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Abstract Polynomial approximation is studied in the Sobolev space WI’7 (wg,p) that
consists of functions whose r-th derivatives are in weighted L? space with the Jacobi
weight function w, g. This requires simultaneous approximation of a function and its
consecutive derivatives up to s-th order with s < r. We provide sharp error estimates
given in terms of E,, (f) LP(wq,g)» the error of best approximation to f ) by polyno-
mials in L?(wq,g), and an explicit construction of the polynomials that approximate
simultaneously with the sharp error estimates.
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1 Introduction

Polynomial approximation on a finite interval is a classical problem at the center of
approximation theory. The purpose of this paper is to consider simultaneous approx-
imation of a function and its derivatives by polynomials on an interval in L?” norms
defined with respect to a Jacobi weight function. Although this problem has been
studied by several researchers, our results are new in several aspects.
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Let wq, g be the Jacobi weight function defined by wy g(x) 1= (1 — x)*(1 + x)P
fora, 8 > —land x € (—1,1). For 1 < p < oo, define

1 1/p
I flLrw, p) = </1 If(X)I”wa,ﬁ(X)dx> ,

and, for p = oo, define this norm as the usual uniform norm || f||cc. For » € N,
let C"[—1, 1] denote the space of functions that have r-th continuous derivatives on
[—1,1].For 1 < p < o0, let W;(waylg) be the Sobolev space

Wi (wap) = {f € C" ' [=1,1]: £ € L (wa.p)}.

and, for p = oo, define this space as C"[—1, 1]. We define the norm of W;(wa,ﬁ) by

, 1/p
L k)P
||f||W,’,(wa,ﬂ) = (Z ”f( )”Lﬁ(wmﬂ)> :

k=0

Forn € N, let I1,, denote the space of polynomials of degree at most » in one variable.
The standard error of best approximation by polynomials in I1,, is defined by

En(f)Lrwep = pienrfl,, If = PlLrwep)-

The characterization of this quantity via an appropriate modulus of smoothness lies
in the center of Approximation Theory and is widely studied; see, for example, [5,6].

For p = 2, the n-th partial sum S, P f of the Fourier—Jacobi series satisfies

En(P) 12wy = | = SP 1] 2 (LD

(wa,ﬂ)‘

However, using S, P f for approximation in W (wg,g) gives a much weaker result
than optimal (cf. [2,7]), which will be discussed in Sect. 2 below.

Throughout this paper, we denote by ¢ a generic constant, independent of n, whose
value may vary from line by line. We prove two types of results for approximation in
the Sobolev space.

Theorem 1.1 Let «, 8 > —1. Assume f € W;(wa,ﬁ) ifl < p<ooorf e
CS[—1, 1] if p = o0. Then there exists a polynomial p,, € Iy, such that

If = Pallwswap) = CEn(f ) Lr(wey). 1< p < o0. (1.2)

Theorem 1.2 Let o, f > —1. Assume f € Wp(wep) if 1 = p < o0or f €
C5[—1, 11 if p = o<. Then there exists a polynomial p,, € Iy, such that

<cn M E(f) oy, 1= p <00, (1.3)

*) _ k)
Hf Prll Loy =

provided either « = 0 or 8 = 0.
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Evidently, the estimate (1.3) is stronger than the estimate (1.2) but it holds under
more restrictive conditions. Moreover, (1.3) is sharp; in fact, the order of the estimate
is sharp for each fixed k.

The estimate (1.2) provides a sharp estimate for the error of best polynomial approx-
imation in the Sobolev norm. It is known [13] that, for r € N,

En()rrawas <cn ¢ FO o, 0@ =vV1—x2,  (14)

so that the righthand side of (1.2) and (1.3) can be stated with E,, (f COYY (Wap) replaced
by n=" || £ L7 (wq, ) In the case p = 2, estimates in the form

Lf = Pullwsap) < en PN VN2,  0<s<r (1.5)

have been established and used in the spectral method for numerical solution of differ-
ential equations in some cases; more precisely, such an estimate was first established
in [2,3] for the case of Chebyshev and Legendre polynomials (@ = 8 = —1/2 or 0)
when s = 1, and later established for general ¢, 8 and s = 1 by several researchers,
see [8,15] and references therein. In latter works, the norm in the lefthand side of (1.5)
is often replaced by

s 1/2
* - k)12
||f||W5(wa,/5) = (Z I ||L2(woz+k./3+k))
k=0

and the norm in the righthand side is replaced by || £ || L2 (W pr)® which we call

x-version. By (1.4), our estimates can be stated in terms of the norm of f ™) forr > s,
so that (1.2) is stronger than (1.5) and offers an estimate somewhat different from (1.5)
in x-version.

The estimate (1.3) is what is known as simultaneous approximation in the Approxi-
mation Theory community, where it is a folklore that each increased derivative reduces
the order of approximation by n~!. However, such estimates are usually established
with a modulus of smoothness of ) in place of E,(f")Lr(u, ) in (1.3) in the
literature (cf. [9,10]).

