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Abstract In 1987 Harris proved (Proc Am Math Soc 101(4):637-643, 1987)—among
others—that foreach 1 < p < 2 there exists a two-dimensional function f € L? such
that its triangular Walsh—Fourier series diverges almost everywhere. In this paper we
investigate the Fejér (or (C, 1)) means of the triangle two variable Walsh—Fourier series
of L' functions. Namely, we prove the a.e. convergence anA f= % Z;(l) Skn—kf —
f (n — oo) for each integrable two-variable function f.
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1 Introduction

In 1971 Fefferman proved [2] the following result with respect to the trigonometric
system. Let P be an open polygonal region in R?, containing the origin. Set

AP ={0x" x?) : (xxP) ep)

for A > 0. Then forevery 1 < p, f € LP([—m, n]2) it holds the relation
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lim Z f(nl, n?) c::xp(l(nly1 + n2y2)) = f(yl, yz) for a.e.

A—00
(n!,n2)erP

y=0' ) el-n, 7

That is, Sypf — f ae. Sjolin gave [19] a better result in the case when P is a
rectangle. He proved the a.e. convergence for the wider class f € L(log L)? loglog L
and for functions f € L(log L)?loglog L when P is a square. This result for squares
is improved by Antonov [1]. Verifying the result of Sjolin with even one more log.
That is, for functions f € L(log L)?logloglog L. There is a sharp contrast between
the trigonometric and the Walsh case. In 1987 Harris proved [12] for the Walsh system
thatif S is aregion in [0, 00) x [0, 0o) with piecewise C 1 boundary not always parallel
to the axes and 1 < p < 2, then there exists an f € L? such that S p f diverges a.e.
and in L? norm as A — oo. These results justify the investigation of the Fejér [or
(C, 1)] means of triangular sums of two-dimensional Fourier series defined as (see
e.g. [11]):

1 n—1
A p. A
ol f.=;ZSk f,
k=0

where the triangular partial sums S kA f defined as

k—1k—i—1
ScfGet x?) =" 3" f, oo ).
i=0

J=0

That is, SkA f 1is nothing else but Sya f, where A is the triangle with vertices
(0,0), (1,0) and (0, 1). For the trigonometric system Herriot proved [13] the a.e.
(and norm) convergence 0’,1A f — f (f € LY. The aim of this paper is verify this
result with respect to the Walsh system. The main difficulty is that in the trigonomet-
ric case we have a a simple closed formula for the kernel functions of this triangular
means and this is not the case in the Walsh situation.

Next, we give a brief introduction to the theory of the Walsh—Fourier series.

Let IP denote the set of positive integers, N := P U {0}, and / := [0, 1). For any set
E let E? the cartesian product E x E. Thus N? is the set of integral lattice points in
the first quadrant and 12 is the unit square. Let E! = E and fix j = 1 or 2. Denote the
j-dimensional Lebesgue measure of any set E C I/ by mes(E). Denote the L”(17)
norm of any function f by || fl, (I < p < 00).

Denote the dyadic expansion of n € Nand x € [ by n = Z(,)'O:o n j2-/ and
x = Z;‘io x;j27/71 (in the case of x = 2"7 k,m € N choose the expansion
which terminates in zeros). n;, x; are the ith coordinates of n, x, respectively. Set
e = 1/2“‘l € I, the i th coordinate of ¢; is 1, the rest are zeros (i € N). Define the
dyadic addition + as
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00
X+y= lej —yj|27]71.
J=0

The sets I,,(x) :=={y €l :yp=x0,...,Yn—1 = Xp—1} forx € I, I, :== I,(0) for
n € P and Iy(x) := I are the dyadic intervals of /. The set of the dyadic intervals on
I is denoted by Z := {I,(x) : x € I,n € N}. Denote by A, the o algebra generated
by the sets /,,(x) (x € I) and E, the conditional expectation operator with respect to
A, (n € N). C denotes a constant which may be different from line to line.

Fort = (1!, 1%) € I%,b = (b', b?) € N? set the two-dimensional dyadic rectangle,
i.e. two-dimensional dyadic interval

Ip(t) := L (1) x L2 (t%).
For n = (n',n?) € N? denote by E, = E,1 2 the two-dimensional expectation
operator with respect to the o algebra A, = A1 > generated by the two-dimensional
rectangles /1 (xl)xlnz(xz) (x = (x!, x?) € I*).Forn € Pdenoteby |n| := max(j €

N:nj; #0), that is, 2Inl < p < 2IM1+1 The Rademacher functions on I are defined
as:

rp(x) = (=D (x €l, neN).

The Walsh—Paley system (on /) is defined as the sequence of the Walsh—Paley func-
tions:

on(x) = [[rCo)™ = (~)ZiSm% (v e 1, n e N).
k=0

That is, w := (w,,n € N). (For details see Fine [3].) We also use the notations
X ! ;
Ny =Y jognj2,n® =352 n;2/.
Consider the Dirichlet and the Fejér kernel functions:

n—1
D, = Z Wk,
k=0

=
K, = — D
n n Z k>
k=0
Dy, Ko := 0.

The Fourier coefficients, the nth partial sum of the Fourier series, the nth (C, 1) mean
of f e L'(I):

Fny = /1 F@onx) dx (n € N),
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n—1
S f ) =Y Flmr(y) = /1 F G+ )Du) dx = f % Dy(y),
k=0
1 n—1
oS0 i= 3 Y S O) = [ 4 DK dx =5 £ 5 Ka(0), € By €

k=0

Moreover, for n € N we have ([18, p. 7])

2" ifx eI,
0, otherwise

Don(x) = {

and forn € P [18, p. 28]

n]

Dy(x) = wn(x) Y niri(x) Dyi (x). ()

i=0

Then, this gives Sy f(y) = 2" fln(y) f(x)dx = E, f(x) (n € N). We say that an
operator T : L'(I7) — LO(17) (L°(17) is the space of measurable functions on 1)
is of type (L?, L?) (for 1 < p < 00)if [Tfl, < Cpll fll, with some constant C),
depending only on p for all f € LP(I7). We say that T is of weak type (L', L') if
mes{|Tf| > A} < C||f|l1/ forall f € L'(I/) and » > 0 (j = 1,2). The two-
dimensional Walsh—Paley functions, Dirichlet, Fejér and Marcinkiewicz kernels are
defined as follows:

wn(x) = w1 (w2 (x?), Du(x) := D,i(x")D,2(x?),
n—1

1
Kn() = K 0D K2 (%), My(x) = = 3 Dick(x).
k=0

Moreover, the two-dimensional Fourier coefficients of f € L1(12):
f) = /1 F@on(x)dx (n e N?)

