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Abstract For fixed real numbers c > 0, α > − 1
2 , the finite Hankel transform oper-

ator, denoted by Hα
c is given by the integral operator defined on L2(0, 1) with kernel

Kα(x, y) = √
cxy Jα(cxy). To the operator Hα

c , we associate a positive, self-adjoint
compact integral operator Qα

c = cHα
c Hα

c . Note that the integral operators Hα
c and

Qα
c commute with a Sturm-Liouville differential operator Dα

c . In this paper, we first

give some useful estimates and bounds of the eigenfunctions ϕ
(α)
n,c ofHα

c orQα
c . These

estimates and bounds are obtained by using some special techniques from the the-
ory of Sturm-Liouville operators, that we apply to the differential operator Dα

c . If
(μn,α(c))n and λn,α(c) = c |μn,α(c)|2 denote the infinite and countable sequence of
the eigenvalues of the operators H(α)

c and Qα
c , arranged in the decreasing order of

their magnitude, then we show an unexpected result that for a given integer n ≥ 0,
λn,α(c) is decreasing with respect to the parameter α.As a consequence, we show that
for α ≥ 1

2 , the λn,α(c) and the μn,α(c) have a super-exponential decay rate. Also, we
give a lower decay rate of these eigenvalues. As it will be seen, the previous results
are essential tools for the analysis of a spectral approximation scheme based on the
eigenfunctions of the finite Hankel transform operator. Some numerical examples will
be provided to illustrate the results of this work.
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1 Introduction

We first recall that for a bandwidth c > 0 and a real number α > −1/2, the circular
prolate spheroidal wave functions (CPSWFs), denoted by (ϕ

(α)
n,c )n≥0 are the different

eigenfunctions of the following finite Hankel transform operator, see for example
[15,24]

Hα
c ( f )(x) =

∫ 1

0

√
ctx Jα(ctx) f (t) dt, x ∈ [0, 1], (1)

that is

Hα
c ϕ(α)

n,c (x) dy =
∫ 1

0

√
cxy Jα(cxy)ϕ(α)

n,c (y) dy = μn,α(c)ϕ(α)
n,c (x),

n ≥ 0, x ∈ [0, 1]. (2)

Here, Jα is the Bessel function of the first type and order α > −1/2. We recall that
the Hankel transform is defined on L2(0,∞) by

Hα( f )(x) =
∫ +∞

0

√
xy Jα(xy) f (y) dy. (3)

Moreover, for c > 0, the Hankel Paley-Wiener space is the space of functions from
L2(0,∞), having compactly supported Hankel transforms, that is

Bα
c = { f ∈ L2(0,∞); SuppHα( f ) ⊂ [0, c]}. (4)

Although, in the literature, there exist extensive works devoted to the numerical
computation of the CPSWFs and their associated eigenvalues μn,α(c), see for exam-
ple [2,15,21,24], very few references have dealt so far with the subject of the explicit
estimates and bounds of the ϕ

(α)
n,c , as well as the decay rate of the eigenvalues μn,α(c)

or λn,α(c). In particular in [17], the author has shown that asymptotically, the mag-
nitudes of the μn,α(c) have an exponential decay rate. Our objective from this work
is to provide the reader with some useful explicit local estimates and bounds of the
CPSWFs, as well as some explicit and simple lower and upper bounds of the eigenval-
ues λn,α(c),with α ≥ 1/2. To prove the upper bound, we first prove a surprising result
given by Theorem 5 and states that for fixed n and c, the λn,α(c) are monotonically
decreasing in α, that is for any integer n ≥ 0, we have

λn,α(c) ≤ λn,α′(c), ∀α ≥ α′ > −1

2
. (5)
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Then, by using the known exponential decay rate of the eigenvalues of the conventional
PSWFs corresponding to the case α = 1/2, see [7], one gets a simple upper bound
for the λn,α(c), α ≥ 1/2.

We shouldmention that the interest from the study of the eigenfunctions of the finite
Hankel transform (CPSWFs) and in general the prolate spheroidal wave functions,
comes from the fact they are widely used in various scientific area, such as applied
mathematics, physics, engineering, see [12] for some of these concrete applications.
In the pioneer work [24], D. Slepian has shown that the compact integral operatorHα

c
commutes with the following differential operator Dα

c defined on C2([0, 1]) by

Dα
c (φ)(x) = d

dx

[
(1 − x2)

d

dx
φ(x)

]
+
⎛
⎜⎝

1

4
− α2

x2
− c2x2

⎞
⎟⎠φ(x). (6)

Hence, ϕ(α)
n,c is the n−th order bounded eigenfunction of the operator−Dα

c , associated
with the eigenvalue χn,α(c), that is

− d

dx

[
(1 − x2)

d

dx
ϕ(α)
n,c (x)

]
−
⎛
⎜⎝

1

4
− α2

x2
− c2x2

⎞
⎟⎠ϕ(α)

n,c (x)

= χn,α(c)ϕ(α)
n,c (x), x ∈ [0, 1]. (7)

In thiswork,we take advantage from the commutativity property of the operatorsDα
c

andHα
c and prove some useful local estimates and bounds of the ϕ

(α)
n,c (x), x ∈ I.Note

that some estimates and bounds of the classical prolate spheroidal wave functions and
their generalized versions, were already given in [5,16]. Nonetheless, in our present
case of theCPSWFs, the techniques used in the previous references have to bemodified
and combinedwith new techniques based on the use of theSturm-Liouville comparison
theorem and Butlewski’s theorem. These new techniques are needed in order to handle
the extra difficulty caused by the singularity at x = 0, appearing in the differential
operator Dα

c . Also, by using the characterization of the eigenvalues λn,α(c) in terms
of an energy maximization problem, combined with Griffith’s theorem which is a
Paley-Wiener theorem for the Hankel transform, we prove an interesting result that
the λn,α(c) are decreasing with respect to the parameter α. As a consequence, and by
using the sharp decay rate of the eigenvalues of the finite Fourier transform, given in
[7], we give a super-exponential decay rate of the λn,α(c), for α ≥ 1

2 .

Thiswork is organised as follows. In Sect. 2,we give somemathematical preliminar-
ies related to the properties and computation of theCPSWFs. In Sect. 3,wefirst provide
a local estimate for the ϕ

(α)
n,c (x). Then, we give a bound of |ϕ(α)

n,c (x)| for x ∈ [0, 1]. The
previous results are obtained under the condition that χn,α(c) > c2 + α2 − 1

4 , where
χn,α(c) is the n−th eigenvalues χn,α(c) of the differential operator Qα

c . By using the
classical Strurm-Liouville comparison theorem, we prove that χn,α(c) passes through
c2 + α2 − 1

4 when n is around c
π
. In Sect. 4, we give an upper and a lower bound

of the super-exponential decay rate of the eigenvalues λn,α(c). Finally, in Sect. 5, we
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provide the reader with some numerical examples that illustrate the different results
of this work. Moreover, in this section, we also show that the ϕ

(α)
n,c are well adapted

for the approximation of Hankel band-limited and almost band-limited functions.

