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Abstract In this study we consider the Cauchy problem for the nonlinear Schrodinger
equations with data which belong to L”, 1 < p < 2. In particular, we discuss
analytic smoothing effect with data which satisfy exponentially decaying condition
at spatial infinity in L?, 1 < p < 2. We construct solutions in the function space of
analytic vectors for the Galilei generator and the analytic Hardy space with the phase
modulation operator based on L”.
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1 Introduction

We consider the local Cauchy problem for the nonlinear Schrodinger equations in
setting of the Lebesgue space L”, 1 < p < 2:
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idu+LAu= fu), (t,x) € Iy x R", 0D

u() =¢ elL? '
where It = [0,T], T > 0,i = +/—1, u : It xR" — C, 9, = 9/3t, A =
Z;l'=1 812 / 8sz, and n > 1. The nonlinearity f satisfies the gauge condition

¢ fu) = f(u), 6 eR.

To be specific, we assume the following two types of nonlinearity in this study
f ) = 2ul’u, (1.2)
Fuy = (™ s Jul?) u (1.3)

where A € C, 0 < ¥ < n and ¢ * ¥ denotes the convolution
(p*y¥)(x) = /R p(x — Y (dy, x e R".

There is a large literature on the Cauchy problem for the nonlinear Schrédinger equa-
tions in the L2-based framework (see for instance [3,4,6,21,27-29] and reference
therein).

Analyticity and analytic smoothing effect for solutions to nonlinear evolution equa-
tions have been studied in many papers ([5,8-11,13-15,20,22-24]).

In particular, analytic smoothing effect for the nonlinear Schrodinger equations and
the Hartree equations in the L? setting with data which satisfy exponentially decaying
condition has been studied in [8-11,13-15,23-25] (see also reference therein).

On the other hand, as far as the authors know, there are no results on analytic
smoothing effect for the nonlinear Schrodinger equations in the L”-framework with
p # 2. In the present paper we discuss the problem of analytic smoothing effect for
solutions to (1.1) in the L?-framework. We believe this problem is interesting since
exponentially decaying L”-functions for 1 < p < 2 do not necessarily belong to L?.
In fact, if | < p < 2, there exists

¢ € LP\L?
such that

sup ||ea'x¢||u, < 00.
seD

See Proposition 1 below for details. Furthermore, it is sufficient to consider the case
1 < p < 2, since any exponentially decaying L?-function with2 < ¢ < oo is an L>-
function. To be more precise, let D C R” be a domain with 0 € D and 2 < g < oo.
If ¢ € LY satistying

sup %] ,, < oo,
seD
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then
sp 6], = Csup |9,
for D’ @ D (see Appendix of [15] and Chapter III of [26]). We put
Li= {¢ €S Flol e L‘f’}.

Ifg e L4 satisfying

S-
sup "6 7 < oo,
seD
then by the boundedness of the Fourier transform, we have

sup [ @[, = Csup ¢ 77 < oo.
seD seD

Hence if data satisfy exponentially decaying condition in L9 or L4, then data decay
exponentially in L' N L7 c L2

Analytic smoothing effect for the cubic nonlinear Schrodinger equations in min-
imal regularity Sobolev setting based on L? has been studied in [23,24]. Analytic
smoothing effect for the nonlinear Schrodinger equations with non-gauge invariant
quadratic nonlinearity in terms of the generator of dilations P = 2t9; 4+ x - V in the
framework of negative exponent Sobolev space H®, s > —3/4 has been studied in [20].

In the previous papers [7,12,17-19,30,31], the authors have attempted to construct
solutions and proved the existence of solutions to the nonlinear Schrodinger equations
in the framework of L” and L?. Especially, in the L”-setting, in [31] the author proved
the existence of local solutions to the 1D cubic nonlinear Schrédinger equations for
datain L? with 1 < p < 2. Later, in [12] we exploited his approach to show similar
local well-posedness results for the Hartree equation for data in the Bessel potential
spaces H*'? under suitable conditions on s, p, n. In particular, for 0 < y < min(2, n),
we obtained the local well-posedness for data in L with max ( n_zy” ok ni{’y )< p <2
In this paper, based on these local existence results, we investigate analytic smoothing
effect for the 1D cubic NLS and the Hatree equation for data in L? when p is in the
range stated above. To be more precise, our main purpose of this study is to show
analytic smoothing effect for the Cauchy problem (1.1) in the framework of L”-based

. . e LA il
spaces of functions as analytic vector for the Galilei generator J = e/2%xe™"2% and

Lt ot
lfAe‘S'xe_lfA_

the L”-based analytic Hardy space characterized by the operator As = e
Finally, the condition p > ni”y for the local well-posedness for the Hartree equation
may seem unusual, since it is stronger than the condition for the cubic NLS. However,
it is conjectured that this condition is optimal. See Remark 3 below.

