

Analytic Smoothing Effect for the Nonlinear Schrödinger Equations Without Square Integrability

Gaku Hoshino1,**² · Ryosuke Hyakuna¹**

Received: 16 January 2016 / Revised: 2 July 2017 / Published online: 15 September 2017 © Springer Science+Business Media, LLC 2017

Abstract In this study we consider the Cauchy problem for the nonlinear Schrödinger equations with data which belong to L^p , $1 < p < 2$. In particular, we discuss analytic smoothing effect with data which satisfy exponentially decaying condition at spatial infinity in L^p , $1 < p < 2$. We construct solutions in the function space of analytic vectors for the Galilei generator and the analytic Hardy space with the phase modulation operator based on L^p .

Keywords Analytic smoothing effect · Analytic Hardy space · Nonlinear Schrödinger equations

Mathematics Subject Classification 35Q55

1 Introduction

We consider the local Cauchy problem for the nonlinear Schrödinger equations in setting of the Lebesgue space L^p , $1 < p < 2$:

Communicated by Luis Vega.

 \boxtimes Gaku Hoshino g.hoshino@cr.math.sci.osaka-u.ac.jp Ryosuke Hyakuna 107r107r@gmail.com

¹ Waseda University, Shinjuku, Tokyo 169-8555, Japan

² Present Address: Osaka University, Toyonaka, Osaka 560-0043, Japan

$$
\begin{cases} i\partial_t u + \frac{1}{2}\Delta u = f(u), (t, x) \in I_T \times \mathbb{R}^n, \\ u(0) = \phi \in L^p \end{cases}
$$
 (1.1)

where $I_T = [0, T]$, $T > 0$, $i = \sqrt{-1}$, $u : I_T \times \mathbb{R}^n \to \mathbb{C}$, $\partial_t = \partial/\partial t$, $\Delta =$ where $I_T = [0, T]$, $T > 0$, $i = \sqrt{-1}$, $u : I_T \times \mathbb{R}^n \to \mathbb{C}$, $\partial_t = \partial/\partial t$, $\Delta = \sum_{j=1}^n \partial_j^2/\partial x_j^2$, and $n \ge 1$. The nonlinearity *f* satisfies the gauge condition

$$
e^{i\theta}f(u)=f(e^{i\theta}u),\ \theta\in\mathbb{R}.
$$

To be specific, we assume the following two types of nonlinearity in this study

$$
f(u) = \lambda |u|^2 u,\tag{1.2}
$$

$$
f(u) = \lambda \left(|x|^{-\gamma} * |u|^2 \right) u \tag{1.3}
$$

where $\lambda \in \mathbb{C}$, $0 < \gamma < n$ and $\varphi * \psi$ denotes the convolution

$$
(\varphi * \psi)(x) = \int_{\mathbb{R}^n} \varphi(x - y) \psi(y) dy, \ x \in \mathbb{R}^n.
$$

There is a large literature on the Cauchy problem for the nonlinear Schrödinger equations in the L^2 -based framework (see for instance $[3,4,6,21,27-29]$ $[3,4,6,21,27-29]$ $[3,4,6,21,27-29]$ $[3,4,6,21,27-29]$ $[3,4,6,21,27-29]$ $[3,4,6,21,27-29]$ $[3,4,6,21,27-29]$ and reference therein).

Analyticity and analytic smoothing effect for solutions to nonlinear evolution equations have been studied in many papers $([5, 8-11, 13-15, 20, 22-24])$ $([5, 8-11, 13-15, 20, 22-24])$ $([5, 8-11, 13-15, 20, 22-24])$ $([5, 8-11, 13-15, 20, 22-24])$ $([5, 8-11, 13-15, 20, 22-24])$ $([5, 8-11, 13-15, 20, 22-24])$ $([5, 8-11, 13-15, 20, 22-24])$. In particular, analytic smoothing effect for the nonlinear Schrödinger equations and

the Hartree equations in the L^2 setting with data which satisfy exponentially decaying condition has been studied in $[8-11, 13-15, 23-25]$ $[8-11, 13-15, 23-25]$ $[8-11, 13-15, 23-25]$ $[8-11, 13-15, 23-25]$ (see also reference therein).

On the other hand, as far as the authors know, there are no results on analytic smoothing effect for the nonlinear Schrödinger equations in the L^p -framework with $p \neq 2$. In the present paper we discuss the problem of analytic smoothing effect for solutions to (1.1) in the L^p -framework. We believe this problem is interesting since exponentially decaying L^p -functions for $1 < p < 2$ do not necessarily belong to L^2 . In fact, if $1 < p < 2$, there exists

$$
\phi \in L^p \backslash L^2
$$

such that

$$
\sup_{\delta\in D}\left\|e^{\delta\cdot x}\phi\right\|_{L^p}<\infty.
$$

See Proposition [1](#page-4-0) below for details. Furthermore, it is sufficient to consider the case $1 < p < 2$, since any exponentially decaying L^q -function with $2 < q < \infty$ is an $L²$ function. To be more precise, let $D \subset \mathbb{R}^n$ be a domain with $0 \in D$ and $2 < q < \infty$. If $\phi \in L^q$ satisfying

$$
\sup_{\delta\in D}\left\|e^{\delta\cdot x}\phi\right\|_{L^q}<\infty,
$$

then

$$
\sup_{\delta \in D'} \|e^{\delta \cdot x} \phi\|_{L^1} \leq C \sup_{\delta \in D} \|e^{\delta \cdot x} \phi\|_{L^q}
$$

for $D' \in D$ (see Appendix of [\[15](#page-19-4)] and Chapter III of [\[26\]](#page-19-10)). We put

$$
\widehat{L^q} = \left\{ \phi \in \mathcal{S}'; \ \mathcal{F}[\phi] \in L^{q'} \right\}.
$$

If $\phi \in \widehat{L^q}$ satisfying

$$
\sup_{\delta\in D}\|e^{\delta\cdot x}\phi\|_{\widehat{L^q}}<\infty,
$$

then by the boundedness of the Fourier transform, we have

$$
\sup_{\delta\in D}\left\|e^{\delta\cdot x}\phi\right\|_{L^q}\leq C\sup_{\delta\in D}\left\|e^{\delta\cdot x}\phi\right\|_{\widehat{L^q}}<\infty.
$$

Hence if data satisfy exponentially decaying condition in L^q or $\widehat{L^q}$, then data decay exponentially in $L^1 \cap L^q \subset L^2$.

Analytic smoothing effect for the cubic nonlinear Schrödinger equations in minimal regularity Sobolev setting based on L^2 has been studied in [\[23](#page-19-8)[,24](#page-19-7)]. Analytic smoothing effect for the nonlinear Schrödinger equations with non-gauge invariant quadratic nonlinearity in terms of the generator of dilations $P = 2t\partial_t + x \cdot \nabla$ in the framework of negative exponent Sobolev space H^s , $s > -3/4$ has been studied in [\[20](#page-19-5)].