2 Mathematical Preliminaries

In this section, we first give a brief description of the computation and the
decay rate of the series expansion coefficients dnk of the eigenfunctions ϕ

(α)
n,c in

an appropriate basis of L2([0, 1]). This basis is given by the orthogonal functions
T̃k,α(x) = xα+1/2(−1)k

√
2(2k + α + 1)P(α,0)

k (1 − 2x2), k ≥ 0. Here, P(α,β)
k is

the Jacobi polynomial of degree k and parameters α, β > −1, normalized so that
P(α,β)
k (1) = (n+α

n

) = 	(n+α+1)
	(α+1)	(n+1) . Then, we relate the eigenvalues of the compact

and positive operator
Qα

c = cHα
c

(Hα
c

)∗ = cHα
c

(Hα
c

)
(8)

to the solutions of a classical energy maximization problem over the Paley-Wiener
space Bα

c , given by (4).
Note that thanks to the important commutativity property of the differential and

integral operators Dα
c and Hα

c , D. Slepian has developed in [24], an efficient compu-

tational scheme for the ϕ
(α)
n,c (x), x ≥ 0, as well as for their corresponding eigenvalues

χn,α(c) and μn,α(c). The Slepian scheme for the computation of ϕ
(α)
n,c (x), is given by

the following series expansion,

ϕ(α)
n,c (x) =

+∞∑
k=0

dnk T̃k,α(x),

T̃k,α(x) = (−1)k
√
2(2k + α + 1)xα+ 1

2 P(α,0)
k (1 − 2x2), x ∈ [0, 1]. (9)

Here, dnk are the expansion coefficients, given as the eigenvectors a tri-diagonal infinite
order matrix. Moreover, by combining the integral equation (2) and the previous
expansion, D. Slepian has given the following analytic extension of the ϕ

(α)
n,c , over

the unbounded interval [1,+∞),

ϕ(α)
n,c (x) = 1

μn,α(c)

∑
k≥0

(−1)kdnk
√
2(2k + α + 1)

J2k+α+1(cx)√
cx

, x ≥ 1. (10)

By evaluating the two expansions (9) and (10) at x = 1, one gets the following
expression of the eigenvalues μn,α(c),

μn,α(c) = 1√
c

∑
k≥0(−1)kdnk

√
2(2k + α + 1)J2k+α+1(c)∑+∞

k=0 d
n
k T̃k,α(1)

. (11)

In this work, we check that for a fixed positive integer n, the sequence (dnk )k≥0 has
a super-exponential decay rate. Consequently, the previous formulae for computing
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the ϕ
(α)
n,c and their eigenvalues μn,α(c) are practical and highly accurate. Note that by

using a slightly modified techniques of those used in [24], one can easily check that the
expansion coefficients can be computed by solving the following tri-diagonal system

∑
k≥0

[
c2ak,αd

n
k−1 +

((
2k + α + 1

2

)(
2k + α + 3

2

)
+ c2bk,α

)
dnk + c2ak+1,αd

n
k+1

]
T̃k,α(x)

= χn,α(c)
∑
k≥0

dnk T̃k,α, (12)

where

ak+1,α = (k + 1)(α + k + 1)

(α + 2k + 2)
√

α + 2k + 1
√

α + 2k + 3)
,

bk,α = 1

2

(
α2

(α + 2k + 2)(α + 2k)
+ 1

)
. (13)

The previous system can be written in the following eigensystem

MD = χnD, M = [mi, j ]i, j≥0, D = [dnk ]Tk≥0 (14)

with mk, j = 0, if | k − j |≥ 2 and

mk,k−1 = c2ak,α, mk,k =
(

α + 2k + 1

2

)(
α + 2k + 3

2

)

+ c2bk,α,mk,k+1 = mk,k+1. (15)

Also, note that the expansion coefficients (dnk )k are related to ϕ
(α)
n,c by the following

relation,

dnk = (−1)k
√
2(2k + α + 1)

μn,α(c)

∫ 1

0
ϕ(α)
n,c (y)

J2k+α+1(y)√
cy

dy. (16)

In fact, from (2), we have

dnk = 1

μn,α(c)

∫ 1

0
T̃k,α(x)

∫ 1

0

√
cxy Jα(cxy)ϕ(α)

n,c (y)dydx

= 1

μn,α(c)

∫ 1

0
ϕ(α)
n,c (y)

∫ 1

0

√
cxy Jα(cxy)˜Tk,α(x)dxdy

Also, from [15,24], one has

∫ 1

0

√
cxy Jα(cxy)T̃k,α(x)dx = (−1)k

√
2(2k + α + 1)

J2k+α+1(y)√
cy

. (17)

By combining the previous two equalities, one gets (16).
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It is well known that the eigenvalues χn,α(c) of the differential operatorDα
c satisfy

the differential equation

∂χn,α(c)

∂c
= 2c

∫ 1

0
x2
(
ϕ(α)
n,c (x)

)2
dx . (18)

Since χn,α(0) = (2n + α + 1

2
)(2n + α + 3

2
) is the n−th eigenvalue of the differential

operator Dα
0 , and since 0 ≤ c2x2 ≤ c2 for all x ∈ [0, 1] , then by using the Min-Max

principle, the n−th eigenvalue χn,α(c) of the differential operator Dα
c satisfies the

following bounds,

(
2n + α + 1

2

)(
2n + α + 3

2

)
≤ χn,α(c) ≤

(
2n + α + 1

2

)(
2n + α + 3

2

)
+ c2.

(19)
Next, we briefly check a classical result that the eigenvalues λn,α(c) of the integral

operatorQα
c , given by (8) are characterized as the solutions of an energymaximization

problem over the Hankel Paley-Wiener space Bα
c . In fact, from [26, p. 154], we have

Gα(x, y) =
∫ 1

0

√
xy Jα(xt)Jα(yt)t dt

=
√
xy

x2 − y2
(
x Jα+1(x)Jα(y) − y Jα+1(y)Jα(x)

)
. (20)

On the other hand, by using the previous identity and since Hα
c is self-adjoint, then a

straightforward computation, gives us

Qα
c ( f )(x) = cHα

cHα
c ( f )(x) = c

∫ 1

0
Gα(cx, cy) f (y) dy, (21)

where the kernel Gα(x, y) is given by (20). On the other hand, since the Hankel
transform operator is its own inverse and since by Plancherel formula, we have for
f ∈ Bα

c ,

‖ f ‖2L2(0,∞)
= ‖Hα f ‖2L2(0,∞)

= c
∫ 1

0
(Hα( f ))2(cx) dx,

then, for f ∈ Bα
c , we have

‖ f ‖2
L2(0,1)

‖ f ‖2
L2(0,∞)

=
∫ 1
0 ( f (t))2 dt

‖ f ‖2
L2(0,∞)

=
∫ 1
0

(∫ c
0

√
Xt Jα(Xt)Hα( f )(X) dX

)
·
(∫ c

0

√
Y t Jα(Y t)Hα( f )(Y ) dY

)
dt

c
∫ 1
0 (Hα( f ))2(cx) dx
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=
c2
∫ 1
0

(∫ 1
0 Gα(cx, cy)Hα( f )(cy) dy

)
· Hα( f )(cx) dx

c
∫ 1
0 (Hα( f ))2(cx) dx

=
∫ 1
0 Qα

cHα( f )(cx) · Hα( f )(cx) dx∫ 1
0 (Hα( f ))2(cx) dx

.

