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Abstract In 1987Harris proved (ProcAmMath Soc 101(4):637–643, 1987)—among
others—that for each 1 ≤ p < 2 there exists a two-dimensional function f ∈ L p such
that its triangular Walsh–Fourier series diverges almost everywhere. In this paper we
investigate the Fejér (or (C, 1))means of the triangle twovariableWalsh–Fourier series
of L1 functions. Namely, we prove the a.e. convergence σ

�
n f = 1

n

∑n−1
k=0 Sk,n−k f →

f (n → ∞) for each integrable two-variable function f .

Keywords Fejér means · Triangle Walsh–Paley–Fourier series · a.e. convergence
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1 Introduction

In 1971 Fefferman proved [2] the following result with respect to the trigonometric
system. Let P be an open polygonal region in R2, containing the origin. Set

λP = {(λx1, λx2) : (x1, x2) ∈ P}

for λ > 0. Then for every 1 < p, f ∈ L p([−π, π ]2) it holds the relation
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lim
λ→∞

∑

(n1,n2)∈λP

f̂ (n1, n2) exp(ı(n1y1 + n2y2)) = f (y1, y2) for a.e.

y = (y1, y2) ∈ [−π, π ]2.

That is, SλP f → f a.e. Sjölin gave [19] a better result in the case when P is a
rectangle. He proved the a.e. convergence for the wider class f ∈ L(log L)3 log log L
and for functions f ∈ L(log L)2 log log L when P is a square. This result for squares
is improved by Antonov [1]. Verifying the result of Sjölin with even one more log.
That is, for functions f ∈ L(log L)2 log log log L . There is a sharp contrast between
the trigonometric and theWalsh case. In 1987 Harris proved [12] for theWalsh system
that if S is a region in [0,∞)×[0,∞)with piecewiseC1 boundary not always parallel
to the axes and 1 ≤ p < 2, then there exists an f ∈ L p such that SλP f diverges a.e.
and in L p norm as λ → ∞. These results justify the investigation of the Fejér [or
(C, 1)] means of triangular sums of two-dimensional Fourier series defined as (see
e.g. [11]):

σ�
n f := 1

n

n−1∑

k=0

S�
k f,

where the triangular partial sums S�
k f defined as

S�
k f (x1, x2) :=

k−1∑

i=0

k−i−1∑

j=0

f̂ (i, j)ωi (x
1)ω j (x

2).

That is, S�
k f is nothing else but Sk� f , where � is the triangle with vertices

(0, 0), (1, 0) and (0, 1). For the trigonometric system Herriot proved [13] the a.e.
(and norm) convergence σ

�
n f → f ( f ∈ L1). The aim of this paper is verify this

result with respect to the Walsh system. The main difficulty is that in the trigonomet-
ric case we have a a simple closed formula for the kernel functions of this triangular
means and this is not the case in the Walsh situation.

Next, we give a brief introduction to the theory of the Walsh–Fourier series.
Let P denote the set of positive integers, N := P∪ {0}, and I := [0, 1). For any set

E let E2 the cartesian product E × E . Thus N2 is the set of integral lattice points in
the first quadrant and I 2 is the unit square. Let E1 = E and fix j = 1 or 2. Denote the
j-dimensional Lebesgue measure of any set E ⊂ I j by mes(E). Denote the L p(I j )
norm of any function f by ‖ f ‖p (1 ≤ p ≤ ∞).

Denote the dyadic expansion of n ∈ N and x ∈ I by n = ∑∞
j=0 n j2 j and

x = ∑∞
j=0 x j2

− j−1 (in the case of x = k
2m k,m ∈ N choose the expansion

which terminates in zeros). ni , xi are the i th coordinates of n, x , respectively. Set
ei := 1/2i+1 ∈ I , the i th coordinate of ei is 1, the rest are zeros (i ∈ N). Define the
dyadic addition + as
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x + y =
∞∑

j=0

|x j − y j |2− j−1.

The sets In(x) := {y ∈ I : y0 = x0, . . . , yn−1 = xn−1} for x ∈ I , In := In(0) for
n ∈ P and I0(x) := I are the dyadic intervals of I . The set of the dyadic intervals on
I is denoted by I := {In(x) : x ∈ I, n ∈ N}. Denote by An the σ algebra generated
by the sets In(x) (x ∈ I ) and En the conditional expectation operator with respect to
An (n ∈ N). C denotes a constant which may be different from line to line.

For t = (t1, t2) ∈ I 2, b = (b1, b2) ∈ N
2 set the two-dimensional dyadic rectangle,

i.e. two-dimensional dyadic interval

Ib(t) := Ib1(t
1) × Ib2(t

2).

For n = (n1, n2) ∈ N
2 denote by En = En1,n2 the two-dimensional expectation

operator with respect to the σ algebraAn = An1,n2 generated by the two-dimensional
rectangles In1(x

1)× In2(x
2) (x = (x1, x2) ∈ I 2). For n ∈ P denote by |n| := max( j ∈

N : n j 
= 0), that is, 2|n| ≤ n < 2|n|+1. The Rademacher functions on I are defined
as:

rn(x) := (−1)xn (x ∈ I, n ∈ N).

The Walsh–Paley system (on I ) is defined as the sequence of the Walsh–Paley func-
tions:

ωn(x) :=
∞∏

k=0

(rk(x))
nk = (−1)

∑|n|
k=0 nk xk , (x ∈ I, n ∈ N).

That is, ω := (ωn, n ∈ N). (For details see Fine [3].) We also use the notations
n(k) := ∑k

j=0 n j2 j , n(k) := ∑∞
j=k n j2 j .

Consider the Dirichlet and the Fejér kernel functions:

Dn :=
n−1∑

k=0

ωk,

Kn := 1

n

n−1∑

k=0

Dk,

D0, K0 := 0.

The Fourier coefficients, the nth partial sum of the Fourier series, the nth (C, 1) mean
of f ∈ L1(I ):

f̂ (n) :=
∫

I
f (x)ωn(x) dx (n ∈ N),
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Sn f (y) :=
n−1∑

k=0

f̂ (k)ωk(y) =
∫

I
f (x + y)Dn(x) dx =: f ∗ Dn(y),

σn f (y) := 1

n

n−1∑

k=0

Sk f (y) =
∫

I
f (x + y)Kn(x) dx =: f ∗ Kn(y), (n ∈ P, y ∈ I ).

Moreover, for n ∈ N we have ([18, p. 7])

D2n (x) =
{
2n, if x ∈ In,

0, otherwise

and for n ∈ P [18, p. 28]

Dn(x) = ωn(x)
|n|∑

i=0

niri (x)D2i (x). (1)

Then, this gives S2n f (y) = 2n
∫
In(y)

f (x)dx = En f (x) (n ∈ N). We say that an

operator T : L1(I j ) → L0(I j ) (L0(I j ) is the space of measurable functions on I j )
is of type (L p, L p) (for 1 ≤ p ≤ ∞) if ‖T f ‖p ≤ Cp‖ f ‖p with some constant Cp

depending only on p for all f ∈ L p(I j ). We say that T is of weak type (L1, L1) if
mes{|T f | > λ} ≤ C‖ f ‖1/λ for all f ∈ L1(I j ) and λ > 0 ( j = 1, 2). The two-
dimensional Walsh–Paley functions, Dirichlet, Fejér and Marcinkiewicz kernels are
defined as follows:

ωn(x) := ωn1(x
1)ωn2(x

2), Dn(x) := Dn1(x
1)Dn2(x

2),

Kn(x) := Kn1(x
1)Kn2(x

2), Mn(x) := 1

n

n−1∑

k=0

Dk,k(x).