In the previous papers $[7,12,17-19,30,31]$ $[7,12,17-19,30,31]$ $[7,12,17-19,30,31]$ $[7,12,17-19,30,31]$ $[7,12,17-19,30,31]$ $[7,12,17-19,30,31]$, the authors have attempted to construct solutions and proved the existence of solutions to the nonlinear Schrödinger equations in the framework of L^p and $\widehat{L^p}$. Especially, in the L^p -setting, in [\[31](#page-19-14)] the author proved
the existence of level solutions to the 1D subjects using Schoödinger constitues for the existence of local solutions to the 1D cubic nonlinear Schrödinger equations for data in L^p with $1 < p < 2$. Later, in [\[12\]](#page-18-7) we exploited his approach to show similar local well-posedness results for the Hartree equation for data in the Bessel potential spaces $H^{s,p}$ under suitable conditions on *s*, *p*, *n*. In particular, for $0 < \gamma < \min(2, n)$, we obtained the local well-posedness for data in L^p with $\max(\frac{2n}{n-\gamma+2}, \frac{2n}{n+\gamma}) < p < 2$.
In this paper, based on these local existence results, we investigate analytic smoothing effect for the 1D cubic NLS and the Hatree equation for data in L^p when p is in the range stated above. To be more precise, our main purpose of this study is to show analytic smoothing effect for the Cauchy problem (1.1) in the framework of L^p -based spaces of functions as analytic vector for the Galilei generator $J = e^{i\frac{t}{2}\Delta}xe^{-i\frac{t}{2}\Delta}$ and the *L*^{*p*}-based analytic Hardy space characterized by the operator $A_{\delta} = e^{i\frac{t}{2}\Delta}e^{\delta \cdot x}e^{-i\frac{t}{2}\Delta}$.

Finally, the condition $p > \frac{2n}{n+\gamma}$ for the local well-posedness for the Hartree equation may seem unusual, since it is stronger than the condition for the cubic NLS. However, it is conjectured that this condition is optimal. See Remark [3](#page-7-0) below.

We use the following notation throughout this paper. $L^p = L^p(\mathbb{R}^n)$, $1 \le p \le \infty$ is the usual Lebesgue space. The Fourier transform $\mathcal{F} : \psi \mapsto \psi$ is defined by

$$
\widehat{\psi}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i\xi \cdot x} \psi(x) dx, \ \xi \in \mathbb{R}^n,
$$

where $x \cdot y = \sum_{j=1}^{n} x_j y_j$ is the usual scaler product in \mathbb{R}^n , and \mathcal{F}^{-1} is the inverse Fourier transform. The Schrödinger propagator is defined by $U(t)\psi$ = $(U\psi)(t) = e^{i\frac{t}{2}\Delta}\psi = \mathcal{F}^{-1}\left[e^{-i\frac{t}{2}|\xi|^2}\mathcal{F}[\psi]\right], t \in \mathbb{R}$, we often use the notation $U^{-1}(t)\psi = (U^{-1}\psi)(t) = U(-t)\psi, t \in \mathbb{R}$. As well known, *U* and U^{-1} have the following factorization formula (see Chapter 2 of [\[3](#page-18-0)]):

$$
U(t)\psi = \mathcal{M}(t)D(t)\mathcal{F}\mathcal{M}(t)\psi, \ U^{-1}(t)\psi = \mathcal{M}(-t)\mathcal{F}^{-1}D^{-1}(t)\mathcal{M}(-t)\psi
$$

for $t \neq 0$, where the phase modulation operator $\mathcal{M}(t)$: $\psi \mapsto e^{i \frac{|x|^2}{2t}} \psi$, dilations *D*(*t*) : ψ → (*it*)^{−*n*/2} ψ ($\frac{1}{t}$) and its inverse *D*^{−1}(*t*) = *i*^{*n*}*D* (*t*^{−1}), *t* ≠ 0. We put the linear Schrödinger operator by

$$
\mathcal{L} = i \partial_t + \frac{1}{2} \Delta = U i \partial_t U^{-1}.
$$

The Duhamel integral operator is defined by $S[f](t) = (\int_0^t U(\cdot - s) f(\tau) d\tau)(t) =$ $\int_0^t U(t-\tau) f(\tau) d\tau$, $t \in \mathbb{R}$. The Galilei generator is defined by

$$
J(t) = U(t)xU(-t) = x + it\nabla, t \in \mathbb{R}.
$$

We introduce an operator which gives analytic continuation (see also [\[11,](#page-18-5)[15](#page-19-4)[,23](#page-19-8)])

$$
A_{\delta}(t) = U(t)e^{\delta \cdot x}U(-t), \ \delta \in \mathbb{R}^n
$$

for $t \in \mathbb{R}$. We see that A_{δ} has another representation such as

$$
A_{\delta}(t) = \mathcal{M}(t)e^{it\delta \cdot \nabla} \mathcal{M}(-t), \ t \neq 0,
$$

where $e^{it\delta \cdot \nabla} \psi = \mathcal{F}^{-1} \left[e^{-t\delta \cdot \xi} \widehat{\psi} \right], \delta \in \mathbb{R}^n$. The following commutation relation

$$
[J, \mathcal{L}] = U[x, i\partial_t]U^{-1} = 0, [A_{\delta}, \mathcal{L}] = U[e^{\delta \cdot x}, i\partial_t]U^{-1} = 0
$$

holds. The analytic Hardy space is defined by (see Chapter III of [\[26\]](#page-19-10)):

$$
\mathcal{H}^p(\Omega) = \left\{ \psi : \text{ analytic on } \mathbb{R}^n + i\Omega; \ \|\psi\|_{\mathcal{H}^p(\Omega)} = \sup_{y \in \Omega} \|\psi(\cdot + iy)\|_{L^p} < \infty \right\}
$$

with domain $\Omega \subset \mathbb{R}^n$.

2 Function Spaces

We introduce the following basic function spaces

$$
\mathcal{X}(I_T)
$$
\n
$$
= \left\{ u : I_T \times \mathbb{R}^n \to \mathbb{C}; \ U^{-1}u \in C(I_T; L^p), \ \|u\|_{\mathcal{X}(I_T)} = \left\| U^{-1}u \right\|_{L^{\infty}(I_T; L^p)} < \infty \right\},
$$
\n
$$
X_{q,\theta}^p(I_T)
$$
\n
$$
= \left\{ u : I_T \times \mathbb{R}^n \to \mathbb{C}; \ \|u\|_{X_{q,\theta}^p(I_T)} = \left\{ \int_{I_T} \tau^{\theta q} \left\| \left(U^{-1} \mathcal{L}u \right)(\tau) \right\|_{L^p}^q d\tau \right\}^{1/q} < \infty \right\}
$$

for $1 \leq p, q \leq \infty, \theta > 0$ and we put the function spaces associated with $X_{q,\theta}^p(I_T)$ by

$$
\widetilde{X}_{q,\theta}^p(I_T) = \left\{ u \in X_{q,\theta}^p(I_T); \ u(0) \in L^p, \ \|u\|_{\widetilde{X}_{q,\theta}^p(I_T)} = \|u(0)\|_{L^p} + \|u\|_{X_{q,\theta}^p(I_T)} < \infty \right\}.
$$

The function spaces such as above are firstly introduced in [\[31](#page-19-14)].