The nth (n € N?) rectangular partial sum of the Fourier series, the nth (n € P?)
(C, 1) mean and the nth (n € P) Marcinkiewicz mean of f € LY(I?%) are defined as
the (dyadic) convolution of f and the corresponding kernels above in the usual way.
See for instance [8].

Many papers investigate the behavior of the convergence (and some the divergence)
properties of the two dimensional Fejér means with respect to the trigonometric or the
Walsh system. We mention the papers [14], [6] (trigonometric) and [17], [4] (Walsh—
Paley system). This is another story and also very interesting to discuss the almost
everywhere convergence of the Marcinkiewicz means % Z;f;(l) S, j f of integrable
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functions with respect to orthonormal systems. Although, this mean is defined for two-
variable functions, in the view of almost everywhere convergence there are similarities
with the one-dimensional case. On the one side, the maximal convergence space for
two dimensional Fejér means (no restriction on the set of indices other than they have
to converge to +00) is L log+ L [4,6], and on the other side, for the Marcinkiewicz
means we have a.e. convergence for every integrable functions (for the trigonometric,
Walsh—Paley systems).

‘We mention that the first result is due to Marcinkiewicz [15]. But he proved “only”
for functions in the space Llog™ L the a.e. relation ¢, f — f with respect to the
trigonometric system. The “L! result” for the trigonometric and the Walsh—Paley
system see the papers of Zhizhiasvili [23] (trigonometric system), Weisz [20] (Walsh
system) and Goginava [9,10] (Walsh system). Some of these results (including the
proofs) can also be found in [21].

The triangular partial sums and the triangular Dirichlet kernels of the two-
dimensional Fourier series are defined as

k—1k—i—1
Sefal ) =30 3" f hoichHw; ),
i=0 j=0
k—1k—i—1
DkA(xl,xz) = Z Z w; (x )a)/(xz)
i=0 j=0

The Fejér means of the triangular partial sums of the two-dimensional integrable
function f (see e.g. [11]) are

lnfl
A
=2 57
k=0

For the trigonometric system Herriot proved [13] the a.e. (and norm) convergence
onA f — f (f € L"). His method can not be adopted for the Walsh system, since
for the time being there is no kernel formula available for these systems. The first
result in this a.e. convergence issue of triangular means is due to Goginava and Weisz
[11]. They proved for the Walsh—Paley system and each integrable function the a.e.
convergence relation ozAn f — f.Thatis, we have the subsequence (02% ) of the whole
sequence of the triangular mean operators. This result for every lacunary sequence
(a,) (that is, ay+1 > ga,, g > 1) (instead of (2")) follows from a result of Gat [5].
The aim of this paper is to extend this result of the author for the whole sequence of
natural numbers. That is, the almost everywhere convergence anA f — f for every
integrable function f.

To demonstrate an important relation between the triangle kernels and the one
dimensional Dirichlet kernels see some calculations below.

n—1k—1k—i—1

KnA(xl,x ZD (x X )— ZZ Z w; (x )a)](xz)

klt—O]O
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n—1k—1

ED ) DAL

k=1i=0
1 n—1 k 1 n—1n—1
= - > oiGHDi?) = =3 % o (D)
k=1 i=1 i=1 k=i

n—1 1

n—1
S D D) = 2 3 D) D (0,
i i

In other words,

n—1 n—1
1 1
LS == S () = /1 VS 0dx = =3 Sk f ().
k=0 k=0

That is, the main aim of this paper is to prove the a.e. convergence

1 n—1
orf = ;Zsk,n—kf - f
k=0

for each integrable two-variable function f.
In paper [7] we introduced the notion of dyadic triangular-Fejér means of two-
dimensional Walsh—Fourier series as follows:

—1
1
<A .
Op f = ; Z Sk,n@kf,
k=0

where @ is the dyadic (or logical) addition. That is,

o0
k®n:= Z'ki —ni|2i,
i=0

where k;, n; are the ith coordinate of natural numbers k, n with respect to number
system based 2. Remark that the inverse operation of & is also &. In paper [7, Corollary
1] we proved for each f € L! the a.e. relation

6o f — f.

The dyadic (or logical) addition is completely different from the ordinary (or arith-
metical) one. Besides, it seems that the “arithmetical” version (that is, the (C, 1)
means of Sk ,—k f) is a more difficult situation and maybe that is why, there appeared

some partial results earlier. See for instance the result of Goginava and Weisz [11]:
21

2L" > Sion_if — fae forevery f € L'. The “arithmetical” triangular means are
i=0

a natural analogue of the triangular means with respect to the trigonometric system.
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n—1
However, the “dyadic” (or “logical”) triangular means defined as % > Sinai f
i=
([7]) are also natural analogue of the triangular means with respect to the trigonometric
system but they are different. None of the two results imply the other and the proofs
need different methods.

The main result of this paper is:

Theorem 1.1 Let [ € LY(1%). Then O'nAf = %ZZ;(I) Sk.n—k f — f almost every-
where as n — Q.

The main tool in the proof of Theorem 1.1 is the following lemma with respect
to the maximal triangle Fejér kernel. By the help of this lemma we will verify that
the maximal operator O’*A ((7*A f = sup, |(r,,A f1) is quasi-local (for the definition of
quasi-locality see e.g. [18, p. 262]) and consequently it is of weak type (L', L') and
then by the standard density argument Theorem 1.1 will be implied.

Lemma 1.2 Fora € N

/;2\(1 . sug |K,,A(x)|dx <C.
ax1q) n>24

2 More Lemmas and Proofs
To prove Lemma 1.2 we need a sequence of lemmas. The first one is:
Lemma 2.1 There exists a0 < § < 1 such that

241
1
/ sup | = > o (xwrya(x?)|dx < C8
k=0

forevery A € N.