Moreover, the two-dimensional Fourier coefficients of f ∈ L1(I 2):

f̂ (n) :=
∫

I 2
f (x)ωn(x) dx (n ∈ N

2)

The nth (n ∈ N
2) rectangular partial sum of the Fourier series, the nth (n ∈ P

2)
(C, 1) mean and the nth (n ∈ P) Marcinkiewicz mean of f ∈ L1(I 2) are defined as
the (dyadic) convolution of f and the corresponding kernels above in the usual way.
See for instance [8].

Many papers investigate the behavior of the convergence (and some the divergence)
properties of the two dimensional Fejér means with respect to the trigonometric or the
Walsh system. We mention the papers [14], [6] (trigonometric) and [17], [4] (Walsh–
Paley system). This is another story and also very interesting to discuss the almost
everywhere convergence of the Marcinkiewicz means 1

n

∑n−1
j=0 S j, j f of integrable
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functions with respect to orthonormal systems. Although, this mean is defined for two-
variable functions, in the view of almost everywhere convergence there are similarities
with the one-dimensional case. On the one side, the maximal convergence space for
two dimensional Fejér means (no restriction on the set of indices other than they have
to converge to +∞) is L log+ L [4,6], and on the other side, for the Marcinkiewicz
means we have a.e. convergence for every integrable functions (for the trigonometric,
Walsh–Paley systems).

We mention that the first result is due to Marcinkiewicz [15]. But he proved “only”
for functions in the space L log+ L the a.e. relation tn f → f with respect to the
trigonometric system. The “L1 result” for the trigonometric and the Walsh–Paley
system see the papers of Zhizhiasvili [23] (trigonometric system), Weisz [20] (Walsh
system) and Goginava [9,10] (Walsh system). Some of these results (including the
proofs) can also be found in [21].

The triangular partial sums and the triangular Dirichlet kernels of the two-
dimensional Fourier series are defined as

S�
k f (x1, x2) :=

k−1∑

i=0

k−i−1∑

j=0

f̂ (i, j)ωi (x
1)ω j (x

2),

D�
k (x1, x2) :=

k−1∑

i=0

k−i−1∑

j=0

ωi (x
1)ω j (x

2).

The Fejér means of the triangular partial sums of the two-dimensional integrable
function f (see e.g. [11]) are

σ�
n f := 1

n

n−1∑

k=0

S�
k f.

For the trigonometric system Herriot proved [13] the a.e. (and norm) convergence
σ

�
n f → f ( f ∈ L1). His method can not be adopted for the Walsh system, since

for the time being there is no kernel formula available for these systems. The first
result in this a.e. convergence issue of triangular means is due to Goginava and Weisz
[11]. They proved for the Walsh–Paley system and each integrable function the a.e.
convergence relation σ

�
2n f → f . That is, we have the subsequence (σ

�
2n ) of the whole

sequence of the triangular mean operators. This result for every lacunary sequence
(an) (that is, an+1 ≥ qan, q > 1) (instead of (2n)) follows from a result of Gát [5].
The aim of this paper is to extend this result of the author for the whole sequence of
natural numbers. That is, the almost everywhere convergence σ

�
n f → f for every

integrable function f .
To demonstrate an important relation between the triangle kernels and the one

dimensional Dirichlet kernels see some calculations below.

K�
n (x1, x2) = 1

n

n−1∑

k=0

D�
k (x1, x2) = 1

n

n−1∑

k=1

k−1∑

i=0

k−i−1∑

j=0

ωi (x
1)ω j (x

2)



1254 J Fourier Anal Appl (2018) 24:1249–1275

= 1

n

n−1∑

k=1

k−1∑

i=0

ωi (x
1)Dk−i (x

2)

= 1

n

n−1∑

k=1

k∑

i=1

ωk−i (x
1)Di (x

2) = 1

n

n−1∑

i=1

n−1∑

k=i

ωk−i (x
1)Di (x

2)

= 1

n

n−1∑

i=1

Dn−i (x
1)Di (x

2) = 1

n

n−1∑

i=1

Di (x
1)Dn−i (x

2).

In other words,

σ�
n f (y) := 1

n

n−1∑

k=0

S�
k f (y) =

∫

I 2
f (x + y)K�

n (x)dx = 1

n

n−1∑

k=0

Sk,n−k f (y).

That is, the main aim of this paper is to prove the a.e. convergence

σ�
n f = 1

n

n−1∑

k=0

Sk,n−k f → f

for each integrable two-variable function f .
In paper [7] we introduced the notion of dyadic triangular-Fejér means of two-

dimensional Walsh–Fourier series as follows:

σ̇�
n f := 1

n

n−1∑

k=0

Sk,n⊕k f,

where ⊕ is the dyadic (or logical) addition. That is,

k ⊕ n :=
∞∑

i=0

|ki − ni |2i ,

where ki , ni are the i th coordinate of natural numbers k, n with respect to number
system based 2. Remark that the inverse operation of⊕ is also⊕. In paper [7, Corollary
1] we proved for each f ∈ L1 the a.e. relation

σ̇�
n f → f.

The dyadic (or logical) addition is completely different from the ordinary (or arith-
metical) one. Besides, it seems that the “arithmetical” version (that is, the (C, 1)
means of Sk,n−k f ) is a more difficult situation and maybe that is why, there appeared
some partial results earlier. See for instance the result of Goginava and Weisz [11]:

1
2n

2n−1∑

i=0
Si,2n−i f → f a.e. for every f ∈ L1. The “arithmetical” triangular means are

a natural analogue of the triangular means with respect to the trigonometric system.
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However, the “dyadic” (or “logical”) triangular means defined as 1
n

n−1∑

i=0
Si,n⊕i f

([7]) are also natural analogue of the triangular means with respect to the trigonometric
system but they are different. None of the two results imply the other and the proofs
need different methods.

The main result of this paper is:

Theorem 1.1 Let f ∈ L1(I 2). Then σ
�
n f = 1

n

∑n−1
k=0 Sk,n−k f → f almost every-

where as n → ∞.

The main tool in the proof of Theorem 1.1 is the following lemma with respect
to the maximal triangle Fejér kernel. By the help of this lemma we will verify that
the maximal operator σ

�∗ (σ�∗ f = supn |σ�
n f |) is quasi-local (for the definition of

quasi-locality see e.g. [18, p. 262]) and consequently it is of weak type (L1, L1) and
then by the standard density argument Theorem 1.1 will be implied.

Lemma 1.2 For a ∈ N

∫

I 2\(Ia×Ia)
sup
n≥2a

|K�
n (x)|dx ≤ C.

2 More Lemmas and Proofs

To prove Lemma 1.2 we need a sequence of lemmas. The first one is:

Lemma 2.1 There exists a 0 < δ < 1 such that

∫

I 2
sup
n≤2A

∣
∣
∣
∣
∣
∣

1

2A

2A−1∑

k=0

ωk(x
1)ωk+n(x

2)

∣
∣
∣
∣
∣
∣
dx ≤ CδA

for every A ∈ N.

Proof Recall that we use the notation n ⊕ k := ∑∞
j=0 |n j − k j |2 j (n, k ∈ N). That

is, the dyadic addition of natural numbers. First, we discuss the case n = 2A and then
n < 2A will be supposed everywhere. That is, let n = 2A now for a moment. Since
k < 2A, then ωk+2A = ωkω2A and

∫

I 2

∣
∣
∣
∣
∣
∣

1

2A

2A−1∑

k=0

ωk(x
1)ωk+2A(x

2)

∣
∣
∣
∣
∣
∣
dx =

∫

I 2

∣
∣
∣
∣
∣
∣

1

2A

2A−1∑

k=0

ωk(x
1)ωk(x

2)

∣
∣
∣
∣
∣
∣
dx

=
∫

I 2

1

2A
D2A(x

1 + x2)dx = 1

2A
.
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That is, case n = 2A is cleared and in the sequel n < 2A is supposed. The integral to
be investigated is not greater than the L4(I 2) norm of

sup
n<2A

∣
∣
∣
∣
∣
∣

1

2A

2A−1∑

k=0

ωk(x
1)ωk+n(x

2)

∣
∣
∣
∣
∣
∣
.