The polynomial p,, in the theorems can be expressed in a simple explicit formula.
For p = 2, it is the n-th partial sum operator of the Fourier series in the Sobolev
orthogonal polynomials in W3 (wg, g), which are polynomials that are orthogonal with
respect to an inner product that involves derivatives. It should be pointed out, however,
that this fact does not follow from the usual Hilbert space argument, since the norm
of W3 (wg,p) is not arising from the square root of the inner product that defines the
Sobolev orthogonality. Sobolev orthogonal polynomials have been studied extensively
in the special function community (cf. [12] and the references therein), but not their
orthogonal series, and in spectral method community, often with zero boundary at
the end of the intervals. These polynomials are usually given in terms of the Jacobi
polynomials with negative integer parameters, which requires appropriate extensions
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that could be rather delicate (cf. [1,4,8,11,18]). We shall give a more direct defini-
tion of the Sobolev orthogonal polynomials in W3 (wg, g) that does not require such
extensions.

The paper is organized as follows. In the following section, we discuss the approx-

imation behavior of the L? partial sum operator Sy b f in the Sobolev space, which
gives suboptimal result. In Sect. 3, we consider a Sobolev inner product in W} (wg,5)
and define a family of its orthogonal polynomials, for all &, 8 > —1, in an elegant
formula that is more suitable for studying orthogonal series in terms of them. Approx-
imation by polynomials or orthogonal series are studied in the following two sections.
In particular, more elaborate version of Theorems 1.2 and 1.3 will be established in
Sects. 4 and 5, respectively.

2 Jacobi Polynomials and Fourier Jacobi Series

For o, B > —1, the Jacobi polynomials are defined by [16, (4.21.2)],

(@.B) _(a+1)n _n,n+a+,3+1'1_t
PSPt = i 2k o+ 1 P 2.1

in terms of the hypergeometric function 5 F. For convenience, we shall define

211
JaB () — p@p
w0 mn+a+B+1, " @

One advantage of this normalization is the following identity, by [16, (4.5.5)],
d a,B oc-‘rl B+1
d—J @O =J,_ (1). 2.2)

These polynomials are orthogonal with respect to the inner product

1
(f, 8ap 1=/1 f)g(x)we,p(x)dx.

The Fourier orthogonal expansion of f in L?(wyg, ) is defined by

00 o,pB
- - J,
E whjeb  where foF = o dap
hyy"
n=0 n

and hy? = (0P I, 4 is given by [16, (4.3.3)]

20+A+1 Fn+a+DTn+B+DIn+a+B+1)

. 2.3)
T nta+pH+1 nT2n4+a+p+1)2
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The n-th partial sum of this expansion, defined by

sel oy =" FPudP .,

k=0

is the least square polynomial of degree n, that is, (1.1) holds. The operator S,‘:’ﬂ can
be written as a linear integral operator.

For approximation in L?(wg,g), p # 2, we can define a near best approximation
operator as follows. We call n an admissible function if 7 is a C*° function on R
satisfying n(t) = 1 for 0 <t < 1 and (¢) = 0 for ¢ > 2. For an admissible 7, define

2n
k
vt = Yon(5) e,
k=0

It is well known that V' *# defines a bounded linear operator in L7 (wq,g) for 1 <

p < oo and it preserves polynomials up to degree n, that is, V,' b f=ffor fell;
consequently, the following theorem holds (see, for example, [17]).

Theorem 2.1 Leta, B > —1. For f € LP(wq,p) if1 < p < oo, 0r f € C[—1,1]if
p =00,
If = V&P flliroes < En(Hiraey. 1< p<oo. 2.4)

We will also need the Jackson type estimate for the error of best approximation.
Let ¢(x) := +/1 — x2. The following theorem was established in [13].

Theorem 2.2 Let o, B > —1. For f € Wy (wa,p) if 1 < p <o00,0r f € C'[-1,1]
ifp=o0

En(F)rrawas <cn ¢ fO Lo . 1< p < oo. 2.5)

In the rest of this section, we consider the approximation behavior of S, b f in
Lz(wa, g) and in W] (wq,g). Some of the results below are no doubt known but they
provide contrast to our latter development and our proof is simple. We start with a
lemma that is suggestive for our later study. Let d denote the differential operator.

Lemma23 Leta, > —1. Forn=1,2,...,
aseP f = 52t P ). (2.6)

Proof 1t is well-known that the Jacobi polynomials are eigenfunctions of a second
order differential operator [16, (4.21.1)]

. d d
[we.p(1)] IE [(1 _ tz)wa”g(t)] EJ;E"ﬂ = —d JOP,

where A, = n(n + o + B + 1). Integrating by parts and applying this identity, we
obtain by (2.2) that

Birkhduser



J Fourier Anal Appl (2018) 24:1438-1459 1443

1
TP g = f JN0) [waﬂ pr1 (0 ,,H(r)} dt
= /f(t)_[wa+lﬂ+l(t) ,f‘H(t)}dt

= An+1 / f(t)J,;x_;_ﬁl(t)wa ﬁ(t)dt = An+1(f> ]:_,_/fi
-1

Setting f = Jlfl +ﬂl (1), it follows readily from the definition that

—~a+1,p+1 ,
afatt P b —0,1,2,.. 2.7

Consequently, by (2.2) again, we see that

Sa ﬂf(t) o Z fk ﬁJOH-l /3+1(t) Z afa+l B+1Ja+1,ﬂ+l(t) — Sot+1 ﬂ—Hf(l‘).