We use the following notation throughout this paper. L = LP(R"), 1 < p < 00

is the usual Lebesgue space. The Fourier transform F : ¢ +— 17/\ is defined by
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16 = g [ e v00dn, £ e
Q)72 Jen ’ ’
where x -y = 27:1 xjy; is the usual scaler product in R", and F~lis the

inverse Fourier transform. The Schrodinger propagator is defined by U(t)y =
UY) ) = eltdy = F-! [e_i%|§|2f[1ﬂ]], t € R, we often use the notation
U-ly = (U W) @) = U=y, t € R. As well known, U and U~! have
the following factorization formula (see Chapter 2 of [3]):

Uty = MO)DOFM®Y, U )y = M= F ' D MM~y

X 2
for t # 0, where the phase modulation operator M(t) : ¢ > e’%w, dilations
D(t) : ¢ — (it)™"/?y (3) and its inverse D~'(¢) = i"D (+7'), t # 0. We put the
linear Schrédinger operator by

1
L=id + EA =UiyU™".

The Duhamel integral operator is defined by S[f](t) = ([, U(- —5) f(v)d7) (1) =
fOt U(t —1)f(r)dt,t € R. The Galilei generator is defined by

J@)=U@)xU(—t)=x+itV, t e R.
We introduce an operator which gives analytic continuation (see also [11,15,23])
As(t) = U0 U(—1), § e R"
for t € R. We see that A;s has another representation such as
As(t) = M@0 Y M(—1), t #0,
where eV = F1 [¢710% 1'[] , 8 € R". The following commutation relation
[J,L]=Ulx,id)U " =0, [As, L] = U[®, i3, U =0

holds. The analytic Hardy space is defined by (see Chapter III of [26]):
HP(Q) = { ¥ @ analyticon R" +iQ; [|¥ () = sup 1Y (- +iy)llr < o0
yeQ

with domain 2 C R”.
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2 Function Spaces

We introduce the following basic function spaces

2 (Ir)

=lu:IrxR" > C; U lueCur; LP), Null 2 (1) = ”U_lu

Hl 1 = }’
oo ([ LP)
q)e( 1 )

q 1/q
={u: It xR" = C; ||”||X5_9(1T) = {/1 794 ”(U‘lﬁu) (I)HLP dr} < 00
: T

for 1 < p,q < oo, 6 > 0 and we put the function spaces associated with X Z,H(IT)
by

34 _ p . ~ _
Xq’g(IT) = {“ € Xq’g(IT), u(0) € LP, ”u”X(’;ﬁ(IT) = [luO)llLr + ”u”X(];ﬁ(IT) < OO} .

The function spaces such as above are firstly introduced in [31].
We introduce the following weighted function spaces:

o
G4 =1¢elLl ||¢||G‘Il) = ZZ_, ||xa¢“LP R
a>0
GP = {¢ €L gllgp = sup g, < 00} -
seD

The function space of analytic vectors for J is defined by

o

a _ a4 . _ b o
GY o) = [u € XgoUr)i e ipy = lu©®llgy + > 1 u||X{,;’9(1T) < oo’,

a
a>0 o
fora € (0, 00)" and the analytic Hardy space with respect to As is defined by
GP o ur)=3ueX? Ur): = lu(0 + A
pg.0Ur) {u g.041) H"HGQM(IT) @l go sup I aullxie(,ﬂ <o

for domain D C R".
Our motivation of this study is based on the following proposition:

Proposition 1 Let 1 < p < 2 and bounded domain D C R". Then

GO\L* # o.
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Proof The following function belongs to Gll,) \L?,

O L

X) =

¢ el x| > 1

where 0 < ¢ < 2 — p and sufficiently large r > 0. O

The analyticity of functions which belong to G;‘,, q’Q(IT) or G? q,e(IT) is shown
by the following proposition:

Proposition 2 Letr 1 < p <2 and é + % > 1.

