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Abstract Polynomial approximation is studied in the Sobolev space Wr
p(wα,β) that

consists of functions whose r -th derivatives are in weighted L p space with the Jacobi
weight function wα,β . This requires simultaneous approximation of a function and its
consecutive derivatives up to s-th order with s ≤ r . We provide sharp error estimates
given in terms of En( f (r))L p(wα,β ), the error of best approximation to f (r) by polyno-
mials in L p(wα,β), and an explicit construction of the polynomials that approximate
simultaneously with the sharp error estimates.
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1 Introduction

Polynomial approximation on a finite interval is a classical problem at the center of
approximation theory. The purpose of this paper is to consider simultaneous approx-
imation of a function and its derivatives by polynomials on an interval in L p norms
defined with respect to a Jacobi weight function. Although this problem has been
studied by several researchers, our results are new in several aspects.
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Let wα,β be the Jacobi weight function defined by wα,β(x) := (1 − x)α(1 + x)β

for α, β > −1 and x ∈ (−1, 1). For 1 ≤ p < ∞, define

‖ f ‖L p(wα,β ) :=
(∫ 1

−1
| f (x)|pwα,β(x)dx

)1/p

,

and, for p = ∞, define this norm as the usual uniform norm ‖ f ‖∞. For r ∈ N,
let Cr [−1, 1] denote the space of functions that have r -th continuous derivatives on
[−1, 1]. For 1 ≤ p < ∞, let Wr

p(wα,β) be the Sobolev space

Wr
p(wα,β) := { f ∈ Cr−1[−1, 1] : f (r) ∈ L p(wα,β)},

and, for p = ∞, define this space as Cr [−1, 1]. We define the norm of Wr
p(wα,β) by

‖ f ‖Wr
p(wα,β ) :=

(
r∑

k=0

‖ f (k)‖p
L p(wα,β )

)1/p

.

For n ∈ N, let�n denote the space of polynomials of degree at most n in one variable.
The standard error of best approximation by polynomials in �n is defined by

En( f )L p(wα,β ) := inf
p∈�n

‖ f − p‖L p(wα,β ).

The characterization of this quantity via an appropriate modulus of smoothness lies
in the center of Approximation Theory and is widely studied; see, for example, [5,6].
For p = 2, the n-th partial sum Sα,β

n f of the Fourier–Jacobi series satisfies

En( f )L2(wα,β ) = ∥∥ f − Sα,β
n f

∥∥
L2(wα,β )

. (1.1)

However, using Sα,β
n f for approximation in Wr

2 (wα,β) gives a much weaker result
than optimal (cf. [2,7]), which will be discussed in Sect. 2 below.

Throughout this paper, we denote by c a generic constant, independent of n, whose
value may vary from line by line. We prove two types of results for approximation in
the Sobolev space.

Theorem 1.1 Let α, β > −1. Assume f ∈ Ws
p(wα,β) if 1 ≤ p < ∞ or f ∈

Cs[−1, 1] if p = ∞. Then there exists a polynomial pn ∈ �2n such that

‖ f − pn‖Ws
p(wα,β ) ≤ c En( f

(s))L p(wα,β ), 1 ≤ p ≤ ∞. (1.2)

Theorem 1.2 Let α, β > −1. Assume f ∈ Ws
p(wα,β) if 1 ≤ p < ∞ or f ∈

Cs[−1, 1] if p = ∞. Then there exists a polynomial pn ∈ �2n such that

∥∥∥ f (k) − p(k)
n

∥∥∥
L p(wα,β )

≤ c n−s+k En( f
(s))L p(wα,β ), 1 ≤ p ≤ ∞, (1.3)

provided either α = 0 or β = 0.
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Evidently, the estimate (1.3) is stronger than the estimate (1.2) but it holds under
more restrictive conditions. Moreover, (1.3) is sharp; in fact, the order of the estimate
is sharp for each fixed k.

The estimate (1.2) provides a sharp estimate for the error of best polynomial approx-
imation in the Sobolev norm. It is known [13] that, for r ∈ N,

En( f )L p(wα,β ) ≤ c n−r‖φr f (r)‖L p(wα,β ), φ(x) :=
√
1 − x2, (1.4)

so that the righthand side of (1.2) and (1.3) can be statedwith En( f (s))L p(wα,β ) replaced
by n−r+s‖ f (r)‖L p(wα,β ). In the case p = 2, estimates in the form

‖ f − pn‖Ws
2 (wα,β ) ≤ cn−r+s‖ f (r)‖L2(wα,β ), 0 ≤ s ≤ r, (1.5)

have been established and used in the spectral method for numerical solution of differ-
ential equations in some cases; more precisely, such an estimate was first established
in [2,3] for the case of Chebyshev and Legendre polynomials (α = β = −1/2 or 0)
when s = 1, and later established for general α, β and s = 1 by several researchers,
see [8,15] and references therein. In latter works, the norm in the lefthand side of (1.5)
is often replaced by

‖ f ‖∗
Ws

2 (wα,β ) :=
(

s∑
k=0

‖ f (k)‖2L2(wα+k,β+k )

)1/2

and the norm in the righthand side is replaced by ‖ f (r)‖L2(wα+r,β+r )
, which we call

∗-version. By (1.4), our estimates can be stated in terms of the norm of f (r) for r ≥ s,
so that (1.2) is stronger than (1.5) and offers an estimate somewhat different from (1.5)
in ∗-version.

The estimate (1.3) is what is known as simultaneous approximation in the Approxi-
mation Theory community, where it is a folklore that each increased derivative reduces
the order of approximation by n−1. However, such estimates are usually established
with a modulus of smoothness of f (r) in place of En( f (r))L p(wα,β ) in (1.3) in the
literature (cf. [9,10]).

The polynomial pn in the theorems can be expressed in a simple explicit formula.
For p = 2, it is the n-th partial sum operator of the Fourier series in the Sobolev
orthogonal polynomials inWs

2 (wα,β), which are polynomials that are orthogonal with
respect to an inner product that involves derivatives. It should be pointed out, however,
that this fact does not follow from the usual Hilbert space argument, since the norm
of Ws

2 (wα,β) is not arising from the square root of the inner product that defines the
Sobolev orthogonality. Sobolev orthogonal polynomials have been studied extensively
in the special function community (cf. [12] and the references therein), but not their
orthogonal series, and in spectral method community, often with zero boundary at
the end of the intervals. These polynomials are usually given in terms of the Jacobi
polynomials with negative integer parameters, which requires appropriate extensions
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that could be rather delicate (cf. [1,4,8,11,18]). We shall give a more direct defini-
tion of the Sobolev orthogonal polynomials in Ws

2 (wα,β) that does not require such
extensions.

The paper is organized as follows. In the following section, we discuss the approx-
imation behavior of the L2 partial sum operator Sα,β

n f in the Sobolev space, which
gives suboptimal result. In Sect. 3, we consider a Sobolev inner product in Wr

2 (wα,b)

and define a family of its orthogonal polynomials, for all α, β > −1, in an elegant
formula that is more suitable for studying orthogonal series in terms of them. Approx-
imation by polynomials or orthogonal series are studied in the following two sections.
In particular, more elaborate version of Theorems 1.2 and 1.3 will be established in
Sects. 4 and 5, respectively.