We introduce the following weighted function spaces:

 \overline{a}

$$
G_p^a = \left\{ \phi \in L^p; \ \|\phi\|_{G_p^a} = \sum_{\alpha \ge 0} \frac{a^{\alpha}}{\alpha!} \left\| x^{\alpha} \phi \right\|_{L^p} < \infty \right\},\,
$$

$$
G_p^D = \left\{ \phi \in L^p; \ \|\phi\|_{G_p^D} = \sup_{\delta \in D} \left\| e^{\delta \cdot x} \phi \right\|_{L^p} < \infty \right\}.
$$

The function space of analytic vectors for *J* is defined by

$$
G_{p,q,\theta}^a(I_T) = \left\{ u \in \widetilde{X}_{q,\theta}^p(I_T); \ \|u\|_{G_{p,q,\theta}^a(I_T)} = \|u(0)\|_{G_p^a} + \sum_{\alpha \ge 0} \frac{a^{\alpha}}{\alpha!} \|J^{\alpha}u\|_{X_{q,\theta}^p(I_T)} < \infty \right\},
$$

for $a \in (0, \infty)^n$ and the analytic Hardy space with respect to A_δ is defined by

$$
G_{p,q,\theta}^{D}(I_T) = \left\{ u \in \widetilde{X}_{q,\theta}^{p}(I_T); \ \|u\|_{G_{p,q,\theta}^{D}(I_T)} = \|u(0)\|_{G_p^D} + \sup_{\delta \in D} \|A_\delta u\|_{X_{q,\theta}^p(I_T)} < \infty \right\}
$$

for domain $D \subset \mathbb{R}^n$.

Our motivation of this study is based on the following proposition:

Proposition 1 *Let* $1 < p < 2$ *and bounded domain* $D \subset \mathbb{R}^n$ *. Then*

$$
G_p^D \backslash L^2 \neq \emptyset.
$$

Proof The following function belongs to $G_p^D \setminus L^2$,

$$
\phi(x) = \begin{cases} |x|^{-n/(2-\varepsilon)}, & |x| \le 1, \\ e^{-r|x|}, & |x| > 1 \end{cases}
$$

where $0 < \varepsilon < 2 - p$ and sufficiently large $r > 0$.

The analyticity of functions which belong to $G_{p,q,\theta}^a(I_T)$ or $G_{p,q,\theta}^D(I_T)$ is shown by the following proposition:

Proposition 2 *Let* $1 \leq p < 2$ *and* $\frac{1}{q} + \frac{1}{\theta} > 1$ *.*

- (1) Let $u \in G_{p,q,\theta}^a(I_T)$. Then $(\mathcal{M}^{-1}u)(t) \in \mathcal{H}^{p'}\left(\prod_{j=1}^n(-a_jt,a_jt)\right)t \neq 0$, where $a \in (0, \infty)^n$
- (2) Let $u \in G_{p,q,\theta}^D(I_T)$. Then $(\mathcal{M}^{-1}u)(t) \in \mathcal{H}^{p'}(tD)$, $t \neq 0$, where $D \subset \mathbb{R}^n$ is a *domain with* 0 ∈ *D.*

Proof Because

$$
\widetilde{X}_{q,\theta}^p(I_T) \subset \mathscr{X}(I_T)
$$

with

$$
\|u\|_{\mathscr{X}(I_T)} \le \|u(0)\|_{L^p} + T^{1-\theta(1-\frac{1}{q})} \|u\|_{X^p_{q,\theta}(I_T)}
$$

$$
\le \max\left\{1, T^{1-\theta(1-\frac{1}{q})}\right\} \|u\|_{\widetilde{X}^p_{q,\theta}(I_T)},
$$

we see that

$$
\sup_{\delta \in \prod_{j=1}^n (-a_j, a_j)} \left\| e^{\delta \cdot x} U^{-1} u \right\|_{L^\infty(I_T; L^p)} \leq \sum_{\alpha \geq 0} \frac{a^\alpha}{\alpha!} \left\| x^\alpha U^{-1} u \right\|_{L^\infty(I_T; L^p)} < \infty.
$$

Hence, it is sufficient to show real analyticity of $u \in G_{p,q,\theta}^{\Omega}$ with $\Omega = \prod_{j=1}^{n} (-a_j, a_j)$ in the case (1) and with $\Omega = D$ in the case (2). We see that

$$
\begin{aligned}\n\left\|e^{\delta \cdot x} U(-t) u(t)\right\|_{L^{1}} &= \left\|e^{\delta \cdot x} \mathcal{F}^{-1} D^{-1}(t) \mathcal{M}(-t) u(t)\right\|_{L^{1}} \\
&= \left\|e^{\delta \cdot x} D(t) \mathcal{F}^{-1} \mathcal{M}(-t) u(t)\right\|_{L^{1}} \\
&= \left\|D(t) e^{t \delta \cdot x} \mathcal{F}^{-1} \mathcal{M}(-t) u(t)\right\|_{L^{1}} \\
&= |t|^{n/2} \left\|e^{t \delta \cdot x} \mathcal{F}^{-1} \mathcal{M}(-t) u(t)\right\|_{L^{1}} \\
&= |t|^{n/2} \left\|e^{-t \delta \cdot \xi} \mathcal{F}\left[\left(\mathcal{M}^{-1} u\right)(t)\right]\right\|_{L^{1}} < \infty\n\end{aligned}
$$

for all $t \neq 0$, $\delta \in \Omega$. Therefore, $(\mathcal{M}^{-1}u)(t)$ is real analytic and has an analytic continuation

$$
\left(\mathcal{M}^{-1}A_{\delta}u\right)(t,x) = e^{it\delta\cdot\nabla}\mathcal{M}^{-1}u(t,x)
$$

$$
= \frac{1}{(2\pi)^{n/2}}\int_{\mathbb{R}^n}e^{i(x+it\delta)\cdot\xi}\mathcal{F}\left[\left(\mathcal{M}^{-1}u\right)(t)\right](\xi)d\xi
$$

for all $x + it\delta \in \mathbb{R}^n + it\Omega$ (see Appendix of [\[15\]](#page-19-4)). Also we have

$$
\sup_{\delta\in D}\left\|\left(\mathcal{M}^{-1}A_{\delta}u\right)(t)\right\|_{L^{p'}}\leq C|t|^{-n\left(\frac{1}{2}-\frac{1}{p'}\right)}\sup_{\delta\in D}\left\|e^{\delta\cdot x}\left(U^{-1}u\right)(t)\right\|_{L^{p}}<\infty
$$

and

$$
\sup_{\delta \in \prod_{j=1}^n (-a_j, a_j)} \left\| \left(\mathcal{M}^{-1} A_{\delta} u \right) (t) \right\|_{L^{p'}} \leq \sum_{\alpha \geq 0} \frac{a^{\alpha}}{\alpha!} \left\| \left(J^{\alpha} u \right) (t) \right\|_{L^{p'}}
$$

$$
\leq C|t|^{-n \left(\frac{1}{2} - \frac{1}{p'} \right)} \sum_{\alpha \geq 0} \frac{a^{\alpha}}{\alpha!} \left\| x^{\alpha} \left(U^{-1} u \right) (t) \right\|_{L^p}
$$

$$
< \infty.
$$

By the relation $e^{\delta \cdot x} U^{-1} U \phi = e^{\delta \cdot x} \phi$, we immediately have the following fact for the free solutions:

Corollary 1 *Let* $1 \leq p < 2$.