A standard result about the maximization of a quadratic form tells us that the solution
of the energy maximization problem

find f = arg max
f ∈Bα

c

‖ f ‖2
L2(0,1)

‖ f ‖2
L2(0,∞)

(22)

is given by the first eigenfunction, with the largest eigenvalue λ0,α(c) of the operator
Qα

c . Since Qα
c = cHα

cHα
c , then the eigenfunctions of Qα

c are also the eigenfunctions

ϕ
(α)
n,c of Hα

c and the eigenvalues of Qα
c are related to the eigenvalues of Hα

c by the
following rule

λn,α(c) = c |μn,α(c)|2, n ≥ 0. (23)

Finally, we should mention that throughout this work, the eigenfunctions ϕ
(α)
n,c are

normalized by the following rule,

∫ 1

0

(
ϕ(α)
n,c (x)

)2
dx = 1,

∫ ∞

0

(
ϕ(α)
n,c (x)

)2
dx = 1

λn,α(c)
. (24)

3 Some Explicit Estimates and Bounds of the Eigenfunctions

In this paragraph, we give an explicit upper bound of |ϕ(α)
n,c (x)| with x ∈ I = [0, 1],

and α > −1/2. To this end, we first show that under some conditions on n, c, the
maximum of |ϕ(α)

n,c (x)| is attained at x = 1. This is given by the following lemma.

Lemma 1 Let c > 0, α > −1/2 be two real numbers. If c2 > α2 − 1
4 , and χn,α(c) >

c2 + α2 − 1
4 , then we have

sup
x∈[aα,1]

∣∣ϕ(α)
n,c (x)

∣∣ = ∣∣ϕ(α)
n,c (1)

∣∣, aα =
{
0 if α2 ≤ 1/4(

α2−1/4
c2

)1/4
if α > 1/2.

(25)

Proof We recall that ϕ(α)
n,c is a solution of the following differential equation

d

dt

[
p(t)

(
ϕ(α)
n,c

)′
(t)
]

+ qα(t)ϕ(α)
n,c (t) = 0,

with

p(t) = (1 − t2), qα(t) = χn,α(c) − c2t2 +
1

4
− α2

t2
. (26)
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Next, consider the auxiliary function Qα, defined on [aα, 1] by

Qα(t) =
(
ϕ(α)
n,c (t)

)2 + p(t)

qα(t)

((
ϕ(α)
n,c

)′
(t)
)2

. (27)

By computing the derivative of Qα and then using the identity

(
ϕ(α)
n,c

)′′
(t) = 2t

1 − t2
(
ϕ(α)
n,c

)′
(t) − 1

t2

(
χn − c2t2 + 1/4 − α2

t2

)
ϕ(α)
n,c (t),

one gets

Q′
α(t) = 2t

q2α(t)

(
χn,α(c) + c2 − 2c2t2 − α2 − 1/4

t4

) ((
ϕ(α)
n,c

)′
(t)
)2

. (28)

Note that

χn,α(c) + c2 − 2c2t2 − α2 − 1/4

t4

≥ 2c2 + (α2 − 1/4) − 2c2t2 − α2 − 1/4

t4

≥ (1 − t2)

(
2c2 − (α2 − 1/4)

1 + t2

t4

)
≥ 0, t ∈ (aα, 1]. (29)

Hence, by combining (28) and (29), one concludes that Qα is increasing on [0, 1] and
consequently,

(
ϕ(α)
n,c

)2
(t) ≤ Qα(t) ≤ (

ϕ(α)
n,c

)2
(1), t ∈ [aα, 1],

which concludes the proof of the lemma. �

The following lemma provides us with a useful local estimate of the eigenfunctions
ϕ

(α)
n,c .

Lemma 2 Under the notation and conditions of the previous lemma, we have for
α > −1/2,

sup
t∈[aα,1]

√
1 − t2

∣∣ϕ(α)
n,c (t)

∣∣ ≤ √
2. (30)

Proof We first consider the auxiliary function Kα(·), defined by Kα(t) = (1 −
t2)Qα(t), where Qα is given by (27). Straightforward computations give us
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K ′
α(t) = −2t Qα(t) + (1 − t2)Q′

α(t)

= −2t
(
ϕ(α)
n,c

)2
(t) + 2t (1 − t2)

qα(t)

×
(

χn,α(c) + c2 − 2c2t2 + (1/4 − α2)/t4

qα(t)
− 1

) ((
ϕ(α)
n,c

)′
(t)
)2

= −2t
(
ϕ(α)
n,c

)2
(t) + 2t (1 − t2)2

q2α(t)

(
c2 − α2 − 1/4

t4

) ((
ϕ(α)
n,c

)′
(t)
)2

≥ −2t
(
ϕ(α)
n,c

)2
(t), t ∈ [aα, 1].

Hence, we have

Kα(x) = Kα(x) − Kα(1) ≤
∫ 1

x
2t
(
ϕ(α)
n,c

)2
(t) dt ≤ 2

∫ 1

0

(
ϕ(α)
n,c

)2
(t) dt = 2,

which concludes the proof of the lemma. �
As a consequence of Lemmas 1 and 2, we obtain a bound for the eigenfunctions

ϕ
(α)
n,c , given by the following proposition.

Proposition 1 Let c > 0, α > −1/2 be two real numbers. If c2 > α2 − 1
4 , and

χn,α(c) > c2 + α2 − 1
4 , then we have

sup
x∈[aα,1]

∣∣ϕ(α)
n,c (x)

∣∣ ≤ 3

√
3

2

(
χn,α(c)

)1/2
. (31)

Here, aα is as given by (31).

Proof Without loss of generality, we may assume that ϕ(α)
n,c (1) > 0. By integrating (7)

over the interval [x, 1], with x ∈ J = [aα, 1), one gets

(
ϕ(α)
n,c

)′
(x) = χn,α(c)

1 − x2

∫ 1

x

(
1 − qt2 − α2 − 1/4

χn,α(c) t2

)
ϕ(α)
n,c (t) dt, q = c2/χn,α(c).

(32)
Let Gα be the function defined on J by

Gα(t) = 1 − qt2 − α2 − 1/4

χn,α(c) t2
.

It can be easily checked that if c2 > α2 − 1
4 , then Gα is decreasing and positive in J.

Hence, by using (31) and (32), one gets

∣∣(ϕ(α)
n,c

)′
(x)

∣∣ ≤ χn,α(c)

1 − x2
Gα(x)ϕ(α)

n,c (1)(1 − x) = χn,α

1 + x
Gα(x)ϕ(α)

n,c (1).
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Consequently, we have,

∣∣ϕ(α)
n,c (1) − ϕ(α)

n,c (x)
∣∣ ≤ χn,α(c)

1 + x
Gα(x)(1 − x)ϕ(α)

n,c (1). (33)

In a similar manner as it is done in [5], let xn ∈ J with

Gα(xn)
1 − xn
1 + xn

= a

χn,α(c)
, (34)

where a > 0 is a constant to be fixed later on. By combining (33) and (34) and by
using the result of lemma 1, one gets

ϕ(α)
n,c (1) ≤ 1

1 − a

∣∣ϕ(α)
n,c (xn)

∣∣ ≤ 1

1 − a

√
2√

1 − x2n
. (35)

On the other hand, since for any x ∈ J,we have
Gα(x)

1 + x
≤ 1, then from (34), we have

1√
1 − x2n

≤ 1√
1 − xn

≤
√

χn,α

a
.

