
J Fourier Anal Appl (2019) 25:86–100
https://doi.org/10.1007/s00041-017-9570-6

Phase Retrievable Projective Representation Frames for
Finite Abelian Groups

Lan Li1 · Ted Juste2 · Joseph Brennan2 ·
Chuangxun Cheng3 · Deguang Han2

Received: 27 March 2017 / Published online: 16 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We consider the problem of characterizing projective representations that
admit frame vectors with the maximal span property, a property that allows for an
algebraic recovering for the phase-retrieval problem. For a given multiplier μ of a
finite abelian group G, we show that the representation dimension of any irreducible
μ-projective representation ofG is exactly the rank of the symmetric multiplier matrix
associatedwithμ.With the help of this result we are able to prove that every irreducible
μ-projective representation of a finite abelian group G admits a frame vector with
the maximal span property, and obtain a complete characterization for all such frame
vectors. Consequently the complement of the set of all themaximal span frame vectors
for any projective unitary representation of any finite abelian group is Zariski-closed.
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These generalize some of the recent results about phase-retrievalwithGabor (or STFT)
measurements.
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1 Introduction

Themain purpose of this short note is to prove the existence of phase-retrievable frame
vectors for every irreducible projective representation of finite abelian groups. Recall
that a finite sequence F = { fi }Ni=1 of vectors in a finite dimensional Hilbert space H
is called a frame for H if there are two constants 0 < C1 ≤ C2 such that

C1‖ f ‖2 ≤
N∑

i=1

|〈 f, fi 〉|2 ≤ C2‖ f ‖2

holds for every f ∈ H . Equivalently, a finite sequence is a frame for H if and only if it
is a spanning set of H . A frame F = { fi }Ni=1 is called aC-tight frame ifC1 = C2 = C
and a Parseval frame if C1 = C2 = 1.

Like bases, frames are used in applications for signal decomposition and recon-
structions through their dual frames. Define �F :H → F

N (F = C or R) by

�F ( f ) =
N∑

i=1

〈 f, fi 〉ei , for all f ∈ H,

where {ei }Ni=1 is the standard orthonormal basis for F
N . Then �F is the analysis

operator of F and its synthesis operator is given by �∗
F (ei ) = fi . The frame operator

is S = �∗
F�F . Clearly, S is positive and invertible on H and satisfies the condition:

S f =
N∑

i=1

〈 f, fi 〉 fi , for all f ∈ H.

Replacing f by S−1 f or applying S−1 to both sides or the above identity we get
the reconstruction formula:

f =
N∑

i=1

〈 f, S−1 fi 〉 fi =
N∑

i=1

〈 f, fi 〉S−1 fi , for all f ∈ H.

The sequence {S−1 fi }Ni=1 is called the standard or canonical dual frame of F . In
addition to the standard dual, when n > N there exist infinitely many frames F̃ =
{ f̃i }Ni=1 that also give us a reconstruction formula:
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f =
N∑

i=1

〈 f, f̃i 〉 fi =
N∑

i=1

〈 f, fi 〉 f̃i , i.e., �∗
F̃
�F = I.

Any frame F̃ = { f̃i }Ni=1 yielding the above reconstruction formula is called an alter-
nate dual frame or just a dual frame for F . The mixed Gramian matrix for two finite
sequences {xi }Ni=1 and {y j }Mj=1 is the N × M matrix �Y�∗

X = [〈 xi , y j 〉].
The phase retrieval problem considers recovering a signal of interest from magni-

tudes of its linear or nonlinear measurements. It arises in various fields of science and
engineering applications, such as X-ray crystallography, coherent diffractive imaging,
optics and more. Balan et al. are among the pioneers who initiated the investigation of
the phase retrieval problem by using linear measurements against a frame (cf. [6–10]).
For linear measurements with a frame { fi }Ni=1, it asks to reconstruct f from its inten-
sity measurements {|〈 f, fi 〉|}Ni=1. Clearly the intensity measurements are the same for
both f and λ f for every unimodular scalar λ. Therefore the phase retrieval problem
asks to recover f up to an unimodular scalar.

Definition 1.1 A frame { fi }Ni=1 for H is called phase retrievable if the induced quo-
tient map A:H/T → F

N defined by A( f/T) = {|〈 f, fi 〉|}Ni=1 is injective, where
T = {λ ∈ F:|λ| = 1}.

A solution to the phase retrieval problem is impossible in the absence of injectivity
of the map. Balan et al. obtained the following important characterizations of phase
retrievable frames [6–8].

Theorem 1.1 Let { fi }Ni=1 be a frame for H. If { fi }Ni=1 is phase retrievable, then it
satisfies the complement property, i.e., for every � ⊆ {1, . . . , N }, either { fi }i∈� or
{ fi }i∈�c spans F

n. The complementary property is also sufficient when F = R, but
not sufficient in the complex case F = C.