Proof Recall that we use the notation n @ k := Z;io nj —k; |2/ (n, k € N). That
is, the dyadic addition of natural numbers. First, we discuss the case n = 24 and then
n < 24 will be supposed everywhere. That is, let 7 = 24 now for a moment. Since
k < 24, then @y 04 = wrw,a and

2A7] 2A71
1 1
/12 A E wk(xl)a)k+2A(x2) dx = /12 54 E wk(xl)wk(x2) dx
k=0 k=0

1 | 5 1
= . 2—ADzA(.X + x )a’x=2—A.
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That is, case n = 24 is cleared and in the sequel n < 24 is supposed. The integral to
be investigated is not greater than the L*(I?) norm of

241
sup | > ox(xDoka ()|
k=0

n<24

This L*(1%) norm is bounded by

1/4
241 [24-1 4

1
| [, T2 et o)

n=0 | k=0

24_124_124-124-124-1

S5103D D30 3D B FIESETE

n=0 k=0 I=0 i=0 j=0 (2)

1/4
x /] w(k+n)®(l+n)®(i+n)®(j+n)(x2)dX2>
1 1/4
= Z_A( Z Bn,k,l,i,j) .
n.k.l.i,j€{0,...24 1}
Investigate the integral By, x ;;, j. Suppose that itis not zero. Then k @[ @i @ j should

be zero. Thus, j = k@[ @ i. Similarly, (k +n) ® (+n) D (@ +n) & (j +n) =
k+n)®(+n)dG+n)d ((kdldi)+ n)should be zero again. This follows

k+ndl+n®(@+n) =kdlDi)+n. 3)
We give an upper bound for the number of quadruples (n, k, /, i) satisfying (3).
Represent n, k,[,i as 0,1 sequences of length A. Divide every k,Il,n,i 0,1

sequence into blocks with four coordinates (elements) in each block. That is, the
first blocks are:

(n3,n2,n1,ng), (k3, ko, ki, ko), (I3,02,11,10), (3,i2,11,100).
The sth block:

Qp,s i= (N4g_1, Nag_2, Nag_3, N4g_4), Ok s = (kas_1, kas_2, kas—3, kas_a),
s = (las—1,las—2, las—3, lag_4),
Qs = (i4s—1, 452, 45—3, I45—4) (s =1,...[A/4]).

Suppose that there exists an s € {1, ... | A/4]} such that

an,s = (07 0’ 17 0)’ ak,S = (Oa 07 0’ 0)7 O(l,s = (07 Oa 17 0)’ ai,S = (07 1’ 07 0)
“
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When we add k and n, then in the sth block of k +n we find (0, 0, 1, € ), where
€k.n.s € {0, 1} depends on smaller indices coordinates of k and n. Similarly, for [ 4+ n
and i + n we have for their sth block:

Ck+4n,s = 0,0,1, Ek,n,x)a Al4n,s = 0, 1,0, El,n,s)7 Ujitns = ©,1,1, 6i,n,s)~

This gives for the sth block of (k +n) @ (I +n) ® (i +n): (0,0,0, €,.£.1.i.s), Where
€nk.l.is € {0, 1}. On the other hand, the sth block k @[ @i is: akguai s = (0, 1, 1, 0).
This regarding o, s = (0, 0, 1, 0) gives that

Akpii)rn,s = (1,0,0, € 1in,5),

where €y i n.s 18 either O or 1. That is, the sth block of (k +n) @ (I +n) ® (i +n)
and (k ® [ @ i) + n is different. Consequently, (3) does not hold and B, 4 ;; ; = 0
(j =k®1®i). The number of quadruples (n, k,1,i) € x‘I‘{O, ..., 24 1} for which
there is no block with (4) is bounded by (21¢ — 1)l4/41212 (212 occurs if A is of form
4t +3 (t € N)). Since for every quadruple (n, k, [, i) we have only one j for By, ;i ;.
then we have at (2):

1/4

1
7 Z B k1.i,j

n.k,l,i,jef0,.... 241}

1/16\ A
1 16 LA/4]412) /4 2101 A
52—A<(2 1 2) =8( (5 = 884,

1/16
where 0 < § = (21261g1 ) < 1. The proof of Lemma 2.1 is complete. O
1/16
Remark 2.2 Itcanbe achieved a (little) better (smaller) constant for § then (2126%)

since not only quadruple blocks

an,s Oa 07 15 0
aks | ] 0,000
al,S - 01 Oa 11 0
ai,S 01 17 01 0
should be excluded (s = 1,...|A/4]) but some more. In a similar way of thinking

if the far right coordinate of o, s, k5, o 5, 0t s Temains 0, take numbers n, k, [, i €
{0, 1, ...7} expressed in the binary system, that is, as 0, 1 sequences of length 3. Then
find the quadruples among x‘l‘{O, 1,...7} for which

[n+k (mod8)]®[n+! (mod8)]®[n+i (mod8)]
#kDdIDi)+n (mod8).
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However, in the point of view of the proof of the main theorem it is unimportant and

6_\1/16
6= (22%) is quite “enough”.

Corollary 2.3 Let t2 < s be natural numbers and let ko, ..., k2 € {0, 1} be fixed.
Moreover, let

. 1 2
th,s(x) = SUPS Z a)k(,zﬂ)(x )0)(,1+k)(z2+1)(x )
P2 ko ks €(0.1)

x € I?. Then for every two-dimensional square Toyy(u) =1y (u') x In (u?) we
have

222 / Fo,(x)dx < C270557
1t2+1(u)

where constant 0 < § < 1 comes from Lemma 2.1.

Proof The proof of Corollary 2.3 is nothing else but a direct application of Lemma 2.1.
Namely, F;2 ((x) does not depend on xé, . xtj2 (j =1, 2), it depends (with respect to

x) only onxi’ZH, .. .,x!_l (j=1,2) (and )cs2 in the case of (n + k), = 1). Therefore,

instead of I,2, (1) = ,2+1(u1) X Itz+1(u2) we may write I,2,; x I;2, 1. Moreover,
2 2 2 2
(n + k)(t +1) _ n(t +1) 4 k(t +1) 4 8(7102), k(tz))zl +1’

where 8 : N2 — {0, 1}. This gives

1 2
Fz2,5(x) =< SUPS Z wk<,2+1)(x )wn(t2+l)+k(t2+l)(x )
M2 ko, ks 1 €(0,1)
(xh (%)
+ sug W24 (X )D, (2401 4 @241 241X
M2 ke ks—1€00,1)
<2 1 2
= sup @1 (Y ) 0m+1(y7) |,
m=2=21 i 1 ef0.1)
where Iy = k> oy = k1, yl = x’ ¥’ =x' (=12
te41o o s s byg—t2=2 s—1s Yo 241 Ye20 s—1 y &)

Then apply Lemma 2.1:

/ sup Z o1 (Y omar ()| dy < c2 51
[

2
OD% <=1 1o, 2 ,e{0,1)
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Consequently,
22042 f Fp ((x)dx < / sup Yo @ hon(h|dy
1,2+] (u) [0,1)2 mszs—rz—l - ls—rz—ze{o’l}
< et
This completes the proof of Corollary 2.3. O

We use the notation J; = I \ Ix+1 (k € N).