By combining the previous two inequalities, one gets

ϕ(α)
n,c (1) ≤ 1

a1/2(1 − a)

(
χn,α(c)

)1/2
.

To conclude the proof, it suffices to note that the minimum of the quantity 1
a1/2(1−a)

is obtained for a = 1/3. �
To extend the previous result to the case where α > 1

2 , and the interval [aα, 1] is
substitutedwith thewhole interval [0, 1],wefirst need to locate the first positive zero of
ϕ

(α)
n,c . For this purpose, we use the following Sturm-Liouville comparison theorem, that

compares the zeros of the eigenfunctions of two second order differential operators,
see for example [3, page 4]

Theorem 1 (Sturm Comparison Theorem) Let pi , ri , i = 1, 2 be two real continuous
functions on the interval [a, b] and let

(
p1(x)u

′)′ + r1(x)u = 0,
(
p2(x)v

′)′ + r2(x)v = 0,

be two ODE with 0 < p2(x) ≤ p1(x) and r1(x) ≤ r2(x). Then between any two zeros
of u, there exists a zero of v.

The following proposition gives a location of the first zero of ϕ(α)
n,c ,where α > 1/2.
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Proposition 2 Let c > 0, α > 1/2 be two real numbers. Let x1,n be the first positive

zero of ϕ(α)
n,c . Then for any integer n satisfying χn,α(c) ≥ 2c

√
α2 − 1/4, we have

a2α =
√

α2 − 1
4

χn,α(c)
≤ x1,n ≤ π + π

2 α − 3
4√

χn,α(c) − (α2 − 1/4)
= bα. (36)

Proof To prove the previous lower bound, we first note that (ϕ(α)
n,c )

′(0) = 0 whenever
α > 1/2. Moreover, from the equality,

d

dx

[
(1 − x2)

(
ϕ(α)
n,c

)′
(x)

]
=
(

−χn,α(c) + c2x2 + α2 − 1/4

x2

)
ϕ(α)
n,c (x), (37)

one concludes that ϕ
(α)
n,c (x) and (ϕ

(α)
n,c )

′(x) have the same positive sign around

x = 0, as long as the quantity −χn,α(c) + c2x2 + α2 − 1/4

x2
≥ 0. Straightforward

computations show that this is the case when 0 < x ≤ r1, with r21 = χn,α(c)

2c2(
1 −

√
1 − 4c2(α2 − 1/4)/(χn,α(c))2

)
. Consequently, we have

x1,n ≥ r1 ≥
√

α2 − 1
4

χn,α(c)
.

To prove the upper bound in (36), we use the change of function

U = (1 − x2)1/2ϕ(α)
n,c (38)

that transforms the differential equation (7) to the following equation for U , which
has the same zeros as ϕ on (0, 1),

U ′′ +
(

(1 − x2)−2 + χn,α(c) − c2x2

1 − x2
+

1
4 − α2

x2(1 − x2)

)
U = 0, x ∈ (0, 1). (39)

Since χn,α(c) ≥ c2 + α2 − 1
4 , then we have −c2x2 ≥ −χn,α(c)x2 + (α2 − 1/4)x2.

Consequently, we have

(1 − x2)−2 + χn,α(c) − c2x2

1 − x2
+

1
4 − α2

x2(1 − x2)
≥ χn,α(c) − c2x2

1 − x2
+

1
4 − α2

x2(1 − x2)

≥ χn,α(c) + α2 − 1/4

1 − x2
x4 − 1

x2

≥ χn,α(c) − (α2 − 1/4) − α2 − 1/4

x2
.
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Then, we use Sturm Comparison theorem to conclude that the first positive zero of
U or of ϕ

(α)
n,c lies before the second zero of the bounded solution of the differential

equation,

V ′′ +
((

χn,α(c) − (α2 − 1/4)
)− α2 − 1/4

x2

)
V = 0, x ∈ (0, 1). (40)

It is well known that the bounded solution of the previous differential equation is given
by

V (x) = √
x Jα

(√
χn,α(c) − (α2 − 1/4)x

)
. (41)

Note that since x = 0 is a first zero of V and since from [9], see also [10], an upper
bound of jα,k, the k−th positive zero of the Bessel function Jα(·) is given by

jα,k < kπ + π

2
α − 0.965

4
π < kπ + π

2
α − 3

4
. (42)

Consequently, by using the Sturm comparison theorem applied to the equations (39)
and (40), one concludes that the first positive zero of U or of ϕ

(α)
n,c lies before

jα,1√
χn,α(c) − (α2 − 1/4)

≤ π + π
2 α − 3

4√
χn,α(c) − (α2 − 1/4)

,

which concludes the proof of the proposition.
By using the results of proposition 1 and proposition 2,we get the following theorem

that provides uswith a bound for |ϕ(α)
n,c (x)|, x ∈ [0, 1]which is valid for anyα > −1/2.

Theorem 2 Let c > 0 and α > −1/2, be such that c2 > α2 − 1/4. Then, for any

positive integer n with χn,α(c) ≥ c2 + α2 − 1/4 and

√
χn,α(c)

1 − bα

b3/2α ≤ 3
√
3/2, where

bα is given by (36), we have

sup
x∈[0,1]

∣∣ϕ(α)
n,c (x)

∣∣ ≤ 3

√
3

2

(
χn,α(c)

)1/2
. (43)

Proof We first recall that if α2 ≤ 1
4 , then aα = 0 and the inequality (43) follows

from proposition 1. Hence, it suffices to consider the case where α > 1/2. For this
purpose, we use Butlewski’s theorem, regarding the behaviour of the local extrema of
the solution of a second order differential equation, see for example [4, p. 238]. More
precisely, if φ is a solution of the differential equation

d

dt

(
p(t)y′(t)

)+ q(t)y(t) = 0, t ∈ (a, b), (44)

where p(t) and q(t) are two positive functions belonging to C ′(a, b), then the local
maxima of | φ | is increasing or decreasing, according to the condition that p(t)q(t)
is decreasing or increasing. In our case, we have
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p(t) = (1 − t2), q(t) = qn(t) = χn,α(c) − c2t2 − α2 − 1/4

t2
, t ∈ (0, 1).