(1) Letu € G4, 4 (I7). Then (M) (1) € 1" (TT}_ (~ajt, ;) 1 # 0, where
a € (0, co)".

(2) Letu € Gl?’qﬂ(IT). Then (M~'u) (t) € HP' (tD), t # 0, where D C R" isa
domain with 0 € D.

Proof Because

XP () C 2 (I7)

with
1-6(1-1
lull 21y < Nu@)lppr +T ( q> IIMIIX;?NT)
1-6(1-1
< max {1, T ( ‘1>} ||u||;p0(m ,
q,
we see that
o
sup Hes'xU_ILtH . 5261—' x“U_luH N <
ST (~aja)) L®(I7;LP) = o! L®(I7;LP)

Hence, it is sufficient to show real analyticity of u € Gg,q,e with Q = ]—[;5=1 (—aj,aj)
in the case (1) and with Q = D in the case (2). We see that

(acomol = e omicmo,
= | pF Menuw| |

= HD(r)e’S"‘f*‘M(—t)u(t)(

Ll
= 112 | F Moo

— |1/ He—”ff[(M—lu)(t)])

< X
Ll
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for all t # 0, § € Q. Therefore, (M~ u) (@) is real analytic and has an analytic
continuation

(M”Agu) (t,x) ="V M u, x)

_ (an)n/Z /,1 o HiID)E [(Mflu) (t)] (&)dE

for all x +it§ € R" + itQ (see Appendix of [15]). Also we have

1

sup [ (M1 agu) )], = e 7) sup e (Uu) @] <o

seD seD
and
aC{
swp (M) o, = 3TN0 @]
661_[;5:1(—@-,(1]-) L @=0 o
1 1 o
O
< Clt| P g{;“! x* (U u) @) .
< 0.
O

By the relation e*U~1U¢ = ¢**¢, we immediately have the following fact for
the free solutions:

Corollary 1 Let 1 < p < 2.

) Ifp € G‘;, then U(t)¢, t € R\{0}, is real analytic and has an analytic continu-
ation to R" +it [, (=aj, a)).

() If¢p € GP, then U(t)¢, t € R\{0}, is real analytic and has an analytic continu-
ation to R" +itD.

3 Main Results

We put the interval I = [0, T].

Theorem 1 Letn = 1, 1 < p < 2 and a € (0,00). Then for any n > 0 there

exists T = T(n) > 0 such that; for any ¢ € G%, satisfying ||¢||G';, < 1 then the

Cauchy problem (1.1)—(1.2) has a unique solution u € G* 2(1 l)(IT). Further-
p.rs 772

more, (M~'u) () € HP ((—at, ar)), t € Ir\{0}.

Theorem 2 Letn = 1, 1 < p < 2. Let a domain D C R satisfying 0 € D and
—D = D. Then for any n > 0 there exists T = T (1) > 0 such that; for any ¢ € GP,
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satisfying ||¢||G,€> < 1 then the Cauchy problem (1.1)—(1.2) has a unique solution

ueGP /2(1 |>(IT)' Furthermore, (M~'u) (1) € H”'(tD), t € I7\{0}.
P, P72
2n 2n

Theorem 3 Letn > 1, 0 < y < min (n,2), max (—

n+y’ n—y+2
a € (0,00)". Then for any n > 0 there exists T = T(n) > 0 such that; for any
¢ € G, satisfying ||¢||G‘;, < 1 then the Cauchy problem (1.1)—(1.3) has a unique

)<p<2and

solution u € G¢ L
PJLZY!(;—Q

MY (1‘['}=1(—a,»z, ajt)) .1 € IT\{0).

)(IT), with ¢ = 2. Furthermore, (M~1u) (1) €

Theoremd Letn > 1, 0 < y < min(n, 2) and max (n2+_ny n_2yn+2) <p<2
Let a domain D C R" satisfying 0 € D and —D = D. Then for any n > 0 there

exists T = T(n) > 0 such that; for any ¢ € GP, satisfying ||¢||GQ < n then
the Cauchy problem (1.1)—(1.3) has a unique solution u € GP 5 (1 1)(IT), with
P4

p 2
qg= Wr%ﬁ. Furthermore, (M_lu) (1) e HP' tD), t € I7\{0}.
Remark 1 G4 C G C Gb, with @ = [[}j_ (=aj,a;), and 0 < b; < a;, j =
1,2,--- ,n (see Theorem 2 in [15]).