This completes the proof. O

Theorem 2.4 Let o, > —1 andr € N. For f € L*(wqp) such that f) ¢
Lz(wa+r,ﬂ+r),
En(f)Lz(wa,ﬂ) = n_rEnfr(f(r))Lz(wa+r.ﬁ+r)' (28)

Proof By the Parseval identity, (2.7) and the formula for hZ’ﬁ ,

~a+1,8+1
e

)
2
E"(f)%z(wa,ﬁ):”f - S’?’ﬂf”iz(wa,ﬁ): Z ’fkﬂﬁ‘ hzyﬂ Z 8f
k=n+1

=n

a+1,8+1
hk

k+Dk+a+p+2)

o 1[31
+ +
_§ ‘afk

2

En-1(f' )LQ(w +1.p+1)
where we have used the Parseval identity again at the last step. Iterating this inequality
proves the stated result. O

The identity (2.6) allows us to derive error estimates for simultaneous approxi-

mation by Sy P f . For comparison with our later results, we formulate the following
corollary.

Corollary 2.5 Let o, 8 > —1 andr,s € N. For f € L2(wa+r,ﬁ+,) such that " €
LZ(U)a,ﬁ) andn >r > s,

ot (8¢ 1 = o s7))| en ™R E, (1)

L2<wa,s> wap) 0=k =s. (29
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Proof By (2.6), the left hand side of (2.9) can be rewritten as En,k(f(k))Lz(wHk B10)°

which is bounded by, by (2.8), ™" Ey_r () 24, 5.,y)> I Which we can
remove r — k since wy g(¢) < lifa, 8 > 0andr —k > 0. O

It is possible to remove ¢ in the left hand side of (2.9) with the penalty of a higher
power of n in the righthand side. This was first done in [2], see the proof in [3], for the
Chebyshev and the Legendre cases with » = 1 and later extended to the Gegenbauer
weight in [7], but with || £ 22w, ) in place of E,,_, (f' ))Lz(w ) in (2.10) below,
which is weaker than (2.10) by (2. 5) We give a complete proof for the Jacobi weight.

Theorem 2.6 Leta,f > —1,r=1,2,..,and f € Wzr(wwg). Then

Hak f— gksep

<capnPHTVPE () 2y Ok ST

(2.10)
where cq g is proportional to 1//min{a, B} + 1 when k = 1. Moreover, the estimate
(2.10) is sharp.

L? (wot,ﬂ)

Comparing with (1.3), the order of n in (2.10) is much weaker, which shows that
the least polynomials for L2 (wy, p) 1s not suitable for simultaneous approximation.

The proof of this theorem depends on two lemmas. The first one is an identity on
the Jacobi polynomials.

Lemma 2.7 Fora, > —landn € N,

n
R (R I S il O N omu = 8 DALY WL A L T

n.j
(2.11)
where
b @HBE ey (@t D
J (@ +1); T @+ B+ Dt

Proof The following relations on the Jacobi polynomials are stated in [18],

J’;X’ﬁ(t) Ja+l ﬂ(t) olﬂJ‘"‘H ﬂ(t)

TEP () = TP @) 4 o g B 0, 2.12)

where r,f”g =m+pB)/(2n+ o+ B)2n + o + B+ 1)). Iterating these identities, it
is easy to see that

B+Dn = @+B+x% o
JaetlB gy — J ,/3’
O = B om e B
Jg’ﬂ+l(t)= (a+ 1), Z(_ )n k(a+/3+2)2kjaﬂ‘

(o + B+ 2020 &= (@+Dp *
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Together, these two identities imply that

gl Bl B+2n = (@+B+3)x% JoBl
n

T @BtIm s Bt

=0
n

(B +2)n Z(_l)j (0 + B +2); Jop

T @I @+D;

n

Z(_l)k2k+a+ﬂ (o + )i
a+B+2 B+

k=j

where we have interchanged the order of summations. By induction on n, we can
establish that

Xn:(—l)"Zk +a+p @+ <1yt 1 (a@+2)
P a+B+2 B+ a+p+2(B+2n
; 1 1);
+(_1)./ ,3+ (Cl‘i‘ )]
a+B+2(B+1);
from which the stated result follows from a quick simplification. O

Remark 2.8 The connection coefficients that appear when writing J,, # in terms of
J,,V"s are non-negative if« = yand f >6 > —lorg =8§anda > y > —1, or
o =B >y =38 > —1.Itis interesting to observe that the coefficients in (2.11) may
not be all positive when o # B. For example, it is easy to see that the coefficient for
j = 1and n =4 is negative if ¢ > f.

Our main effort lies in establishing the identity (2.13) in the following lemma.

Lemma 29 Leta,f > —1.If f € W21 (Wq,p), then

SEP(f) — aSPP(f)

n—1
= 3703 (0 as Bed s+ Al g gt
j=0
n—1
+ 3fo1 ((_1)I1+]AjlvﬂBZ[,ﬁDz,b _ A?s‘xB;f,(fo,O[) J;lvﬂ’ (213)
j=0

where A‘;’ﬂ and Bg’ﬂ are defined in (2.11) and

wp _ G+B8+1D
J Qj+a+B+2)Q2j+a+B+3)

) Birkhduser
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Proof First we assume that f € Wj(wg,pg) for r sufficiently large. Since [’ €
Lz(wa) p), its Fourier orthogonal expansion is

f/=Zaff‘*J;"ﬁ

Moreover, since Lz(wa,ﬂ) C Lz(wa+1,ﬂ+1), we can also write, by (2.11), that

oo
—a+1,8+1 1,8+1 aﬂ otﬂ
PSS S =Y (et )
n=0 n=0 j=0

Comparing the two expansions of f”, we conclude, by (2.11), that
oo
o5 =3 Fheet = (—1y AP s+ Al s, (2.14)
n=j
where

o0 oo
o— k /uaﬁ asﬂ R /71’/3 ﬂ,O(
Trj= Y (DFFEABET and 3= BB
k=j k=j

The last two series are absolutely convergent since |5?Z‘fl |(hg;rl)% < Ex(fap.