- (1) If $\phi \in G_p^a$, then $U(t)\phi$, $t \in \mathbb{R} \setminus \{0\}$, *is real analytic and has an analytic continuation to* $\mathbb{R}^n + it \prod_{j=1}^n (-a_j, a_j)$.
- (2) If $\phi \in G_p^D$, then $U(t)\phi$, $t \in \mathbb{R} \setminus \{0\}$, *is real analytic and has an analytic continuation to* \mathbb{R}^n + *it D*.

3 Main Results

We put the interval $I_T = [0, T]$.

Theorem 1 *Let* $n = 1, 1 < p < 2$ *and* $a \in (0, \infty)$ *. Then for any* $\eta > 0$ *there exists* $T = T(\eta) > 0$ *such that; for any* $\phi \in G_p^a$ *, satisfying* $\|\phi\|_{G_p^a} \leq \eta$ *then the Cauchy problem* [\(1.1\)](#page-1-0)–[\(1.2\)](#page-1-1) *has a unique solution* $u \in G_{p,p',2(\frac{1}{p}-\frac{1}{2})}^a(I_T)$ *. Further-*

more, $(\mathcal{M}^{-1}u)(t) \in \mathcal{H}^{p'}((-at, at)), t \in I_T \setminus \{0\}.$

Theorem 2 *Let* $n = 1, 1 < p < 2$ *. Let a domain* $D \subset \mathbb{R}$ *satisfying* $0 \in D$ *and* $-D = D$. *Then for any* $\eta > 0$ *there exists* $T = T(\eta) > 0$ *such that; for any* $\phi \in G_p^D$,

 \Box

satisfying $\|\phi\|_{G_p^D} \leq \eta$ *then the Cauchy problem* [\(1.1\)](#page-1-0)–[\(1.2\)](#page-1-1) has a unique solution *u* ∈ $G_{p,p',2}^D(\frac{1}{p}-\frac{1}{2})$ (*IT*). Furthermore, $(\mathcal{M}^{-1}u)(t) \in \mathcal{H}^{p'}(tD), t \in I_T \setminus \{0\}.$

Theorem 3 *Let* $n \ge 1, 0 < \gamma < \min(n, 2), \max\left(\frac{2n}{n+\gamma}, \frac{2n}{n-\gamma+2}\right) < p < 2$ *and* $a \in (0,\infty)^n$. *Then for any* $\eta > 0$ *there exists* $T = T(\eta) > 0$ *such that; for any* $\phi \in G_p^a$, *satisfying* $\|\phi\|_{G_p^a} \leq \eta$ *then the Cauchy problem* [\(1.1\)](#page-1-0)–[\(1.3\)](#page-1-2) has a unique solution $u \in G^a$, $p, q, 2n\left(\frac{1}{p} - \frac{1}{2}\right)}(I_T)$, with $q = \frac{2p}{(n+\gamma)p-2n}$. Furthermore, $(\mathcal{M}^{-1}u)(t) \in$ $\mathcal{H}^{p'}\left(\prod_{j=1}^{n}(-a_jt, a_jt)\right), t \in I_T \backslash \{0\}.$

Theorem 4 *Let* $n \ge 1, 0 < \gamma < \min(n, 2)$ *and* $\max\left(\frac{2n}{n+\gamma}, \frac{2n}{n-\gamma+2}\right) < p < 2$. *Let a domain* $D ⊂ \mathbb{R}^n$ *satisfying* $0 ∈ D$ *and* $-D = D$ *. Then for any* $\eta > 0$ *there exists* $T = T(\eta) > 0$ *such that; for any* $\phi \in G_p^D$ *, satisfying* $\|\phi\|_{G_p^D} \leq \eta$ *then the Cauchy problem* [\(1.1\)](#page-1-0)–[\(1.3\)](#page-1-2) has a unique solution $u \in G_p^D$, $q, q, 2n(\frac{1}{p}-\frac{1}{2})$ (I_T), with $q = \frac{2p}{(n+\gamma)p-2n}$. Furthermore, $(\mathcal{M}^{-1}u)(t) \in \mathcal{H}^{p'}(tD), t \in I_T \setminus \{0\}.$

Remark 1 $G_p^a \subset G_p^{\Omega} \subset G_p^b$, with $\Omega = \prod_{j=1}^n (-a_j, a_j)$, and $0 < b_j < a_j$, $j = 1, 2, \ldots, n$ 1, 2, \cdots , *n* (see Theorem 2 in [\[15\]](#page-19-4)).

Remark 2 Let $1 \leq p \leq \infty$. We see that

$$
G_p^a \subset G_1^b, \ 0 < b_j < a_j, \ G_p^{D_1} \subset G_1^{D_2}, \ D_2 \Subset D_1, \\
 \mathcal{H}^p(D_1) \subset \mathcal{H}^\infty(D_2), \ D_2 \Subset D_1
$$

where D_1 , $D_2 \subset \mathbb{R}^n$ are domain (see Appendix of [\[15\]](#page-19-4) and Chapter III of [\[26\]](#page-19-10)). Therefore, the Cauchy data $\phi \in G_p^{\Omega}$, satisfy $\phi \in G_1^{\Omega'}$ and solutions obtained in Theorems [1](#page-6-0)[–4,](#page-7-1) $(M^{-1}u)(t) \in H^{p'}(t\Omega), t \neq 0$, satisfy $(M^{-1}u)(t) \in H^{\infty}(t\Omega'),$ $t \neq 0$, where $\Omega' \in \Omega$ with $\Omega = \prod_{j=1}^{n} (-a_j, a_j)$ or $\Omega = D$.

Remark 3 In Theorems [3](#page-7-2) and [4,](#page-7-1) we need

$$
p > \frac{2n}{n - \gamma + 2} \text{ and } p > \frac{2n}{n + \gamma}.
$$

The exponent $\frac{2n}{n-\gamma+2}$ appearing in the first condition is called a scaling limit which is well known and is considered as one candidate of the thresholds for the local wellposedness of (1.1) – (1.3) . Thus our local result can reach almost critical L^p spaces if $n > 2$ and $\gamma > 1$. The exponent in the second condition, on the other hand, seems unfamiliar and one may wonder if the local result still holds for *p* below this exponent. However, it is conjectured that the Cauchy problem is ill posed for $p < \frac{2n}{n+y}$, because of the singularity at zero frequency. This is deduced from the recent works $\frac{1}{2}$ and [\[16\]](#page-19-15) which study the well-posendess of (1.1) – (1.3) in $\widehat{L^p}$. For details, see the introduction in [\[16\]](#page-19-15). Note that $\frac{2n}{n+\gamma} \to 1$ as $\gamma \to n$ and thus the limit coincides with the lower

threshold of the local results for the cubic NLS (Theorems [1](#page-6-0) and [2\)](#page-6-1). Note also that $p = \frac{2n}{n+y}$ is the exponent such that the trilinear operator

$$
(u_1, u_2, u_3) \mapsto \mathcal{F}\left[\left(|x|^{-\gamma} * (u_1 \overline{u_2}) \right) u_3 \right]
$$

is defined and is continuous from $L^p \times L^p \times L^p$ to L^p .