Remark 2 Let 1 < p < oo. We see that

G4 CGh 0<bj<aj, GO cG? D, €D,
HP(D1) C H*(D2), Dy € Dy

where Dy, D, C R" are domain (see Appendix of [15] and Chapter III of [26]).
Therefore, the Cauchy data ¢ € G, satisfy ¢ € G? and solutions obtained in
Theorems 1-4, (M~'u) (1) € HP'(1Q), t # 0, satisfy (M~'u) (1) € H®@Q),
t # 0, where Q' € Q with @ = [[}_,(~a;,a;) or @ = D.

Remark 3 In Theorems 3 and 4, we need

2n d 2n
—— an > .
n—y+2 P n+y

P>

The exponent n_zﬁ appearing in the first condition is called a scaling limit which
is well known and is considered as one candidate of the thresholds for the local well-
posedness of (1.1)—(1.3). Thus our local result can reach almost critical L? spaces if
n > 2 and y > 1. The exponent in the second condition, on the other hand, seems
unfamiliar and one may wonder if the local result still holds for p below this exponent.
However, it is conjectured that the Cauchy problem is ill posed for p < ni—"y, because
of the singularity at zero frequency. This is deduced from the recent works [2] and [16]
which study the well-posendess of (1.1)—(1.3) in L?. For details, see the introduction

in [16]. Note that n%fy — 1 as y — n and thus the limit coincides with the lower
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threshold of the local results for the cubic NLS (Theorems 1 and 2). Note also that
is the exponent such that the trilinear operator

P=it
(ur, uz, uz) — F[(Ix|77 % (u1#2)) us]

is defined and is continuous from L? x LP x LP to LP.

4 Key Lemmas
We introduce the following two types of trilinear form 7y and 7,, by
To(ur, uz, u3) = uruzu3
and
Ty (ur, uz, uz) = (Ix|77 % u1uz) us,
respectively. Then, we see that

U(=)To(uy, uz, u3)
= M(=0)F; L "Dt~ Y (M(=0)ur M(=D)uz) M(—1)u3
= Ct"M(=FL (D HYM(=0)u1 DY M(=1)uz) Dt~ YM(=t)u3

= Cr (MOU (0ur + (MOTE0u2(=) ) # U (=1us
and

U(—=t)T,(uy, uz, u3)
= M(=0F L "D (&7 % M(=)uy M(=D)u) M(—t)u3
= Clt| 7 M(=DF;L (&7 % D@ HM(=0uy D= M(=1)uz)
x D(t™HYM(=t)u3
=l (W MO U (=0 + (MOUDua(=)) ) # U (=13,
for ¢t # 0.

Lemma 1 ([31]) Let n = 1. We have
(o7 ) 0], =TT (0 w)eo],.
Jj=1

) Birkhduser
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for1 #0,
wp (e |0 0 m.0) 0],
<c1‘[{uu,<o>”Ll+/ [(v-'ew) @], df}

and

5 12
| |
Ir L?
<cC ﬁ {||u,~(0)||L2 +f1 |(v"cu;) (r)”Lz d‘r} .
j=1 T

Lemma2 Letn > 1and0 < y < n. We have

3
=i T](vw)
L,ny—C”' ]_[1 Uuj) ()
j:

(U_lTo(ul, uz, M3)>

(v T i)

2n
Lty
forallt # 0,

sup (1:7’ H (U T, (uy, u, M3)>

tely V)
=TT (o, 2 + [ |(ea) o
j=1 r

2n_ dT)
Lty

and if 0 < y < min(n, 2), then

{/ H U™'T, (uy, us, u3))
< Cﬁ { Ju; )] +f1 |(v"cu;) (r)”Lz dr}.
j=1 T

2/y}V/2

Proof
1" | U (=0T, ur, ua, u3) |
= C|[IxI7" " MU (0w (MOT 02 U0

= C | MU o+ (MOTDu2(=) || 100wzl

U (=t)uslprs
Lot

—c|# e e MATE o (WO )|
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=C Hmy * MOU 0 (MOUDua(=)) | IV (=0l
LP1
for % = p—ll + = ps - 1 with 2 < p; < oo. By the Hardy-Littlewood—Sobolev