which decays fast by (2.8), and Ba’ﬁ/(h )2 < c¢/k* and Ba ﬁ/(th)Z <c/k%.
Since it is easy to check that Aa b Bﬁa Ajﬂlea P we also have
sk = Z hcsh o= nittasfis + alfs, ), (2.15)

k=j+1

where wehaveused Xy, ;1 = Xy j—(—1)/ f ﬁBaﬁandEz,j_H =3 ;— f]leﬂa
Solving (2.14) and (2.15) and simplifying, we obtaln

1y = OB (757 - pyParh),

%2, = B “(af“ Ay Dﬂa8f1+1> (2.16)

Now, by (2.2) and (2.11),

n—1 n—1n—1
, _ “u,f ya+l,+1 B ~af ya.p
oSl () =D ST = 30 Y R e Iy
k=0 j=0k=j
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so that, by (2.14), we conclude that

n—1 n—1 oo

SR —astP =" F (A"‘ﬂ kaf;c ) =YY rfctiet
J=0 j=0k=n
n—1 '
= Y [niast sy, + ates] ol 2.17)
j=0

Inserting the expressions for X , and X5 , in (2.15) completes the proof for smooth
f. Since both sides of (2.13) is bounded for f € W21 (Wg,p), as shown in the proof of
Theorem 2.6, the identity holds in W21 (wg,g) by the usual density argument. O

Proof of Theorem 2.6 Assuming (2.13), we proceed with the proof. First we consider
the case k = 1. Let f € W (wq,p). By the triangle inequality,

[0f = 0832 £l L2, ) =

|7 -5, Sh (Y = 0seP ()

L2(wg p) ‘ L2(wap)
The first term in the right hand side is bounded by E,_1(f’)s,g, which is small than
the desired bound. We now bound the second term. By (2.13)

ISEE (F) — 8seP ()12,

(wa,ﬂ)

zha‘ﬁ

e 2,[,1 -
i Z)(—l)"”A‘;’ﬂBﬁf’ﬂ+Af’°‘B,’?"" ;

‘afn+1‘ Z‘( 1)n+1AaﬁBaﬁDa‘3 Aﬂ‘xBﬁolDﬂOl I’laﬁ

j=

By the expression of A‘}"ﬁ and By # in (2.11), it is not difficult to verify that

Otﬁ

Z‘Aaﬁ‘ haﬁ nn+a)n+a+1)>2 n

wﬂ : (,3+1)(2n+a+/3+1)(2n+ot+ﬁ+2)2 B+1
‘Aﬂa b _ n(n+B)n+ p +1)° n

I = I T+ DCntat B+ Dnt+a+p+2? a+l’

and hg’ﬂ | D)y A 12/ hjfl ~ 1. Consequently, we deduce that
2
[S25. = 0852 (P, ) < Cop (\afn ol hn+1>

) Birkhduser



1448 J Fourier Anal Appl (2018) 24:1438-1459

S Caphn [En—l(f/)oc,ﬁ]z s

where the last step follows from the Parseval identity. This proves (2.10) for k = 1
and r = 1, which implies the case k = 1 and » > 1 by (2.8).
The case k > 1 follows inductively. Our main effort lies in proving the inequality

lom (sehrn = aser )| < cn® Byt (g 2.18)
L2 (wa,p)
. m 7%.B a+m,B+m .
form = 1,2,.... Using (2.13) and 0 Jj = Jj_m , we see that the main

ingredient is the estimate the sum

n—1

>

j=m

2
oa+m,o+m
ijm ‘

<n ’Aaﬂ‘ ha+m ,B+m
o, Z

n—1
2
<cn Z ’Aq,ﬂ‘ RPjam=l o pdm2642
j j=m
j=m

where the first inequality follows from the Cauchy—Schwartz inequality and the second
one follows from
ha+m,ﬁ+m/ha,ﬁ ~ n2m—l (2 19)
n n N

’

which can be easily verified by (2.3) and the asymptotic of the Gamma function, and
the third one follows from a straightforward estimate. Consequently, it follows readily
that

2
2”’3‘ n—1 2
Z A%P J‘?‘jm"”“+m’ < cn?mtl
hg»ﬁ : J J
J=m LZ(wa’ﬁ)

and the similar estimate holds when « and § are exchanged in A‘;’ﬂ and By # These
estimates allow us to estimate, by (2.13), that

o7 (s — asg? 1 )| o (|7 g + a7t ).

L2 (wy, ﬁ)
from which (2.18) follows readily.

Assume now (2.10) has been established for a fixed k, we prove that it also holds
for k + 1. By the triangle inequality,

”8k+1f _ ak-l—lS’(;l,ﬁf‘

Lz(wa fi)
< Hak _gkg aﬂ

+ |0 [sehin = aseP o]

L2(we.p) L2(wap)
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The second term is the right hand side can be bounded, by applying (2.18) withm = k
and (2.8), by cn?*T1V2E, 1 (fap < cn®* 120"+ E, (f©))4p, in which the
power of n can be written as —r + 2(k + 1) — 1/2, which agrees with that in (2.10)
for k 4 1, whereas the first term in the right hand side can be bounded, by induction
hypothesis with r replaced by » — 1, by a bound that is less than the above bound. This
completes the proof of (2.10) for k = 1 and the proof.