Lemma 2.4 Let0 <t! <2 < s be integers, J; = Jj x J2. Then

25—1

21!
/ sup Z Di(xY Dy D) dx < C* — ! + 1)37255“‘2,
Jr n<2’ k=0 2

where 0 < § < 1 comes from Lemma 2.1.

Proof Let x = (xl,xz) e Jr = Jp x Jp, t! < 1?2 < 5. Fix xtj2 1,...,)csj_1
(j = L1,2) and k4, ..., ks—1. We give a bound for the number of tuples
(xt11+1, <.y x), ko, ..., kyy) for which
Y D)D) #0, )
ko,....k2€{0,1}

where n < 2° is a natural number. Since x € J;, then by (1) we have

-1

Di(x") = @iy (DR D k20 - 2" (©6)
u=0

and
2—1

2
Dy (x%) = w(n+k)(,z+,>(x2)(—1)("+k)t2 Z(n +h),2Y —(n+ k)20 | . (D
v=0

Case A x| = ... =x! = 0. This fact with provided that x' € J,1 with will

th+1 2—1
be denoted by xte Ji,,0- Then the number of tuples (xr11+1’ e, xtlz, ko, ..., k) (not
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only for those (5) holds) is bounded by C 27 This gives

> D Dur(x?)

ko,....ks—1€{0,1}

-1

k k 1
< > wk(,1+1)(x1)(—1) ARRUEIOR: Zkuzu—k,lzf

Ko,k p€{0,1) @) u=0
2—1 ,
x Z(n + )2V — (n + k) 22"
v=0
1 2
X Z w24 (X )w(n+k)(’2+‘>(x )

k2 -ks—1€{0,1}

2 12
1At At 1 2
<C2 22 E a)k(,2+1)(X )w(n+k)(x2+l)(x )
ko q-ks—1€{0,1}

< 2" E, ().

That is, we used

Yo Qe @Hog, e )] < Fa (). ®)
kq-eks—1€{0,1}

Then by Corollary 2.3 we have

29—1

f sup | ) Di(x') Dyr(a?)| dx
Jt1_0XJt2n<25 k=0

)
119212 t'ys—12 o5 —12 2t1 s os—12
<C2'2 Fp (x)dx <C2° 27" & <C—2%"".
JaxJp ' 21

1
=X,

t+i—1
This fact with provided that x! € J,1 will be denoted by x! € Ji,.i- In this case we give
a bound for the integral of the maximal function (it means sup,, _,s) of the following

function on the set J,1 ; X J2.

Case B Suppose thatx,11+1 =... =0, xt11+i = 1forsomel <i < t>—t!.

-1

1

Bl = Z wk(t]+1) (xl)(_l)kt1+(n+k)[2 Z kuzu _ k[]zt
ko.kp€{0,1) 0D u=0
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th4i—1
X Z (n+ k)12l
=0
X Z Wy 241 (xl)a)(n+k)(,z+l> (x?). (10)

k[2+1 oks—1€{0,1}

Besides, for x € J;1 x Jp2

-1
By = Z a)k(tlJrl)(xl)(_l)k,1+(n+k),z Z k2" — kl]2t1
ko.kp€{0,1) D u=0
12—1
x| 3 k2t — 4 k2"
I=t1+i
X Z W 241) (xl)w(n+k)(,z+,> (x?)
Ky eks—1€{0,1)
and
251
< | > De(x" YDy (x%)| < |Bi| + | Bal. (11)
k=0

In case B we give a bound for

/ sup |B1ldx
‘Itl.i ><Jt2 n<2$

and in case C with its subcases we do the same for sup, _,s | B2|. That is, turn our
attention to Bj. Have a look at the sum (' +i < %) below (a part of the sum at 10)

1
1 2 X X
Z wk(’l+1)(‘x )w(n+k)(,2+1)(x )(—1) t1+("+ ),2

kt1+i:O (tZ)
-1 1 i1
<[ D k2 —ka2 | Y (k2 (12)
u=0 =0

This sum can be different from zero only if (n + k)¢ 2+1)(_1)(n+k)t2 depends on
k1 ;. This also means that (n + k)(’z) depends on k;1 ;. That s, it changes when k;1 ;
changes its value from O to 1. If this is not the case, then all addends depends on k;1 ;

k.1

th+i
asr,

On the other hand, if (n + k)(tz) depends on k;1,; € {0, 1}, then when k;1; = 0 we
have that (n + k),1;, m + k)14, ..., (n +k),2_ should be 1 in order to have a
change in (n + k)(’z) as k,1,; turns to 1. That is, when k is increased by 2‘1 +i,

xh = (- l)kr‘+" and consequently (12) would be 0. This would give B; = 0.

Birkhauser



1262 J Fourier Anal Appl (2018) 24:1249-1275

That is, n + k = (n + k)14 + 2L 412 4 (i k)@, Conse-
quently, k;14;41,...,k2_; should be unchanged. This implies that the number of
tuples (ko, ..., k,2) (for any fixed n < 2%) satistying this property is not more than

L =o',

212—t1—i
By this fact and by (8) we get an estimation for B at (10):

t'tint! At +i 1 2
|Bi| < €2 22 Yo o @ e @)
k2 yeks—1€00,1)

<2 E, (x). (13)

Then again by Corollary 2.3 and by the fact that Fy2 ((x) (s € N) does not depend

onxé, xtjz (j = 1,2) we have
1 212
f sup |By(x)|dx < €23 T2 =
s ol
Jll,l.lez n<2? (14)
P42 2 2
f Fp (x)dx < C2M'Hi=1 52 gs =t
Jt2><./t2
Moreover,
/ . sup |Bi(x)|ldx < C
(U5 0 ) % m<2
2—1—1 (15)
Z 22tl+i7122s7t28s7t2 < szlzsfzzssfzz.
i=1
CaseCSupposethat)ctl1+1 == xt11+l._l =0, x[11+l. = Iforsomel <i < r?>—¢!.