This L4(I 2) norm is bounded by

1

2A

⎛

⎜
⎝

∫

I 2

2A−1∑

n=0

∣
∣
∣
∣
∣
∣

2A−1∑

k=0

ωk(x
1)ωk+n(x

2)

∣
∣
∣
∣
∣
∣

4
⎞

⎟
⎠

1/4

= 1

2A

(2A−1∑

n=0

2A−1∑

k=0

2A−1∑

l=0

2A−1∑

i=0

2A−1∑

j=0

∫

I
ωk⊕l⊕i⊕ j (x

1)dx1

×
∫

I
ω(k+n)⊕(l+n)⊕(i+n)⊕( j+n)(x

2)dx2
)1/4

=: 1

2A

( ∑

n,k,l,i, j∈{0,...,2A−1}
Bn,k,l,i, j

)1/4

.

(2)

Investigate the integral Bn,k,l,i, j . Suppose that it is not zero. Then k⊕ l ⊕ i ⊕ j should
be zero. Thus, j = k ⊕ l ⊕ i . Similarly, (k + n) ⊕ (l + n) ⊕ (i + n) ⊕ ( j + n) =
(k + n) ⊕ (l + n) ⊕ (i + n) ⊕ ((k ⊕ l ⊕ i) + n) should be zero again. This follows

(k + n) ⊕ (l + n) ⊕ (i + n) = (k ⊕ l ⊕ i) + n. (3)

We give an upper bound for the number of quadruples (n, k, l, i) satisfying (3).
Represent n, k, l, i as 0, 1 sequences of length A. Divide every k, l, n, i 0, 1

sequence into blocks with four coordinates (elements) in each block. That is, the
first blocks are:

(n3, n2, n1, n0), (k3, k2, k1, k0), (l3, l2, l1, l0), (i3, i2, i1, i0).

The sth block:

αn,s := (n4s−1, n4s−2, n4s−3, n4s−4), αk,s = (k4s−1, k4s−2, k4s−3, k4s−4),

αl,s = (l4s−1, l4s−2, l4s−3, l4s−4),

αi,s = (i4s−1, i4s−2, i4s−3, i4s−4) (s = 1, . . . �A/4�).

Suppose that there exists an s ∈ {1, . . . �A/4�} such that

αn,s = (0, 0, 1, 0), αk,s = (0, 0, 0, 0), αl,s = (0, 0, 1, 0), αi,s = (0, 1, 0, 0).
(4)
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When we add k and n, then in the sth block of k + n we find (0, 0, 1, εk,n,s), where
εk,n,s ∈ {0, 1} depends on smaller indices coordinates of k and n. Similarly, for l + n
and i + n we have for their sth block:

αk+n,s = (0, 0, 1, εk,n,s), αl+n,s = (0, 1, 0, εl,n,s), αi+n,s = (0, 1, 1, εi,n,s).

This gives for the sth block of (k + n) ⊕ (l + n) ⊕ (i + n): (0, 0, 0, εn,k,l,i,s), where
εn,k,l,i,s ∈ {0, 1}. On the other hand, the sth block k ⊕ l ⊕ i is: αk⊕l⊕i,s = (0, 1, 1, 0).
This regarding αn,s = (0, 0, 1, 0) gives that

α(k⊕l⊕i)+n,s = (1, 0, 0, ε̃k,l,i,n,s),

where ε̃k,l,i,n,s is either 0 or 1. That is, the sth block of (k + n) ⊕ (l + n) ⊕ (i + n)

and (k ⊕ l ⊕ i) + n is different. Consequently, (3) does not hold and Bn,k,l,i, j = 0
( j = k ⊕ l ⊕ i). The number of quadruples (n, k, l, i) ∈ ×4

1{0, . . . , 2A − 1} for which
there is no block with (4) is bounded by (216 − 1)�A/4�212 (212 occurs if A is of form
4t +3 (t ∈ N)). Since for every quadruple (n, k, l, i) we have only one j for Bn,k,l,i, j ,
then we have at (2):

1

2A

⎛

⎝
∑

n,k,l,i, j∈{0,...,2A−1}
Bn,k,l,i, j

⎞

⎠

1/4

≤ 1

2A

(
(216 − 1)�A/4�212

)1/4 ≤ 8

((
216 − 1

216

)1/16
)A

= 8δA,

where 0 < δ =
(
216−1
216

)1/16
< 1. The proof of Lemma 2.1 is complete. ��

Remark 2.2 It can be achieved a (little) better (smaller) constant for δ then
(
216−1
216

)1/16

since not only quadruple blocks

⎛

⎜
⎜
⎝

αn,s

αk,s

αl,s
αi,s

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0, 0, 1, 0
0, 0, 0, 0
0, 0, 1, 0
0, 1, 0, 0

⎞

⎟
⎟
⎠

should be excluded (s = 1, . . . �A/4�) but some more. In a similar way of thinking
if the far right coordinate of αn,s, αk,s, αl,s, αi,s remains 0, take numbers n, k, l, i ∈
{0, 1, . . . 7} expressed in the binary system, that is, as 0, 1 sequences of length 3. Then
find the quadruples among ×4

1{0, 1, . . . 7} for which

[n + k (mod 8)] ⊕ [n + l (mod 8)] ⊕ [n + i (mod 8)]

= (k ⊕ l ⊕ i) + n (mod 8).
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However, in the point of view of the proof of the main theorem it is unimportant and

δ =
(
216−1
216

)1/16
is quite “enough”.

Corollary 2.3 Let t2 < s be natural numbers and let k0, . . . , kt2 ∈ {0, 1} be fixed.
Moreover, let

Ft2,s(x) := sup
n<2s

∣
∣
∣
∣
∣
∣

∑

kt2+1,...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣
,

x ∈ I 2. Then for every two-dimensional square It2+1(u) := It2+1(u
1)× It2+1(u

2) we
have

22t
2
∫

It2+1(u)

Ft2,s(x)dx ≤ C2s−t2δs−t2 ,

where constant 0 < δ < 1 comes from Lemma 2.1.

Proof The proof of Corollary 2.3 is nothing else but a direct application of Lemma 2.1.
Namely, Ft2,s(x) does not depend on x

j
0 , . . . x j

t2
( j = 1, 2), it depends (with respect to

x) only on x j
t2+1

, . . . , x j
s−1 ( j = 1, 2) (and x2s in the case of (n+ k)s = 1). Therefore,

instead of It2+1(u) = It2+1(u
1) × It2+1(u

2) we may write It2+1 × It2+1. Moreover,

(n + k)(t
2+1) = n(t2+1) + k(t2+1) + δ(n(t2), k(t2))2

t2+1,

where δ : N2 → {0, 1}. This gives

Ft2,s(x) ≤ sup
n<2s

∣
∣
∣
∣
∣
∣

∑

kt2+1,...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
n(t2+1)+k(t2+1) (x

2)

∣
∣
∣
∣
∣
∣

+ sup
n<2s

∣
∣
∣
∣
∣
∣

∑

kt2+1,...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
n(t2+1)+k(t2+1)+2t2+1(x

2)

∣
∣
∣
∣
∣
∣

≤ 2 sup
m≤2s−t2−1

∣
∣
∣
∣
∣
∣

∑

l0,...,ls−t2−2∈{0,1}
ωl(y

1)ωm+l(y
2)

∣
∣
∣
∣
∣
∣
,

where l0 = kt2+1, . . . ls−t2−2 = ks−1, y
j
0 = x j

t2+1
, . . . , y j

s−t2−2
= x j

s−1 ( j = 1, 2).
Then apply Lemma 2.1:

∫

[0,1)2
sup

m≤2s−t2−1

∣
∣
∣
∣
∣
∣

∑

l0,...,ls−t2−2∈{0,1}
ωl(y

1)ωm+k(y
2)

∣
∣
∣
∣
∣
∣
dy ≤ C2s−t2δs−t2 .
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Consequently,

22t
2+2

∫

It2+1(u)

Ft2,s(x)dx ≤
∫

[0,1)2
sup

m≤2s−t2−1

∣
∣
∣
∣
∣
∣

∑

l0,...,ls−t2−2∈{0,1}
ωl(y

1)ωm+k(y
2)

∣
∣
∣
∣
∣
∣
dy

≤ C2s−t2δs−t2 .