2 Jacobi Polynomials and Fourier Jacobi Series

For α, β > −1, the Jacobi polynomials are defined by [16, (4.21.2)],

P(α,β)
n (t) = (α + 1)n

n! 2F1

(−n, n + α + β + 1
α + 1

; 1 − t

2

)
(2.1)

in terms of the hypergeometric function 2F1. For convenience, we shall define

Jα,β
n (t) = 2n

(n + α + β + 1)n
P(α,β)
n (t).

One advantage of this normalization is the following identity, by [16, (4.5.5)],

d

dt
Jα,β
n (t) = Jα+1,β+1

n−1 (t). (2.2)

These polynomials are orthogonal with respect to the inner product

〈 f, g〉α,β :=
∫ 1

−1
f (x)g(x)wα,β(x)dx .

The Fourier orthogonal expansion of f in L2(wα,β) is defined by

f =
∞∑
n=0

f̂ α,β
n Jα,β

n , where f̂ α,β
n = 〈 f, Jα,β

n 〉α,β

hα,β
n

and hα,β
n := 〈Jα,β

n , Jα,β
n 〉α,β is given by [16, (4.3.3)]

hα,β
n = 2α+β+1

2n + α + β + 1

�(n + α + 1) �(n + β + 1)�(n + α + β + 1)

n! �(2n + α + β + 1)2
. (2.3)
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The n-th partial sum of this expansion, defined by

Sα,β
n f (x) =

n∑
k=0

f̂ α,β
k Jα,β

k (x),

is the least square polynomial of degree n, that is, (1.1) holds. The operator Sα,β
n can

be written as a linear integral operator.
For approximation in L p(wα,β), p 
= 2, we can define a near best approximation

operator as follows. We call η an admissible function if η is a C∞ function on R+
satisfying η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0 for t ≥ 2. For an admissible η, define

V α,β
n f :=

2n∑
k=0

η

(
k

n

)
f̂ α,β
k Jα,β

k .

It is well known that V α,β
n defines a bounded linear operator in L p(wα,β) for 1 ≤

p ≤ ∞ and it preserves polynomials up to degree n, that is, V α,b
n f = f for f ∈ �n ;

consequently, the following theorem holds (see, for example, [17]).

Theorem 2.1 Let α, β > −1. For f ∈ L p(wα,β) if 1 ≤ p < ∞, or f ∈ C[−1, 1] if
p = ∞,

‖ f − V α,β
n f ‖L p(wα,β ) ≤ c En( f )L p(wα,β ), 1 ≤ p ≤ ∞. (2.4)

We will also need the Jackson type estimate for the error of best approximation.
Let φ(x) := √

1 − x2. The following theorem was established in [13].

Theorem 2.2 Let α, β > −1. For f ∈ Wr
p(wα,β) if 1 ≤ p < ∞, or f ∈ Cr [−1, 1]

if p = ∞,

En( f )L p(wα,β ) ≤ c n−r‖φr f (r)‖L p(wα,β ), 1 ≤ p ≤ ∞. (2.5)

In the rest of this section, we consider the approximation behavior of Sα,β
n f in

L2(wα,β) and in Wr
2 (wα,β). Some of the results below are no doubt known but they

provide contrast to our latter development and our proof is simple. We start with a
lemma that is suggestive for our later study. Let ∂ denote the differential operator.

Lemma 2.3 Let α, β > −1. For n = 1, 2, . . .,

∂Sα,β
n f = Sα+1,β+1

n−1 (∂ f ). (2.6)

Proof It is well-known that the Jacobi polynomials are eigenfunctions of a second
order differential operator [16, (4.21.1)]

[wα,β(t)]−1 d

dt

[
(1 − t2)wα,β(t)

] d

dt
Jα,β
n = −λn J

α,β
n ,

where λn = n(n + α + β + 1). Integrating by parts and applying this identity, we
obtain by (2.2) that
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〈 f ′, Jα+1,β+1
n 〉α+1,β+1 =

∫ 1

−1
f ′(t)

[
wα+1,β+1(t)

d

dt
Jα,β
n+1(t)

]
dt

= −
∫ 1

−1
f (t)

d

dt

[
wα+1,β+1(t)

d

dt
Jα,β
n+1(t)

]
dt

= λn+1

∫ 1

−1
f (t)Jα,β

n+1(t)wα,β(t)dt = λn+1〈 f, Jα,β
n+1〉α,β .

Setting f = Jα,β
n+1(t), it follows readily from the definition that

∂̂ f
α+1,β+1
n = f̂ α,β

n+1, n = 0, 1, 2, . . . . (2.7)

Consequently, by (2.2) again, we see that

∂Sα,β
n f (t) =

n∑
k=1

f̂ α,β
k Jα+1,β+1

k−1 (t) =
n−1∑
k=0

∂̂ f
α+1,β+1
k Jα+1,β+1

k (t) = Sα+1,β+1
n−1 f (t).

This completes the proof. �
Theorem 2.4 Let α, β > −1 and r ∈ N. For f ∈ L2(wα,β) such that f (r) ∈
L2(wα+r,β+r ),

En( f )L2(wα,β ) ≤ n−r En−r ( f
(r))L2(wα+r,β+r )

. (2.8)

Proof By the Parseval identity, (2.7) and the formula for hα,β
k ,

En( f )
2
L2(wα,β )

=‖ f − Sα,β
n f ‖2L2(wα,β )

=
∞∑

k=n+1

∣∣∣ f̂ α,β
k

∣∣∣2 hα,β
k =

∞∑
k=n

∣∣∣∂̂ f α+1,β+1
k

∣∣∣2hα,β
k+1

=
∞∑
k=n

∣∣∣∂̂ f α+1,β+1
k

∣∣∣2 hα+1,β+1
k

(k + 1)(k + α + β + 2)

≤ n−2En−1( f
′)2L2(wα+1,β+1)

,

where we have used the Parseval identity again at the last step. Iterating this inequality
proves the stated result. �

The identity (2.6) allows us to derive error estimates for simultaneous approxi-
mation by Sα,β

n f . For comparison with our later results, we formulate the following
corollary.

Corollary 2.5 Let α, β > −1 and r, s ∈ N. For f ∈ L2(wα+r,β+r ) such that f r ∈
L2(wα,β) and n ≥ r ≥ s,

∥∥∥φk
(
∂k f − ∂k Sα,β

n

)∥∥∥
L2(wα,β )

≤ cn−r+k En−r ( f
(r))L2(wα,β ), 0 ≤ k ≤ s. (2.9)
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Proof By (2.6), the left hand side of (2.9) can be rewritten as En−k( f (k))L2(wα+k,β+k )
,

which is bounded by, by (2.8), n−r+k En−r ( f (r))L2(wα+r−k,β+r−k )
, in which we can

remove r − k since wα,β(t) ≤ 1 if α, β ≥ 0 and r − k ≥ 0. �
It is possible to remove φk in the left hand side of (2.9) with the penalty of a higher

power of n in the righthand side. This was first done in [2], see the proof in [3], for the
Chebyshev and the Legendre cases with r = 1 and later extended to the Gegenbauer
weight in [7], but with ‖ f (r)‖L2(wα,β ) in place of En−r ( f (r))L2(wα,β ) in (2.10) below,
which is weaker than (2.10) by (2.5). We give a complete proof for the Jacobi weight.