That is, x! € Jy1 ; again as in case B. Then we give an upper bound for the maximal
function of | By| on the set J;1 ; X J;2: We use estimation (8). That is,

1 2
Z C‘)k(z%-])()C )w(n+k)(’2+1>(x )| =< Ft2,s(x)~
k2, erks—1€(0.1)

2—1 =1
Bof < | Y 2 3 DR [ Y k2t — k2"
I=t' i kowky1,_ €{0.1) u=0

x Z wk<t1+1>(xl)(n +k)l(—1)(”+k)f2
kr1+i’--~vk,2€{0,l} 2)
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S Z a)k(12+1)(xl)a)(n+k)(/2+1)(x2)
K2,y eks—1€(0,1)
-1
+ 27 S D[ Y k2 ka2
kovnky1 ;1 €(0,1) =0

x Y. oua@Hathe

kit ek ef0 1y 0
X Z W, 241y (xl)w(n+k)(,z+1) (x?)
k2 oks—1€{0.1)
2—1
=] > Bul+I1Y_ 1= 1+I>_I (16)
I=t!+i 2 1 2

We investigate ) ;. D, can be treated in the same way. That is, in case C we discuss

S @Dy e (D0 + =D, a7)
kit yjokp€l01) @)

i.e. the partin By ; which depends on k1, ..., k2 (with fixed n and fixed other ;’s).
1 ] _ 1 _ ; 2 _ 1

For x € J;, Xy = =X1, = O,xllﬂ, =1 (forsomel <i <t t
and t' +i < | < r?). Basically, we give a bound for the number of tuples
(xtl1 FRTREES xtlz, ko, ..., ki) for which B;; is not 0. We have four subcases in inves-

tigation of f«’l sup,as | >y ldx (N =1,2).
thi
Case CA

x! e{xel:x6=-~'=x:_1=0,x:1 =1,x,1|

1 [ PN TS
Yy = =0 =0x = =xn =00 =Jn

o _ .
- =X 71—0,xl]+i—1,

+1 +i

()cl1 is either O or 1) for some 1 <i < 2—tlandt! +i<i<t?—1.
Case CB There existsa 1 < j < 2 — [ — 1 such that

1 N I 1 _ 1 1 _ 1
X e{xel.x0—~-~—xt1_1—0,xt1—1,xt1+1—~--—xtl+i_1—0,xll+i—1,
1 _ . 1 _ 1 _ I 1y .

xtl+l+] — ... = x171 — O’xl+1 —_ ... = xl+]71 = 0,.x1+j = 1} =. Jll,i,l,j

Case CC

Thereexistsal§j§t2—l—1andlSmgl—tl—isuchthat

1 S IS R 1 _ T _ 1
x e{xel:xy= —xtlil—O,xtl—l,xt.H— —xt1+i71—0,xll+i—l,
i1 = T X = O X, = L ==y = 0,0, = 1)
= Silil jm>
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Case CD There existsa 1 <m <[ — ¢! — i such that

1 A S 1 _ 1 _ 1 _ 1 _
x e{xel:xy= _xtl_l_O,xtl_l,xtl_H_ _xt1+i—l_0’xt1+i_1’

1 1 _ 1 _ | IS ,
Xgio1 = T X1 =0 X, = L = =xp = 0E=0

The following inequality shows the structure of the investigation with respect to
cases CA,CB,CCandCD and ).

2-1

/( P sup Z By | dx

i—1 111,1)X112 n<2$ =l

2—l—1 12—

< Z Z/ sup |Ba|ldx
i=1 =gl Jiu ;xJp n<2f
2—t'—1 2—1
=Y X[ s
J 1

i=1 [=tl4i t ,i,lx‘]t2 n<2

P21 2-1 12—

+ Z Z /;1 sup |Ba,|dx

i=1 =14 j=I t ,i,l‘jx']tz n<2*

2=t 2—1 2111

+ > Y > Z/J} sup |By,|dx

i=1 =tl4i j=1 m=1 ,i,l,j.mx‘ltzn<2s

P2—tle1 21 1—t1—i

+ > Y Y f, sup | By |dx

i=1 [=t14i m=1 tl,i,l,mx‘,t2 n<2*

=:CA+CB+CC+CD. (18)

Case CA is easy to check and almost the same as case A. The main differ-
ence is that we will have to sum also with respect to i: The number of tuples

(x) IRTRESY x5, ko, ..., k) (not only for those (5) holds) bounded by €27, since
the number of corresponding tuples (xtll IRTREES xtlz) is not more than C. That is, hav-
ing a look at (16):
By < 212"+ 0" py (x) < €21 E, ().
Consequently,
/ sup | By |dx < C2!' 1+ / Fp (x)dx < €2 HH17 g2t ps = gs—i?
le,i,1><Jz2 n<2s JoaxJp '

Birkhduser



J Fourier Anal Appl (2018) 24:1249-1275 1265

This immediately gives

211 21

>y / sup | By, ldx < C(12 — 12!~ 2351
Ja

i=1 =4 a2 n<2$
Similarly, (also by (16))

1Y) < c2arHint R, () < €27 (),
2
21 21

>y / sup | Y ldx < C(12 — )22 gt
2

i=1 =gl Jll,i,lx"tz n<2s

In Case CB (17) equals with

1

Z (n+ k), Z wk(r1+1) (xl)w(n+k)(t2+1)(xz)(_l)(n+k)’2

2
Kokt gy ookij—1 ki jgns k2 €{0,1) kiyj=0 @

((n + k); does not depend on k; ;). The sum Zli,ﬂ-:o wk“;“) (xl)w(n+k)<f2+1) (x2)
2)

(— 1)(’”“")[2 can be different from zero only in the case when (n + K 24D (—1 )(”Jrk)t2
changes as k;y; turns from O to 1. That is, when k;; = 0 we have that (n +
K)ivj, (m + K)pyjt1,..., (m + k)p2_; should be 1 in order to have a change in
(n + )P+ ()R 4 kit turns to 1. That is, when k is increased by 2/*/.
Thatis,n +k =0 +k)grj—1+ 24 2171 + (n+ k)(’z). This implies that