Since

d

dt
(p(t)qn(t)) = (

8c2t6 − 4
(
χn,α(c) + c2

)
t4 + 4α2 − 1

)
/(4t3),

and since χn,α(c) ≥ 2α2 − 1/2, then one can easily check that there exists a unique

real number tα,n ∈
[√

α2−1/4
χn,α(c) , 1

2

]
, so that the function p(t)qn(t) is increasing in

(0, tα,n) and decreasing in (tα,n, 1). Hence, from Butlewski’s theorem, the local max-
ima of |ϕ(α)

n,c | are decreasing in (0, tα,n) and increasing in (tα,n, 1). From the Proof
of Proposition 2, we know that the first zero of (ϕ

(α)
n,c )

′, denoted by x ′
1,n is located in

Iα = [a2α, bα], where aα, bα are given by (36). Hence, by integrating (37) over the
interval [x, x ′

1,n], where x ∈ Iα and then using Hölder’s inequality, one gets

(
ϕ(α)
n,c

)′
(x) = −1

1 − x2

∫ x ′
1,n

x

(
−χn,α(c) + c2t2 + α2 − 1/4

t2

)
ϕ(α)
n,c (t) dt, a2α ≤ x ≤ bα.

On the other hand, from the expression of (ϕ
(α)
n,c (x))′′, one can easily check that this

later is positive whenever 0 < x ≤ a2α. Consequently, we have

∣∣(ϕ(α)
n,c

)′
(x)

∣∣ ≤ χn,α(c)

1 − x2

∫ x ′
1,n

x
ϕ(α)
n,c (t) dt, 0 < x < bα.

By using the expression of bα as well as the conditions on χn,α(c), together with
Hölder’s inequality applied to the above integral, one gets

∣∣(ϕ(α)
n,c

)′
(x)

∣∣ ≤
√
bα

1 − bα

χn,α(c).

Finally, since ϕ
(α)
n,c (0) = 0 and since x ′

1,n < bα, then we have

∣∣ϕ(α)
n,c

(
x ′
1,n

)∣∣ <
b3/2α

1 − bα

χn,α(c) ≤ 3
√
3/2

√
χn,α(c).

Finally, from the previous analysis, we have

sup
x∈[0,1]

∣∣ϕ(α)
n,c (x)

∣∣ ≤ max
(∣∣ϕ(α)

n,c

(
x ′
1,n

)∣∣, ∣∣ϕ(α)
n,c (1)

∣∣) ≤ 3
√
3/2

√
χn,α(c),

which concludes the proof of the theorem. �
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The following theorem tells us that χn,α(c) passes through c2+α2− 1
4 for n around√

c2+α2−1/4
π

.A similar result if the special case where α = 1/2 has been already given
by Theorem 3.1 in [22, p.35].

Theorem 3 Consider two real numbers c > 0, α > − 1
2 , with c

2 ≥ 1
4 − α2, then,

(a) For any positive integer n < c
π

− α
2 , we have χn,α(c) < c2 + α2 − 1

4 .

(b) For any integer n >

√
c2+α2−1/4

π
+ 5

3 , we have χn,α(c) > c2 + α2 − 1
4 .

Proof Toalleviate notation,we letϕ,χ denote the eigenfunctionϕ
(α)
n,c and its associated

eigenvalue χn,α(c), respectively. We want to prove that solutions on (0, 1) of the
differential equation

((1 − x2)ϕ′)′ +
(

χ − c2x2 +
1
4 − α2

x2

)
ϕ = (P1(x)ϕ

′)′ + r1(x)ϕ = 0, (45)

have at least
√

χ−(α2−1/4)
π

− α
2 zeros. As it is done in the proof of proposition 2, the

change of functionU = (1− x2)1/2ϕ leads to the equation forU , given by (39). Since
χ ≥ c2 + α2 − 1

4 , then from the Sturm comparison theorem, the number of zeros of

ϕ
(α)
n,c is bounded below by the number of zeros of the function V (·), given by (41).

Since a bound of the k−th zero of the Bessel function Jα(·) is given by (42), then n,

the number of zeros of ϕ
(α)
n,c is bounded below by

[√
χn,α(c) − (α2 − 1/4)

π
− α

2

]
.

Finally, to conclude the proof of (a), it suffices to note that χ ≥ c2 + α2 − 1
4 and use

the previous bound below of the number of zeros n.

Next to prove (b), we divide the interval (0, 1) into the two subintervals (0, 1− η),

[1 − η, 1) with η ∈ (0, 1
2 ) to be fixed later on. We first bound the number nη of

zeros of ϕ or of U , in the interval (0, 1 − η). Since for 0 < x < 1 − η, we have
(1− x2)−2 ≤ η−2, then by using the Sturm-Liouville comparison theorem applied to
(45) and the differential equation

V ′′(x) + (χ + η−2)V (x) = 0, x ∈ (0, 1 − η), (46)

one concludes that

nη ≤ (1 − η)
√

χ + η−2

π
+ 1. (47)

It remains to find a bound for n′
η = n − nη. We now compare the Eq. (45) with

an appropriate second order differential equation on the interval [1 − η, 1). We may

assume that η ≤ 1−
√

5
6 . Since in this last interval, we have P1(x) = (1+x)(1−x) ≥

(2 − η)(1 − x) and since χ ≤ c2 + α2 − 1
4 and 1+x2

x2
≤ 11

5 , then we have

r1(x) = χ − c2x2 +
1
4 − α2

x2
≤ χ(1 − x2) +

(
1

4
− α2

)(
1

x2
− x2

)
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≤ χ(1 − x2) + (1/4 − α2)(1 − x2)
1 + x2

x2

≤ (χ + 11/20)(1 − x2) ≤ 2(χ + 11/20)(1 − x) = r2(x).

Hence, we use the Sturm-Liouville comparison theorem applied to the Eq. (45) and
the following equation

(2 − η)((1 − x)U ′)′ + 2(χ + 11/20)(1 − x)U = 0, x ∈ (1 − η, 1). (48)

The previous equation is rewritten as

U ′′ − U ′

1 − x
+ 2(χ + 11/20)

2 − η
U = 0, x ∈ (1 − η, 1).

If we let v(x) = U (1 − x) and take t = 1 − x as a new variable, then the previous
equation is reduced to the Bessel equation with solution v(t) = J0(bt) on (0, η), with
b2 = 2χ+11/10

2−η
. Moreover, since from [26, p. 489], the m−th zeros of J0(x) lies in

the interval
(
(m + 3

4 )π, (m + 7
8 )π

)
, then v(t) has at most

[√
2(χ + 11/20)

2 − η

η

π
− 3

4

]

zeros in (0, η).ByusingSturmcomparison theorem, one concludes thatn′
η, the number

of zeros of ϕ in (1 − η, 1) is bounded as follows,

n′
η ≤

[√
2(χ + 11/20)

2 − η

η

π
− 3

4

]
+ 1 ≤ 1

π
η

√
2(χ + 11/20)

2 − η
+ 1

4
.

Straightforward manipulations show that

n = nη + n′
η ≤ 1 − η

π

√
χ

(
1 + 1

2
η−2χ−1

)
+ 1 + η

π

√
2

2 − η
(χ + 11/20) + 1/4

≤
√

χ

π
+ 1

2π
η−2χ−1/2 + 5/4 + η

π

(
11/10 + ηχ

2
√

χ

)

since n ≥ 1, then from (19), we have χ ≥ 6. Moreover, by choosing η = χ− 1
4 , one

gets

n = nη + n′
η ≤

√
χ

π
+ 1 + 11

206
−3/4

π
+ 5

4
≤

√
χ

π
+ 5

3
,

that is
√

χn,α(c) ≥ π(n − 5/3), which allows us to conclude for (b).
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4 Eigenvalues Behaviour and Decay of the Finite Hankel Transform
Operator

In this paragraph, we prove an important property of the eigenvalues λn,α(c), that
is for fixed integer n ≥ 0 and real numbers c > 0, α > α′ > −1/2, we have
λn,α′(c) < λn,α(c). To prove this result, we need the following Paley-Wiener theorem
for the Hankel transform, given by J. L. Griffith in [11].