. . . 1,y _ n
inequality, with = o pz +4—1,2<p<occandn—y < oy We have

t]” ||U(_[)’];,(u1, uy, M3)||Lm

=C Hm—y # MOU =0 (MOU0u2(=) | 10Dl
L1
= ¢ |F [ MU o+ (MOUED0) (]| 10 0uslin

< | MU 0ur « (MOT 0w (-

oy U (=D)usllrs

IA

T 1Y 0,

Jj=1

2n

L Ly L 33 Y _ = 2L
for 7 = -+ - —land - = pBy 15 + L. In particular, p; = ;3,

P
Jj =0,1,2, 3, satisfies these conditions. By

uj=Uuj0) —iS[Lu;], U'uj =u;0) —iU'S[Lu;],

we obtain the first and second inequalities. Finally, by the Hardy—thtlewood Sobolev

inequality w1th 3" 27/ + 4 2 _ 1 and the Holder inequality with 1 5= 3n + 3" 2y
we have
[ 1| <c 1‘[ s
T L ! Lﬁ/y(i LT 2y>’
where (g 3 n6j'2 y) is an admissible pair and by the Strichartz estimate
y v/2
{/ |17, (Ml,uz,u3)(f)||L dT}
3
_c]‘[{||u,-(0)||L2+/I |(v"cu)) dr}.
e T
This completes the proof. O

We obtain the following two inequalities by the multi-linear interpolation between
TT¥LX® (r_zdr, Ir; Ll) and t“"Lq(r_2dr, IT; L2), for « = 1, y respectively (see

) Birkhduser
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Chapter 4 of [1] and [31]), where

1/r
-2
lullzorr (e=2d7. 170y = {/ T Nu(z, Mpr T dr} ,1<r<oo, 1<p=<oo
It
and

Nl e poor—247, 170y = SUP T lu(z, Higr, 1 < p < 00.
telr

Lemma 3 ([12,31]) We have

{/IT 12(%’%)4 H (U*ITQ(MI, us, u3)) (T)ij dt}l/q
fCli[{Hu,(O)HLp +f J(oew) o], a).
j=1

forn=1,1<p<2,q=p and

{/IT 2n(5-1)g H (U*l']'y(ul, 0, u3)) (r)HZp dr}l/q
_c]i[{|u,(0)||u, /H “uy) @, dr}
=1

n

for 0 <y < min(n, 2), niy <p<2,q9g=

2p
(n+y)p—2n"
Lemma 4
(1) Let 1 <p <2,1<q<00,0>0andletu € G ,(Ir). Then
As(lul*u) = AsuA_suAsu

forall 6 € D.
(2) Let ; 2” <p<2,1<g<o00,0>0andletu € Gﬁqﬁ(IT). Then

As (™7 5 uPyu) = (13177 (AsuA—510) As

forall 6 € D.

Proof Lett # 0. It is sufficient to show

U (—1) [(|u|2u)(t)] el

Birkhduser
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for all § € D, by Proposition 1 above. Indeed, we have

U (=0 [(uPw )]
= Cr7 (T MO U () + (¢ MOUu(—) ) )

% U (=u(r) e L

forall§ € D, because ¢**U (—1)u(r) € L'NLP forall§ € D.Hence (M~ u|?u)(t)
is analytic on R” + iz D and its analytic continuation is represented as

M NuPu)(t, x +i18) = V(M N ulPu)(r, x), x +its € R* +itD,
and
As(lulPu) (1) = MDY M=) (JuPu)(t) = (Asu) (1)(A_su) (1) (Asu) (t)
for all § € D. Similarly, we have
U (=D[((Ix |77 |u*)u)(1)]
= Clel ™ (I MU (=nu() = (H MOUDu (=) )

2n
%2 YU (—tu(t) € L7
for all § € D by Lemma 2 above and hence

ETU(=DI(x]17Y * [u)u)(0)]
— | (|x|—("—V>e5'XM(z)U(—t)u(t) % (e‘s'x./\/l(t)U(—t)u(t)(—~)))
x YU (=nu(r) € L'

forall 6 € D. o

5 Proof of Theorem 1

We define a complete metric space (B% (R), d) by

p

B%(R) =1iUue€ G;l),p/,Z(] l)(IT); u(0) = ¢, Z_ ”Jotu”XP (1) <R;,

l l
a>0 F 7

du,v) =) — HJ“ (u —v)||Xp
o!