Theorem 1.2 Every generic frame { f1, . . . , fN } for F
n is phase retrievable if N ≥

2n − 1 in the real case F = C or N ≥ 4n − 2 in the complex case F = C.

For the complexHilbert space case, Theorem1.2was recently improved byConca et
al. [22] in which they proved that 4n−4 generic intensity measurements are sufficient
for phase retrieval in C

n , and 4n − 4 measurements are necessary for phase retrieval
in C

n when n = 2k + 1.
With the above results, construction or design for phase retrievable frames seems

not a difficult task. For example, if N ≥ 2n−1, then every n-independent (or full spark)
frame (i.e., every n-vectors in the frame are linearly independent) has this property,
and consequently it is phase retrievable in the real case. The main issue to the phase
retrieval problem lies in the recovering algorithms due to the nonlinearity of the map
A. We refer to [1,3–5,11,12,14,15,17–19,23,25] for some detailed accounts on some
recent developments and various kinds of approaches for the phase retrieval problem.
In some special cases a linear reconstruction is also possible. For example, phase
retrieval can be formulated as rank-one matrix recovery (phase-lifting) problem if a
phase retrievable frame has the maximal span property, i.e., the span of { fi ⊗ fi }Ni=1
contains all the rank-one Hermitian operators [9,10]. In this case, { fi ⊗ fi }Ni=1 is a
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frame for the Hilbert space H
n (the space of all n × n Hermitian matrices) equipped

with the Hilbert-Schmidt inner product 〈A, B〉 = tr(AB∗). Let {Ai }Ni=1 be a dual
frame for { fi ⊗ fi }Ni=1. Then for every x ∈ H we have

x ⊗ x =
N∑

i=1

〈x ⊗ x, fi ⊗ fi 〉Ai =
N∑

i=1

|〈x, fi 〉|2Ai ,

and so x can be reconstructed (up to a multiple of unimodular scalar) by factorizing
the above right hand side rank-one matrix.

LetG be the Gramian of the sequence { fi ⊗ fi }Ni=1, i.e.Gi j = tr( fi ⊗ fi · f j ⊗ f j ) =
|〈 fi , f j 〉|2. An explicit formula for one of the choices of a dual {Ai }Ni=1 is obtained by
Balan, Bodmann, Casazza, Edidin in [10,15].

Proposition 1.3 If { fi }Ni=1 is a
N
n -tight frame with the maximal span property, then

x ⊗ x =
N∑

i=1

|〈x, fi 〉|2Ri ,

where Ri = ∑N
j=1 Qi j ( f j ⊗ f j ) and Q is the pseudo-inverse of G (i.e. GQG = G).

Let k = n(n + 1)/2 or n2, depending on whether H is real or complex. Then
dimH

n = k, and hence N ≥ k if a frame { fi }Ni=1 has the maximal span property.
A key element for this reconstruction requires the existence and constructions of
frames with the maximal span property. In this note we investigate a special class of
frames, namely, projection representation frames, that have themaximal span property.
Typical examples include the frames obtained by Gabor representations (or STFT
measurements):

Example 1.1 Let H = C
n and w = (w(0), . . . , w(n − 1)) ∈ H be a window vector.

For x = (x(0), x(1), . . . , x(n − 1)) ∈ H , the Gabor or STFT measurement of x is
given by:

Xw(m, k) =
n−1∑

j=0

x( j)w( j − m)e−2π ik j/n, (m, k) ∈ Zn × Zn .

Let T, E :Cn → C
n be the unitary operators defined by

(Tw)( j) = w( j − 1); (Ew)( j) = e2π i j/nw( j).

Then Xw(m, k) = 〈 x , EkTmw 〉. The involved mapping π :Zn × Zn → Mn×n(C)

defined by

π(m, k) = EkTm
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is the Gabor representation of the group G = Zn × Zn on H . So the phase-retrieval
problemwithGabormeasurements asks to recover x from |〈 x , EkTmw 〉|. This exam-
ple has led to extensive research activities on the phase-retrieval problem in recent
years (cf. [13,16,24,26,28,29]). One of the very basic questions is to characterize
the window vectors w such that {π(m, k)w}(m,k)∈G is phase-retrievable or even has
the maximal span property. A simple characterization for these type of frames was
recently obtained by Bojarovska and Flinth.

Theorem 1.4 [16] Let π be the Gabor representation of G = Zn × Zn on C
n

and w ∈ C
n. Then {π(m, k)w}(m,k)∈G has the maximal span property if and only

if 〈π(m, k)w , w 〉 �= 0 for every (m, k) ∈ G.

Note that theGabor representation is a projective representation of the abelian group
G. Moreover it is an irreducible representation meaning that span{π(m, k):(m, k) ∈
G} = Mn×n(C). This led us to consider the problem of characterizing the phase-
retrievable frames for irreducible projective representations of any finite groups.

