem 7 that

m
f= Z d'v;, with v; solenoidal for0 <i <m — 1
i=0

l
and foreach0 <i <m — 1, Zdjvm_i_”:OonaQ. (19)
j=0

Using s-injectivity of /, we know that vg = 0, since it is solenoidal. Now consider

o=1"f(y)=1' (Z d%) »)
i=0

1! (d <de—‘vi>> (y),  sincevg=0
i=1

m
-1 <Z di_lvi> (y)  (using Lemma 7).

i=1

From this, we can conclude v is also 0 because it is the solenoidal part of tensor field
YL d

Now suppose that v1, ..., vr can be shown to be equal to 0 from the knowledge of
I'f, ..., I*f.Then

k m

0= [k+! (f— Zdivi) _ gkl ( Z divi)
0 i=k+1
m

= k! ( > divi) =0

i=k+1

m
= (=D (k + 1)!1°< Z d"k‘u,-) =0, (using Lemma7, (k+ 1) times).
i=k+1
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Therefore Vel = 0 because it is the solenoidal part of the tensor field
(3141 d*=1;). By induction, the proof is now complete. O
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Appendix

Proof of Lemma 1 First, let us recall that for a symmetric (m — 1)-tensor field v,

. . avl]
(dv)ilu.im == G(ll PIIIRR lm) Bxlm E Flmll Vi, oodi—1 Pl oim—1

The idea here is to use an inductive argument for 0 < k < m. We start by showing the
result for k = 0, 1, and then for general k < m.

av
dV)p..n = éf,fdk:O
m—10v, , 2m—1) 1 0v,.
dv)y..ni = " 9t - " Fl]ilvn .np + ; axi fork =1

From this, we see that the result is true for k = 0 and 1. Now, we are going to prove
that the result is also true for k < m. Consider

AV nig..iy =0, ...n, i, -..,il)

V.. ni
2 . (m—k)r? .
dxi Z Flll] n..nig..dj...i2p (m k)Fm'] Un...nig...ia p

=J—4—W—Mh

where

) ) aU . .
J:U(n,...n,lk,...,11)<M ,

dx’t

k
Jl=o@m,.. .ni i1) ZFP'U ;
i R (N TR )| ifiy “n..nig..qj...i2p | °
=2
J2=on,...n,i ,i1) v
P = PN (W) P 1 mlnnlk .op
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Now, we will simplyfy each of the above terms one by one. Consider

v
J=oM,...nig,... ll)<w>

dx’
_ o(n,...n,ig,...,02) avnmnik.“iz +m—1) 8Un...nik...i]
m dxit ax"
_ i an...nik...iz o(n,...n,ig,...,i3) [0vy,, nig...03i1 +(m— 2) Un...nig...iy
m  xi m dxi2 dx"

k
1 Z avn“.nikmi[_lil+1mil + m—k avn...nik...il

Al o (repeating similar arguments).
X m X

2 .
Je=o,...n i, ... 11)( iy Un.onig.. ,21,)

on,...n,ig,...

,12) 4 p
<2Fni1 Un...nig...iap + (m - Z)Fm‘z Ul’lu."ll'kuj}ilp)

m
20n,...n, ik, ...,13)
= m(m — 1) (FZ,I Un...nig...i3p + (m — z)r,[;,l Un...nik...i2p>
m—20o(n,...n,ig,...,103)
+ m@m — 1) (2F512 Vn..nig...izi p + (m — 3)1‘5” vn.“nik...uizilp)
. 2
2 2m —2)o(n,...n,ig,...,I03
— I4 P N
pl— l)rizil Un...nig...i3 p mm — 1) X_: nig Un..nig...izigiy p
(m—3)(m o (n,...n, 0k, ..., 03) _p
m(m — 1) Fm3 Un...nig..izi1 p
3
2
[ — Z 1—-17 v . P
_ igly “n..nig...ialgiri1 p
m(m — 1) T atr q kelalglrtl
+2(m—3)6(n,...n,ik,.. i
m(m — 1) q n Nif.. l4lql1p
(m 4)y(m — 3)o(n, . n,lk,...,l4) p
m(m — 1) Fnl4Un...nikA..i5i3i2i11)a
C2k-1) o Lp o 2m—k) «
- m(m -1 Z igir Un...nik...iq.”ir...i]p m(m ) Z nig V.. nu...tq...tlp
q.r=1,q#r =1