LU’
a>0 P )

2
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We show the map @ : u — Pu, du = U — iAS[|u|*u], is a contraction mapping
in (B}(R), d). We have

(=7
Fou=Uxg—in Y LD S h T ]
Bly!s!
B+y+i=a
and
1(=1)leal
vtlcrteu=20" Y D™ o Fary oy
051!062!013!
o) toaytaz=a
1(—1)le2l
D %U*To (J¥u, TPu, J%u).
o) tartaz=a i3
Therefore,

{/IT rz(%*%)z” H (U*lﬁjacbu) (1) Zp dr}w
3
¢ 3 el [ (oo @], o

artortoz=o j=1

o t+artaz=o

3
=C Z a!jlzll{aij!”xaj(b”“—i_aij!/lr H(U—lﬁjo‘ju) (T)HLpdt}
and

R (CRERDILING
ARl G T W

{/ rp_zdr}l/p {/ TZ(]I—)_%)[)/ ”(U_IEJ“J'M) (1) IL); dr}l/p/
Ir Ir

TV {/[T 2-3)r |(v='cru) @ ip dr}w,

IA

]

Also we have the difference term
UL (D% — D)

a!(_l)‘aﬂ —1 o o o3

o t+aytaz=a

T (S, T, T — ) + To (¥, T (u — v), T%) ]
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Therefore,

al” (re775)
P q)uHsz( 1>(1T)5C n+T7R)

-2
1 1 \2
d(@u, dv) < CT /" <n+ Tr R) d(u, v)

and @ is a contraction mapping with R > 0 and 7" > 0 satisfying

1

ol : 1 2131

rd 1
T» < min (22/3012’ 20 )
R =2Cn’.

6 Proof of Theorem 2

We define a complete metric space (BTD (R), d) by

BR(R) = {u € Gfp, 2<L_l)(lr); u(0) = ¢, sup [|Asul xr
[ p 2 seD p/2

<R
1 l)(IT) —= ’
ArT2
d(u, v) = sup [|As(u — v)llxr
seD P2

We show the map @ : u — ®u, du = U¢p —iAS[|u|*u], is a contraction mapping
in (BP(R), d). We have

As@u = Ue® ¢ — irS [AsuA_suAsu],

and
U LAs®u = AU AsuA_suAsu = AU "To(Asu, A_su, Asu).
Therefore,
1_1),/ 1/q
{/ 2G5 H(U_ILASCDM) (r)”q dr}
Ir Lr
3 »
—_1)/tls. —
<eTT{lr ol ¢ e enmons) o], o
and

/IT H (U_1£A<—1>f+la”> (r)HLp dr
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_o(Ll_1 1_1
:/ T 2(1) 2)_[2([’ 2) H (U_IEA(_1)1+1514) (T)HLP d‘L’
It
1/p 1Y),/ P 1/p
< {/ ‘EPZd‘L’} {/ -L-2<1’ 2)17 H (U*ch(_l)jJrlau) (T) df}
It It LP
/ l/p/
1 1_ 1Y), p
=T {/ tz(l’ 2>p H(UﬁlﬁA(—l)jﬂau) dr} .
Iy Lr

Also we have the difference term

/

U 'L(Pu — dv)
= AU~ [To (Asu, A—su, As(u — v)) + To (Asv, A—sv, As(u — v))
+To (Asu, A_s(u —v), Asv)].

Therefore,

3
1
sup ||[AsDu|| , <C <7’) + T R) ,
seD “rap-H*”

d(®u, ®v) < CTITI’ <n + TI}/R)zd(u, v)
and @ is a contraction mapping with R > 0 and 7" > 0 satisfying

Tl%’ < min (22/% o 221/8" 1)

R =2C»’.
7 Proof of Theorem 3

We define a complete metric space (B% (R),d ) b

1

a>0 p -2

P

BRI =1 €O oy O =9, z—umuxp =R (

d(u,v)=Z—HJa(u_v)Hx" NG

a>0 @213

We show the map @ : u — ®u, du = U¢p — i AS[|u|*u], is a contraction mapping
in (B7(R), d). We have