4 Key Lemmas

We introduce the following two types of trilinear form \mathcal{T}_0 and \mathcal{T}_γ by

$$
T_0(u_1, u_2, u_3) = u_1 \overline{u_2} u_3
$$

and

$$
\mathcal{T}_{\gamma}(u_1, u_2, u_3) = (|x|^{-\gamma} * u_1 \overline{u_2}) u_3,
$$

respectively. Then, we see that

$$
U(-t)T_0(u_1, u_2, u_3)
$$

= $\mathcal{M}(-t)\mathcal{F}_{\xi \to x}^{-1}i^n D(t^{-1})(\mathcal{M}(-t)u_1\overline{\mathcal{M}(-t)u_2})\mathcal{M}(-t)u_3$
= $Ct^{-n}\mathcal{M}(-t)\mathcal{F}_{\xi \to x}^{-1}(D(t^{-1})\mathcal{M}(-t)u_1\overline{D(t^{-1})\mathcal{M}(-t)u_2})D(t^{-1})\mathcal{M}(-t)u_3$
= $Ct^{-n}\left(\mathcal{M}(t)U(-t)u_1*\left(\overline{\mathcal{M}(t)U(-t)u_2}(-)\right)\right)*U(-t)u_3$

and

$$
U(-t)T_{\gamma}(u_1, u_2, u_3)
$$

= $\mathcal{M}(-t)\mathcal{F}_{\xi \to x}^{-1}i^n D(t^{-1})(|\xi|^{-\gamma} * \mathcal{M}(-t)u_1\overline{\mathcal{M}(-t)u_2})\mathcal{M}(-t)u_3$
= $C|t|^{-\gamma} \mathcal{M}(-t)\mathcal{F}_{\xi \to x}^{-1}(|\xi|^{-\gamma} * D(t^{-1})\mathcal{M}(-t)u_1\overline{D(t^{-1})\mathcal{M}(-t)u_2})$
 $\times D(t^{-1})\mathcal{M}(-t)u_3$
= $C|t|^{-\gamma} (|x|^{-(n-\gamma)}\mathcal{M}(t)U(-t)u_1 * (\overline{\mathcal{M}(t)U(-t)u_2}(-\cdot))) * U(-t)u_3,$

for $t \neq 0$.

Lemma 1 ([\[31](#page-19-14)]) *Let* $n = 1$ *. We have*

$$
\left\| \left(U^{-1} \mathcal{T}_0(u_1, u_2, u_3) \right)(t) \right\|_{L^1} \leq C |t|^{-1} \prod_{j=1}^3 \left\| \left(U^{-1} u_j \right)(t) \right\|_{L^1},
$$

B Birkhäuser

for $t \neq 0$,

$$
\sup_{\tau \in I_T} \left(\tau \left\| \left(U^{-1} \mathcal{T}_0 \left(u_1, u_2, u_3 \right) \right) (\tau) \right\|_{L^1} \right)
$$
\n
$$
\leq C \prod_{j=1}^3 \left\{ \left\| u_j(0) \right\|_{L^1} + \int_{I_T} \left\| \left(U^{-1} \mathcal{L} u_j \right) (\tau) \right\|_{L^1} d\tau \right\},
$$

and

$$
\left\{\int_{I_T} \left\|\left(U^{-1}\mathcal{T}_0(u_1, u_2, u_3)\right)(\tau)\right\|_{L^2}^2 d\tau\right\}^{1/2} \leq C \prod_{j=1}^3 \left\{\left\|u_j(0)\right\|_{L^2} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}u_j\right)(\tau)\right\|_{L^2} d\tau\right\}.
$$

Lemma 2 *Let* $n \geq 1$ *and* $0 < \gamma < n$ *. We have*

$$
\left\| \left(U^{-1} \mathcal{T}_{\gamma}(u_1, u_2, u_3) \right) (t) \right\|_{L^{\frac{2n}{n+\gamma}}} \leq C |t|^{-\gamma} \prod_{j=1}^3 \left\| \left(U^{-1} u_j \right) (t) \right\|_{L^{\frac{2n}{n+\gamma}}}
$$

for all $t \neq 0$,

$$
\sup_{\tau \in I_T} \left(\tau^{\gamma} \left\| \left(U^{-1} \mathcal{T}_{\gamma}(u_1, u_2, u_3) \right) (\tau) \right\|_{L^{\frac{2n}{n+\gamma}}} \right)
$$
\n
$$
\leq C \prod_{j=1}^3 \left(\left\| u_j(0) \right\|_{L^{\frac{2n}{n+\gamma}}} + \int_{I_T} \left\| \left(U^{-1} \mathcal{L} u_j \right) (\tau) \right\|_{L^{\frac{2n}{n+\gamma}}} d\tau \right)
$$

and if $0 < \gamma < \min(n, 2)$ *, then*

$$
\left\{\int_{I_T} \left\|\left(U^{-1}\mathcal{T}_{\gamma}(u_1, u_2, u_3)\right)(\tau)\right\|_{L^2}^{2/\gamma}\right\}^{\gamma/2} \leq C \prod_{j=1}^3 \left\{\left\|u_j(0)\right\|_{L^2} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}u_j\right)(\tau)\right\|_{L^2} d\tau\right\}.
$$

Proof

$$
|t|^{\gamma} \| U(-t) \mathcal{T}_{\gamma}(u_1, u_2, u_3) \|_{L^{p_0}}
$$

= $C \| |x|^{-(n-\gamma)} \mathcal{M}(t) U(-t) u_1 \ast \left(\overline{\mathcal{M}(t)U(-t)u_2}(-\cdot) \right) \ast U(-t)u_3 \|_{L^{p_0}}$
 $\leq C \| |x|^{-(n-\gamma)} \mathcal{M}(t) U(-t)u_1 \ast \left(\overline{\mathcal{M}(t)U(-t)u_2}(-\cdot) \right) \|_{L^{p_1}} \| U(-t)u_3 \|_{L^{p_3}}$
= $C \left\| \mathcal{F}^{-1} \left[|\xi|^{-\gamma} \ast \mathcal{M}(t) \overline{U(-t)u_1} \left(\overline{\mathcal{M}(t)U(-t)u_2}(-\cdot) \right) \right] \right\|_{L^{p_1}} \| U(-t)u_3 \|_{L^{p_3}}$