This completes the proof of Corollary 2.3. ��

We use the notation Jk = Ik \ Ik+1 (k ∈ N).

Lemma 2.4 Let 0 ≤ t1 ≤ t2 < s be integers, Jt = Jt1 × Jt2 . Then

∫

Jt
sup
n<2s

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn+k(x

2)

∣
∣
∣
∣
∣
∣
dx ≤ C(t2 − t1 + 1)3

2t
1

2t2
2sδs−t2 ,

where 0 < δ < 1 comes from Lemma 2.1.

Proof Let x = (x1, x2) ∈ Jt = Jt1 × Jt2 , t
1 ≤ t2 ≤ s. Fix x j

t2+1
, . . . , x j

s−1
( j = 1, 2) and kt2+1, . . . , ks−1. We give a bound for the number of tuples
(x1

t1+1
, . . . , x1

t2
, k0, . . . , kt2) for which

∑

k0,...,kt2∈{0,1}
Dk(x

1)Dn+k(x
2) 
= 0, (5)

where n < 2s is a natural number. Since x ∈ Jt , then by (1) we have

Dk(x
1) = ω

k(t1+1) (x
1)(−1)kt1

⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠ (6)

and

Dn+k(x
2) = ω

(n+k)(t2+1) (x
2)(−1)(n+k)t2

⎛

⎝
t2−1∑

v=0

(n + k)v2
v − (n + k)t22

t2

⎞

⎠ . (7)

Case A x1
t1+1

= · · · = x1
t2−1

= 0. This fact with provided that x1 ∈ Jt1 with will

be denoted by x1 ∈ Jt1,0. Then the number of tuples (x1
t1+1

, . . . , x1
t2

, k0, . . . , kt2) (not
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only for those (5) holds) is bounded by C2t
2
. This gives

∣
∣
∣
∣
∣
∣

∑

k0,...,ks−1∈{0,1}
Dk(x

1)Dn+k(x
2)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∑

k0,...,kt2∈{0,1}
ω
k(t1+1)
(t2)

(x1)(−1)kt1+(n+k)t2

⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠

×
⎛

⎝
t2−1∑

v=0

(n + k)v2
v − (n + k)t22

t2

⎞

⎠

×
∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣

≤ C2t
2
2t

1
2t

2

∣
∣
∣
∣
∣
∣

∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣

≤ C2t
1+2t2Ft2,s(x).

That is, we used

∣
∣
∣
∣
∣
∣

∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣
≤ Ft2,s(x). (8)

Then by Corollary 2.3 we have

∫

Jt1,0×Jt2
sup
n<2s

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn+k(x

2)

∣
∣
∣
∣
∣
∣
dx

≤ C2t
1
22t

2
∫

Jt2×Jt2
Ft2,s(x)dx ≤ C2t

1
2s−t2δs−t2 ≤ C

2t
1

2t2
2sδs−t2 .

(9)

Case B Suppose that x1
t1+1

= · · · = x1
t1+i−1

= 0, x1
t1+i

= 1 for some 1 ≤ i < t2− t1.

This fact with provided that x1 ∈ Jt1 will be denoted by x
1 ∈ Jt1,i . In this case we give

a bound for the integral of the maximal function (it means supn<2s ) of the following
function on the set Jt1,i × Jt2 .

B1 :=
∑

k0,...,kt2∈{0,1}
ω
k(t1+1)
(t2)

(x1)(−1)kt1+(n+k)t2

⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠
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×
⎛

⎝
t1+i−1∑

l=0

(n + k)l2
l

⎞

⎠

×
∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2). (10)

Besides, for x ∈ Jt1 × Jt2

B2 :=
∑

k0,...,kt2∈{0,1}
ω
k(t1+1)
(t2)

(x1)(−1)kt1+(n+k)t2

⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠

×
⎛

⎝
t2−1∑

l=t1+i

(n + k)l2
l − (n + k)t22

t2

⎞

⎠

×
∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

and

×
∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn+k(x

2)

∣
∣
∣
∣
∣
∣
≤ |B1| + |B2|. (11)

In case B we give a bound for

∫

Jt1,i×Jt2
sup
n<2s

|B1|dx

and in case C with its subcases we do the same for supn<2s |B2|. That is, turn our
attention to B1. Have a look at the sum (t1 + i < t2) below (a part of the sum at 10)

1∑

kt1+i=0

ω
k(t1+1)
(t2)

(x1)ω
(n+k)(t2+1) (x

2)(−1)kt1+(n+k)t2

×
⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠
t1+i−1∑

l=0

(n + k)l2
l . (12)

This sum can be different from zero only if (n + k)(t
2+1)(−1)(n+k)t2 depends on

kt1+i . This also means that (n+k)(t
2) depends on kt1+i . That is, it changes when kt1+i

changes its value from 0 to 1. If this is not the case, then all addends depends on kt1+i

as r
kt1+i

t1+i
(x1) = (−1)kt1+i and consequently (12) would be 0. This would give B1 = 0.

On the other hand, if (n + k)(t
2) depends on kt1+i ∈ {0, 1}, then when kt1+i = 0 we

have that (n + k)t1+i , (n + k)t1+i+1, . . . , (n + k)t2−1 should be 1 in order to have a

change in (n + k)(t
2) as kt1+i turns to 1. That is, when k is increased by 2t

1+i .



1262 J Fourier Anal Appl (2018) 24:1249–1275

That is, n + k = (n + k)(t1+i) + 2t
1+i+1 + · · · + 2t

2−1 + (n + k)(t
2). Conse-

quently, kt1+i+1, . . . , kt2−1 should be unchanged. This implies that the number of
tuples (k0, . . . , kt2) (for any fixed n < 2s) satisfying this property is not more than

C 2t
2

2t2−t1−i
= C2t

1+i .
By this fact and by (8) we get an estimation for B1 at (10):

|B1| ≤ C2t
1+i2t

1
2t

1+i

∣
∣
∣
∣
∣
∣

∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣

≤ C23t
1+2i Ft2,s(x). (13)

Then again by Corollary 2.3 and by the fact that Ft2,s(x) (s ∈ N) does not depend

on x j
0 , . . . , x j

t2
( j = 1, 2) we have

∫

Jt1,i×Jt2
sup
n<2s

|B1(x)|dx ≤ C23t
1+2i 2t

2

2t1+i

∫

Jt2×Jt2
Ft2,s(x)dx ≤ C22t

1+i−t22s−t2δs−t2 .

(14)

Moreover, ∫

(
∪t2−t1−1
i=1 Jt1,i

)
×Jt2

sup
n<2s

|B1(x)|dx ≤ C

t2−t1−1∑

i=1

22t
1+i−t22s−t2δs−t2 ≤ C2t

1
2s−t2δs−t2 .

(15)

Case C Suppose that x1
t1+1

= · · · = x1
t1+i−1

= 0, x1
t1+i

= 1 for some 1 ≤ i < t2− t1.