(=7
Fou=Uxtg—in Y LD S h T ]
Blys!
B+y+é=a
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and
1(=1)lezl
vtlcrtou=xu"" Y (D™ (IXI77 % J¥ uT%2u) J%u
olalas!
o1 tortoz=a -
1(—1)leal
—i Y EEUE g (e, e, ).
aqloplas!
o] tartaz=u
Therefore,

{/IT 2(53)a H(U‘lﬁjo‘cbu) (r)qudr}l/q
1> “—'n{nan“ [ erny o], o]

lon 'oa!
o100
a1tartaz=o 1:02:03

ST D) £ Py ey RV T
j=1 !

o) tarto3=o

and

/IT H (U*‘u‘*m) (r)H ’dr
:/IT 2(5-4) 2 H(a U- J“fu) (r)H dr

1 / 1/q' 11 1/q
< {/ 1_2"<F Z)q dr} {/ Tzn(;_i)q H (U—lﬁja,iu> (T)Hq dt}
Ir Ir Lp
n—y)p—2n 1 1 1/q
= T C {/ rzn(ﬁ_f)q H (Uﬁlﬁlo‘ju) (T)Hq d‘L’} )
Ir Lp
Also we have the difference term

U™'L(®T% — DJ%)

al(=Dlel
=i Y U T (U w = v), I, )
Oll!Olz!Otg,!

a1tortoz=o

+ Ty (10, 20, I = 0) + Ty (S0, T (= v), ) |.

Therefore,

a® Qn—p)p-2n 1 \3
Z - ” J"‘d?uHXp (Ir) <C <;7 + T C=n=y)p+2n ¢’ R) ,
a0 & a21(5-3)
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Q+n—y)p—2n 1 Q+n—y)p—2n 1 2
d(Qu, dv)d < CT @ r—rprtng (n + T Con=vipt2n g R) d(u,v)
and @ is a contraction mapping with R > 0 and 7 > 0 satisfying

Q+n—y)p—2n 1 1/3
Q—n—y)p+2n ¢’ i 1 27—
T 7 < min (22/3Cn2’ 2 )

R =2Cn’.

8 Proof of Theorem 4

We define a complete metric space (BTD (R), d) by

BY(R) = {u eGP (I7); u(0) = ¢, sup [|Asulx» <R,
T pﬂlﬂ(%—%) seD Xq,2n(%—%>(IT)
d(u,v) = sup ||As(u — v)llyr .
éeD Xq»Zn %*%)(IT)

We show the map @ : u — ®u, du = U — iAS[|u|>u], is a contraction mapping
in (BP(R), d). We have

AsPu =Ue" ¢ — irS[AsuA_suAsu],
and
U ' LAs®u = 2U" (IxI77 % AsuA_su) Asu = AU~ "T, (Asu, A_su, Asu).

Therefore,

[ G| o reasm o a)

3
] | (T eacys) o
le:[l{”e ¢ L”+/IT U EA(_l)_,+15u (1) L dt

1/q

A

and

[ (e ey o), o

- /]T 2(5-1) 2(5-4) [(v"cacympu) @], dr

< {/;T 1_2n<;_5>q,d1}l/q/ {/[T rzn@_%)q “(U_lﬁA(_l)jJrl(gM) (T)Hzp dr}l/q
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Q4n—y)p=2n 1 1_1 q 1/q
=T @iy {f rzn(ﬂ Z)q ”(U‘lﬁA(,D.fﬂau) (I)HLP dr} .
It
Also we have the difference term

U™ 'L(Pu — dv)
=2U" [T, (As(u —v), A_su, Asu) + T, (Asv, A_sv, As(u —v))
+7, (Asv, A_s(u — v), Asu)].

Therefore,
Qan—y)p=2n 1 3
sup ||A§¢M||XP () < C <r] + T(anfV)P+2n q’ R) ,
sep on(3)

Q+n—y)p—2n 1 Q+n—y)p—2n 1 2
d(Pu, ®v) < CT Cn-rwvting <77 + T @n=vip+2n g’ R) d(u, v)
and @ is a contraction mapping with R > 0 and T > 0 satisfying

Qtn—y)p=2n 1 1/3
Q—n—y)p+2n ¢’ 3 1 2701
T < min (22/30’2, 20 )
R =2Cn.
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