Theorem 4 [11] Let α > −1

2
and p, q > 0 with

1

p
+ 1

q
= 1. Let f be an even

function of exponential type 1. If 1 < p ≤ 2 and tα+1/2 f (t) ∈ L p(0,+∞), then f
can be represented by

f (z) =
∫ 1

0
(xz)−α Jα(xz)φ(x) dx, z ∈ C,

with x−α−1/2φ(x) ∈ Lq(0, 1). Conversely, if f has this representation and
x−α−1/2φ(x) ∈ L p(0, 1), 1 < p ≤ 2, then f is an even entire function of expo-
nential type 1 such that tα+1/2 f (t) ∈ Lq(0,∞).

By using the previous theorem, we prove the following lemma that compares two
Paley-Wiener spaces for Hankel band-limited functions. We should mention that the
previous theorem is still valid if the interval (0, 1) is substitutedwith the interval (0, c).

Lemma 3 Let α ≥ α′ > − 1
2 be two real numbers, then the Hankel Paley-Wiener

spaces Bα
c and Bα′

c satisfy the following inclusion relation,

Bα
c ⊂ xα−α′ · Bα′

c , α > α′. (49)

Here, Bα
c is as given by (4).

Proof Since f ∈ Bα
c , then for x ≥ 0, we have

f (x) =
∫ c

0

√
xy Jα(xy)Hα( f )(y)dy = xα+ 1

2

∫ c

0
(xy)−α Jα(xy)yα+ 1

2Hα( f )(y)dy.

It follows that

x−α− 1
2 f (x) =

∫ c

0
(xy)−α Jα(xy)yα+ 1

2Hα( f )(y)dy.

Let φ(y) = yα+ 1
2Hα( f )(y), then y−α− 1

2 φ(y) ∈ L2[0, c]. By using the previous

Griffith’s theoremwith p = q = 2, one concludes that the function g = x−α− 1
2 f is an

even entire function of exponential type 1.Moreover, since f = xα+ 1
2 g ∈ L2(0,+∞)

and since α > α′ > − 1
2 , then we have

xα′+ 1
2 g ∈ L2(0,+∞). (50)
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Again by using Griffith’s theorem, one concludes that there exists a function ϕ such

that x−α′− 1
2 ϕ ∈ L2[0, c] and

g(x) =
∫ c

0
(xy)−α′

Jα′(xy)ϕ(y)dy.

Hence

xα′+1/2g(x) =
∫ c

0

√
xy Jα′(xy)y−α′− 1

2 ϕ(y)dy.

It follows from (50) that xα′+1/2g = xα′−α f ∈ L2(0,+∞) and Hα(xα′−α f ) =
x−α′− 1

2 ϕ1[0,c]. That is xα′−α f ∈ Bα′
c and f ∈ xα−α′Bα′

c .

Byusing the previous lemma,we show that for a fixed integer n ≥ 0, the eigenvalues
λn,α(c) is decreasing with respect to the parameter α > − 1

2 . This unexpected result
is one of the main results of this work and it is given by the following theorem.

Theorem 5 Let
(
λn,α(c)

)
n≥0 be the sequence of the eigenvalues of the operatorQα

c =
cHα

cHα
c , then for any integer n ≥ 0, we have

λn,α(c) ≤ λn,α′(c), ∀α ≥ α′ > −1

2
. (51)

Proof We first recall that if A is a self-adjoint compact operator on a Hilbert space
H, with positive eigenvalues (λn)n arranged in decreasing order, then by Min-Max
theorem, we have

λk = max
Sk

min
x∈Sk

< Ax, x >

‖x‖2 ,

where Sk is a subspace of H of dimension k. In the special case where H = Bα
c , A =

Qα
c and by using the discussion given in Sect. 2, that relates the energy maximization

problem to the eigenvalues λn,α(c), one concludes that

λn,α(c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max
f ∈Bα

c

|| f ||2
L2[0,1]

|| f ||2
L2(0,+∞)

, if n = 0

max
Sn⊂Bα

c

min
f ∈Sn

|| f ||2
L2[0,1]

|| f ||2
L2(0,+∞)

, if n ≥ 1,

where the Sn are subspaces of Bα
c of dimensions n. Next, let α > α′ > − 1

2 , then by
using Lemma 3, we get

λ0,α(c) ≤ max
f ∈xα−α′Bα′

c

|| f ||2
L2[0,1]

|| f ||2
L2(0,+∞)

= max
f ∈Bα′

c

||xα−α′
f ||2

L2[0,1]
||xα−α′ f ||2

L2(0,+∞)

.
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On the other hand, for f ∈ Bα′
c , we have

||xα−α′
f ||2

L2(0,+∞)

||xα−α′ f ||2
L2[0,1]

=1+
||xα−α′

f ||2
L2[1,+∞)

||xα−α′ f ||2
L2[0,1]

≥1+
|| f ||2

L2[1,+∞)

|| f ||2
L2[0,1]

=
|| f ||2

L2(0,+∞)

|| f ||2
L2[0,1]

,

which implies that

||xα−α′
f ||2

L2[0,1]
||xα−α′ f ||2

L2[0,+∞)

≤ max
f ∈Bα′

c

|| f ||2
L2[0,1]

|| f ||2
L2[0,+∞)

. (52)

That is

λ0,α(c) ≤ λ0,α′(c).

Similarly, for n ≥ 1, and by using Lemma 3, we get

λn,α(c) ≤ max
Sn⊂xα−α′Bα′

c

min
f ∈Sn

|| f ||2
L2[0,1]

|| f ||2
L2[0,+∞)

≤ max
xα′−αSn⊂Bα′

c

min
f ∈Sn

|| f ||2
L2[0,1]

|| f ||2
L2[0,+∞)

≤ max
xα′−αSn⊂Bα′

c

min
g∈xα′−αSn

||xα−α′
g||2

L2[0,1]
||xα−α′g||2

L2[0,+∞)

≤ max
Hn⊂Bα′

c

min
g∈Hn

||xα−α′
g||2

L2[0,1]
||xα−α′g||2

L2[0,+∞)

Hence, by (52) we get λn,α(c) ≤ max
Hn⊂HBα′

c

min
g∈Hn

||g||2
L2[0,1]

||g||2
L2[0,+∞[

= λn,α′(c), which

completes the proof of the theorem.