Recall that a projective unitary representation π for a finite group G is a mapping
g → π(g) from G into the group U (H) of all the unitary operators on a finite
dimensional Hilbert space H such that π(g)π(h) = μ(g, h)π(gh) for all g, h ∈ G,
where μ(g, h) is a scalar-valued function on G × G taking values in the circle group
T. This function μ(g, h) is then called a multiplier of π . In this case we also say that
π is a μ-projective unitary representation. It is clear from the definition that we have

(i) μ(g1, g2g3)μ(g2, g3) = μ(g1g2, g3)μ(g1, g2) for all g1, g2, g3 ∈ G,
(ii) μ(g, e) = μ(e, g) = 1 for all g ∈ G, where e denotes the group unit of G. Any

function μ:G × G → T satisfying (i) – (i i) above will be called a multiplier or
2-cocycle of G. It follows from (i) and (i i) that we also have,

(iii) μ(g, g−1) = μ(g−1, g) holds for all g ∈ G.

A projective unitary representation π of G on H is called irreducible if
span{π(g):g ∈ G} = B(H), the space of all the linear operators on H . The set
of all possible multipliers onG can be given an abelian group structure by defining the
product of two multipliers as their pointwise product. The resulting group we denote
by Z2(G, T). The set of all the multipliers α satisfying,

α(g, h) = β(gh)β(g)−1β(h)−1

for an arbitrary function β:G → T such that β(e) = 1 forms a subgroup B(G, T)

of Z2(G, T), and the quotient group H2(G, T) = Z2(G, T)/B2(G, T) is the second
cohomology group of G.

Let π be a projective group representation. A vector ξ is called a π -maximal span-
ning frame vector if {π(g)ξ}g∈G has the maximal spanning property.Wewill useMπ

to denote the set of all π -maximal spanning frame vectors. The following elementary
argument shows that if Mπ is non empty, then a generic vector is a π -maximal span
frame vector.

Proposition 1.5 IfMπ is not empty, then it is an open dense subset of H. In factMc
π

is Zariski-closed.
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Proof We can assume that H = F
n , and let {B1, . . . , Bk} be a basis for H

n . For each
g ∈ G and x = (x1, . . . , xn) ∈ H , write

π(g)x ⊗ π(g)x =
k∑

i=1

ci,g(x)Bi ,

where the coefficients ci,g(x) can be obtained by solving a system of linear equations
and so they are quadratic polynomials of x j when F = R and in the complex case
they are polynomials of ui , vi with ui , vi being the real and imaginary part of xi . Let
C(x) = [ci,g]k×|G|, and P	 be the determinant of the submatrix of C(x) consisting
of the g-th columns for g ∈ 	, where 	 is any subset of G with cardinality k. Then
again each P	 is a polynomial of x j or polynomial of ui and vi in the complex case.
Clearly x ∈ Mπ if and only if rank(C(x)) = k. This implies that

Mπ = H\ ∩	⊂G,|	|=k Z(P	),

where Z(P) = {x ∈ H, P(x) = 0}.
Since Mπ is nonempty, there exist x ∈ H and 	 such that P	(x) �= 0. Thus P	

is a nonzero polynomial, and therefore we get that H\Mπ is Zariski-closed and so
Mπ is open and dense in H . ��

We are interested in establishing sufficient and/or necessary conditions on π such
that Mπ is not empty.

Problem A Let π be a projective unitary representation of a finite group G on C
n .

Under what condition does π admit a frame vector with the maximal span property?
Characterize or construct all such frame vectors.

For irreducible projective unitary representationswemake the following conjecture:

Conjecture Every irreducibleμ-projective representation π admits a maximal span-
ning frame vector.

The main purpose of this paper is to confirm this conjecture for abelian groups, and
consequently we get a generalization of the known results for Gabor representations.
We achieve this by obtaining a new formula for the dimension of irreducible projective
representations for finite abelian groups.

Let μ be a 2-cocycle (or multiplier) of a finite abelian group G, and let Cμ be
its associated symmetric multiplier matrix defined by Cμ = [cg,h] with cg,h =
μ(g, h)μ(h, g).

It is well known that all the μ-projective representation of a finite abelian group
G have the same representation dimension. The following result provides us with an
explicit method to compute the representation dimension, which seems to be new.

Theorem 1.6 Ifπ is a irreducibleμ-projective representation of a finite abelian group
G on an n-dimensional complex Hilbert space H, then rank(Cμ) = n2.

With the help of the above result we will prove the following main result:
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Theorem 1.7 Suppose that π is a μ-projective unitary representation for a finite
abelian group G on an n-dimensional complex Hilbert space H. If π is irreducible,
then π admits a frame vector with the maximal span property. Moreover, {π(g)ξ}g∈G
has the maximal span property if and only if 〈π(g)ξ , ξ 〉 �= 0 for any g ∈ G.