 \mathbb{B} Birkhäuser

$$
\leq C \left\| |\xi|^{-\gamma} * \mathcal{M}(t) \widehat{U(-t)u_1(\mathcal{M}(t)U(-t)u_2(-\cdot))} \right\|_{L^{\rho'_1}} \|U(-t)u_3\|_{L^{p_3}}
$$

for $\frac{1}{p_0} = \frac{1}{p_1} + \frac{1}{p_3} - 1$, with $2 \le p_1 \le \infty$. By the Hardy–Littlewood–Sobolev inequality, with $\frac{1}{\rho'_1} = \frac{1}{\rho_2} + \frac{\gamma}{n} - 1$, $2 \le \rho_2 \le \infty$ and $n - \gamma < \frac{n}{\rho_2}$, we have

$$
|t|^{\gamma} || U(-t) \mathcal{T}_{\gamma}(u_1, u_2, u_3) ||_{L^{p_0}}
$$

\n
$$
\leq C ||\xi|^{-\gamma} * \mathcal{M}(t) \widehat{U(-t)u_1} \Big(\widehat{\mathcal{M}(t)U(-t)u_2}(-\cdot) \Big) ||_{L^{p'_1}} || U(-t)u_3 ||_{L^{p_3}}
$$

\n
$$
\leq C || \mathcal{F} \Big[\mathcal{M}(t)U(-t)u_1 * \Big(\overline{\mathcal{M}(t)U(-t)u_2} \Big) (-\cdot) \Big] ||_{L^{p_2}} || U(-t)u_3 ||_{L^{p_3}}
$$

\n
$$
\leq C || \mathcal{M}(t)U(-t)u_1 * \Big(\overline{\mathcal{M}(t)U(-t)u_2} \Big) (-\cdot) ||_{L^{p'_2}} || U(-t)u_3 ||_{L^{p_3}}
$$

\n
$$
\leq C \prod_{j=1}^3 || U(-t)u_j ||_{L^{p_j}}
$$

for $\frac{1}{p_2^2} = \frac{1}{p_1} + \frac{1}{p_2} - 1$ and $\frac{1}{p_0} = \sum_{j=1}^3 \frac{1}{p_j} + \frac{\gamma}{n} - 1$. In particular, $p_j = \frac{2n}{n+\gamma}$, $j = 0, 1, 2, 3$, satisfies these conditions. By

$$
u_j = Uu_j(0) - iS[\mathcal{L}u_j], U^{-1}u_j = u_j(0) - iU^{-1}S[\mathcal{L}u_j],
$$

we obtain the first and second inequalities. Finally, by the Hardy–Littlewood–Sobolev inequality with $\frac{\gamma}{3n} = \frac{3n-2\gamma}{3n} + \frac{\gamma}{n} - 1$ and the Hölder inequality with $\frac{1}{2} = \frac{\gamma}{3n} + \frac{3n-2\gamma}{6n}$, we have

$$
\left\{\int_{I_T} \left\|\mathcal{T}_{\gamma}(u_1, u_2, u_3)\right\|_{L^2}^{2/\gamma}\right\}^{\gamma/2} \leq C \prod_{j=1}^3 \left\|u_j\right\|_{L^{6/\gamma}\left(I_T; L^{\frac{6n}{3n-2\gamma}}\right)},
$$

where $\left(\frac{6}{\gamma}, \frac{6n}{3n-2\gamma}\right)$ is an admissible pair and by the Strichartz estimate

$$
\left\{\int_{I_T} \|\mathcal{T}_{\gamma}(u_1, u_2, u_3)(\tau)\|_{L^2}^{2/\gamma} d\tau\right\}^{\gamma/2} \leq C \prod_{j=1}^3 \left\{\|u_j(0)\|_{L^2} + \int_{I_T} \left\|\left(U^{-1} \mathcal{L} u_j\right)(\tau)\right\|_{L^2} d\tau\right\}.
$$

This completes the proof.

We obtain the following two inequalities by the multi-linear interpolation between $\tau^{-\alpha} L^{\infty}(\tau^{-2} d\tau, I_T; L^1)$ and $\tau^{-\alpha} L^q(\tau^{-2} d\tau, I_T; L^2)$, for $\alpha = 1, \gamma$ respectively (see

Chapter 4 of $[1]$ $[1]$ and $[31]$ $[31]$), where

$$
||u||_{\tau^{\alpha}L^{r}(\tau^{-2}d\tau,I_{T};L^{p})} = \left\{ \int_{I_{T}} \tau^{\alpha r} ||u(\tau,\cdot)||_{L^{p}}^{r} \tau^{-2} d\tau \right\}^{1/r}, \ 1 \leq r < \infty, \ 1 \leq p \leq \infty
$$

and

$$
||u||_{\tau^{\alpha}L^{\infty}(\tau^{-2}d\tau,I_T;L^p)} = \sup_{\tau \in I_T} \tau^{\alpha} ||u(\tau,\cdot)||_{L^p}, \ 1 \leq p \leq \infty.
$$

Lemma 3 ([\[12](#page-18-7),[31\]](#page-19-14)) *We have*

$$
\left\{\int_{I_T} \tau^{2(\frac{1}{p}-\frac{1}{2})q} \left\|\left(U^{-1}\mathcal{T}_0(u_1, u_2, u_3)\right)(\tau)\right\|_{L^p}^q d\tau\right\}^{1/q} \n\leq C \prod_{j=1}^3 \left\{\left\|u_j(0)\right\|_{L^p} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}u_j\right)(\tau)\right\|_{L^p} d\tau\right\},\
$$

for $n = 1, 1 < p < 2, q = p'$ and

$$
\left\{\int_{I_T} \tau^{2n\left(\frac{1}{p}-\frac{1}{2}\right)q} \left\|\left(U^{-1}\mathcal{T}_{\gamma}(u_1, u_2, u_3)\right)(\tau)\right\|_{L^p}^q d\tau\right\}^{1/q} \n\leq C \prod_{j=1}^3 \left\{\left\|u_j(0)\right\|_{L^p} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}u_j\right)(\tau)\right\|_{L^p} d\tau\right\},\
$$

for $0 < \gamma < \min(n, 2), \frac{2n}{n+\gamma} < p < 2, q = \frac{2p}{(n+\gamma)p-2n}$.

Lemma 4

(1) Let
$$
1 \le p < 2
$$
, $1 \le q \le \infty$, $\theta > 0$ and let $u \in G_{p,q,\theta}^D(I_T)$. Then

$$
A_{\delta}(|u|^2 u) = A_{\delta} u \overline{A_{-\delta} u} A_{\delta} u
$$

for all
$$
\delta \in D
$$
.
\n(2) Let $\frac{2n}{n+\gamma} \le p < 2$, $1 \le q \le \infty$, $\theta > 0$ and let $u \in G_{p,q,\theta}^D(I_T)$. Then
\n
$$
A_{\delta}\left((|x|^{-\gamma} * |u|^2)u\right) = (|x|^{-\gamma} * (A_{\delta}u\overline{A_{-\delta}u})) A_{\delta}u
$$

for all $\delta \in D$.