(repeating similar calculation (k — 3)-times).

k
1 . .
Jk = U(n’ EERR N7 SR ll) (Z Ftlll n.. mk“.umlzp)

=2

o, .. .n i) [ & k

= prr e 2 Flpv - + (m — 2)5 r’

m 101 " n..nig.....i2p ijia n nlk.“l]“.l}l]p
=2 1=3

+ (m - 2)Fi[;izvn4..nik..4i4i1p>

. k
o(n,...n,i,

_ ’ s 03) P )4
= p— {zac — DY, Vnniyinp + (m —2) (2 ; O
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k

+2F13i1U” k.. ’4’2p+zzrlllz n nlk“.l’l.“l’;l[p+(m_3)zrlll3 n..nig.. l[ Ld4i2i1p
=3

P
+(m — 3)1_‘”,‘4”;1 nig..isizipp T 2Flslz Un..nig...izi p T (m — 3)Fi3i4 Un...nik...i5i2i1p)}

m—2o(n,...n, ik, ...,103) p
= m(m_l) 22 Zrlﬂq n..ni.. l] tql1p+Flzlq n..nig.. l4tqt]p

P
+ (m—3) (Z Fzm iy d].iginin p + 2Fi3i4 v""'"ik"'i5i2i1p)}

2(k—1) p
m iniy Un..nig..izp

. . 3
(m—=3)oMn,...n, ik, ...,04)
= m(m_ 1) ZZ — l[lq n m;\“flmlql]p

q=1

3

P
+4Z<Fl4lq Y. nig.. W]p)

g=1

p
+ (m - 4) (Z 1—‘1114 n.. n1k4..ll..4l]p + 3Fi5i4v”“'"ik~“i11’>}

3
2k -1
+ mEm _ 1)) Z Flil} vn.“nik“.i;]i:-ilp
q.r=1,q#r
Repeating this expansion for (k-2) times more to get

k—1
1_ (m—k+Don,...,n, i)
e = m(m — 1) ZZ irig Un...nig_y..iy..i p +2(k-2) Z F’k’q N ig_y..dp.i1p
k—1
2k —1) )
+m — )k — I)Fnlk Un..nig_y.dpp [+ m(m — 1) Z r‘iqir vn...nik...i;i;ilp
q.r=1.q%#r
=(m—k+1)(7(n,...,n,ik) I)ZF
m(m — 1) ikiq n..nig_y..dg..it p
k—1
2k —1) )
+m — )k — I)kav" 101 P + m@m — 1) Z Fiqirvn...nik...i;i;ilp
q.r=1.q%#r
k
2(k — 1 2(k — 1 —k
_ 2D e, 2 DD )Z |
m@m — 1) igly "n..nij..ig..dr..i\ p m@m — 1) i iq V.. Nif.dg. i1 p
q.r=1,q9#r =

After putting the values of J, Jk1 and sz in dv, we get

(dv)n...nik...il =

i..i1p

(m — k) avn...nlk‘..ll (m k) Z Flln i

m ax"

) Birkhduser
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k k
1 8Un nlk...ll...ll 2 P
+ ; Z oxlt - E Z Filiq vn.“nik...iﬂ[...i;...ilp'
=1 Lg=1l%q
O
Proof of Estimate (11) Let'L = - ;I‘);sz. Then as already noted

TN (pIPO(06)) — it ®(.8),
Consider,
'// e (tLN(eik¢(y,X,§vn)))éN(_x’ é)ﬁlmim (Z)Bil (x, E) e Eim (x, E)d.xd%“
x—y|> 0