Remark From the computation perspective, typical phase-retrieval applications expect
to use O(n) or O(n log n) number of measurements. Although the frames of Theo-
rem 1.7 are not optimal from this point of view, they are nevertheless important for
indicating the strong and deep connections between the phase-retrieval problem and
the general group representation theory. Our hope is that this result will stimulate fur-
ther investigation on phase-retrievable group representation frames (not necessarily
frames with the maximal span property) for more general finite groups. In addition,
we remark that although O(n2) number of measurements are required for frames with
the maximal span property to do phase-retrieval, the algorithm for signal recovering is
very easy to perform due to the algebraic formula given in Proposition 1.3. Therefore
Theorem 1.7 also has some attractiveness for computational implementations. Finally,
while Theorem 1.4 is a special case of Theorem 1.7, the proof of Theorem 1.7 is com-
pletely new and the techniques utilized in the the proof of Theorem 1.4 do not apply
to the general projective representation frame case.

2 Proofs of the Main Results

Let π be a projective unitary representation ofG on an n-dimensional complex Hilbert
space H . For each ξ ∈ H , consider the matrix

A(ξ) = [ag,h(ξ)]G×G

with ag,h(ξ) = 〈π(h)π(g)ξ , π(g)ξ 〉. We first establish the following sufficient con-
dition:

Lemma 2.1 If there exists ξ ∈ H such that A(ξ) has rank n2 (where n = dim H),
then π is irreducible and {π(g)ξ}g∈G has the maximal span property.

Proof Let X = {π(g)}g∈G and Y = {π(g)ξ ⊗ π(g)ξ}g∈G be two sequences in B(H)

equipped with the trace inner product. Note that the mixed Gramian matrix �Y�∗
X is

exactly the matrix A(ξ) which is assumed to have rank n2. Thus rank(�Y ) ≥ n2 and
rank(�X ) ≥ n2. Since we also have rank(�Y ) ≤ n2 and rank(�X ) ≤ n2, we get that
rank(�Y ) = n2 = rank(�X ), which implies that π is irreducible and {π(g)ξ}g∈G has
the maximal span property. ��
Lemma 2.2 Suppose that π is aμ-projective unitary representation for a finite group
G on an n-dimensional complex Hilbert space H. Then there exists ξ ∈ H such
〈π(g)ξ , ξ 〉 �= 0 for all g ∈ G. Moreover, the set of all such vectors ξ is open and
dense in H.

Proof We can assume that H = C
n . By the Baire-Category theorem it suffices to

prove that for each g ∈ G, the set {ξ ∈ C
n : 〈π(g)ξ , ξ 〉 �= 0} is open and dense in
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C
n . Since 〈π(g)ξ , ξ 〉 is a quadratic polynomial of ξ , we only need to point out that

this is a nonzero polynomial. Indeed, if 〈π(g)ξ , ξ 〉 = 0 for all ξ ∈ C
n , then we have

π(g) = 0, which is a contradiction. ��
Lemma 2.3 Suppose that π is a μ-projective unitary representation for an abelian
group G. If there exists ξ ∈ H such that {π(g)ξ}g∈G has the maximal spanning
property, then 〈π(g)ξ , ξ 〉 �= 0 for every g ∈ G.

Proof Since {π(g)ξ}g∈G has themaximal spanning propertywe have that span{π(g)ξ
⊗π(g)ξ :g ∈ G} = B(H). So if 〈π(h)ξ, ξ 〉 = 0 for some h ∈ G, then for every g ∈ G
we get

|〈π(h)π(g)ξ , π(g)ξ 〉| = |〈π(g−1)π(h)π(g)ξ , ξ 〉| = |〈π(g−1hg)ξ , ξ 〉|
= |〈π(h)ξ , ξ 〉| = 0.

Thus tr(π(h)(π(g)ξ ⊗ π(g)ξ)) = 0, and so π(h) = 0 which leads to a contradiction.
��

Lemma 2.4 [2] Letμ be a multiplier for an abelian group G. Then all the irreducible
μ-projective representations have the same representation dimension.

Let μ be a multiplier for a finite group G. While all the irreducible μ-projective
representations have the same representation dimension, in general it is not easy to
find an explicit formula for the representation dimension. The following theorem tells
us that the representation dimension of the irreducible μ-projective representations is
uniquely determined by the rank of its symmetric multiplier matrix. This seems to be
new and it does provide us a very easy way to compute the representation dimension
for any given multiplier μ.

Let μ be a multiplier for an abelian group G. Recall that the symmetric multiplier
matrix is defined by Cμ = [cg,h] with cg,h = μ(g, h)μ(h, g).

Theorem 2.5 Suppose that π is a μ-projective unitary representation for an abelian
group G on an n-dimensional Hilbert space H = C

n. Then rank(Cμ) ≤ n2. Moreover,
π is an irreducible μ-representation if and only if rank(Cμ) = n2.