Theorem 2.6 Let α, β > −1, r = 1, 2, . . ., and f ∈ Wr
2 (wα,β). Then

∥∥∥∂k f − ∂k Sα,β
n

∥∥∥
L2(wα,β )

≤ cα,β n−r+2k−1/2En−r ( f
(r))L2(wα,β ), 0 ≤ k ≤ r,

(2.10)
where cα,β is proportional to 1/

√
min{α, β} + 1 when k = 1. Moreover, the estimate

(2.10) is sharp.

Comparing with (1.3), the order of n in (2.10) is much weaker, which shows that
the least polynomials for L2(wα,β) is not suitable for simultaneous approximation.

The proof of this theorem depends on two lemmas. The first one is an identity on
the Jacobi polynomials.

Lemma 2.7 For α, β > −1 and n ∈ N,

Jα+1,β+1
n (t) =

n∑
j=0

Cα,β
n, j J

α,β
j (t), Cα,β

n, j := (−1) j+n Aα,β
j Bα,β

n + Aβ,α
j Bβ,α

n ,

(2.11)
where

Aα,β
j := (α + β + 2)2 j

(α + 1) j
and Bα,β

n := (α + 1)n+1

(α + β + 2)2n+1
.

Proof The following relations on the Jacobi polynomials are stated in [18],

Jα,β
n (t) = Jα+1,β

n (t) − τα,β
n Jα+1,β

n−1 (t),

Jα,β
n (t) = Jα,β+1

n (t) + τβ,α
n Jα,β+1

n−1 (t), (2.12)

where τ
α,β
n := (n + β)/((2n + α + β)(2n + α + β + 1)). Iterating these identities, it

is easy to see that

Jα+1,β
n (t) = (β + 1)n

(α + β + 2)2n

n∑
k=0

(α + β + 2)2k
(β + 1)k

Jα,β
k ,

Jα,β+1
n (t) = (α + 1)n

(α + β + 2)2n

n∑
k=0

(−1)n−k (α + β + 2)2k
(α + 1)k

Jα,β
k .
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Together, these two identities imply that

Jα+1,β+1
n = (β + 2)n

(α + β + 3)2n

n∑
k=0

(α + β + 3)2k
(β + 2)k

Jα,β+1
k

= (β + 2)n
(α + β + 3)2n

n∑
j=0

(−1) j
(α + β + 2)2 j

(α + 1) j
Jα,β
j

n∑
k= j

(−1)k
2k + α + β

α + β + 2

(α + 1)k
(β + 2)k

,

where we have interchanged the order of summations. By induction on n, we can
establish that

n∑
k= j

(−1)k
2k + α + β

α + β + 2

(α + 1)k
(β + 2)k

= (−1)n
α + 1

α + β + 2

(α + 2)n
(β + 2)n

+ (−1) j
β + 1

α + β + 2

(α + 1) j
(β + 1) j

from which the stated result follows from a quick simplification. �

Remark 2.8 The connection coefficients that appear when writing Jα,β
n in terms of

J γ,δ
n are non-negative if α = γ and β > δ > −1 or β = δ and α > γ > −1, or

α = β > γ = δ > −1. It is interesting to observe that the coefficients in (2.11) may
not be all positive when α 
= β. For example, it is easy to see that the coefficient for
j = 1 and n = 4 is negative if α > β.

Our main effort lies in establishing the identity (2.13) in the following lemma.

Lemma 2.9 Let α, β > −1. If f ∈ W 1
2 (wα,β), then

Sα,β
n−1( f

′) − ∂Sα,β
n ( f )

= ∂̂ f
α,β
n

n−1∑
j=0

(
(−1)n+ j Aα,β

j Bα,β
n + Aβ,α

j Bβ,α
n

)
Jα,β
j

+ ∂̂ f
α,β
n+1

n−1∑
j=0

(
(−1)n+ j Aα,β

j Bα,β
n Dα,b

n − Aβ,α
j Bβ,α

n Dβ,α
n

)
Jα,β
j , (2.13)

where Aα,β
j and Bα,β

n are defined in (2.11) and

Dα,β
j = ( j + β + 1)

(2 j + α + β + 2)(2 j + α + β + 3)
.
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Proof First we assume that f ∈ Wr
2 (wα,β) for r sufficiently large. Since f ′ ∈

L2(wα,β), its Fourier orthogonal expansion is

f ′ =
∞∑
j=0

∂̂ f
α,β
j Jα,β

j .

Moreover, since L2(wα,β) ⊂ L2(wa+1,β+1), we can also write, by (2.11), that

f ′=
∞∑
n=0

∂̂ f
α+1,β+1
n Jα+1,β+1

n =
∞∑
n=0

f̂ α,β
n+1

n∑
j=0

Cα,β
n, j J

α,β
j =

∞∑
j=0

( ∞∑
n= j

Cα,β
n, j f̂

α,β
n+1

)
Jα,β
j .

Comparing the two expansions of f ′, we conclude, by (2.11), that

∂̂ f
α,β
j =

∞∑
n= j

f̂ α,β
n+1C

α,β
n, j = (−1) j Aα,β

j 1, j + Aβ,α
j 2, j , (2.14)

where

1, j :=
∞∑
k= j

(−1)k f̂ α,β
k+1B

α,β
k and 2, j :=

∞∑
k= j

f̂ α,β
k+1B

β,α
k .

The last two series are absolutely convergent, since |∂̂ f α,β
k+1|(hα,β

k+1)
1
2 ≤ Ek( f )α,β ,

which decays fast by (2.8), and Bα,β
k /(hα,β

k+1)
1
2 ≤ c/k2β and Bα,β

k /(hα,β
k+1)

1
2 ≤ c/k2α .

Since it is easy to check that Aα,β
j+1B

β,α
j = Aβ,α

j+1B
α,β
j , we also have

∂̂ f
α,β
j+1 =

∞∑
k= j+1

f̂ α,β
k+1C

α,β
j+1,k = (−1) j+1Aα,β

j+11, j + Aβ,α
j+12, j , (2.15)

wherewehaveused1, j+1 = 1, j−(−1) j f̂ α,β
j+1B

α,β
j and2, j+1 = 2, j− f̂ α,β

j+1B
β,α
j .