< f / FOOREDIN G 8 f o (B (. E) . B (x, s»dxds‘
[x—=y|>8/Co

82 . .
+N e i i () B (x, Epgyy)| dx
[x=y[>8/Co

Using the fact that, f is compactly supported and using (7), we get (11). O

Proof of the Estimate (13) Consider
| [ (00 ) €0y OB 5,60 v, £
x—y|< 0
Rewrite the above as :
‘ / (MO &) (AP b))
lx—y|<8/Co
/|s e (M POEED NGy (x, €) fiy i (2D (x,g)...l;im(x,é)dxdé‘
ni< 0

Using [18, Remark 2.10], we get

/ (@FPORED) ()
x=y1<5/Co o

1 i (A ¢ = i i
Z Cnﬁk‘”/ - (—) (an(x, E)D" (x, &) ... b (x, &)

2
0<k<ir/C

+R(x,y,n, Mdx

Birkhauser



1510 Journal of Fourier Analysis and Applications (2019) 25:1487-1512

Lemma 8

ANF - ~ ~;
Y G —x "2 k<2> (an (. E)B" (x.8) - b (x, &)
0<k<i/C

is a formal analytic symbol.

Proof Let,

1 /AN - ~; i
o= (3) i e e 60)

Then from the Cauchy integral formula [18, Exercise 2.4],

lag] < Culk 4+ 1"k — D12% sup (an(x, £)B" (x,8) ... 5" (x,§))
Bi()

< Cly(k + 1)"?(k — 112k
<C2,(k+ 1)"/2e2_k (k — l)k_l/22k (Using Stirling’s approximation)

k+1
< c2n<—> (k + 1)/

S k+n/2(k+ /z)n/2+k
Hence,
U (AY 2 7y i
> Cugh 5 ) (anGe Eb" (x, &) b (x, &)
0<k<r/C ’
> A R
0<k<ir/C
is a formal analytic symbol B'l*+i= (x, y, n; 1) by [18, Exercise 1.1]. o
Hence,

/ (e POEEDNan (x, €) fiy i (2D (x, E) .. b (x, £)dxdE
[x—y[<d/Co
= / (MO xEemy £ L () B (x, y, m; A)dx
[x—y[<8/Co
+ / (@ PURED) (R (x, v, 0 M),
[x—y|<d/Co
But,

’/ (eim(y,x,éc,n))ﬁlmim R, y, n; Mdx| = O(e ),
[x—y|<8/Co

Birkhauser
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since,

IR(x,y, m; A)| < |Q]/Ce™/°,

see [18, Remark 2.10]. So, this along with (10) and (11), gives us:

‘ / (MO xEemy £ ()BT (x, y, 3 A)dx| = O(e M),
[x—y|<d/Co

References

10.

11.

12.

13.

15.

16.

17.

18.

. Boman, J.: Helgason’s support theorem for Radon transforms—a new proof and a generalization. In:

Mathematical Methods in Tomography (Oberwolfach, 1990). Lecture Notes in Math., vol. 1497, pp.
1-5. Springer, Berlin (1991)

. Boman, J: Holmgren’s uniqueness theorem and support theorems for real analytic Radon transforms.

In: Geometric Analysis (Philadelphia, PA, 1991). Contemp. Math., vol. 140, pp. 23-30. Amer. Math.
Soc., Providence, RI (1992)

. Boman, J., Quinto, E.T.: Support theorems for real-analytic Radon transforms. Duke Math. J. 55(4),

943-948 (1987)

. Boman, J., Quinto, E.T.: Support theorems for Radon transforms on real analytic line complexes in

three-space. Trans. Amer. Math. Soc. 335(2), 877-890 (1993)

. Eskin, G.: Inverse scattering problem in anisotropic media. Comm. Math. Phys. 199(2), 471-491

(1998)

. Gonzalez, F., Quinto, E.T.: Support theorems for Radon transforms on higher rank symmetric spaces.