Proof By Lemma 2.2, there exists η ∈ C
n such that 〈π(g)η , η 〉 �= 0 for any

g ∈ G. Let �1:Mn×n(C) → �2(G) be the analysis operator for {π(g)}g∈G , and
�2:Mn×n(C) → �2(G) be the analysis operator for {π(g)η ⊗ π(g)η}g∈G . Then we
have

�2�
∗
1 = [〈π(g)π(h)η , π(h)η 〉]G×G .

Note that

〈π(g)π(h)η , π(h)η 〉 = cg,h〈π(g)η , η 〉.

and 〈π(g)η , η 〉 �= 0 for every g ∈ G. So we get that

rank(Cμ) = rank(�2�
∗
1) ≤ rank(�1) = dim (span{π(g):g ∈ G}) ≤ n2.
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Now assume that rank(Cμ) = n2. Then the above inequality implies that
dim (span{π(g):g ∈ G}) = n2, and thus π is irreducible. Conversely, let us assume
that π is irreducible. We will prove that rank(Cμ) = n2.

We first introduce a couple of notations: let Ĝ be the dual group of G, and
π̄ :g → π(g), the complex conjugation of π(g). Then π̄ is a projective represen-
tation with multiplier μ̄. Consider the group representation π ⊗ π̄ :g → π(g)⊗π(g).
Then it is a projective representationwithmultiplierμμ̄ = 1, and so it is a group repre-
sentation. Henceπ⊗π̄ can be decomposed as the direct sumof one-dimensional group
representations of G. Moreover, each one dimensional representation of G appears at
most once in the direct sum decomposition of π ⊗ π̄ . Let Tμ = {χ ∈ Ĝ:χ ⊂ π ⊗ π̄}.
Then Tμ is a subgroup of Ĝ. Define

Gμ = T⊥
μ = {g ∈ G:χ(g) = 1,∀χ ∈ Tμ}.

Note that |Tμ| = dim H × dim H = n2. Thus |Gμ| = [G:Gμ] = |Tμ| = n2.
Since G is abelian, it is easy to verify that c:G × G → T defined by c(g, h) =

cgh = μ(g, h)μ(h, g) is a bi-homomorphism, i.e., c(gg′, h) = c(g, h)c(g′h) and
c(g, hh′) = c(g, h)c(g, h′) for all g, g′, h, h′ ∈ G. This induces a homomorphism
λμ:G → Ĝ. By Proposition 2.4 in [21] we know that

Gμ = Ker(λμ) = {g ∈ G:λμ(g) = 1}.

Therefore we get

|λμ(G)| = [G:Ker(λμ)] = n2.

Recall that the characters of G are linearly independent. Since each row of the
symmetric multiplier matrix Cμ defines a character of G by h → c(g, h), we get that
the rank of Cμ is equal to the number of different characters appeared in the rows of
Cμ. By the definition of λμ, we know that this number is exactly the cardinality of the
image of λμ. This implies that rank(Cμ) = |λμ(G)| = n2 as claimed. ��
Corollary 2.6 Let μ be a multiplier of an abelian group G and n2 = rank(Cμ). Then
every n-dimensional μ-projective representation π of G is irreducible.

Proof Let σ be an irreducible subrepresentation of π on a d-dimensional π -invariant
subspace. Then, by Theorem 2.5, the representation dimension of σ is equal to
rank(Cμ) = d2. This implies that d = n and thus σ = π . Therefore π is irreducible.

��
Proof of Theorem 1.7 Assume that π is an irreducible μ-projective representation of
G on H = C

n . By Lemma 2.3 we know that if {π(g)ξ}g∈G has the maximal span
property, then 〈π(g)ξ , ξ 〉 �= 0 for every g ∈ G. Therefore, to complete the proof, it
suffices to show that {π(g)ξ}g∈G has the maximal span property when 〈π(g)ξ , ξ 〉 �=
0 for every g ∈ G.

Let �1 and �2:Mn×n(C) → �2(G) be the analysis operators defined in the proof
of Theorem 2.5. Then we know that rank(�2�

∗
1) = rank(Cμ). Since π is irreducible,
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we get that rank(�∗
1) = n2 and by Theorem 2.5 that rank(Cμ) = n2. This implies that

rank(�2�
∗
1) = n2 which implies that rank(�2) = n2 since we also have rank(�2) ≤

n2. Therefore {π(g)ξ ⊗ π(g)ξ :g ∈ G} spans Mn×n(C), i.e., {π(g)ξ}g∈G has the
maximal span property. ��

3 Examples and Discussions

Since the Gabor representation is a very special irreducible projective unitary repre-
sentation for the group Zn × Zn for a special multiplier μ, it implies that Theorem
1.4 is a very special case of Theorem 1.7. The following example presents us all the
possible irreducible projective unitary representations for the group Zn × Zn .

Example 3.1 LetG = Zn×Zn and H2(G, T) be the second cohomology group. Then
H2(G, T) ∼= Zn . Let ξ = e2π i/n . Let α ∈ Z2(G, T) be given by

α((m, k), (m′, k′)) = ξ−mk′
.