Solving (2.14) and (2.15) and simplifying, we obtain

1, j = (−1) j Bα,β
j

(
∂̂ f

α,β
j − Dα,β

j ∂̂ f
α,β
j+1

)
,

2, j = Bβ,α
j

(
∂̂ f

α,β
j + Dβ,α

j ∂̂ f
α,β
j+1

)
, (2.16)

Now, by (2.2) and (2.11),

∂Sα,β
n ( f ) =

n−1∑
k=0

f̂ α,β
k+1 J

α+1,β+1
k =

n−1∑
j=0

n−1∑
k= j

f̂ α,β
k+1C

α,β
k, j J

α,β
j ,
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so that, by (2.14), we conclude that

Sα,β
n−1( f

′) − ∂Sα,β
n ( f ) =

n−1∑
j=0

(
f̂ α,β
j −

n−1∑
k= j

f̂ α,β
k+1C

α,β
k, j

)
Jα,β
j =

n−1∑
j=0

∞∑
k=n

f̂ α,β
k+1C

α,β
k, j J

α,β
j

=
n−1∑
j=0

[
(−1) j Aα,β

j 1,n + Aβ,α
j 

β,α
2,n

]
Jα,β
j . (2.17)

Inserting the expressions for 1,n and 2,n in (2.15) completes the proof for smooth
f . Since both sides of (2.13) is bounded for f ∈ W 1

2 (wα,β), as shown in the proof of
Theorem 2.6, the identity holds in W 1

2 (wα,β) by the usual density argument. �
Proof of Theorem 2.6 Assuming (2.13), we proceed with the proof. First we consider
the case k = 1. Let f ∈ Wr

2 (wα,β). By the triangle inequality,

∥∥∂ f − ∂Sα,β
n f

∥∥
L2(wα,β )

≤∥∥∥ f ′ − Sα,β
n−1( f

′)
∥∥∥
L2(wα,β )

+
∥∥∥Sα,β

n−1( f
′) − ∂Sα,β

n ( f )
∥∥∥
L2(wα,β )

.

The first term in the right hand side is bounded by En−1( f ′)α,β , which is small than
the desired bound. We now bound the second term. By (2.13)

‖Sα,β
n−1( f

′) − ∂Sα,β
n ( f )‖2L2(wα,β )

=
∣∣∣∂̂ f α,β

n

∣∣∣2
n−1∑
j=0

∣∣∣(−1)n+ j Aα,β
j Bα,β

n + Aβ,α
j Bβ,α

n

∣∣∣2 hα,β
j

+
∣∣∣∂̂ f α,β

n+1

∣∣∣2
n−1∑
j=0

∣∣∣(−1)n+ j Aα,β
j Bα,β

n Dα,β
n − Aβ,α

j Bβ,α
n Dβ,α

n

∣∣∣2 hα,β
j .

By the expression of Aα,β
j and Bα,β

n in (2.11), it is not difficult to verify that

∣∣∣Bα,β
n

∣∣∣2
hα,β
n

n−1∑
j=0

∣∣∣Aα,β
j

∣∣∣2hα,β
j = n(n + α)(n + α + 1)2

(β + 1)(2n + α + β + 1)(2n + α + β + 2)2
∼ n

β + 1

∣∣∣Bβ,α
n

∣∣∣2
hα,β
n

n−1∑
j=0

∣∣∣Aβ,α
j

∣∣∣2hα,β
j = n(n + β)(n + β + 1)2

(α + 1)(2n + α + β + 1)(2n + α + β + 2)2
∼ n

α + 1
,

and hα,β
n |Dα,β

n |2/hα,β
n+1 ∼ 1. Consequently, we deduce that

∥∥Sα,β
n−1( f

′) − ∂Sα,β
n ( f )

∥∥2
L2(wα,β )

≤ cα,β n

(∣∣∣∂̂ f α,β
n

∣∣∣2hα,β
n +

∣∣∣∂̂ f α,β
n+1

∣∣∣2hα,β
n+1

)
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≤ cα,β n
[
En−1( f

′)α,β

]2
,

where the last step follows from the Parseval identity. This proves (2.10) for k = 1
and r = 1, which implies the case k = 1 and r ≥ 1 by (2.8).

The case k > 1 follows inductively. Our main effort lies in proving the inequality

∥∥∥∂m
(
Sα,β
n−1( f

′) − ∂Sα,β
n f

)∥∥∥
L2(wα,β )

≤ c n2m+1En−1( f
′)α,β (2.18)

for m = 1, 2, . . .. Using (2.13) and ∂m Jα,β
j = Jα+m,β+m

j−m , we see that the main
ingredient is the estimate the sum

∥∥∥∥
n−1∑
j=m

Aα,β
j

∣∣∣Jα+m,α+m
j−m

∣∣∣
∥∥∥∥
2

L2(wα,β )

≤ n
n−1∑
j=m

∣∣∣Aα,β
j

∣∣∣2hα+m,β+m
j−m

≤ c n
n−1∑
j=m

∣∣∣Aα,β
j

∣∣∣2hα,β
j−m j2m−1 ≤ c n4m+2β+2.

where the first inequality follows from theCauchy–Schwartz inequality and the second
one follows from

hα+m,β+m
n /hα,β

n ∼ n2m−1, (2.19)

which can be easily verified by (2.3) and the asymptotic of the Gamma function, and
the third one follows from a straightforward estimate. Consequently, it follows readily
that

∣∣∣Bα,β
n

∣∣∣2
hα,β
n

∥∥∥∥∥∥
n−1∑
j=m

Aα,β
j

∣∣∣Jα+m,α+m
j−m

∣∣∣
∥∥∥∥∥∥
2

L2(wα,β )

≤ c n2m+1

and the similar estimate holds when α and β are exchanged in Aα,β
j and Bα,β

n . These
estimates allow us to estimate, by (2.13), that

∥∥∥∂m
(
Sα,β
n−1( f

′) − ∂Sα,β
n f

)∥∥∥
L2(wα,β )

≤ c n2m+1
(∣∣∣∂̂ f α,β

n

∣∣∣2hα,β
n +

∣∣∣∂̂ f α,β
n+1

∣∣∣2hα,β
n+1

)
,

from which (2.18) follows readily.
Assume now (2.10) has been established for a fixed k, we prove that it also holds

for k + 1. By the triangle inequality,

∥∥∥∂k+1 f − ∂k+1Sα,β
n f

∥∥∥
L2(wα,β )

≤
∥∥∥∂k f ′ − ∂k Sα,β

n−1( f
′)
∥∥∥
L2(wα,β )

+
∥∥∥∂k

[
Sα,β
n−1( f

′) − ∂Sα,β
n ( f )

]∥∥∥
L2(wα,β )

.
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The second term is the right hand side can be bounded, by applying (2.18) withm = k
and (2.8), by c n2k+1/2En−1( f ′)α,β ≤ c n2k+1/2n−r+1En−r ( f (r))α,β , in which the
power of n can be written as −r + 2(k + 1) − 1/2, which agrees with that in (2.10)
for k + 1, whereas the first term in the right hand side can be bounded, by induction
hypothesis with r replaced by r −1, by a bound that is less than the above bound. This
completes the proof of (2.10) for k = 1 and the proof.