To show that the order is sharp, we consider g(¢) = +]k b= k(t) which is well
defined for n large even if « < 0 or § < 0. Then g(k) (1) = +1 «(#). Since the
orthogonal expansion of Jnfl_k isitself, En,k(g(k))u‘ﬁ = n+1—k”0‘»ﬂ' Furthermore,

by (2.12), J,;x +ﬂ1 « J:jlk;’i% is a polynomial of degree n — k, so that

k, k k, k s k, k
ok S0P g(r) = S P (W) = et G = T L - T

Consequently, kg — Bkaf’ﬁg = .Zla:f;i+k. It then follows from (2.19) that (2.10) is
sharp for k = r. O

3 Sobolev Orthogonal Polynomials and Orthogonal Expansions

As mentioned in the Sect. 1, for approximation in the Sobolev space W[S7 (W, ), WE
need to work with the Jacobi polynomials with parameters ¢, B being negative integers.
Setting «, B as negative integers in (2.1) leads to a reduction of polynomial degrees,
which causes problems when one considers orthogonal expansions. There have been
several ways of remedying the definition of the Jacobi polynomials in the literature;
see, for example, [1,4,8,11] and the references therein. Motivating by the study in
[18], which will be explained in the end of this section, we give another definition that
can be regarded as either avoiding delicate extensions of the Jacobi polynomials to
negative integers or as an alternative definition that holds for all negative indices.

Definition 3.1 Let«, 8 > —1 and s € N. For 6 € [—1, 1] and n € Ny, define

. P %, 0<n<s-—1,
ja PP (x) = ja 5 S(x) = x [ s—1
) % aﬂ(t)dt n>s.

3.1

It is evident that 7% *#™ is a polynomial of degree n. Furthermore, these poly-

nomials evidently satisfy the following properties:

FPIIPT(x) = g ﬂ(x) n>s; (3.2)
g B 1) n<s-—1
k qa—s,B—s _ k,n> = > _
T (9)—{0’ n>s, 0<k<s-—1, (3.3)

Birkhauser
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where 8% denotes the k-th derivative. Comparing with (2.2), the identity (3.2) suggests
that these polynomials can be regarded as an extension of the Jacobi polynomials with
negative parameters when ¢« —s < —l and/or § —s < —1.If ¢ —s > —1 and
B —s > —1, then both J& P and 7P satisty (3.2), but J* "™ does not
satisfy (3.3). These polynomials are orthogonal with respect to the inner product

(f.8)gp = / FOg () we p(0)dt + Z)»kf(k)(é’)g(k)(e)

k=0
where Aj are positive constants.

Theorem 3.2 For o, 8 > —1 and s € N. The polynomial Jnofe_s’ﬂ_s is orthog-
onal with respect to the inner product (-, );jg and its norm square, hZ‘*S*‘H =

( ;tfs,ﬂfs7 a—s,f— s>aﬂ’ satisfies

bzfs’ﬂfs =X, 0<n<s—1, and hzfs’ﬂfs = hZfs, n>s.

Proof Let m < n. We consider the orthogonality of 7, a=s.p=s and 7, a=s,p=s CIf
n < s — 1 then, by (3.2) and (3.3),

s—1
<$?sﬂSJa sﬁs Z)‘-kakja Sﬂ S(e)akjol Sﬁ S(Q)_)\anm
k=0

Whereas if n > s, then, by (3.2) and (3.3),

1
N A / TSP ) IEE (Dwe.p(x)dx = 8, P

by the orthogonality of the Jacobi polynomials. O

As we mentioned before, the inner product (-, ), B and its associated orthogonal
polynomials have been studied in the literature (see, [12] and its references). Instead
of starting with an extension of the Jacobi polynomials to parameters being negative
integers and constructing orthogonal polynomials accordingly, our construction is
more direct with a strikingly, in comparison, simple proof and works for all real
parameters.

For f € W;, (wg,p), we can study the Fourier orthogonal expansion of f with

respect to the orthogonal system 7, , s, p- %

0 (f jot s,B— s>
F=Y "R PGt with FAm SR e el

n=0 n
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The n-th partial sum of this expansion is defined by

Sg—s,ﬂ—sf _ Ss’gs,ﬂ Sf Z’Yx s,B— sja s,B— s

For s = 0, the operator S, # =5, P f 1is the partial sum of the usual Jacobi expan-
sion. This operator satisfies several simple properties and can be written, in particular,

in terms of the partial sum S, f where we define S,,” ol f=0ifn <0.