That is, x1 ∈ Jt1,i again as in case B. Then we give an upper bound for the maximal
function of |B2| on the set Jt1,i × Jt2 : We use estimation (8). That is,

∣
∣
∣
∣
∣
∣

∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣
≤ Ft2,s(x).

|B2| ≤
∣
∣
∣
∣
∣
∣

t2−1∑

l=t1+i

2l
∑

k0,...,kt1+i−1∈{0,1}
(−1)kt1

⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠

×
∑

kt1+i ,...,kt2∈{0,1}
ω
k(t1+1)
(t2)

(x1)(n + k)l(−1)(n+k)t2
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×
∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣
2t

2 ∑

k0,...,kt1+i−1∈{0,1}
(−1)kt1

⎛

⎝
t1−1∑

u=0

ku2
u − kt12

t1

⎞

⎠

×
∑

kt1+i ,...,kt2∈{0,1}
ω
k(t1+1)
(t2)

(x1)(n + k)t2

×
∑

kt2+1...,ks−1∈{0,1}
ω
k(t2+1) (x

1)ω
(n+k)(t2+1) (x

2)

∣
∣
∣
∣
∣
∣

=: |
t2−1∑

l=t1+i

B2,l | + |
∑

2

| =: |
∑

1

| + |
∑

2

|. (16)

We investigate
∑

1.
∑

2 can be treated in the sameway. That is, in case Cwe discuss

∑

kt1+i ,...,kt2∈{0,1}
ω
k(t1+1)
(t2)

(x1)ω
(n+k)(t2+1) (x

2)(n + k)l(−1)(n+k)t2 , (17)

i.e. the part in B2,l which depends on kt1+i , . . . , kt2 (with fixed n and fixed other ki ’s).
For x ∈ Jt , x1t1+1

= · · · = x1
t1+i−1

= 0, x1
t1+i

= 1 (for some 1 ≤ i < t2 − t1

and t1 + i ≤ l < t2). Basically, we give a bound for the number of tuples
(x1

t1+1
, . . . , x1

t2
, k0, . . . , kt2) for which B2,l is not 0. We have four subcases in inves-

tigation of
∫
Jt1,i

supn<2s | ∑N |dx (N = 1, 2).

Case CA

x1 ∈ {x ∈ I : x10 = · · · = x1t1−1 = 0, x1t1 = 1, x1t1+1 = · · · = x1t1+i−1 = 0, x1t1+i = 1,

x1t1+i+1 = · · · = x1l−1 = 0, x1l+1 = · · · = x1t2−1 = 0} =: Jt1,i,l
(x1l is either 0 or 1) for some 1 ≤ i < t2 − t1 and t1 + i ≤ l ≤ t2 − 1.
Case CB There exists a 1 ≤ j ≤ t2 − l − 1 such that

x1 ∈ {x ∈ I : x10 = · · · = x1t1−1 = 0, x1t1 = 1, x1t1+1 = · · · = x1t1+i−1 = 0, x1t1+i = 1,

x1t1+i+1 = · · · = x1l−1 = 0, x1l+1 = · · · = x1l+ j−1 = 0, x1l+ j = 1} =: Jt1,i,l, j
Case CC

There exists a 1 ≤ j ≤ t2 − l − 1 and 1 ≤ m ≤ l − t1 − i such that

x1 ∈ {x ∈ I : x10 = · · · = x1t1−1 = 0, x1t1 = 1, x1t1+1 = · · · = x1t1+i−1 = 0, x1t1+i = 1,

x1t1+i+1 = · · · = x1t1+i+m−1 = 0, x1t1+i+m = 1, x1l+1 = · · · = x1l+ j−1 = 0, x1l+ j = 1}
=: Jt1,i,l, j,m,
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Case CD There exists a 1 ≤ m ≤ l − t1 − i such that

x1 ∈ {x ∈ I : x10 = · · · = x1t1−1 = 0, x1t1 = 1, x1t1+1 = · · · = x1t1+i−1 = 0, x1t1+i = 1,

x1t1+i+1 = · · · = x1t1+i+m−1 = 0, x1t1+i+m = 1, x1l+1 = · · · = x1t2−1 = 0} =: Jt1,i,l,m .

The following inequality shows the structure of the investigation with respect to
cases CA, CB, CC and CD and

∑
1.

∫

(
⋃t2−t1−1

i=1 Jt1,i )×Jt2
sup
n<2s

∣
∣
∣
∣
∣
∣

t2−1∑

l=t1+i

B2,l

∣
∣
∣
∣
∣
∣
dx

≤
t2−t1−1∑

i=1

t2−1∑

l=t1+i

∫

Jt1,i×Jt2
sup
n<2s

|B2,l |dx

≤
t2−t1−1∑

i=1

t2−1∑

l=t1+i

∫

Jt1,i,l×Jt2
sup
n<2s

|B2,l |dx

+
t2−t1−1∑

i=1

t2−1∑

l=t1+i

t2−l−1∑

j=1

∫

Jt1,i,l, j×Jt2
sup
n<2s

|B2,l |dx

+
t2−t1−1∑

i=1

t2−1∑

l=t1+i

t2−l−1∑

j=1

l−t1−i∑

m=1

∫

Jt1,i,l, j,m×Jt2
sup
n<2s

|B2,l |dx

+
t2−t1−1∑

i=1

t2−1∑

l=t1+i

l−t1−i∑

m=1

∫

Jt1,i,l,m×Jt2
sup
n<2s

|B2,l |dx

=: CA + CB + CC + CD. (18)

Case CA is easy to check and almost the same as case A. The main differ-
ence is that we will have to sum also with respect to i : The number of tuples
(x1

t1+1
, . . . , x1

t2
, k0, . . . , kt2) (not only for those (5) holds) bounded by C2t

2
, since

the number of corresponding tuples (x1
t1+1

, . . . , x1
t2

) is not more than C . That is, hav-
ing a look at (16):

|B2,l | ≤ 2l2t
1+i2t

1
2t

2−t1−i Ft2,s(x) ≤ C2t
1+l+t2Ft2,s(x).

Consequently,

∫

Jt1,i,l×Jt2
sup
n<2s

|B2,l |dx ≤ C2t
1+l+t2

∫

Jt2×Jt2
Ft2,s(x)dx ≤ C2t

1+l+t22−2t22s−t2δs−t2 .
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This immediately gives

t2−t1−1∑

i=1

t2−1∑

l=t1+i

∫

Jt1,i,l×Jt2
sup
n<2s

|B2,l |dx ≤ C(t2 − t1)2t
1−t22sδs−t2 .

Similarly, (also by (16))

|
∑

2

| ≤ C2t
2
2t

1+i2t
1
2t

2−t1−i Ft2,s(x) ≤ C2t
1+2t2Ft2,s(x),

t2−t1−1∑

i=1

t2−1∑

l=t1+i

∫

Jt1,i,l×Jt2
sup
n<2s

|
∑

2

|dx ≤ C(t2 − t1)22t
1−t22sδs−t2 .

In Case CB (17) equals with

∑

kt1+i ,kt1+i+1...,kl+ j−1,kl+ j+1,...kt2∈{0,1}
(n + k)l

1∑

kl+ j=0

ω
k(t1+1)
(t2)

(x1)ω
(n+k)(t2+1) (x

2)(−1)(n+k)t2

((n + k)l does not depend on kl+ j ). The sum
∑1

kl+ j=0 ω
k(t1+1)
(t2)

(x1)ω
(n+k)(t2+1) (x

2)

(−1)(n+k)t2 can be different from zero only in the case when (n+ k)(t
2+1)(−1)(n+k)t2

changes as kl+ j turns from 0 to 1. That is, when kl+ j = 0 we have that (n +
k)l+ j , (n + k)l+ j+1, . . . , (n + k)t2−1 should be 1 in order to have a change in

(n + k)(t
2+1)(−1)(n+k)t2 as kl+ j turns to 1. That is, when k is increased by 2l+ j .