Proc. Amer. Math. Soc. 122(4), 1045-1052 (1994)

. Guillemin, V., Sternberg, S.: Geometric asymptotics. American Mathematical Society, Providence, RI,

Mathematical Surveys, No. 14 (1977)

. Hormander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics. In:

Distribution Theory and Fourier Analysis. Springer, Berlin (2003). Reprint of the second edition
[Springer, Berlin; MR1065993 (91m:35001a)] (1990)

. Krishnan, V.P.: A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl.

15(4), 515-520 (2009)

Krishnan, V. P,, Mishra, R. K.: Microlocal analysis for restricted ray transform of symmetric tensor
field in n-dimension. https://arxiv.org/pdf/1808.00644.pdf

Krishnan, V.P., Stefanov, P.: A support theorem for the geodesic ray transform of symmetric tensor
fields. Inverse Prob. Imaging 3(3), 453-464 (2009)

Morrey Jr., C.B., Nirenberg, L.: On the analyticity of the solutions of linear elliptic systems of partial
differential equations. Comm. Pure Appl. Math. 10, 271-290 (1957)

Quinto, E.T.: Support theorems for the spherical radon transform on manifolds. Int. Math. Res. Notices
14, 1-17 (2006)

. Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. In: Hyperfunc-

tions and Pseudo-differential Equations, Proceedings of the Conference of Katata, 1971; dedicated
to the memory of André Martineau. Lecture Notes in Math, vol. 287, pp. 265-529. Springer, Berlin
(1973)

Sharafutdinov, V. A.: Ray transform on riemannian manifolds. Lecture Notes in UWSeattle. http://
www.ima.umn.edu/talks/workshops/7-16-27.2001/sharafutdinov/ (1999)

Sharafutdinov, V.A.: A problem of integral geometry for generalized tensor fields on R”. Dokl. Akad.
Nauk SSSR 286(2), 305-307 (1986)

Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. Inverse and Ill-posed Problems Series. VSP,
Utrecht (1994)

Sjostrand, J.: Singularités analytiques microlocales. Astérisque. 95, vol. 95 of Astérisque, pp. 1-166.
Soc. Math. France, Paris (1982)

) Birkhduser


https://arxiv.org/pdf/1808.00644.pdf
http://www.ima.umn.edu/talks/workshops/7-16-27.2001/sharafutdinov/
http://www.ima.umn.edu/talks/workshops/7-16-27.2001/sharafutdinov/

1512

Journal of Fourier Analysis and Applications (2019) 25:1487-1512

19.
20.
21.
22.

23.

Stefanov, P., Uhlmann, G.: Stability estimates for the X-ray transform of tensor fields and boundary
rigidity. Duke Math. J. 123(3), 445-467 (2004)

Stefanov, P., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Amer. Math.
Soc. 18(4), 975-1003 (2005). (electronic)

Stefanov, P, Uhlmann, G.: Integral geometry on tensor fields on a class of non-simple Riemannian
manifolds. Amer. J. Math. 130(1), 239-268 (2008)

Uhlmann, G., Vasy, A.: The inverse problem for the local geodesic ray transform. Invent. Math. 205(1),
83-120 (2016)

Zhou, Y., Quinto, E.: Two-radius support theorems for spherical Radon transforms on manifolds. In:
Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998),
vol. 251, pp. 501-508. Contemp. Math., . Amer. Math. Soc., Providence, RI (2000)

) Birkhéduser



	Support Theorems and an Injectivity Result for Integral Moments of a Symmetric m-Tensor Field
	Abstract
	1 Introduction
	2 Definitions and Statements of the Theorems
	3 Preliminaries
	4 Proofs of Theorems 2 and 3
	4.1 Analyticity Along Conormal Directions
	4.2 Proof of Theorem 3

	5 Proof of Theorem 4
	Acknowledgements
	Appendix
	References