Lemma3.3 Leta,f > —lands € N. For f € W;(wa,ﬁ),

WP = @y ifo<n<s—Land PP =51 ifn = s,
Q) S TP =SPE O ifn > ;

3) Forn=0,1,...,

min{n,s—1} k

ng—s,ﬁ—sf(x) — Z f(k)(e)( 9) T (x— t)s_

P £ S (nydt.
G oD o A0
Proof As in the proof of the Theorem 3.2, it is easy to see that, if n < s — 1,
then (f, 7 5P~ Y)O”8 = A f™ (@) and bESPT = ), whereas if n > s then
(f(s), J,! A) and ha sb=s hz,ﬂs for n > s, from which (1) for n > s follows
readily. The case forn < s — 1 follows similarly. By the definition of the partial sum
operator, we then obtain, forn > s,

s—1

S0 = Y fYOF T @+ Y T

k=0 k=s

9) =0,
) s =1 " ap
§jf <e> +§ E oD TP (nat,

which is, after changing the order of the sum and the integral, exactly the right hand
side of (3). Finally, taking s-th derivative of the identity in (3) proves (2). O

In [11], we extended the Jacobi polynomials to allow the parameters to be negative
integers. The extended polynomial, again denoted by J,; b , satisfies (2.2) forall o, B €
R, n € N, and its leading coefficient is x" /n!, that is, J,?’ﬁ(x) =x"/n!+.... Based
on this extension of the Jacobi polynomials, we proved in [18] that the polynomials

5P, n>s.

k

t—1
J75BS (1) — Z s+kﬂs+k 1)( k!)’ b

L =
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are orthogonal with respect to the inner product (-, -), % with 6 = 1. Below we prove

that 7,77 (x) = 7, P 7" (x) for n = 0. Indeed, if n < s, we use (2.2) and the
leading coefficient of J,, *F 1o conclude, by the Taylor expansion, that

(x—1)"
n!

n—1 k
. —1
Jn_s’ﬁ—s (x) — Jn—s,ﬁ—S(x) _ Z ak]n—S,ﬁ—S(l) (-x k' ) — — jn_s,ﬁ—s (X)’

k=0
whereas if n > s, the equivalence follows from the identity [18, (2.9)]

]n*S,ﬁfs(x) — L’;l_s)!(l —_x) JO/S(.X) nz=s,
n.

and the integral form of the Taylor reminder formula. In fact, it is this equivalence that
motivated our definition of 7% *#7* for all &, B € R.

4 Polynomial Approximation in Sobolev Spaces

We shall show that SZ( ,;s’ﬂ ~* f approximates f with the least error, up to a multiple
constant, in the W5 (wq, g) norm. We also define a near best approximation polynomial

that will play the role of S f when p # 2. Fix 6, we define Vi~ *#~* = 2 »F=
fors =1,2,...by

Vi P ) —Zf“"(e) 9) /%V“ﬂf‘”(r)dr 4.1

It is easy to see that V: QS B=s f is a polynomial of degree 2n + s and it preserves

polynomials of degree < n. Furthermore, it satisfies

8 V(x s, B— Af(x) — Vnﬂl,ﬂf(s)(x). (42)

oz s,f—s

To study the approximation property of S «p g forV, g f, we will need the
weighted Hardy inequality with respect to the J acob1 Welght

Lemma 4.1 Fora, > —land f € LP(wq,g), 1 < p < 0,

Y ? 1/p I 1p
(/1 </1 |f(t)|dt> wa,,s(x)dx) <c (/1 |f(x)|pwa,,3(X)dx)

ifandonly if B < p — 1.
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Proof With wy g replaced by a general weight function w, it is known (see, for exam-
ple, [14]) that the inequality holds if and only if

1 1/p x 1/q
sup (/ w(t)dt) </ w(t)l_th> < o0,
—l<x<l X —1

where ¢ = p/(p — 1). If —1 < x < 0, then the first integral is finite and the second
integral is finite if and only if, since | -t ~ 1, 8(1—¢q) > —1l,or < 1/(g—1) = p—1.
If0 < x < 1, then the first integral is bounded by ¢(1 — x)(“+l)/ P whereas the second
integral is bounded by, since 1 4+ ¢ ~ 1, (1 — x)@1=D+D/4 it i5 easy to verify that
their product is finite. O

Theorem 4.2 Let o, p > —l and s € N. For f € Wy(wep) if 1 < p < o0, or
f € C*[—1, 1] if p = o0, the estimate

- Va 5,8— Sf”W;,(wa,ﬂ) < CEn(f(s))Lp(wmﬂ) “4.3)

holds under either one of the following assumptions:

(1 e (=11,
2)0=—-1,B<p—-1lifl<p<ococandp <0ifp=1;
Bb=lLa<p—lifl<p<ococanda <0ifp=1.

Proof By the definition of the || - || W3 (wq,) NOTM, W need to show that
195 — 3V Fllerag <€ Ea(f)irwep. 0 <k <s. (4.4)

Since ° f — Ve ;"0 f = O — VP £O) the estimate (4.4) when k = s follows
immediately. By the Taylor reminder formula, we can write

s—1
fo =3 rho O [T E= 0 ar,
2 ) G- D)

so that

0( S s 9 sl s o s
F@) =V )—f - )1), [0 = vt 19w ] ar

Taking k-th derivatives, 1 < k < s — 1, only reduces the power of (t — 9)5_1 by k.
Since we need to consider k =0, 1, ..., s — 1, we can ignore the factor (r — 9)“‘"’1
For p = o0, the estimate (4.4) follows trtivially from the above identity.

For p > 1, applying the Holder inequality, we obtain

lr =yt g

LP(we,p)
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1
<
—1
1
=
-1

< Hf<s) — yeb o)

P
We, g (x)dx

: ’/ We,p (1) "4/ Pdt
0

r/q
We,p(x)dX.