That is, n + k = (n + k)(l+ j−1) + 2l+ j + · · · + 2t
2−1 + (n + k)(t

2). This implies that

the number of tuples (k0, . . . , kt2) of this kind is not more than C 2t
2

2t2−l− j
= C2l+ j .

Consequently, then number of tuples (x1
t1+1

, . . . , x1
t2

, k0, . . . , kt2) for which B2,l is

not zero is bounded by C2t
2−l− j2l+ j = C2t

2
for a fixed i < t2 − t1. That is, by (8)

and by the definition of B2,l at (16) we have

|B2,l | ≤ C2l2l+ j2t
1
Ft2,s

and

∫

Jt1,i,l, j×Jt2
sup
n<2s

|B2,l |dx ≤ C22l+ j+t1
∫

Jt1,i,l, j×Jt2
Ft2,s(x)dx

≤ C2l+t1+t2
∫

Jt2×Jt2
Ft2,s(x)dx ≤ C2l+t1−t22s−t2δs−t2 .
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This immediately gives [have a look at the “structure” at (18)]

t2−t1−1∑

i=1

t2−1∑

l=t1+i

t2−l−1∑

j=1

∫

Jt1,i,l, j×Jt2
sup
n<2s

|B2,l |dx

≤ C
t2−t1−1∑

i=1

t2−1∑

l=t1+i

t2−l∑

j=1

2l+t1−t22s−t2δs−t2

≤ C(t2 − t1)2t
1
2s−t2δs−t2 .

(19)

The sum
∑

2 is discussed later.
Next, we investigate case CC.
We give a bound for |B2,l(x)| for x ∈ Jt1,i,l, j,m in a way that we find an estimation

for the number of tuples (k0, . . . , kt2) such that (17) is not zero. (If this is not the case,
that is, (k0, . . . , kt2) is so that (17) is zero, then so does the corresponding addends in
B2,l .) Change the order of the summations in (17). It equals with

∑

kt1+i ,...,kt1+i+m−1,

kt1+i+m+1,...,kl+ j−1,

kl+ j+1,...,kt2∈{0,1}

∏

t2≥u≥t1+1,
u 
=t1+i+m
u 
=l+ j

r kuu (x1)
1∑

kt1+i+m=0

(−1)kt1+i+m (n + k)l

1∑

kl+ j=0

(−1)kl+ j ω
(n+k)(t2+1) (x

2)(−1)(n+k)t2 .

(20)

We have a fix n and if kt1+i+m, kl+ j runs in {0, 1}with fixed other indices of k, then
to avoid (20) to be zero all the coordinates of (n+k)t1+i+m+1, . . . , (n+k)l−1, (n+k)l
and (n + k)l+1, . . . , (n + k)t2 should be 1 for each ki (0 ≤ i ≤ t2, i 
= t1 + i +
m, l + j) for those addends in (20) different from zero. If say, (n + k)a = 0 for
some t1 + i + m < a < l, then as kt1+i+m changes from 0 to 1, we do not have
change in (n + k)l and in ω

(n+k)(t2+1) (x
2) and consequently (20) is zero. That is,

the number is the tuples (k0, . . . , kt2) such that (17) is not zero is not more than

C2t
2
2−(l−t1−i−m)2−(t2−l− j) = C2t

1+i+m+ j . Then, by (8), by the definition of B2,l at
(16) and by Corollary 2.3 we have

∫

Jt1,i,l, j,m×Jt2
sup
n<2s

|B2,l(x)|dx ≤ C
∫

Jt1,i,l, j,m×Jt2
2l2t

1
2t

1+i+m+ j Ft2,s(x)dx

≤ C2l−t1−i−m2t
2−l− j2l2t

1
2t

1+i+m+ j
∫

Jt2×Jt2
Ft2,s(x)dx

= C2l+t1−t222t
2
∫

Jt2×Jt2
Ft2,s(x)dx ≤ C2l+t1−t22s−t2δs−t2

(21)
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This immediately gives

t2−t1−1∑

i=1

t2−1∑

l=t1+i

t2−l−1∑

j=1

l−t1−i∑

m=1

∫

Jt1,i,l, j,m×Jt2
sup
n<2s

|B2,l(x)|dx

≤ C
t2−t1−1∑

i=1

t2−1∑

l=t1+i

t2−l−1∑

j=1

l−t1−i∑

m=1

2l+t1−t22s−t2δs−t2

≤ C(t2 − t1)32t
1
2s−t2δs−t2 .

(22)

The sum
∑

2 is discussed later.
InCase CD, in a similar way as abovewe give a bound for |B2,l (x)| for x ∈ Jt1,i,l,m .

We do it in a way that we find an estimation for the number of tuples (k0, . . . , kt2)
such that (17) is not zero. Change the order of the summations in (17). It equals with

∑

kt1+i ,...,kt1+i+m−1,

kt1+i+m+1,...,kt2∈{0,1}

∏

t2≥u>t1,
u 
=t1+i+m

rkuu (x1)
1∑

kt1+i+m=0

(−1)kt1+i+m (n + k)lω(n+k)(t2) (x
2).

(23)
Remember that ω

(n+k)(t2+1) (x
2)(−1)(n+k)t2 = ω

(n+k)(t2) (x
2). All the coordinates of

(n+k)t1+i+m+1, . . . , (n+k)l−1, (n+k)l should be 1 for those addends in (23) different
from zero. If say, (n+ k)a = 0 for some t1 + i +m < a < l, then as kt1+i+m changes

from 0 to 1, we do not have change in (n + k)l and in (n + k)(t
2) (and consequently in

ω
(n+k)(t2) (x

2)) and this would imply (23) to be zero. That is, the number is the tuples

(k0, . . . , kt2) such that (17) is not zero is not more than C2t
2
2−(l−t1−i−m). Then, by

(8), by the definition of B2,l at (16) and by Corollary 2.3 we have

∫

Jt1,i,l,m×Jt2
sup
n<2s

|B2,l(x)|dx

≤ C
∫

Jt1,i,l,m×Jt2
2l2t

1
2t

2
2−(l−t1−i−m)Ft2,s(x)dx

≤ C22t
1+t2+i+m2l−t1−i−m

∫

Jt2×Jt2
Ft2,s(x)dx

= C2l+t1−t222t
2
∫

Jt2×Jt2
Ft2,s(x)dx

≤ C2l+t1−t22s−t2δs−t2 .

(24)

That is, exactly as in the case CC. That is (have a look again at (18)),
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t2−t1−1∑

i=1

t2−1∑

l=t1+i

l−t1−i∑

m=1

∫

Jt1,i,l, j,m×Jt2
sup
n<2s

|B2,l(x)|dx

≤ C
t2−t1−1∑

i=1

t2−1∑

l=t1+i

l−t1−i∑

m=1

2l+t1−t22s−t2δs−t2

≤ C(t2 − t1)22t
1
2s−t2δs−t2 .

(25)

The sum
∑

2 can be discussed in the same way. The only difference is that it is more
simple. Basically,

∑
2 looks like a special B2,l for l = t2. Consequently, there is no

cases CB and CC. Only CA and CD cases make sense and these cases has already
been investigated. That is, the proof of Lemma 2.4 is complete. ��

Now, we turn our attention to a lemma concerning the maximal triangular kernel
function. This estimation will consist of the three forthcoming lemmas. First, s ≤
t1 ≤ t2 (Lemma 2.5), then the second part will be t1 < s ≤ t2 (Lemma 2.6) and the
third part will be t1 ≤ t2 < s (Lemma 2.7). Recall that for k ∈ N Jk = Ik \ Ik+1 and
n(s) := ∑∞

k=s nk2
k (n, s ∈ N). n0 = n, n|n|+1 = 0. The first part:

Lemma 2.5 Let a ∈ N. Then

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

t1∑

s=0

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
dx ≤ C.