Proof Let $t \neq 0$. It is sufficient to show

$$
e^{\delta \cdot x} U(-t) \left[(|u|^2 u)(t) \right] \in L^1
$$

Birkhäuser

for all $\delta \in D$, by Proposition [1](#page-4-0) above. Indeed, we have

$$
e^{\delta \cdot x} U(-t) \left[(|u|^2 u)(t) \right]
$$

= $Ct^{-n} \left(e^{\delta \cdot x} \mathcal{M}(t) U(-t) u(t) \ast \left(e^{\delta \cdot x} \overline{\mathcal{M}(t) U(-t) u(t)}(-t) \right) \right)$
+ $e^{\delta \cdot x} U(-t) u(t) \in L^1$

for all $\delta \in D$, because $e^{\delta \cdot x} U(-t)u(t) \in L^1 \cap L^p$ for all $\delta \in D$. Hence $(\mathcal{M}^{-1}|u|^2u)(t)$ is analytic on $\mathbb{R}^n + itD$ and its analytic continuation is represented as

$$
(\mathcal{M}^{-1}|u|^2u)(t, x+it\delta) = e^{it\delta \cdot \nabla}(\mathcal{M}^{-1}|u|^2u)(t, x), \ x+it\delta \in \mathbb{R}^n + itD,
$$

and

$$
A_{\delta}(|u|^2u)(t) = \mathcal{M}(t)e^{it\delta \cdot \nabla}\mathcal{M}(-t)(|u|^2u)(t) = (A_{\delta}u)(t)\overline{(A_{-\delta}u)(t)}\,(A_{\delta}u)(t)
$$

for all $\delta \in D$. Similarly, we have

$$
e^{\delta \cdot x} U(-t) [((|x|^{-\gamma} * |u|^2)u)(t)]
$$

= $C|t|^{-\gamma} \left(|x|^{-(n-\gamma)} e^{\delta \cdot x} \mathcal{M}(t) U(-t)u(t) * \left(e^{\delta \cdot x} \overline{\mathcal{M}(t)} U(-t)u(t) (-t) \right) \right)$
 $* e^{\delta \cdot x} U(-t)u(t) \in L^{\frac{2n}{n+\gamma}}$

for all $\delta \in D$ by Lemma [2](#page-9-0) above and hence

$$
e^{\delta \cdot x} U(-t) [((|x|^{-\gamma} * |u|^2)u)(t)]
$$

= $C|t|^{-\gamma} (|x|^{-(n-\gamma)} e^{\delta \cdot x} \mathcal{M}(t) U(-t)u(t) * (e^{\delta \cdot x} \overline{\mathcal{M}(t)U(-t)u(t)}(-\cdot)))$
* $e^{\delta \cdot x} U(-t)u(t) \in L^1$

for all $\delta \in D$.

5 Proof of Theorem [1](#page-6-0)

We define a complete metric space $(B_T^a(R), d)$ by

$$
B_T^a(R) = \left\{ u \in G_{p,p',2(\frac{1}{p}-\frac{1}{2})}^a(I_T); \ u(0) = \phi, \ \sum_{\alpha \ge 0} \frac{a^{\alpha}}{\alpha!} \| J^{\alpha} u \|_{X_{p',2(\frac{1}{p}-\frac{1}{2})}^p(I_T)} \le R \right\},\newline d(u,v) = \sum_{\alpha \ge 0} \frac{a^{\alpha}}{\alpha!} \| J^{\alpha} (u-v) \|_{X_{p',2(\frac{1}{p}-\frac{1}{2})}^p(I_T)}.
$$

B Birkhäuser

We show the map $\Phi : u \mapsto \Phi u$, $\Phi u = U\phi - i\lambda S[|u|^2u]$, is a contraction mapping in $(B_T^a(R), d)$. We have

$$
J^{\alpha}\Phi u = Ux^{\alpha}\phi - i\lambda \sum_{\beta+\gamma+\delta=\alpha} \frac{\alpha!(-1)^{|\gamma|}}{\beta! \gamma! \delta!} S\left[J^{\beta} u \overline{J^{\gamma} u} J^{\delta} u\right]
$$

and

$$
U^{-1}\mathcal{L}J^{\alpha}\Phi u = \lambda U^{-1}\sum_{\alpha_1+\alpha_2+\alpha_3=\alpha}\frac{\alpha!(-1)^{|\alpha_2|}}{\alpha_1!\alpha_2!\alpha_3!}J^{\alpha_1}u\overline{J^{\alpha_2}u}J^{\alpha_3}u
$$

$$
= \lambda \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha}\frac{\alpha!(-1)^{|\alpha_2|}}{\alpha_1!\alpha_2!\alpha_3!}U^{-1}\mathcal{T}_0\left(J^{\alpha_1}u, J^{\alpha_2}u, J^{\alpha_3}u\right).
$$

Therefore,

$$
\left\{\int_{I_T} \tau^{2\left(\frac{1}{p}-\frac{1}{2}\right)p'} \left\|\left(U^{-1}\mathcal{L}J^{\alpha}\Phi u\right)(\tau)\right\|_{L^p}^{p'} d\tau\right\}^{1/p'}\n\n\leq C \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha} \frac{\alpha!}{\alpha_1!\alpha_2!\alpha_3!} \prod_{j=1}^3 \left\{\left\|x^{\alpha_j}\phi\right\|_{L^p} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}J^{\alpha_j}u\right)(\tau)\right\|_{L^p} d\tau\right\} \\
= C \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha} \alpha! \prod_{j=1}^3 \left\{\frac{1}{\alpha_j!} \left\|x^{\alpha_j}\phi\right\|_{L^p} + \frac{1}{\alpha_j!} \int_{I_T} \left\|\left(U^{-1}\mathcal{L}J^{\alpha_j}u\right)(\tau)\right\|_{L^p} d\tau\right\}
$$

and

$$
\int_{I_T} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p} d\tau \n= \int_{I_T} \tau^{-2\left(\frac{1}{p} - \frac{1}{2}\right)} \tau^{2\left(\frac{1}{p} - \frac{1}{2}\right)} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p} d\tau \n\leq \left\{ \int_{I_T} \tau^{p-2} d\tau \right\}^{1/p} \left\{ \int_{I_T} \tau^{2\left(\frac{1}{p} - \frac{1}{2}\right) p'} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p}^{p'} d\tau \right\}^{1/p'} \n= T^{\frac{1}{p'}} \left\{ \int_{I_T} \tau^{2\left(\frac{1}{p} - \frac{1}{2}\right) p'} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p}^{p'} d\tau \right\}^{1/p'}.
$$