2 .
the number of tuples (ko, ..., k;2) of this kind is not more than C# = C2/+J,
Consequently, then number of tuples ()ctl1 FRTREES xtlz, ko, ..., ki) for which By is

not zero is bounded by C21°—1=i2l+i = 2" forafixed i < > —t!. That s, by (8)
and by the definition of B;; at (16) we have

By < C212172" Fpy |

and
o
/ sup |Byldx < €22/ / Fp s(x)dx
‘Itl,i,l.jx‘]tz n<2s ‘Itl,i,l.jx‘]tz
14,2 1_.2 2 2
< C21+l +t / F,z’s(x)dx < Czl-‘rt —t 2S—l‘ (SS—I )

lelez
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This immediately gives [have a look at the “structure” at (18)]

22—l —1 2—1 2—1-1

o Zf sup | Ba,s|dx
i=1 j=1

=1 ‘,tl,i.l,jx‘,tz n<2s

22—t =1 2—1 2=l 19
<C Z Z Zzl+tl—122s—z26s—t2 (19)
i=1 j=tl4i j=1
2 I\At! As—12 os—1?
<C(t7—rH)2h 22785,

The sum ), is discussed later.
Next, we investigate case CC.

We give a bound for | By ;(x)| for x € J;1 in a way that we find an estimation

il j.m
for the number of tuples (ko, . .., k,2) such that (17) is not zero. (If this is not the case,
that is, (ko, ..., k;2) is so that (17) is zero, then so does the corresponding addends in

B; ;.) Change the order of the summations in (17). It equals with

1

2 [T rah X olisme+oy

kkzl+; """ kll+ik+m—1’ tzzulztl-H, Kty =0
tlitmy1 I+j=1> uzt +itm
k1+j+1""‘kr2€{0’1} uFl+j (20)

1

> D, 6D (DR,
k[+j=0

We have afixn andif k;1,; ,,, kj+j runsin {0, 1} with fixed other indices of k, then
to avoid (20) to be zero all the coordinates of (n+k) 1 ;4 i1, ..., M+k)—1, (n+k);
and (n + k);+1, ..., (n + k),2 should be 1 for each k; (0 < i < 12 #* i+
m,l + j) for those addends in (20) different from zero. If say, (n + k), = 0 for
some t' +i +m < a < [, then as k141, changes from O to 1, we do not have
change in (n + k); and in D () 241) (x?) and consequently (20) is zero. That is,
the number is the tuples (ko, ..., k;2) such that (17) is not zero is not more than
C2t*p—U=t'=i=m)p=(P=I=}) — Ct'+i+m+] Then, by (8), by the definition of By at
(16) and by Corollary 2.3 we have

/ sup |Ba(x)|dx < C / 2lpt o it mti py (x)dx

I g jm X2 n<2° i jm >

< Czl—t]—i—mztz—l—jzlztl2l]+i+m+j/ th,s(x)dx 1)
./t2><./t2

— C21+t1—t22212/ th’s(x)dx < Czl-‘rtl—tzzs—lz(ss—tz
J,2><J,2
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This immediately gives

2—tl—1 2—1 P2—l-11—1'—i

)IEDIED IS /11 sup |Ba,;(x)ldx

i=1 |=t'4i j=1 m=1 t ,i,l,_j‘mx‘lt2 n<2*

2=t 21 P11t =i (22)

<C Z Z Z Z 2l+t17122s712337t2

i=1 |=tl4i j=1 m=1

< C(t2 _ t1)32t12S_t2(sS_t2.

The sum ), is discussed later.

In Case CD, in a similar way as above we give abound for | By ; (x)|forx € Jy1 ;.
We do it in a way that we find an estimation for the number of tuples (ko, ..., k;2)
such that (17) is not zero. Change the order of the summations in (17). It equals with

1

Z l_[ rl];u ()Cl) Z (_1)k;1+i+m (n +k)lw(n+k)(12) (xz).

k1 0

thtioe kll+[+m—1’ 2zu>t!, kl|+i+m:
ki imarsek2 €0, ut ' itm

(23)

Remember that Dy (41) (xz)(—l)(’H'k)t2 = O 1)@ (x2). All the coordinates of

(n+Kk)p1 1 ivmats - - -» (m+k)—1, (n+k); should be 1 for those addends in (23) different

from zero. If say, (n + k), = 0 for some ' 4+i +m < a < [, then as ki1 4y, changes

from O to 1, we do not have change in (n + k); and in (n + k) g (and consequently in

O )™ (x2)) and this would imply (23) to be zero. That is, the number is the tuples

(ko, . . ., k,2) such that (17) is not zero is not more than 21— t=t!=i=m) Then, by
(8), by the definition of B, at (16) and by Corollary 2.3 we have

/ sup |Bo,1(x)|dx
‘Itl,i,l,mx‘]tz n<2%
<C / 2t ot U=tt=i=m by (x)dx
I iam >
< C2211+t2+i+mz17t17i7m/ th,s(x)d'x (24)
]t2><]t2
Al =12 4242
=C2 2 Fo ((x)dx
Jt2><.]t2 '
S C2[+tl—1225‘—t25_&‘—12.

That is, exactly as in the case CC. That is (have a look again at (18)),
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P2—tl—1 21 I—t'—i

> 2 / sup [Ba,1(x)ldx

i=1 j=tl4i m=l Ui jm X J2 <2
2.1 2 1_;
to—t'—1 =1 -t —i
I+t =12 ns—12 o5 —12 (25)
Y Y Y ey
i=1 [=tl4; m=1

< C(t2 _ t1)221125—128s—l2-

The sum ), can be discussed in the same way. The only difference is that it is more
simple. Basically, D, looks like a special By ; for [ = t>. Consequently, there is no
cases CB and CC. Only CA and CD cases make sense and these cases has already
been investigated. That is, the proof of Lemma 2.4 is complete. O

Now, we turn our attention to a lemma concerning the maximal triangular kernel
function. This estimation will consist of the three forthcoming lemmas. First, s <
t! < #? (Lemma 2.5), then the second part will be t! <5 < 1% (Lemma 2.6) and the
third part will be th<i? <y (Lemma 2.7). Recall that for k € N J; = I \ I;4+1 and
n®) = Y e, 2k (n, s € N). n® = n, n"1*1 = 0. The first part:

Lemma 2.5 Leta € N. Then
r! 251

/J sup sup 24 an Z Dn(r+l)+k(x )D,,_ (n<s+1)+k)(x )dx < C.

xJo2 A>a|n A
tl 02=¢1 7712 Inl=

Proof For t'<a,r?>rt'andx € Ji1 x Jp by the formula for the Dirichlet kernel
function (see (1)) it is clear that

1 2
|Dn(s+1)+k(xl)Dn_(n<s+1)+k)(x2)| < 2t HEAL
where 12 A A := min{2, A}. This gives

b2 —1

Z / sup sup 3 Z Z D <s+1)+k(x )Dn - k(x2) dx

=0 2=1 1><J2A>a\n| A =0 | k=0
1 ! 1o (2
< C Z Z / Sup 2_AZZS+Z +(t /\A)dx
=0 2=1 JaxJp A>a s—0
2_
<CZZZII-H2A> 22t+t +ZZZH+12
t1=0¢2=1! t1=012=a
a o
<C Z Z ztl—a +C Z Zzzl—ﬂ
t1=0¢2=! t1=012=a
<C.
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This completes the proof of Lemma 2.5. O

The second part:

Lemma 2.6 Leta € N. Then

12 21

1
>y [ 1 I ) DL | PR

(=0 21 VI3 Jp2 Aza Inl=A s=t14+1 k=0
Proof Since x € J;p and s > t!, then Dn<s+1>(x1) = 0 and consequently
Dn(x+l)+k(xl) = wn<s+|>(x1)Dk(x1). On the other hand, ny = 1 can be supposed
and0 <n— Ot + k) =ni) —k <255 < 12, x> € Jo C 1,2 gives

Dy —k (%) = ns) — k.

Thus, also by the help of the Abel transform (forx!' ¢ Iy asx! € J,1 = I \I,1+1,t1 +
1<y5)

25—1 251
ng Z Dn(x+1)+k(xI)Dn_(n(s+l)+k) (x2) = Ng Z Dk(xl)(”(s) — k)
k=0 k=0

21 21
Koo (D] + | 30 Dk = €27 [Kae 6] 4| 30tk + DEei (6|
k=0 k=0

S C22S

In [22] one can find the estimation: If 1! < s, x! € J;1, then | Kos @hH < c2'" for
x! € Is(e;1) and | Ko (x1)| = 0 for x! ¢ Is(e,1). This gives

ZNA

Z 2/ sup sup Z ng2%

o2 2 Azaln|= A2

Kps (xl)‘ dx

2AA

1 25+t!
/I sup sup 2 Z 2 dx

tl —0 121 Y Iste)xJp Azain|=A s=tl4+1

12AA

1_2_
SeY Y wp Y 2
=0 2=41 429 (= =t1+1
o0

<CZZsup2’ +CZ Z sup 2= +CZ Z supZZI_A

2
—072=114 =0 2=q41 1*>Aza 120 12=q+1 AZ!

<cC Z(a — et Zz’““ +C Z '-a <

t1=0 t1=0 t1=0
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We investigate ‘Z/%:ol (k + 1)Kk+1(x1)‘. (Also use the fact that s < 72, A)

1 t“ANA 25—1
/ Sup sup D o[ (k+ DKy (x| dx
J

tl —0 121 V)2 Azalnl= s=tl+1 k=0
2AA 2’ —1
czzy’sw%z:ZmHmmmw
—0 12— Jlsz A>a —t141 | k=0
PAA | 251
ey Z/ wwp o 3 | Ykt DKk (6] d
=0 12! JaxJp A>a s=t141 |peni!
=: A6+ Bas-

First, discuss Aag by |Kip1 (x1)] < C2!' (x € J,0):

ZAA

Are < C 23! -
y zzww>z
t1=012=¢! =T s=t141

<CZ Z sup (2 A A) — ¢1y2'-A-r?

A>a
t1=012= tl

=C Z Z (1 na) — 1122 et

t1=012=¢!
a a . ) a o : N
< C Z Z (tz _ t1)22t —a—t + C Z Z (a _ tl)zzt —a—t < C.
t1=012=¢! 11=012=a+1

Next and finally in Lemma 2.6, discuss Bj . In [16] one can find the inequality

2!
/ sup |K, (x )|dx <C—(A—t + 1) (A>t) (26)
Ja n>24

By the help of this inequality we have

2AA s—1 20t

Byg<CYy. Z Z;A Yoy (k+1)/ |Ki41(x")|dx" mes (J,2)

t1=012=t! A=a s=tl4li=t! k=21

2AA s—1 21t

<CZZZzA oy Z(k+1) (l—l + 127"

012=t! A=a s=tl41i=t! k=21
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a 0o 00 PAA s—1

SCZ Z Z Z ZziJrrLzLA(i_ﬂJrl)

t1=012=t! A=a s=t141i=t!

a oo oo IPAA

< CZ Z Z Z 2s+tl—t2—A(s_t1)
t1=012=t! A=a s=t141
a o0

<C Z Z i 2(12/\A)+t17t27A((t2 AA) — ll)

t1=0r2=t! A=a

a a o a o t2
< CZ Z Zzt2+t'—t2—A(t2_tl)+CZ Z Zzzl—ﬂ(A_tl)

11=02=¢! A=a t1=012=a+1 A=a

+Ci Z Z 2t1—A(t2_t1)

t1=012=a+1 A=12+1

a a a o0
< CZ Z 2llfa(t2_tl)+c Z Z 2z17z2(t2_t1)2

t1=0 12=¢! t1=012=a+1
a 0.¢] | )
+CY Y 2 -t
t1=012=a+1
a 1 a 1 a 1
CY 2 a—t)Y+C)Y 2 “a—t")Y+CY 2 “@-t)=C.

=0 t1=0 =0
This completes the proof of Lemma 2.6. O
The third part is:

Lemma 2.7 Leta € N. Then

A 25—1

a [e ]
1
Z Z / sup sup Z ng Z D,,(s+1)+k(xl)Dn_(n<x+1>+k)(x2) dx < C.