Proof For t1 ≤ a, t2 ≥ t1 and x ∈ Jt1 × Jt2 by the formula for the Dirichlet kernel
function (see (1)) it is clear that

|Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)| ≤ C2t
1+(t2∧A),

where t2 ∧ A := min{t2, A}. This gives

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

t1∑

s=0

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn(s)−k(x

2)

∣
∣
∣
∣
∣
∣
dx

≤ C
a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

1

2A

t1∑

s=0

2s+t1+(t2∧A)dx

≤ C
a∑

t1=0

a∑

t2=t1

1

2t1+t2
sup
A≥a

22t
1+t2−A +

a∑

t1=0

∞∑

t2=a

1

2t1+t2
22t

1

≤ C
a∑

t1=0

a∑

t2=t1

2t
1−a + C

a∑

t1=0

∞∑

t2=a

2t
1−t2

≤ C.
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This completes the proof of Lemma 2.5. ��
The second part:

Lemma 2.6 Let a ∈ N. Then

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

t2∑

s=t1+1

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
dx ≤ C.

Proof Since x ∈ Jt1 and s > t1, then Dn(s+1) (x1) = 0 and consequently
Dn(s+1)+k(x

1) = ωn(s+1) (x1)Dk(x1). On the other hand, ns = 1 can be supposed
and 0 ≤ n − (n(s+1) + k) = n(s) − k < 2s , s ≤ t2, x2 ∈ Jt2 ⊂ It2 gives

Dn(s)−k(x
2) = n(s) − k.

Thus, also by the help of the Abel transform (for x1 /∈ Is as x1 ∈ Jt1 = It1 \ It1+1, t
1+

1 ≤ s)

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
= ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)(n(s) − k)

∣
∣
∣
∣
∣
∣

≤ C22s
∣
∣
∣K2s (x

1)

∣
∣
∣ +

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

kDk(x
1)

∣
∣
∣
∣
∣
∣
≤ C22s

∣
∣
∣K2s (x

1)

∣
∣
∣ +

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

(k + 1)Kk+1(x
1)

∣
∣
∣
∣
∣
∣
.

In [22] one can find the estimation: If t1 < s, x1 ∈ Jt1 , then |K2s (x1)| ≤ C2t
1
for

x1 ∈ Is(et1) and |K2s (x1)| = 0 for x1 /∈ Is(et1). This gives

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

t2∧A∑

s=t1+1

ns2
2s

∣
∣
∣K2s (x

1)

∣
∣
∣ dx

≤
a∑

t1=0

∞∑

t2=t1

∫

Is (et1 )×Jt2
sup
A≥a

sup
|n|=A

1

2A

t2∧A∑

s=t1+1

22s+t1dx

≤ C
a∑

t1=0

∞∑

t2=t1

sup
A≥a

t2∧A∑

s=t1+1

2s+t1−t2−A

≤ C
a∑

t1=0

a∑

t2=t1

sup
A≥a

2t
1−A + C

a∑

t1=0

∞∑

t2=a+1

sup
t2>A≥a

2t
1−t2 + C

a∑

t1=0

∞∑

t2=a+1

sup
A≥t2

2t
1−A

≤ C
a∑

t1=0

(a − t1 + 1)2t
1−a + C

a∑

t1=0

2t
1−a + C

a∑

t1=0

2t
1−a ≤ C.
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We investigate
∣
∣
∣
∑2s−1

k=0 (k + 1)Kk+1(x1)
∣
∣
∣. (Also use the fact that s ≤ t2, A.)

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

t2∧A∑

s=t1+1

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

(k + 1)Kk+1(x
1)

∣
∣
∣
∣
∣
∣
dx

≤ C
a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

1

2A

t2∧A∑

s=t1+1

∣
∣
∣
∣
∣
∣
∣

2t
1−1∑

k=0

(k + 1)Kk+1(x
1)

∣
∣
∣
∣
∣
∣
∣

dx

+ C
a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

1

2A

t2∧A∑

s=t1+1

∣
∣
∣
∣
∣
∣

2s−1∑

k=2t1

(k + 1)Kk+1(x
1)

∣
∣
∣
∣
∣
∣
dx

=: A2.6 + B2.6.

First, discuss A2.6 by |Kk+1(x1)| ≤ C2t
1
(x ∈ Jt1 ):

A2.6 ≤ C
a∑

t1=0

∞∑

t2=t1

1

2t1+t2
sup
A≥a

t2∧A∑

s=t1+1

23t
1−A

≤ C
a∑

t1=0

∞∑

t2=t1

sup
A≥a

((t2 ∧ A) − t1)22t
1−A−t2

≤ C
a∑

t1=0

∞∑

t2=t1

((t2 ∧ a) − t1)22t
1−a−t2

≤ C
a∑

t1=0

a∑

t2=t1

(t2 − t1)22t
1−a−t2 + C

a∑

t1=0

∞∑

t2=a+1

(a − t1)22t
1−a−t2 ≤ C.

Next and finally in Lemma 2.6, discuss B2.6. In [16] one can find the inequality

∫

Jt1
sup
n≥2A

|Kn(x
1)|dx1 ≤ C

2t
1

2A
(A − t1 + 1) (A ≥ t1). (26)

By the help of this inequality we have

B2.6 ≤ C
a∑

t1=0

∞∑

t2=t1

∞∑

A=a

1

2A

t2∧A∑

s=t1+1

s−1∑

i=t1

2i+1−1∑

k=2i

(k + 1)
∫

Jt1
|Kk+1(x

1)|dx1 mes
(
Jt2

)

≤ C
a∑

t1=0

∞∑

t2=t1

∞∑

A=a

1

2A

t2∧A∑

s=t1+1

s−1∑

i=t1

2i+1−1∑

k=2i

(k + 1)
2t

1

2i
(i − t1 + 1)2−t2
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≤ C
a∑

t1=0

∞∑

t2=t1

∞∑

A=a

t2∧A∑

s=t1+1

s−1∑

i=t1

2i+t1−t2−A(i − t1 + 1)

≤ C
a∑

t1=0

∞∑

t2=t1

∞∑

A=a

t2∧A∑

s=t1+1

2s+t1−t2−A(s − t1)

≤ C
a∑

t1=0

∞∑

t2=t1

∞∑

A=a

2(t2∧A)+t1−t2−A((t2 ∧ A) − t1)

≤ C
a∑

t1=0

a∑

t2=t1

∞∑

A=a

2t
2+t1−t2−A(t2 − t1) + C

a∑

t1=0

∞∑

t2=a+1

t2∑

A=a

2t
1−t2(A − t1)

+C
a∑

t1=0

∞∑

t2=a+1

∞∑

A=t2+1

2t
1−A(t2 − t1)

≤ C
a∑

t1=0

a∑

t2=t1

2t
1−a(t2 − t1) + C

a∑

t1=0

∞∑

t2=a+1

2t
1−t2(t2 − t1)2

+C
a∑

t1=0

∞∑

t2=a+1

2t
1−t2(t2 − t1)

C
a∑

t1=0

2t
1−a(a − t1)2 + C

a∑

t1=0

2t
1−a(a − t1)2 + C

a∑

t1=0

2t
1−a(a − t1) ≤ C.

This completes the proof of Lemma 2.6. ��
The third part is:

Lemma 2.7 Let a ∈ N. Then

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

A∑

s=t2+1

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
dx ≤ C.

Proof First, for fixed t = (t1, t2), s, A we discuss the integral

∫

Jt1×Jt2
sup

|n|=A
ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
dx .