Then [α] ∈ H2(G, T) is a generator. To understand all the projective representations
of G, it suffices to understand the αa-projective representations of G for each a ∈
{0, 1, . . . , n − 1}. Denote by IrrRepaG the set of isomorphic classes of irreducible
αa-projective representations of G.

Fix a ∈ {0, 1, . . . , n − 1}. Let a′ = n/ã, where ã denotes the greatest common
factor of n and a. Let H = 〈a′〉 × Zn � G. Then

αa(x, y) = αa(y, x) = 1 for any x, y ∈ H.

In particular, H is αa-symmetric. It is also easy to check that H is maximal αa-
symmetric. Hence the objects in IrrRepaG all have dimension [G:H ] = a′ and there
are ã2 objects in IrrRepaG (cf. [20, Sect. 2.3]).

The irreducible projective representations of G are induced from one-dimensional
linear representations of H (cf. [20, Proposition 2.14]). Let u ∈ Zã and v ∈ Zn .
Let χu,v:H → C

× be the one-dimensional linear representation given by (m, k) →
ξmu+kv . Let πu,v = αaIndGHχu,v . Here the induction is with respect to αa (cf. [20,
Sect. 2.2]). Then πu,v ∈ IrrRepaG . One may check that πu,v

∼= πu′,v′ if and only if
v ≡ v′ (mod ã).

In matrix form, we may describe πu,v as follows. Let V be a C-vector space with
dimension a′. Fix {e0, e1, . . . , ea′−1} a basis of V . Define πu,v((1, 0)) and πu,v((0, 1))
by

πu,v((1, 0))ei = ξuei+1, πu,v((0, k))ei = χ(i,0)
u,v ((0, k))ei for 0 ≤ i ≤ a′ − 1.

Here the subscript i is considered modulo a′, χ
(i,0)
u,v is the αa-twist of χu,v by (i, 0)

(cf. [20, Proposition 2.10]). More precisely, as a′ × a′ matrices,

π((0, k)) = Ẽk, π((m, 0)) = ξmu T̃ m,
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where
Ẽ = diag(ξv, ξv+a, . . . , ξ v+(a′−1)a),

T̃ =

⎛

⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0

⎞

⎟⎟⎠

a′×a′

.
(3.1)

If we take u = v = 0, a = 1, then it is the representation in Example 1.1. With this
description, one may find all w ∈ V with the maximal span property by applying
Theorem 1.7.

This example can be further generalized by considering the tensor product of group
representations.

Example 3.2 Let G1 and G2 be two finite groups. Let αi ∈ Z2(Gi , T) be a 2-cocycle
of Gi (i = 1, 2). Define a map α1 × α2:(G1 × G2) × (G1 × G2)→T by

(α1 × α2)((g1, g2), (h1, h2)) = α1(g1, h1)α2(g2, h2) for all g1, h1
∈ G1, g2, h2 ∈ G2.

It is easy to check that α1 × α2 ∈ Z2(G1 × G2, T). Let (π1, V1, α1) and (π2, V2, α2)

be projective unitary representations ofG1 andG2, respectively, on finite dimensional
Hilbert spaces V1 and V2. Define a map π1 × π2:G1 × G2→B(V1 ⊗ V2) by

π1 × π2((g1, g2)) = π1(g1) ⊗ π2(g2) for all g1 ∈ G1, g2 ∈ G2.

Then (π1×π2, V1⊗V2, α1×α2) is a projective representation ofG1×G2. If moreover
π1 and π2 are unitary projective representations, then so is π1 × π2. In this situation,
we have

(1) ifπi is irreducible (i = 1, 2), thenπ1×π2 is an irreducible projective representation
of G1 × G2;

(2) each irreducible projective representation ofG1×G2 with multiplier α = α1×α2
is isomorphic to a representation π1 × π2, where πi is an irreducible projective
representation of Gi with multiplier αi (i = 1, 2).

It is easy to prove:

Proposition 3.1 If ξi ∈ Vi is a πi -maximal spanning frame vector (i = 1, 2), then
ξ1 ⊗ ξ2 is a (π1 × π2)-maximal spanning frame vector.

If G = ∏
ni (Zni ×Zni ) with ni pairwise coprime, then H2(G, T) = ∏

i H
2(Zni ×

Zni , T). Hence every element of H2(G, T) is represented by a cocycle in
∏

i Z
2(Zni ×

Zni , T). Then for projective representations of G, we obtain all the vectors with max-
imal span property by the last example.

For an abelian group, all the irreducible μ-projective unitary representations have
the same representations dimension n, and we have proved that rank(Cμ) = n2 which
is a key ingredient in the proof of our main theorem. However, this is not the case
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for non-abelian groups since irreducible representations with respect to the same mul-
tiplier could have different representation dimensions. This leads to the following
question:

Problem B Letμ be amultiplier for a finite non-abelian groupG such that all the irre-
ducible μ-projective unitary representations have the same representation dimension
n. Is it still true that rank(Cμ) = n2?