To show that the order is sharp, we consider g(t) = Ĵα−k,β−k
n+1 (t), which is well

defined for n large even if α < 0 or β < 0. Then g(k)(t) = Ĵα,β
n+1−k(t). Since the

orthogonal expansion of Ĵα,β
n+1−k is itself, En−k(g(k))α,β = ‖ Ĵα,β

n+1−k‖α,β . Furthermore,

by (2.12), Jα,β
n+1−k − Jα+k,β+k

n+1−k is a polynomial of degree n − k, so that

∂k Sα,β
n g(t) = Sα+k,β+k

n−k (g(k)) = Sα+k,β+k
n−k ( Ĵα,β

n+1−k) = Ĵα,β
n+1−k − Ĵα+k,β+k

n+1−k .

Consequently, ∂kg − ∂k Sα,β
n g = Ĵα+k,β+k

n+1−k . It then follows from (2.19) that (2.10) is
sharp for k = r . �

3 Sobolev Orthogonal Polynomials and Orthogonal Expansions

As mentioned in the Sect. 1, for approximation in the Sobolev space Ws
p(wα,β), we

need toworkwith the Jacobi polynomialswith parametersα, β being negative integers.
Setting α, β as negative integers in (2.1) leads to a reduction of polynomial degrees,
which causes problems when one considers orthogonal expansions. There have been
several ways of remedying the definition of the Jacobi polynomials in the literature;
see, for example, [1,4,8,11] and the references therein. Motivating by the study in
[18], which will be explained in the end of this section, we give another definition that
can be regarded as either avoiding delicate extensions of the Jacobi polynomials to
negative integers or as an alternative definition that holds for all negative indices.

Definition 3.1 Let α, β > −1 and s ∈ N. For θ ∈ [−1, 1] and n ∈ N0, define

J α−s,β−s
n (x) = J α−s,β−s

n,θ (x) :=

⎧⎪⎨
⎪⎩

(x − θ)n

n! , 0 ≤ n ≤ s − 1,∫ x

θ

(x − t)s−1

(s − 1)! Jα,β
n−s(t)dt, n ≥ s.

(3.1)

It is evident that J α−s,β−s
n is a polynomial of degree n. Furthermore, these poly-

nomials evidently satisfy the following properties:

∂sJ α−s,β−s
n (x) = Jα,β

n−s(x), n ≥ s; (3.2)

∂kJ α−s,β−s
n (θ) =

{
δk,n, n ≤ s − 1,
0, n ≥ s,

0 ≤ k ≤ s − 1, (3.3)
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where ∂k denotes the k-th derivative. Comparing with (2.2), the identity (3.2) suggests
that these polynomials can be regarded as an extension of the Jacobi polynomials with
negative parameters when α − s ≤ −1 and/or β − s ≤ −1. If α − s > −1 and
β − s > −1, then both Jα−s,β−s

n and J α−s,β−s
n satisfy (3.2), but Jα−s,β−s

n does not
satisfy (3.3). These polynomials are orthogonal with respect to the inner product

〈 f, g〉−s
α,β :=

∫ 1

−1
f (s)(t)g(s)(t)wα,β(t)dt +

s−1∑
k=0

λk f
(k)(θ)g(k)(θ),

where λk are positive constants.

Theorem 3.2 For α, β > −1 and s ∈ N. The polynomial J α−s,β−s
n,θ is orthog-

onal with respect to the inner product 〈·, ·〉−s
α,β and its norm square, hα−s,β−s

n :=
〈J α−s,β−s

n ,J α−s,β−s
n 〉−s

α,β , satisfies

hα−s,β−s
n = λn, 0 ≤ n ≤ s − 1, and hα−s,β−s

n = hα,β
n−s, n ≥ s.

Proof Let m ≤ n. We consider the orthogonality of J α−s,β−s
n and J α−s,β−s

m . If
n ≤ s − 1 then, by (3.2) and (3.3),

〈J α−s,β−s
n ,J α−s,β−s

m 〉−s
α,β =

s−1∑
k=0

λk∂
kJ α−s,β−s

n (θ)∂kJ α−s,β−s
m (θ) = λnδn,m .

Whereas if n ≥ s, then, by (3.2) and (3.3),

〈J α−s,β−s
n ,J α−s,β−s

m 〉−s
α,β =

∫ 1

−1
Jα,β
n−s(x)J

α,β
m−s(x)wα,β(x)dx = δn,mh

α,β
n−s

by the orthogonality of the Jacobi polynomials. �
As we mentioned before, the inner product 〈·, ·〉α,β and its associated orthogonal

polynomials have been studied in the literature (see, [12] and its references). Instead
of starting with an extension of the Jacobi polynomials to parameters being negative
integers and constructing orthogonal polynomials accordingly, our construction is
more direct with a strikingly, in comparison, simple proof and works for all real
parameters.

For f ∈ Ws
p(wα,β), we can study the Fourier orthogonal expansion of f with

respect to the orthogonal system J α−s,β−s
n,θ ,

f =
∞∑
n=0

f̂α−s,β−s
n J α−s,β−s

n,θ with f̂α−s,β−s
n = f̂

α−s,β−s
n,θ := 〈 f,J α−s,β−s

n,θ 〉−s
α,β

h
α−s,β−s
n

.
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The n-th partial sum of this expansion is defined by

Sα−s,β−s
n f = Sα−s,β−s

n,θ f :=
n∑

k=0

f̂
α−s,β−s
k J α−s,β−s

k,θ .

For s = 0, the operator Sα,β
n f = Sα,β

n f is the partial sum of the usual Jacobi expan-
sion. This operator satisfies several simple properties and can be written, in particular,
in terms of the partial sum Sα,β

n−s f , where we define S
α,β
n f = 0 if n < 0.

Lemma 3.3 Let α, β > −1 and s ∈ N. For f ∈ Ws
p(wα,β),

(1) f̂
α−s,β−s
n = f (n)(θ) if 0 ≤ n ≤ s − 1, and f̂

α−s,β−s
n = ∂̂s f

α,β

n−s if n ≥ s;

(2) ∂sSα−s,β−s
n f = Sα,β

n−s f
(s) if n ≥ s;

(3) For n = 0, 1, . . .,

Sα−s,β−s
n f (x) =

min{n,s−1}∑
k=0

f (k)(θ)
(x − θ)k

k! +
∫ x

θ

(x − t)s−1

(s − 1)! Sα,β
n−s f

(s)(t)dt.