This means that ns = 1 can be supposed. Otherwise the integral is zero. Since
x1 ∈ Jt1 = It1 \ It1+1, s > t2 ≥ t1, then Dn(s+1)+k(x

1) = Dn(s+1) (x1) +
ωn(s+1) (x1)Dk(x1) = ωn(s+1) (x1)Dk(x1). We also have n− (n(s+1) + k) = n(s) − k =
n(s−1) + ns2s − k = n(s−1) + 2s − k and consequently by D0(x1) = 0, D2s (x1) = 0



1272 J Fourier Anal Appl (2018) 24:1249–1275

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn(s−1)+2s−k(x

2)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

2s−1∑

k=0

D2s−k(x
1)Dn(s−1)+k(x

2)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn(s−1)+k(x

2)

∣
∣
∣
∣
∣
∣
.

The last equality is given by D2s−k = D2s −ω2s−1Dk (see e.g. [9]) and D2s (x1) =
0. By Lemma 2.4 we have

∫

Jt1×Jt2
sup

|n|=A
ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
dx

≤
∫

Jt1×Jt2
sup

|n|=A
sup

n(s−1)∈N

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn(s−1)+k(x

2)

∣
∣
∣
∣
∣
∣
dx

=
∫

Jt1×Jt2
sup
n<2s

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dk(x
1)Dn+k(x

2)

∣
∣
∣
∣
∣
∣
dx

≤ C
2t

1

2t2
2sδs−t2(t2 − t1 + 1)3.

(27)

By (27) it immediately follows (recall that 0 < δ < 1 “close to 1”)

a∑

t1=0

∞∑

t2=t1

∫

Jt1×Jt2
sup
A≥a

sup
|n|=A

1

2A

A∑

s=t2+1

ns

∣
∣
∣
∣
∣
∣

2s−1∑

k=0

Dn(s+1)+k(x
1)Dn−(n(s+1)+k)(x

2)

∣
∣
∣
∣
∣
∣
dx

≤ C
a∑

t1=0

∞∑

t2=t1

∑

A≥(a∨t2)

1

2A

A∑

s=t2+1

2t
1

2t2
2sδs−t2(t2 − t1 + 1)3

≤ C
a∑

t1=0

∞∑

t2=t1

∑

A≥(a∨t2)

2t
1

2t2
δA−t2(t2 − t1 + 1)3

≤ C
a∑

t1=0

⎛

⎝
a∑

t2=t1

∞∑

A=a

2t
1−t2δA−t2(t2 − t1 + 1)3

+
∞∑

t2=a+1

∞∑

A=t2+1

2t
1−t2δA−t2(t2 − t1 + 1)3

⎞

⎠

≤ C
a∑

t1=0

⎛

⎝
a∑

t2=t1

2t
1−t2δa−t2(t2 − t1 + 1)3 +

∞∑

t2=a+1

2t
1−t2(t2 − t1 + 1)3

⎞

⎠
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≤ C
a∑

t1=0

δa−t1 + C
a∑

t1=0

2t
1−a(a − t1 + 1)3 ≤ C.

This completes the proof of Lemma 2.7. ��
Then we turn our attention to the main tool of the proof of Theorem 1.1. That is, to

Lemma 1.2.

Proof of Lemma 1.2 If a = 0, then I 2 \ (Ia × Ia) = ∅ and we have nothing to prove.
That is, we can suppose that a ≥ 1. We prove the almost everywhere relation

I 2 \ (Ia × Ia) ⊂
⎛

⎝
a−1⋃

t1=0

∞⋃

t2=t1

Jt1 × Jt2

⎞

⎠
⋃

⎛

⎝
a−1⋃

t2=0

∞⋃

t1=t2

Jt1 × Jt2

⎞

⎠ =: J 1
⋃

J 2.

This will be quite easy. Let x = (x1, x2) ∈ I 2 \ (Ia × Ia). Then, either x1 or x2 (or
both) is not an element of Ia . Say, x1 /∈ Ia . Then x ∈ Jt1 for some t1 < a. If x2 ∈ Ia
and x2 
= 0, then x ∈ J 1. If x1 ∈ Jt1 and x2 /∈ Ia , then x1 ∈ Jt1 and x2 ∈ Jt2 for
some t1, t2 < a. For t2 ≥ t1 we have x ∈ J 1 and for t1 ≥ t2 we have x ∈ J 2. This
procedure can be done if x1, x2 
= 0. The set of the points x = (x1, x2), where either
x1 = 0 or x2 = 0 is a zero measure set, so this can be supposed and the a.e. relation
I 2 \ (Ia × Ia) ⊂ J 1 × J 2 is proved. That is, by Lemmas 2.5, 2.6, 2.7 and by the
formula of K�

n the proof of Lemma 1.2 is complete. ��
Corollary 2.8 Let n ∈ P. Then

‖K�
n ‖1 ≤ C.

Proof By Lemma 1.2 we have

∫

I 2\(I|n|×I|n|)
|K�

n | ≤ C.

Besides,

|K�
n (x)| ≤ 1

n

n−1∑

k=0

|Dk(x
1)||Dn−k(x

2)| ≤ C
1

n

n−1∑

k=0

2|n| · 2|n| ≤ C22|n|.

Hence,

∫

I|n|×I|n|
|K�

n | ≤ C

and this completes the proof of Corollary 2.8. ��
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Now, we can prove that the maximal operator σ
�∗ is quasi-local (for the definition

of quasi-locality see e.g. [18, p. 262]) and then a bit later the fact that it is of weak
type (L1, L1). In other words:

Lemma 2.9 Let f ∈ L1(I 2),
∫
I 2 f = 0, supp f ⊂ Ia(u1) × Ia(u2) for some u ∈ I 2

and a ∈ N. Then
∫

I 2\(Ia(u1)×Ia(u2))
σ

�∗ f (x)dx ≤ C‖ f ‖1.

Proof From the shift invariancy of the Lebesgue measure we can suppose that u1 =
u2 = 0. If n < 2a , then we have the kernel K�

n (x1, x2) (which is a linear combination
of two-dimensional Walsh–Paley functions ω j,k with j, k < 2a) is Aa,a measurable.
This implies

σ�
n f (y) =

∫

Ia×Ia
f (x)K�

n (y + x)dx = K�
n (y)

∫

Ia×Ia
f (x)dx = 0.

That is, n ≥ 2a can be supposed. By the theorem of Fubini and Lemma 1.2 we get

∫

I 2\I 2a
σ

�∗ f =
∫

I 2\I 2a
sup
n≥2a

|σ�
n f |

=
∫

I 2\I 2a
sup
n≥2a

|
∫

I 2a

f (x)K�
n (y + x)dx |dy

≤
∫

I 2a

| f (x)|
∫

I 2\I 2a
sup
n≥2a

|K�
n (z)dz|dx ≤ C

∫

I 2a

| f (x)|dx = C‖ f ‖1.

This completes the proof of Lemma 2.9. ��
Theorem 2.10 Theoperatorσ�∗ is ofweak type (L1, L1)and it is also of type (L p, L p)

for all 1 < p ≤ ∞.

Proof Now, we know that operator σ
�∗ is of type (L∞, L∞) which is given by Corol-

lary 2.8 and it is quasi-local (Lemma 2.9). Consequently, to prove that operator σ
�∗

is of weak type (L1, L1) is nothing else but to follow the standard argument (see e.g.
[18]). Finally, the interpolation lemma of Marcinkiewicz (see e.g. [18]) gives that it is
also of type (L p, L p) for all 1 < p ≤ ∞. ��
Proof of Theorem 1.1 Next, we turn our attention to the proof of the theorem of con-
vergence, that is, Theorem 1.1. This is also a trivial consequence of the fact that the
maximal operator σ

�∗ is of weak type (L1, L1) and the fact that Theorem 1.1 holds
for each two-dimensional Walsh–Paley polynomial (which is also very easy to see).
By the standard density argument the proof of Theorem 1.1 is complete. ��
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