The following is an example which tells us that this indeed is true for some special
groups.

Example 3.3 Consider the metacyclic groups of type G = Zm � Zp with p a prime.
Fix a presentation of G

G = 〈a, b | am = 1, bp = 1, bab−1 = ar 〉,

where r ∈ Z≥0 and r p ≡ 1 (mod m). By [27, Theorem 2.11.3],

H2(G, C
×) =

{
0 if p � (m, r − 1),

Zp if p | (m, r − 1).

In the following, we assume that p | (m, r − 1). Fix ζ a primitive l-th root of unity,
where l = (m, 1 + r + · · · + r p−1). Define α:G × G → T by

α(aib j , ai
′
b j ′) =

{
1 if j = 0,

ζ i
′(1+r+···+r j−1) otherwise.

By [27, Lemmas 2.11.1, 2.11.3 and Theorem 2.11.3], this α is a well-defined element
in Z2(G, T) and it represents a generator of H2(G, T). If we arrange the elements of
G in the order as 1, a, a2, . . . , am−1, b, ab, . . . , am−1b, . . . , bp−1, abp−1, . . . ,

am−1bp−1, by writing down Cα explicitly, one sees that Cα is given by

⎛

⎜⎜⎜⎝

A X−1
1 A · · · X−1

p−1A

AX1 X−1
1 AX1 · · · X−1

p−1AX1

· · · · · · · · · · · ·
AX p−1 X−1

1 AX p−1 · · · X−1
p−1AX p−1

⎞

⎟⎟⎟⎠

p×p

,

where A is the m × m matrix with all entries equal to 1, and

Xi = diag(1, ζ 1+r+···+r i−1
, . . . , ζ (m−1)(1+r+···+r i−1)).

Note that the rank of
⎛

⎜⎜⎝

1 1 · · · 1 1
1 ζ · · · ζm−2 ζm−1

· · · · · · · · · · · · · · ·
1 ζ 1+r+···+r p−2 · · · ζ (m−2)(1+r+···+r p−2) ζ (m−1)(1+r+···+r p−2)

⎞

⎟⎟⎠

p×m

,
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is p by Vandermonde determinant. The rank of Cα is p2. On the other hand, by [20,
Corollary 3.11], every irreducible α-projective representation of G has dimension p.
Hence Question 4.1 has an affirmative answer in this case.

Moreover, all the irreducible α-projective representations ofG admit maximal span
vectors. Indeed, let π :G → GL(V ) be an irreducible α-projective representation. By
Lemma 2.1, it suffices to show that there exists an element ξ ∈ V with rank((A(ξ)) =
p2.

Let m′ = m/p. Then m | m′(r − 1). The subgroup K = 〈am′
, b〉 of G is abelian

and K ∼= Zp × Zp. Furthermore, the restriction α|K×K ∈ Z2(K , T) represents a
generator of H2(K , T) ∼= Zp. Hence π |K :K → GL(V ) is an irreducible projective
representation of K . For any ξ ∈ V , we have

rank((〈π(g)π(h)ξ, π(h)ξ 〉)g,h∈G ≥ rank((〈π(g)π(h)ξ, π(h)ξ 〉)g,h∈K .

The claim follows from the abelian case.

One of our ultimate goals is to confirm the conjecture that every irreducible μ-
representation admits a maximal spanning frame vector. By Lemma 2.1 we know that
π will have a maximal spanning frame vector ξ if rank((A(ξ)) = n2, where n is the
representation dimension and A(ξ) is the mixed Gramian of {π(g)ξ ⊗π(g)ξ}g∈G and
{π(g)}g∈G . So we make the following conjecture: let π be an irreducible μ-projective
unitary representation of a finite group G on an n-dimensional Hilbert space H . Then
there exists a vector ξ ∈ H such that rank(A(ξ)) = n2. We point out that in the
abelian group case, we have rank(A(ξ)) = rank(Cμ) for every ξ ∈ H that satisfies
the requirement 〈π(g)ξ , ξ 〉 �= 0 for every g ∈ G. Thus this is true in the abelian
group case.

So far we have only considered irreducible projective unitary representations with
maximal spanning frame vectors. We still don’t know the answer to the following
problem.

Problem C Let π be an irreducible projective unitary representation of a finite group
G. Is it possible that there exists a phase-retrievable frame {π(g)ξ} which does not
have the maximal span property?

For arbitrary projective unitary representations we post the following general prob-
lem:

Problem D Let π be a projective unitary representation of a finite group G on an n-
dimensional Hilbert space H . Under what condition does π admit a phase-retrievable
frame vector ξ? (i.e., {π(g)ξ} is a phase-retrievable frame). If π admits a maximal
spanning frame vector, must π be irreducible?