=0 2= ‘/rl XJ,Z A>a |n|=A s=1241 k=0

Proof First, for fixed r = (tl, t2), s, A we discuss the integral

25—1

1 2
/ sup 71 Z D51 45 (X ) Dy (51 ey (x7)  dx.
Jaxla lnl=A |5

This means that ny = 1 can be supposed. Otherwise the integral is zero. Since
xbe Jpo= I\ Lig,s > t2 > !, then Dy (x!) = Dyern(x!) +
@, 5+1) @HDr(xh = W, (s+1) (xYHY Dy (x1). We also have n — (n+D + k) = ne) —k =
ne—1) +ns2° —k = n_1) +2° — k and consequently by Do(xH =0, Dss(xhy =0
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251 251
1| Y Dyt k(XD Dy s 10 &) | = | D Dix) Dy p2e i ()
k=0 k=0
2—1 2—1
Y Dy Dk )| = | D DeH Dy 11 (6]
k=0 k=0

The last equality is given by Dys _; = Dys — was_1 Dy (see e.g. [9]) and Dos (xl) =
0. By Lemma 2.4 we have

25—1

/ Sup ng Z Dn(H»l)_;’_k(.x )Dn (n(r+1)+k)(x ) dx
J] ><]2 [n|=A k=0

25—1
<[ s s |3 DD 7 d
J1X.12 |n|= An(s 1)EN k=0 (27)
25—1
= / sup | > Di(x') Dy (a?) | dx
JaxJp n<2s k=0
n

CL2e 0 1 1),

By (27) it immediately follows (recall that 0 < § < 1 “close to 17)

A 25—1
Z Z / sup sup 2A Z g Z Dn(s+l)+k(.x )D, _ (n(3+1)+k)(x )| dx
11=0 21 ¥ it iz Azalnl=A =241 | k=0
YT Y 4y Zeste ot
11—012—11A>(aw2) s= t2+1

<CZZ > 5“(: 41’

t1=012=¢! A>(avt2)

a a o0
<C Z Z Zzzl—ﬂ(sA—zz(Iz iy 1)3

t1=0 \12=¢! A=a

o o
M2 eA-12 2 1 3
+ Z Z 20T =t 4+ 1)

2=a+1 A=r2+1

a a oo
SCZ Z 2t1_t28a_t2(t2_t1+1)3+ Z 2t1_t2(t2_t1+1)3

t1=0 \r2=t! 2=a+1
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a a
<cY sy 2 a1+ 1)} <.

t1=0 t1=0
This completes the proof of Lemma 2.7. O

Then we turn our attention to the main tool of the proof of Theorem 1.1. That is, to
Lemma 1.2.

Proof of Lemma 1.2 If a = 0, then [ 2 \ ({z x I,) = ¥ and we have nothing to prove.
That is, we can suppose that a > 1. We prove the almost everywhere relation

a—1 oo a—1 oo
P\ xtyc | U mxn|UlUU wxde|=117x

11=0r2=¢! 12=01=¢2

This will be quite easy. Let x = (x!, x2) € I*\ (I, x I,). Then, either x! or x2 (or
both) is not an element of 1. Say, x! ¢ 1,. Then x € J;1 for some ' <aIfx?el,
and x> # 0, then x € J'. If x' € J,1 and x? ¢ I,, then x! € J, and x? € J,» for
some t!, 2 < a. Fort? > t! we have x € J! and for r! > r? we have x € J2. This
procedure can be done if x!, x> # 0. The set of the points x = (x!, x?), where either
x! = 0 or x? = 0 is a zero measure set, so this can be supposed and the a.e. relation
12 \ (I; x 1) C JUx J?%is proved. That is, by Lemmas 2.5, 2.6, 2.7 and by the

formula of K, nA the proof of Lemma 1.2 is complete. O

Corollary 2.8 Let n € IP. Then
1Kl < C.

Proof By Lemma 1.2 we have

f K2 < C.
12\ (L) x 1))

Besides,
1 n—1 1 n—1
KA < _ D 1 D._ N <2 2|n| . 2|n| < 22|n|'
Kl = =3 IDGDIDps () = € 3 <C
k=0 k=0
Hence,
/ Kpl=<cC
Lin L)
and this completes the proof of Corollary 2.8. O
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Now, we can prove that the maximal operator O'*A is quasi-local (for the definition
of quasi-locality see e.g. [18, p. 262]) and then a bit later the fact that it is of weak
type (L', L"). In other words:

Lemma 2.9 Let f € L'(I?), [ f =0, supp f C L,(u") x I,(u?) for some u € I*
and a € N. Then

/ o2 f(r)dx < ClLfI.
T2\ (I (uhy x I, (u?))

Proof From the shift invariancy of the Lebesgue measure we can suppose that u! =
u? = 0.Ifn < 2%, then we have the kernel K nA (x', x2) (which is a linear combination
of two-dimensional Walsh—Paley functions w; x with j, k < 29) is A, , measurable.
This implies

o2 £(7) =fl WKLo+ =KE0) [ jds=0,

That is, n > 2¢ can be supposed. By the theorem of Fubini and Lemma 1.2 we get

A A
/ ol f =/ sup o2 f|
2\12 12\I2 n>2a

= f[ sup | | fOOKG (v + x)dx|dy

212 n>20 JI2

Ef If(x)I/ sup |K2 (2)dzldx < c/ f)ldx = ClLf L
2 2 2

\I2 n>2¢
This completes the proof of Lemma 2.9. O

Theorem 2.10 The operator U*A is of weak type (L', L") anditis also of type (L, LP)
forall1 < p < oo.

Proof Now, we know that operator ol is of type (L°°, L°°) which is given by Corol-
lary 2.8 and it is quasi-local (Lemma 2.9). Consequently, to prove that operator O’*A
is of weak type (L', L) is nothing else but to follow the standard argument (see e.g.
[18]). Finally, the interpolation lemma of Marcinkiewicz (see e.g. [18]) gives that it is
also of type (L?, LP) forall 1 < p < oo. O

Proof of Theorem 1.1 Next, we turn our attention to the proof of the theorem of con-
vergence, that is, Theorem 1.1. This is also a trivial consequence of the fact that the
maximal operator CT*A is of weak type (L', L') and the fact that Theorem 1.1 holds
for each two-dimensional Walsh—Paley polynomial (which is also very easy to see).
By the standard density argument the proof of Theorem 1.1 is complete. O
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