Proof As in the proof of the Theorem 3.2, it is easy to see that, if n ≤ s − 1,
then 〈 f,J α−s,β−s

n 〉−s
α,β = λn f (n)(θ) and h

α−s,β−s
n = λn , whereas if n ≥ s then

〈 f (s), Jα,β
n−s〉α,β and h

α−s,β−s
n = hα,β

n−s for n ≥ s, from which (1) for n ≥ s follows
readily. The case for n ≤ s − 1 follows similarly. By the definition of the partial sum
operator, we then obtain, for n ≥ s,

Sα−s,β−s
n f (x) =

s−1∑
k=0

f (k)(θ)J α−s,β−s
k (x) +

n∑
k=s

∂̂s f
α,β

k J α−s,β−s
k (x)

=
s−1∑
k=0

f (k)(θ)
(x − θ)k

k! +
n∑

k=s

∂̂s f
α,β

k

∫ x

θ

(x − t)s−1

(s − 1)! Jα,β
k−s(t)dt,

which is, after changing the order of the sum and the integral, exactly the right hand
side of (3). Finally, taking s-th derivative of the identity in (3) proves (2). �

In [11], we extended the Jacobi polynomials to allow the parameters to be negative
integers. The extended polynomial, again denoted by Jα,β

n , satisfies (2.2) for all α, β ∈
R, n ∈ N, and its leading coefficient is xn/n!, that is, Jα,β

n (x) = xn/n! + . . .. Based
on this extension of the Jacobi polynomials, we proved in [18] that the polynomials

Ĵ−s,β−s
n (t) =

⎧⎪⎪⎨
⎪⎪⎩
J−s,β−s
n (t), n ≥ s,

J−s,β−s
n (t) −

s−1∑
k=0

J−s+k,β−s+k
n−k (1)

(t − 1)k

k! , n < s
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are orthogonal with respect to the inner product 〈·, ·〉−s
0,β with θ = 1. Below we prove

that Ĵ−s,β−s
n (x) ≡ J −s,β−s

n (x) for n ≥ 0. Indeed, if n < s, we use (2.2) and the
leading coefficient of Jα,β

n to conclude, by the Taylor expansion, that

Ĵ−s,β−s
n (x) = J−s,β−s

n (x) −
n−1∑
k=0

∂k J−s,β−s
n (1)

(x − 1)k

k! = (x − 1)n

n! = J −s,β−s
n (x),

whereas if n ≥ s, the equivalence follows from the identity [18, (2.9)]

J−s,β−s
n (x) = (−1)s(n − s)!

n! (1 − x)s J 0,βn−s(x), n ≥ s,

and the integral form of the Taylor reminder formula. In fact, it is this equivalence that
motivated our definition of J α−s,β−s

n for all α, β ∈ R.

4 Polynomial Approximation in Sobolev Spaces

We shall show that Sα−s,β−s
n,θ f approximates f with the least error, up to a multiple

constant, in theWs
2 (wα,β) norm.We also define a near best approximation polynomial

that will play the role of Sα,β
n,θ f when p 
= 2. Fix θ , we define Vα−s,β−s

n = Vα−s,β−s
n,θ

for s = 1, 2, . . . by

Vα−s,β−s
n,θ f (x) :=

s−1∑
k=0

f (k)(θ)
(x − θ)k

k! +
∫ x

θ

(x − t)s−1

(s − 1)! V α,β
n f (s)(t)dt. (4.1)

It is easy to see that Vα−s,β−s
n,θ f is a polynomial of degree 2n + s and it preserves

polynomials of degree ≤ n. Furthermore, it satisfies

∂sVα−s,β−s
n,θ f (x) = V α,β

n f (s)(x). (4.2)

To study the approximation property of Sα,β
n,θ f or Vα−s,β−s

n,θ f , we will need the
weighted Hardy inequality with respect to the Jacobi weight:

Lemma 4.1 For α, β > −1 and f ∈ L p(wα,β), 1 < p < ∞,

(∫ 1

−1

(∫ x

−1
| f (t)|dt

)p

wα,β(x)dx

)1/p

≤ c

(∫ 1

−1
| f (x)|pwα,β(x)dx

)1/p

if and only if β < p − 1.
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Proof With wα,β replaced by a general weight function w, it is known (see, for exam-
ple, [14]) that the inequality holds if and only if

sup
−1<x<1

(∫ 1

x
w(t)dt

)1/p (∫ x

−1
w(t)1−qdt

)1/q

< ∞,

where q = p/(p − 1). If −1 < x ≤ 0, then the first integral is finite and the second
integral is finite if andonly if, since 1−t ∼ 1,β(1−q) > −1, orβ < 1/(q−1) = p−1.
If 0 ≤ x < 1, then the first integral is bounded by c(1− x)(α+1)/p, whereas the second
integral is bounded by, since 1 + t ∼ 1, (1 − x)(α(1−q)+1)/q , it is easy to verify that
their product is finite. �
Theorem 4.2 Let α, β > −1 and s ∈ N. For f ∈ Ws

p(wα,β) if 1 ≤ p < ∞, or
f ∈ Cs[−1, 1] if p = ∞, the estimate

‖ f − Vα−s,β−s
n,θ f ‖Ws

p(wα,β ) ≤ c En( f
(s))L p(wα,β ) (4.3)

holds under either one of the following assumptions:

(1) θ ∈ (−1, 1);
(2) θ = −1, β < p − 1 if 1 < p ≤ ∞ and β ≤ 0 if p = 1;
(3) θ = 1, α < p − 1 if 1 < p ≤ ∞ and α ≤ 0 if p = 1.

Proof By the definition of the ‖ · ‖Ws
p(wα,β ) norm, we need to show that

‖∂k f − ∂kVα−s,−s
n,θ f ‖L p(wα,β ) ≤ c En( f

(s))L p(wα,β ), 0 ≤ k ≤ s. (4.4)

Since ∂s f − ∂sVα−s,β−s
n,θ f = f (s) − V α,β

n f (s), the estimate (4.4) when k = s follows
immediately. By the Taylor reminder formula, we can write

f (x) =
s−1∑
k=0

f (k)(θ)
(x − θ)k

k! +
∫ x

θ

(x − t)s−1

(s − 1)! f (s)(t)dt,

so that

f (x) − Vα−s,β−s
n,θ f (x) =

∫ x

θ

(t − θ)s−1

(s − 1)!
[
f (s)(t) − V α,β

n f (s)(t)
]
dt

Taking k-th derivatives, 1 ≤ k ≤ s − 1, only reduces the power of (t − θ)s−1 by k.
Since we need to consider k = 0, 1, . . . , s − 1, we can ignore the factor (t − θ)s−k−1.
For p = ∞, the estimate (4.4) follows trtivially from the above identity.

For p > 1, applying the Hölder inequality, we obtain

∥∥∥ f − Vα−s,β−s
n,θ f

∥∥∥p

L p(wα,β )
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≤
∫ 1

−1

∣∣∣∣
∫ x

θ

| f (s)(t) − V α,β
n f (s)(t)|dt

∣∣∣∣
p

wα,β(x)dx

≤
∫ 1

−1

∣∣∣∣
∫ x

θ

| f (t) − V α,β
n f (t)|pwα,β(t)dt

∣∣∣∣ ·
∣∣∣∣
∫ x

θ

wα,β(t)−q/pdt

∣∣∣∣
p/q

wα,β(x)dx

≤
∥∥∥ f (s) − V α,β

n f (s)
∥∥∥p

L p(wα,β )

∫ 1

−1

∣∣∣∣
∫ x

θ

wα,β(t)−q/pdt

∣∣∣∣
p/q

wα,β(x)dx .