/ ) L9 @) — V&P FS @)|de
0

rlq
We, g (x)dx

fe ) = VP ()P wg p(1)d1

p /1
LP(we,p) J_1

If6 € (—1, 1), itis easy to see, since wy, g has no singularity at 6, that the last integral
is bounded by a constant for all p > 1. If & = —1, the inequality follows from Lemma
4.1 and the case 6 = 1 follows likewise from the dual Hardy inequality [14]. A direct
proof can also be easily carried out by dividing the integral over [—1, 1] into two
integrals over [—1, 0] and [0, 1], respectively, so that

1 X
/ '/ we.p (1) "9/ Pdt
S

X
/ wa.p(1) "1/ Pdt
%

rlq

0
We,g(x)dx
-1

r/q
We,g(x)dx < c/

1
|
0
the first term in the right hand side is bounded if —8q/p > —lor8 < p/g =p —1,
whereas the second term can be seen to be bounded, after splitting the inner integral
as a sum of two, one over [—1, 0] and the other over [0, x]. The case 6 = 1 works
similarly.
For p = 1, we divide the integral into two terms and exchanging the orders of the
integrals in each term,

X
/ (1+1)"P/Par
—1

r/q
We, g (xX)dx;

X
/ wep (1)~ Pdt
—1

_Vot—s,ﬁ—s H
Hf n.0 f LY (wq,p)

[ 6 1 px
< (/ f +f / >’f“)(t) - V,f"ﬁf(s)(t)‘dtwa,ﬂ(x)dx
—1Jx 6 Jo

6 t
:/ ‘f(S) () — Vrf"ﬁf(s)(t)‘ / We,g(x)dxdt
-1 1
1 1
+/ ‘f(s)(t) _ V’;’lvﬂf(s)(t)‘ / We,g(x)dxdt.
0 t

For 6 € (=1, 1), wy,g(x) ~ (1 — x)* in the first term in the right hand side, which
implies that fil We,p(X)dx < cwq g(t), whereas wy g(x) ~ (1 + x)# in the second
term, which implies that ftl W, (x)dx < cwgy, g(t). This proves the case for 6 €
(—=1,1). For 6 = —1, there is only the second term, for which we use (1 + )c)/3 <
(1 + 1)# for B < 0 to conclude that ftl We,p(x)dx < cwgy g(t) for B < 0. The case
6 = 1 is proved similarly. The proof is completed. O

Evidently, Theorem 1.1 follows from this theorem with any 8 € (0, 1). In the case

of p = 2, we can replace Vz[’gs’ﬂ ~* f by the partial sum operator S, —Sps I
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Corollary 4.3 Leta, B > —1, s € N. For f € W5 (wq,p), the estimate

17 = 826" g gy < € Enms U 2 p 4.5)
holds if (a) 0 € (—1,1),0r(b)0 = —1and B < 1,0r(c)0 =1anda < 1.

In particular, if f € W, (wg, g) forr > s, then we have

” f - Sf?_syﬂ_sf” Wg(wa.ﬂ) S Cn_r+s En—r (f(r))Lz(wa+r—.v,ﬂ+r—x)

and the righthand is also bounded by ¢ n ™" [|¢" 5 f V|| Lp(w, 4) by Theorem 2.2.

5 Simultaneous Approximation

We now consider the simultaneous approximation by polynomials. Our goal is to
establish the estimate of the type

18% £ — 0" VE P Fllrwe s < en ™ E(f ) 1oy, 0<k <s.

Our result in the previous section shows that this estimate holds for k = 5. We apply
a technique called Aubin-Nitsche duality (see [3, p. 321] and [2]) to handle the case

0 < k < s — 1. For this, we need to work with either 8 = —1 or 6 = 1. We mainly
work with & = —1, since the other case is similar.
Let g be a measurable function on [—1, 1]. For 0 < k < s — 1, we define a function
X s—1 1 s—k—1
(x—1) 1 y—1
Ug f(x) = g wa p(y)dydt.  (5.1)

1 =D! wep® J; (—k—1D)!

It is straightforward to verify that ug x is the solution of the following boundary value
problem of a (25 — k)-th order differential equation:

. _ s—k .
(=1 e, p ()7L (o p (U () = g(x), —1 <x <1,
ul(=1)=0, 0<j<s—1,
lim, 1 L (we p()u® (X)) =0, 0<j<s—k—1 (5.2)

Lemma 5.1 Ifv € W} satisfies v/ (=1) = 0for0 < j <5 —k — 1, then

1

1
/ ug)k(x)v(“k)(x)wa,ﬂ(x)dx :/lg(x)v(x)wa,/g(x)dx.

Proof By the differential equation in (5.2),

1 1 ds—k
/lg(x)v(x)wa,ﬁ(x)dx - (—1)S—’</ (wa”g(x)u;ii(x)) v(x)dx.

1 dx“'*k
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With the help of the boundary conditions of u ¢ atx = 1 and v at —1, successive
integration by parts proves the stated identity. O

Throughout the rest of the paper, we let p and ¢ be related by % + é =1.

Lemma 5.2 Leta > —land g € L9(wq,p), 1 < q < 00. Then, for1 < q < oo,

2
16° 1 s < clgliomey. 0<k<s—1, (5.3)

provided (a) B =0or (b)s =1, 8 < p/2—-1ifl <qg <occand B < —1/2if
q =00
Proof By (5.1), taking s-th derivative gives

1 1 (y _ x)s—k—l
wa,ﬂ(x) x (—k-=1D!