Note that in the special case where α = 1
2 , we have J1/2(x) =

√
2

πx
sin(x) and

the ϕ
1/2
n,c are the solutions of the eigen-problem

√
2

π

∫ 1

0
sin(cxy)ϕ1/2

n,c (y) dy = μn,1/2(c)ϕ
1/2
n,c (x), x ∈ [0, 1]. (53)

Moreover, it is well known that the solutions of the previous eigen-problem are given
by the classical prolate spheroidalwave functions of odd ordersψ2n+1,c.These PSWFs
are solutions of the integral equations,
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2i
∫ 1

0
sin(cxy)ψ2n+1,c(y) dy = μ2n+1(c)ψ2n+1,c(x), (54)

∫ 1

−1

sin c(x − y)

π(x − y)
ψ2n+1,c(y) dy = λ2n+1(c)ψ2n+1,c(x) x ∈ [0, 1]. (55)

From the previous three equalities, one gets the following identity relating the eigen-
values of Q1/2

c to the eigenvalues associated to the classical PSWFs of odd orders,

λn,1/2(c) = c
∣∣μn,1/2(c)

∣∣2 = c

2π

∣∣μn(c)
∣∣2 = λ2n+1(c), n ≥ 0. (56)

Note that unlike the eigenvalues λn,α(c), the behaviour and the sharp decay rate
of eigenvalues λn(c) associated with the classical PSWFs, are well known in the
literature, see for example [7,13,20,25]. In particular, it has been shown in [7] that the

sharp asymptotic decay rate of the (λn(c)) is given by e
−2n log

(
4n
ec

)
. More precisely,

for any real 0 < a < 4
e , there exists a constant Ma such that λn,c ≤ e−2n log( an

c ),

for n ≥ cMa . Moreover, for any real b > 4
e , there exists a constant Mb such that

λn,c ≥ e
−2n log

(
bn
c

)
, for n ≥ cMb. By combining the monotonicity of the λn,α(c)

with respect to the parameter α, the identity (56) and the previous decay rate of the
classical eigenvalues λn(c), one gets the following corollary that provides us with a
super-exponential decay rate of the λn,α(c).

Corollary 1 Let c > 0 and α ≥ 1
2 be two positive real numbers. Then for any

0 < a < 8
e , there exits a constant Ma such that

λn,α(c) ≤ e−4n log( an
c ), n ≥ cMa . (57)

Unfortunately and unlike the classical case, we don’t have a precise asymptotic
lower decay rate of the λn,α(c). Nonetheless, the following proposition gives us a
bound below for the asymptotic decay rate of the λn,α(c), with a similar type of the
super-exponential decay of the bound above.

Proposition 3 Let c > 0 be a positive real number, then there exists a constant

δ0 and a positive integer k0 such that for any integer n ≥ max
( c
2
,
c

π
+ k0

)
and

χn,α(c) > max
(
2α2 − 1/2, c2(4α2 − 1)

)
, c2/χn,α(c), we have

|λn,α(c)| ≥ δ0e
−A(2n+α+1) log( π

c (n+k0)), (58)

for some positive constant A.

Proof It is well known, see [24] that μn,α(c) satisfies the differential equation,

∂μn,α(c)

∂c
= μn,α(c)

2c

((
ϕ(α)
n,c (1)

)2 − 1
)

.
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Here, we recall that ϕn,c is normalized so that ‖ϕn,c‖L2(0,1) = 1. It can be easily
checked that in this case, λn,α(c) satisfies

∂

∂c

(
log(λn,α(c))

) = (ϕ
(α)
n,c (1))2

c
. (59)

On the other hand, from [1], there exists a positive integer k0 and a positive real number
δ0 such that

λ[ c
π

]−k0,α(c) ≥ δ0.

Since the (λn,α(c))n are arranged in the decreasing order, then the previous inequality
implies that λn,α(c) ≥ δ0 for any integer n ≤ [ c

π

]− k0, or any c ≥ cn = π(n + k0).
Also, by using (59), one gets

λn,α(c) = λn,α(cn) exp

(
−
∫ cn

c

(ϕ
(α)
n,τ (1))2

τ

)
dτ ≥ δ0 exp

(
−
∫ cn

c

(ϕ
(α)
n,τ (1))2

τ

)
dτ.

(60)
On the other hand, it has been shown in [14] that for α ≥ 1

2 and χn,α(c) >

max
(
2α2 − 1/2, c2(4α2 − 1)

)
, theWKB uniform approximation of the ϕ

(α)
n,c is given

by

sup
x∈[γn ,1]

∣∣∣∣∣ϕ(α)
n,c (x) − Anχ

1/4
n

√
Sn(x)J0(

√
χn Sn(x))

(1 − x2)1/4rn(x)1/4

∣∣∣∣∣ ≤ Cqn√
χn

, (61)

where An is a normalization constant, Cqn is a constant depending only on qn =
c2/χn,α(c) < 1, γn =

√
2α2−1/2
χn,α(c) , and

rn(t) = 1 − qnt
2 − α2 − 1/4

t2χn,α(c)
, Sn(x) =

∫ 1

x

√
rn(t)

1 − t2
dt.

Also, from [14], we know that in the neighbourhood of x = 1, the quantity√
Sn(x)J0(

√
χn Sn(x))

(1 − x2)1/4rn(x)1/4
is bounded uniformly in n. Moreover, by using the same

techniques as those used in [6] for the approximation of the normalization con-
stant appearing in the WKB approximation of the classical PSWFs, one concludes
that our normalization constants An are also bounded uniformly in n as soon as
qn = c2/χn,α(c) ≤ q̃ < 1. Consequently, if we also assume that n ≥ c/2, then
using the previous analysis together with the upper bound of χn,α(c), given by (19),
one concludes that there exists a constant B such that

(
ϕ(α)
n,c (1)

)2 ≤ B
√

χn,α(c) ≤ √
2B · (2n + α + 1). (62)

It is easy to see that the previous inequality is still valid for any cn = π(n+k0) ≤ τ ≤ c.
Finally, by substituting cwith τ in (62) and using (60), one gets the desired result (58).
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As a consequence of the previous proposition, we have the following corollary
showing the super-exponential decay rate of the |μn,α| does not invalidate an expo-
nential decay of the expansion coefficients (dnk )k, given by (16).

Corollary 2 Under the hypotheses on the integer n, given by the previous proposition,
there exist two positive constants A, M such that for any integer k ≥ n, we have

|dnk | ≤ M√
cπ(2k + α + /2)

exp

(
−(2k + α + 1) log

(
4k + 2α + 2

ec

)

+An log
(πn

c

))
. (63)

Proof We first note that the Bessel function satisfies the following bound, see for

example [4], |Jα(x)| ≤ |x |α
2α	(α + 1)

∀α >
−1

2
.Here,	 denotes theGamma function.

By combining (16) and the previous inequality, one obtains

|dnk | ≤
√
2(2k + α + 1)

|μn,α(c)|
∫ 1

0

∣∣ϕ(α)
n,c (y)

∣∣ |cy|2k+α+1

22k+α+1	(2k + α + 2)
√
cy

dy

≤
√
2(2k + α + 1)c

2k+α+1

2

|μn,α(c)|22k+α+1	(2k + α + 2)

∫ 1

0

∣∣∣ϕ(α)
n,c (y)

∣∣∣ y2k+α+1

2 dy

≤
√
2(2k + α + 1)c

2k+α+1

2

|μn,α(c)|22k+α+1	(2k + α + 2)

(
2k + α + 3

2

) .