If θ ∈ (−1, 1), it is easy to see, since wα,β has no singularity at θ , that the last integral
is bounded by a constant for all p > 1. If θ = −1, the inequality follows from Lemma
4.1 and the case θ = 1 follows likewise from the dual Hardy inequality [14]. A direct
proof can also be easily carried out by dividing the integral over [−1, 1] into two
integrals over [−1, 0] and [0, 1], respectively, so that
∫ 1

−1

∣∣∣∣
∫ x

−1
wα,β(t)−q/pdt

∣∣∣∣
p/q

wα,β(x)dx ≤ c
∫ 0

−1

∣∣∣∣
∫ x

−1
(1 + t)−βq/pdt

∣∣∣∣
p/q

wα,β(x)dx

+
∫ 1

0

∣∣∣∣
∫ x

−1
wα,β(t)−q/pdt

∣∣∣∣
p/q

wα,β(x)dx;

the first term in the right hand side is bounded if −βq/p > −1 or β < p/q = p − 1,
whereas the second term can be seen to be bounded, after splitting the inner integral
as a sum of two, one over [−1, 0] and the other over [0, x]. The case θ = 1 works
similarly.

For p = 1, we divide the integral into two terms and exchanging the orders of the
integrals in each term,

∥∥∥ f − Vα−s,β−s
n,θ f

∥∥∥
L1(wα,β )

≤
(∫ θ

−1

∫ θ

x
+

∫ 1

θ

∫ x

θ

) ∣∣∣ f (s)(t) − V α,β
n f (s)(t)

∣∣∣ dtwα,β(x)dx

=
∫ θ

−1

∣∣∣ f (s)(t) − V α,β
n f (s)(t)

∣∣∣
∫ t

−1
wα,β(x)dxdt

+
∫ 1

θ

∣∣∣ f (s)(t) − V α,β
n f (s)(t)

∣∣∣
∫ 1

t
wα,β(x)dxdt.

For θ ∈ (−1, 1), wα,β(x) ∼ (1 − x)α in the first term in the right hand side, which
implies that

∫ t
−1 wα,β(x)dx ≤ cwα,β(t), whereas wα,β(x) ∼ (1 + x)β in the second

term, which implies that
∫ 1
t wα,β(x)dx ≤ cwα,β(t). This proves the case for θ ∈

(−1, 1). For θ = −1, there is only the second term, for which we use (1 + x)β ≤
(1 + t)β for β ≤ 0 to conclude that

∫ 1
t wα,β(x)dx ≤ cwα,β(t) for β ≤ 0. The case

θ = 1 is proved similarly. The proof is completed. �
Evidently, Theorem 1.1 follows from this theorem with any θ ∈ (0, 1). In the case

of p = 2, we can replace Vα−s,β−s
n,θ f by the partial sum operator Sα−s,β−s

n f .
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Corollary 4.3 Let α, β > −1, s ∈ N. For f ∈ Ws
2 (wα,β), the estimate

∥∥ f − Sα−s,β−s
n,θ f

∥∥
Ws

2 (wα,β )
≤ c En−s( f

(s))L2(wα,β ) (4.5)

holds if (a) θ ∈ (−1, 1), or (b) θ = −1 and β < 1, or (c) θ = 1 and α < 1.

In particular, if f ∈ Wr
2 (wα,β) for r ≥ s, then we have

∥∥ f − Sα−s,β−s
n f

∥∥
Ws

2 (wα,β )
≤ c n−r+s En−r ( f

(r))L2(wα+r−s,β+r−s )

and the righthand is also bounded by c n−r+s‖φr−s f (r)‖L p(wα,β ) by Theorem 2.2.

5 Simultaneous Approximation

We now consider the simultaneous approximation by polynomials. Our goal is to
establish the estimate of the type

‖∂k f − ∂kVα−s,β−s
n,θ f ‖L p(wα,β ) ≤ c n−s+k En( f

(s))L p(wα,β ), 0 ≤ k ≤ s.

Our result in the previous section shows that this estimate holds for k = s. We apply
a technique called Aubin-Nitsche duality (see [3, p. 321] and [2]) to handle the case
0 ≤ k ≤ s − 1. For this, we need to work with either θ = −1 or θ = 1. We mainly
work with θ = −1, since the other case is similar.

Let g be a measurable function on [−1, 1]. For 0 ≤ k ≤ s−1, we define a function

ug,k(x) :=
∫ x

−1

(x − t)s−1

(s − 1)!
1

wα,β(t)

∫ 1

t

(y − t)s−k−1

(s − k − 1)! g(y)wα,β(y)dydt. (5.1)

It is straightforward to verify that ug,k is the solution of the following boundary value
problem of a (2s − k)-th order differential equation:

(−1)s−k[wα,β(x)]−1 ds−k

dxs−k

(
wα,β(x)u(s)(x)

) = g(x), −1 ≤ x ≤ 1,

u( j)(−1) = 0, 0 ≤ j ≤ s − 1,

limx→1
d j

dx j

(
wα,β(x)u(s)(x)

) = 0, 0 ≤ j ≤ s − k − 1. (5.2)

Lemma 5.1 If v ∈ Ws
p satisfies v( j)(−1) = 0 for 0 ≤ j ≤ s − k − 1, then

∫ 1

−1
u(s)
g,k(x)v

(s−k)(x)wα,β(x)dx =
∫ 1

−1
g(x)v(x)wα,β(x)dx .

Proof By the differential equation in (5.2),

∫ 1

−1
g(x)v(x)wα,β(x)dx = (−1)s−k

∫ 1

−1

ds−k

dxs−k

(
wα,β(x)u(s)

g,k(x)
)

v(x)dx .



1456 J Fourier Anal Appl (2018) 24:1438–1459

With the help of the boundary conditions of u(s)
g,k at x = 1 and v at −1, successive

integration by parts proves the stated identity. �
Throughout the rest of the paper, we let p and q be related by 1

p + 1
q = 1.

Lemma 5.2 Let α > −1 and g ∈ Lq(wα,β), 1 ≤ q ≤ ∞. Then, for 1 ≤ q ≤ ∞,

‖φs−ku(2s−k)
g,k ‖Lq (wα,β ) ≤ c‖g‖Lq (wα,β ), 0 ≤ k ≤ s − 1, (5.3)

provided (a) β = 0 or (b) s = 1, β < p/2 − 1 if 1 ≤ q < ∞ and β ≤ −1/2 if
q = ∞.

Proof By (5.1), taking s-th derivative gives

u(s)
g,k(x) := 1

wα,β(x)

∫ 1

x

(y − x)s−k−1

(s − k − 1)! g(y)wα,β(y)dy.

Taking another (s − k)-th order derivatives by the product rule, we conclude that

u(2s−k)
g,k (x) = −g(x) +

s−k∑
j=1

(
s − k

j

)
d j

dx j

(
1

wα,β(x)

)∫ 1

x

(y − x) j−1

( j − 1)! g(y)wα,β(y)dy.

If β = 0, then
∣∣∣ d j

dx j

(
1

wα,0(x)

)∣∣∣ (1 − x) j−1 = |(−a) j |(1 − x)−α−1. Hence, by (y −
x) j−1 ≤ (1 − x) j−1 for x ≤ y ≤ 1, it follows that

∣∣∣u(2s−k)
g,k (x)

∣∣∣ ≤ |g(x)| + c
s−k∑
j=1

1

(1 − x)α+1

∫ 1

x
|g(y)|wα,0(y)dy.