Acknowledgements The authors thank the referees very much for carefully reading the paper and for
several elaborate and valuable suggestions. Deguang Han is partially supported by the NSF Grants DMS-
1403400 and DMS-1712602, and Lan Li is partially supported by Natural Science Basic Research Plan in
Shaanxi Province of China (No. 2017JM1046).



J Fourier Anal Appl (2019) 25:86–100 99

References

1. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J.
Imaging Sci. 7, 35–66 (2014)

2. Backhouse, N.B., Bradley, C.J.: Projective representations of Abelian groups. Proc. Am. Math. Soc.
36, 260–266 (1972)

3. Balan, R.: Stability of phase retrievable frames. In: Proceedings of SPIE, Wavelets and Sparsity XV,
88580H (2013)

4. Balan, R., Wang, Y.: Invertibility and robustness of phaseless reconstruction. Appl. Comput. Harmon.
Anal. 38, 469–488 (2015)

5. Balan, R., Zou, D.: On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem.
Linear Algebra Appl. 496, 152–181 (2016)

6. Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction from the absolute value of the frame
coefficients. In: Proceedings of SPIE, vol. 5914, pp. 1–8 (2005)

7. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon.
Anal. 20, 345–356 (2006)

8. Balan, R., Casazza, P.G., Edidin, D.: Equivalence of reconstruction from the absolute value of the frame
coefficients to a sparse representation problem. IEEE Signal Process. Lett. 14(5), 341–345 (2007)

9. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Fast algorithms for signal reconstruction without
phase. In: Proceedings of SPIE-Wavelets XII, SanDiego, vol. 6701, pp. 670111920–670111932 (2007)

10. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of
frame vectors. J. Fourier Anal. Appl. 15, 488–501 (2009)

11. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase
retrieval. Appl. Comput. Harmon. Anal. 37, 106–125 (2014)

12. Bandeira, A.S., Chen, Y., Mixon, D.G.: Phase retrieval from power spectra of masked signals. Inf.
Inference 3, 83–102 (2014)

13. Bendory, T., Eldar, Y.C.: A least squares approach for stable phase retrieval from short-time Fourier
transform magnitude, preprint arXiv:1510.00920 (2015)

14. Bodmann, B.G., Hammen,N.: Stable phase retrieval with low-redundancy frames. Adv. Comput.Math.
41, 317–33 (2015)

15. Bodmann, B.G., Casazza, P.G., Edidin, D., Balan, R.: Frames for Linear ReconstructionWithout Phase.
CISS Meeting, Princeton, NJ (2008)

16. Bojarovska, I., Flinth,A.: Phase retrieval fromGabormeasurements. J. FourierAnal.Appl. 22, 542–567
(2016)

17. Candès, E.J., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations
as unknowns. Found. Comput. Math. 14, 1017–1026 (2014)

18. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM
J. Imaging Sci. 6, 199–225 (2013)

19. Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: exact and stable signal recovery from magnitude
measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013)

20. Cheng, C.: A character theory for projective representations of finite groups. Linear Algebra Appl.
469, 230–242 (2015)

21. Cheng, C., Fu, J.: On the rings of projective characters of Abelian groups and Dihedral groups, preprint
(2016)

22. Conca, A., Edidin, D., Hering, M., Vinzant, C.: An algebraic characterization of injectivity in phase
retrieval. Appl. Comput. Harmon. Anal. 38, 346–356 (2015)

23. Eldar, Y.C., Sidorenko, P., Mixon, D.G., Barel, S., Cohen, O.: Sparse phase retrieval from short-time
Fourier measurements. IEEE Signal Process. Lett. 22, 638–642 (2015)

24. Eldar, Y.C., Hammen, N., Mixon, D.: Recent advances in phase retrieval. In: IEEE Signal Processing
Magazine, pp. 158–162 (September 2016)

25. Fickus, M., Mixon, D.G., Nelson, A.A., Wang, Y.: Phase retrieval from very fewmeasurements. Linear
Algebra Appl. 449, 475–499 (2014)

26. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: an overview of recent developments.
arXiv:1510.07713

27. Karpilovsky, G.: The Schur Multiplier. London Mathematical Society Monographs. Clarendon Press,
Oxford (1987)

http://arxiv.org/abs/1510.00920
http://arxiv.org/abs/1510.07713


100 J Fourier Anal Appl (2019) 25:86–100

28. Li, L., Cheng, C., Han, D., Sun, Q., Shi, G.: Phase retrieval from multiple-window short-time Fourier
measurements. IEEE Signal Process. Lett. 24, 372–376 (2017)

29. Nawab, S.H., Quatieri, T.F., Lim, J.S.: Signal reconstruction from short-time Fourier transform mag-
nitude. IEEE Trans. Acoust. Speech Signal Process. 31, 986–998 (1983)


	Phase Retrievable Projective Representation Frames for Finite Abelian Groups
	Abstract
	1 Introduction
	2 Proofs of the Main Results
	3 Examples and Discussions
	Acknowledgements
	References