(9)( )= g(y)wa,ﬂ()’)dy~

Taking another (s — k)-th order derivatives by the product rule, we conclude that

. 1 1 _ -1
w00 = —g(x)+2< . ) oy (wa’ﬂ(x)) / (y(j _x)l)! 8()wa()dy.

If 8 = 0, then dx, (m)((l—x)l U'=|(—a);|(1 — x)™*~!. Hence, by (y —
x)/~1 < (1 —x)/~!forx <y < 1, it follows that

i "><x>)<|g(x>|+cz )w f 18 [wa0()dy.

(25—

If ¢ = oo, it follows immediately that ||u k)||oo < c|lglleo- For 1 < g < 00, by the

Holder inequality and ¢ (x)* ™ —k < c(l — x)l/2 as0<k<s-—1,

[

q
Wy, 0(X)dx

¢ (x) 7k

I
=t / gV we,0(y)dy

1
f Wy, 0(t)dt
X

1 1
SC/ |g<y)|‘fwa,ﬁ<y)dy/ (=) dx < cllgl o, o
-1 -1 '

PP o)

(1 — x)la+1/2)q dx

1 1
<c / 129 wa0()dy
—1Jx

whereas for ¢ = 1, exchanging the order of integration shows that
1
I
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1 y
SC/ |g<y)|wa,o<y)f (1 =021 — )" dxdy < cllgllpi gy o)-
—1 —1

Putting this together, we have completed proof of (5.3) under (a).
We now prove (5.3) under the condition in (b). Since s = 1, k has to be zero. Since

d 1
o) = a0 [ gwasrdy — g

and %(wo,,,g(x))_1 =((l—-x)"' =1+ x)_l)(wo,,lg(x))_l, it is easy to see that
our main task is to establish the inequality

1
I
For ¢ = o0, it is easy to see that we need B + 1 —1/2 < Oor 8 < —1/2. For
1 < g < oo, we can follow the proof in (a) and conclude that the inequality holds if

—B(g—1)>¢qg/2—1orB < p/2— 1. This also holds for ¢ = 1 as can be seen by
exchanging the order of the integrals. O

q
wa,ﬁ(x)dx = C”g”%q(waﬁ)-

¢ (x) !
(I = X)we,p(x) Ji

gV wg,g(y)dy

It is worthwhile to mention that if s > 1 and 8 # 0, then we apply the product rule
on 1/wy g(x) = (1 — x)~*(1 + x)~# to obtain

i j
d’ <;>' a _x)j—l < cZ(l _x)—a+i—1(1 +x)—ﬂ—i’

dxi \ we,5(x) e

so that, since the summand in the last expression is independent of j,

s—k

gk - (1= x)(1+x)PH

1
f g wa s (dy.

Following the same proof as before, it is not difficult to see that we need 8 < (1 —
s/2)p — 1 for (5.3). Since B > —1, this makes sense only if s = 1 and 8 < p/2 — 1.

Theorem 5.3 Letwa, 8 > —land f € Wg(wa,,g)forl <p<ooand f € C°[-1, 1]
if p = 00. Then

|| akf - 8kVZ’;S’ﬂ_Sf||Lp(wa'ﬂ) = Cn_s—‘rkEn(f(S))Lp(wa_ﬂ)s 0 =< k =5, (54)

holds under either one of the following sets of assumptions:

(@ 0=—-1Lwith@iseN B=0andl <p<oo,or(ii))s=1,8< p/2—1for
l<p<oocandB <p/2—-1ifp=1;

®o=1LwithGseNaoa=0andl <p <oo,or(i)s =1, a < p/2—1 for
l<p<ooanda <p/2—-1ifp=1.
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Furthermore, for p = 2, we can replace (5.4) by
”3 i a wh- Sf”Lz(w = n_H_kEn—s(f(s))LZ(waﬂ), 0<k=<s. (59

Proof Let us first consider the case = —1 and write Vy, Ps f= Va v ps f for

convenience. Applying Lemma 5.1 with v = 9% f — %V ° A= * f and using (4.2),
we have

(3kf — akvg—s,ﬁ—sjc’ g)a,ﬂ — (f(s) _ Vna’ﬂf(s), u((;)]{)qyﬂ

_ £ _ yaB el ) _ B (s)
_<f Vi P ug g VL%Jug’k>a,,3’

where the second equation follows from the orthogonality of £ — V¥f £ to any
polynomials of degree at most n. By Theorem 2.2 and (5.3),

(s) B () 5)
ug, _V[xj ngHLq(waﬂ)—CEL J( gk)Lq(waﬂ)

S‘+k”¢§‘ —k (25 k)HLq(w[Xﬁ) <C Y+k||g||L‘1(waﬂ),

so that, by the Holder inequality, we conclude that

TR R S W B PCRee e J M v Y O

< en R EL(F) Lo (wa ) 1811 L9 (g ) -

Applying the above inequality to the following expression of the L” norm

@ f =V )
sup

Hakf _ akvfll—s‘,ﬁ—s
181124 (g, ) 20 &1l e we.p)

f”u’(wm.ﬁ) =

completes the proof (5.4) for 6 = —1.
The proof for & = 1 follows similarly with u,  in (5.1) replaced by

1 (t — x)“fl 1 t (t _ y)sfkfl
x (=Dl wap@) Joy (s —k— 1!

Ug k(x) := gV wg,g(y)dydt

for 0 < k < s — 1. The proof follows along the same line and we omit the details. O

Evidently, Theorem 1.2 follows from this theorem with either « = 0 or 8 = 0.
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