If q = ∞, it follows immediately that ‖u(2s−k)
g,k ‖∞ ≤ c‖g‖∞. For 1 < q < ∞, by the

Hölder inequality and φ(x)s−k ≤ c(1 − x)1/2 as 0 ≤ k ≤ s − 1,

∫ 1

−1

∣∣∣∣ φ(x)s−k

(1 − x)α+1

∫ 1

x
g(y)wα,0(y)dy

∣∣∣∣
q

wα,0(x)dx

≤ c
∫ 1

−1

∫ 1

x
|g(y)|qwα,0(y)dy

∣∣∣∣
∫ 1

x
wα,0(t)dt

∣∣∣∣
q/p

wα,0(x)

(1 − x)(α+1/2)q
dx

≤ c
∫ 1

−1
|g(y)|qwα,β(y)dy

∫ 1

−1
(1 − x)q/2−1dx ≤ c‖g‖qLq (wα,0)

,

whereas for q = 1, exchanging the order of integration shows that

∫ 1

−1

∣∣∣∣ φ(x)s−k

(1 − x)α+1

∫ 1

x
g(y)wα,0(y)dy

∣∣∣∣wα,0(x)dx
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≤ c
∫ 1

−1
|g(y)|wα,0(y)

∫ y

−1
(1 − x)α+1/2(1 − x)−α−1dxdy ≤ c‖g‖L1(wα,0)

.

Putting this together, we have completed proof of (5.3) under (a).
We now prove (5.3) under the condition in (b). Since s = 1, k has to be zero. Since

u′′
g,0(x) = d

dx
(wα,β(x))−1

∫ 1

x
g(y)wα,β(y)dy − g(x)

and d
dx (wα,β(x))−1 = (α(1 − x)−1 − β(1 + x)−1)(wα,β(x))−1, it is easy to see that

our main task is to establish the inequality

∫ 1

−1

∣∣∣∣ φ(x)

(1 − x)wα,β(x)

∫ 1

x
g(y)wα,β(y)dy

∣∣∣∣
q

wα,β(x)dx ≤ c‖g‖qLq (wα,β ).

For q = ∞, it is easy to see that we need β + 1 − 1/2 ≤ 0 or β ≤ −1/2. For
1 < q < ∞, we can follow the proof in (a) and conclude that the inequality holds if
−β(q − 1) > q/2 − 1 or β < p/2 − 1. This also holds for q = 1 as can be seen by
exchanging the order of the integrals. �

It is worthwhile to mention that if s > 1 and β 
= 0, then we apply the product rule
on 1/wα,β(x) = (1 − x)−α(1 + x)−β to obtain

∣∣∣∣ d j

dx j

(
1

wα,β(x)

)∣∣∣∣ (1 − x) j−1 ≤ c
j∑

i=0

(1 − x)−α+i−1(1 + x)−β−i ,

so that, since the summand in the last expression is independent of j ,

∣∣∣u(2s−k)
g,k (x)

∣∣∣ ≤ |g(x)| + c
s−k∑
i=0

(1 − x)i−1

(1 − x)α(1 + x)β+i

∫ 1

x
|g(y)|wα,β(y)dy.

Following the same proof as before, it is not difficult to see that we need β < (1 −
s/2)p − 1 for (5.3). Since β > −1, this makes sense only if s = 1 and β < p/2− 1.

Theorem 5.3 Let α, β > −1 and f ∈ Ws
p(wα,β) for 1 ≤ p < ∞ and f ∈ Cs[−1, 1]

if p = ∞. Then

∥∥∂k f − ∂kVα−s,β−s
n,θ f

∥∥
L p(wα,β )

≤ c n−s+k En( f
(s))L p(wα,β ), 0 ≤ k ≤ s, (5.4)

holds under either one of the following sets of assumptions:

(a) θ = −1, with (i) s ∈ N, β = 0 and 1 ≤ p ≤ ∞, or (ii) s = 1, β < p/2 − 1 for
1 < p ≤ ∞ and β ≤ p/2 − 1 if p = 1;

(b) θ = 1, with (i) s ∈ N, α = 0 and 1 ≤ p ≤ ∞, or (ii) s = 1, α < p/2 − 1 for
1 < p ≤ ∞ and α ≤ p/2 − 1 if p = 1.
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Furthermore, for p = 2, we can replace (5.4) by

∥∥∂k f − ∂kSα−s,β−s
n,θ f

∥∥
L2(wα,β )

≤ c n−s+k En−s( f
(s))L2(wα,β ), 0 ≤ k ≤ s. (5.5)

Proof Let us first consider the case θ = −1 and write Vα−s,β−s
n f = Vα−s,β−s

n,−1 f for

convenience. Applying Lemma 5.1 with v = ∂k f − ∂kVα−s,β−s
n f and using (4.2),

we have

〈
∂k f − ∂kVα−s,β−s

n f, g
〉
α,β

= 〈
f (s) − V α,β

n f (s), u(s)
g,k

〉
α,β

=
〈
f (s) − V α,β

n f (s), u(s)
g,k − V α,β

� n
2 � u

(s)
g,k

〉
α,β

,

where the second equation follows from the orthogonality of f (s) − Vα,β
n f (s) to any

polynomials of degree at most n. By Theorem 2.2 and (5.3),

∥∥u(s)
g,k−V α,β

� n
2 � u

(s)
g,k

∥∥
Lq (wα,β )

≤c E� n
2 �

(
u(s)
g,k

)
Lq (wα,β )

≤ c n−s+k
∥∥φs−ku(2s−k)

g,k

∥∥
Lq (wα,β )

≤ c n−s+k‖g‖Lq (wα,β ),

so that, by the Hölder inequality, we conclude that

∣∣∣〈∂k f −∂kVα−s,β−s
n f, g

〉
α,β

∣∣∣≤c
∥∥ f (s)−Vα,β

n f (s)
∥∥
L p(wα,β )

∥∥u(s)
g,k−V α,β

� n
2 � u

(s)
g,k

∥∥
Lq (wα,β )

≤ c n−s+k En( f )L p(wα,β )‖g‖Lq (wα,β ).

Applying the above inequality to the following expression of the L p norm

∥∥∂k f − ∂kVα−s,β−s
n f

∥∥
L p(wα,β )

= sup
‖g‖Lq (wα,β ) 
=0

〈∂k f − ∂kVα−s,β−s
n f, g〉α,β

‖g‖Lq (wα,β )

completes the proof (5.4) for θ = −1.
The proof for θ = 1 follows similarly with ug,k in (5.1) replaced by

ug,k(x) :=
∫ 1

x

(t − x)s−1

(s − 1)!
1

wα,β(t)

∫ t

−1

(t − y)s−k−1

(s − k − 1)! g(y)wα,β(y)dydt

for 0 ≤ k ≤ s − 1. The proof follows along the same line and we omit the details. �
Evidently, Theorem 1.2 follows from this theorem with either α = 0 or β = 0.
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