The last inequality follows from the Hölder’s inequality applied to the integral
∫ 1

0
|ϕ(α)

n,c (y)|y
2k+α+1

2 dy. On the other hand, it is well known that 	(s + 1) ≥

√
2πs

s+1

2 exp (−s). Consequently, we have

|dnk | ≤
√
2

|μn,α|
1√

cπ(2k + α + 3/2)
e
−(2k+α+1) log

(
4k+2α+2

ec

)
. (64)

Finally, by combining the previous inequality and (58) and taking into account that
λn,α(c) = c|μn,α(c)|2, one gets the desired inequality (63).

5 Numerical Results

In this paragraph,we give some numerical examples that illustrate the various results of
the previous sections. Moreover, we show that the eigenfunctions of the finite Hankel
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transform operator are well adapted for the approximation of Hankel- and almost
Hankel Band-limited functions.

Example 1 In this example, we illustrate one of the main results of this work, which
is given by Theorem 5. That is the eigenvalues λn,α(c) are decreasing with respect to
the parameter α. For this purpose, we have considered the values of c = 10π and the
four values of α = 0, 1, 2, 3. Then, we have used formula (11) and computed highly
accurate approximation of the eigenvalues λn,α(c) with 0 ≤ n ≤ 40. In Fig. 1a, we
have plot the graphs of the significant eigenvalues λn,α(c) with the various values of n
and α. In order to check that the decay with respect to the parameter α holds also for
the very small eigenvalues, we have plot in Fig. 1b the graphs of the log(λn,α(c)).Note
that the results given by the previous figures indicate what was expected by Theorem
5, that is the λn,α(c) are decreasing with respect to the parameter α.

Example 2 In this example, we give some numerical tests that illustrate the super-
exponential decay rate of the eigenvalues λn,α(c), given by Corollary 1. For this
purpose, we have considered the value of α = 1 and the three different values of
c = 5π, 10π, 15π, and computed highly accurate values of the eigenvalues λn,α(c),

for n ≥
√
c2 + α2 − 1/4

π
+ 5

3
. By Theorem 2, these values of n correspond to the

case where χn,α(c) ≥ c2 + α2 − 1
4 . As in the classical case, the critical value of

n = nc =
√

c2+α2−1/4
π

corresponds to the beginning of the plunge region of the
eigenvalues λn,α(c). In Fig. 2, we plot the graphs of the highly accurate values of
the log(λn,α(c)), as well as the graphs of −4n log

( 8n
ec

)
, the logarithm of the optimal

theoretical super-exponential decay rate, as given by Corollary 1. Note that for the
different values of c, the theoretical asymptotic decay rate given by corollary 1 is very
close to the actual decay rate.

Example 3 In this last example, we illustrate the quality of the spectral approxima-
tion of the Hankel band-limited and almost Hankel band-limited functions, by the
orthogonal projection over Span{ϕ(α)

n,c , 0 ≤ n ≤ N }. Note that the concept of almost
band-limited functions has been introduced in the framework of the classical Fourier

Fig. 1 a Graph of the λn,α(c) for c = 10π, α = 0 (blue), 1 (black), 2 (red), 3 (brown), b same as a with
the graphs of log

(
λn,α(c)

)
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Fig. 2 Graph of the
log(λn,α(c)) for α = 1, c = 5π
(blue circles), c = 10π (black
circles), c = 15π (red circles),
versus the corresponding graphs

of −4n log
(
8n
ec

)
(boxes) (Color

figure online)

transform by Landau, see [19]. In a similar manner, the almost Hankel band-limited
functions are defined as follows.

Definition 1 Let � be a measurable set of R+ and let ε� > 0 be a positive real
number. A function f ∈ L2(0,+∞) is said to be ε�−almost band-limited to � if

∥∥Hα f − χ�Hα f
∥∥
L2(0,+∞)

≤ ε�. (65)

Here χ� denotes the characteristic function of �.

Note that the ϕ
(α)
n,c are the radial parts of the 2D PSWFs that are concentrated

on the unit disc. In [23], the author has developed a 2D PSWFs based quadrature
scheme for 2D−bandlimited functions. The proposed quadrature scheme is restricted
to the unit disk and it is used to derive an approximation scheme of 2D−bandlimited
functions over the unit disk. Recently in [18], a similar scheme is developed for the
approximation of functions that are almost bandlimited and space-concentrated on
a disk. In this last example, we should restrict ourselves to the 1D−case. Since the
ϕ

(α)
n,c are Hankel c−band-limited functions, then they are 0−almost band-limited to

� = [0, c]. Next, for an integer N ≥ 1, let Sα
N ( f ) be the N -th partial sum of the

expansion of f, in the basis {ϕ(α)
n,c , n ≥ 0}, that is

Sα
N f (x) =

N∑
n=0

〈
f, ϕ(α)

n,c

〉
L2(0,1)

ϕ(α)
n,c (x), (66)

where < ·, · > denotes the usual inner product of L2(0, 1). The quality of approx-
imation of the classical Fourier almost c−band-limited functions, by the classical
PSWFs has been given in [8]. Moreover, in [13], this quality of approximation has
been extended to the expansion with respect to some families of classical orthogonal
polynomials. By straightforwardmodifications of the techniques used in [13], one gets
the following proposition that provides us with the quality of approximation of almost
Hankel c−band-limited function by the ϕ

(α)
n,c .
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Fig. 3 a Graph of the approximation error f1(x) − S
α1
N f1 for α1 = 3/2, c = 10π, N = 11, b Graph of

the approximation error f2(x) − S
α2
N f2 for α2 = 1, c = 10π, N = 11

Proposition 4 If f is an L2(0,+∞) function that is ε�− almost Hankel band-limited
in � = [0, c], then for any positive integer N , we have

(∫ +1

0
| f (t) − Sα

N f (t)|2dt
)1/2

≤
(
ε� +√

λN ,α(c)
)

‖ f ‖L2(0,+∞). (67)

To illustrate the previous spectral approximation result, we have considered the
following Hankel and almost Hankel band-limited functions, given by

f1(x) = Jα1+1(ax)√
x

, α1 = 3

2
, a = 20; f2(x) = xα2−1/2 exp(−x), α2 = 1,

respectively. Note that the Hankel transforms of f1 and f2 are given by

Hα1( f1)(s) = a−α1−1sα1+1/21[0,a](s),

Hα2( f2)(s) = 2α2	(α2 + 1/2)√
π

sα2+1/2

(1 + s2)α2+1/2 .

Hence, f1 ∈ Bα1
c , for any c ≥ a. Moreover, straightforward computations show that

f2 is ε�−concentrated on � = [0, c], with

ε� = 2α2	(α2 + 1/2)√
π

√
1 + 2c2

2(1 + c2)2
.

In the special case where α2 = 1 and c = 10π, we have ε� ≈ 0.0225. For this last
value of c = 10π, we have computed the N -th partial sum Sα1

N f1 and Sα2
N f2, with

N = 11. The approximation errors f1(x) − Sα1
N f1 and f2(x) − Sα2

N f2 are given in
Fig. 3a, b, respectively. Note that as predicted by the previous proposition, the first
approximation error is proportional to

√
λN ,α1(c), and the second one is proportional

to ε�.
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