Also we have the difference term

$$
U^{-1} \mathcal{L} \left(\Phi J^{\alpha} u - \Phi J^{\alpha} v \right)
$$

= $\lambda \sum_{\alpha_1 + \alpha_2 + \alpha_3 = \alpha} \frac{\alpha! (-1)^{|\alpha_2|}}{\alpha_1! \alpha_2! \alpha_3!} U^{-1} \Big[\mathcal{T}_0 \left(J^{\alpha_1} u, J^{\alpha_2} u, J^{\alpha_3} (u - v) \right) + \mathcal{T}_0 \left(J^{\alpha_1} v, J^{\alpha_2} v, J^{\alpha_3} (u - v) \right) + \mathcal{T}_0 \left(J^{\alpha_1} u, J^{\alpha_2} (u - v), J^{\alpha_3} v \right) \Big].$

Birkhäuser

Therefore,

$$
\sum_{\alpha\geq 0} \frac{a^{\alpha}}{\alpha!} \left\| J^{\alpha} \Phi u \right\|_{X^p_{p',2\left(\frac{1}{p}-\frac{1}{2}\right)}(I_T)} \leq C \left(\eta + T^{\frac{1}{p'}} R \right)^3,
$$

$$
d(\Phi u, \Phi v) \leq C T^{\frac{1}{p'}} \left(\eta + T^{\frac{1}{p'}} R \right)^2 d(u, v)
$$

and Φ is a contraction mapping with $R > 0$ and $T > 0$ satisfying

$$
\begin{cases} T^{\frac{1}{p'}} < \min\left(\frac{1}{2^{2/3}C\eta^2}, \frac{2^{1/3}-1}{2C\eta^2}\right), \\ R = 2C\eta^3. \end{cases}
$$

6 Proof of Theorem [2](#page-6-1)

We define a complete metric space $(B_T^D(R), d)$ by

$$
B_T^D(R) = \left\{ u \in G_{p,p',2\left(\frac{1}{p}-\frac{1}{2}\right)}^{D}(I_T); \ u(0) = \phi, \sup_{\delta \in D} ||A_{\delta}u||_{X_{p',2\left(\frac{1}{p}-\frac{1}{2}\right)}^{D}(I_T)} \le R \right\},\newline d(u,v) = \sup_{\delta \in D} ||A_{\delta}(u-v)||_{X_{p',2\left(\frac{1}{p}-\frac{1}{2}\right)}^{D}(I_T)}.
$$

We show the map $\Phi : u \mapsto \Phi u$, $\Phi u = U\phi - i\lambda S[u|^2u]$, is a contraction mapping in $(B_T^D(R), d)$. We have

$$
A_{\delta}\Phi u = U e^{\delta \cdot x} \phi - i \lambda S \left[A_{\delta} u \overline{A_{-\delta} u} A_{\delta} u \right],
$$

and

$$
U^{-1} \mathcal{L} A_{\delta} \Phi u = \lambda U^{-1} A_{\delta} u \overline{A_{-\delta} u} A_{\delta} u = \lambda U^{-1} \mathcal{T}_0(A_{\delta} u, A_{-\delta} u, A_{\delta} u).
$$

Therefore,

$$
\left\{\int_{I_T} \tau^{2\left(\frac{1}{p}-\frac{1}{2}\right)p'} \left\|\left(U^{-1}\mathcal{L}A_\delta\Phi u\right)(\tau)\right\|_{L^p}^q d\tau\right\}^{1/q} \leq C \prod_{j=1}^3 \left\{\left\|e^{(-1)^{j+1}\delta \cdot x}\phi\right\|_{L^p} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}A_{(-1)^{j+1}\delta} u\right)(\tau)\right\|_{L^p} d\tau\right\}
$$

and

$$
\int_{I_T} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1} \delta} u \right) (\tau) \right\|_{L^p} d\tau
$$

$$
= \int_{I_T} \tau^{-2(\frac{1}{p}-\frac{1}{2})} \tau^{2(\frac{1}{p}-\frac{1}{2})} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1}\delta} u \right) (\tau) \right\|_{L^p} d\tau
$$

\n
$$
\leq \left\{ \int_{I_T} \tau^{p-2} d\tau \right\}^{1/p} \left\{ \int_{I_T} \tau^{2(\frac{1}{p}-\frac{1}{2})p'} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1}\delta} u \right) (\tau) \right\|_{L^p}^{p'} d\tau \right\}^{1/p'}
$$

\n
$$
= T^{\frac{1}{p'}} \left\{ \int_{I_T} \tau^{2(\frac{1}{p}-\frac{1}{2})p'} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1}\delta} u \right) (\tau) \right\|_{L^p}^{p'} d\tau \right\}^{1/p'}.
$$

Also we have the difference term

$$
U^{-1} \mathcal{L}(\Phi u - \Phi v)
$$

= $\lambda U^{-1} \left[T_0 (A_{\delta} u, A_{-\delta} u, A_{\delta} (u - v)) + T_0 (A_{\delta} v, A_{-\delta} v, A_{\delta} (u - v)) + T_0 (A_{\delta} u, A_{-\delta} (u - v), A_{\delta} v) \right].$

Therefore,

$$
\sup_{\delta \in D} \|A_{\delta} \Phi u\|_{X^{p}_{p',2\left(\frac{1}{p}-\frac{1}{2}\right)}(I_{T})} \leq C \left(\eta + T^{\frac{1}{p'}} R\right)^{3},
$$

$$
d(\Phi u, \Phi v) \leq C T^{\frac{1}{p'}} \left(\eta + T^{\frac{1}{p'}} R\right)^{2} d(u, v)
$$

and Φ is a contraction mapping with $R > 0$ and $T > 0$ satisfying

$$
\begin{cases} T^{\frac{1}{p'}} < \min\left(\frac{1}{2^{2/3}C\eta^2}, \frac{2^{1/3}-1}{2C\eta^2}\right), \\ R = 2C\eta^3. \end{cases}
$$

7 Proof of Theorem [3](#page-7-2)

We define a complete metric space $(B_T^a(R), d)$ by

$$
B_T^a(R) = \left\{ u \in G_{p,q,2n\left(\frac{1}{p} - \frac{1}{2}\right)}^{a}(I_T); \ u(0) = \phi, \sum_{\alpha \ge 0} \frac{a^{\alpha}}{\alpha!} \| J^{\alpha} u \|_{X_{q,2n\left(\frac{1}{p} - \frac{1}{2}\right)}^{a}(I_T)} \le R \right\},\newline d(u,v) = \sum_{\alpha \ge 0} \frac{a^{\alpha}}{\alpha!} \| J^{\alpha} (u-v) \|_{X_{q,2n\left(\frac{1}{p} - \frac{1}{2}\right)}^{p}(I_T)}.
$$

We show the map $\Phi : u \mapsto \Phi u$, $\Phi u = U\phi - i\lambda S[u|^2u]$, is a contraction mapping in $(B_T^a(R), d)$. We have

$$
J^{\alpha}\Phi u = Ux^{\alpha}\phi - i\lambda \sum_{\beta+\gamma+\delta=\alpha} \frac{\alpha!(-1)^{|\gamma|}}{\beta! \gamma! \delta!} S\left[J^{\beta} u \overline{J^{\gamma} u} J^{\delta} u\right]
$$

Birkhäuser

and

$$
U^{-1}\mathcal{L}J^{\alpha}\Phi u = \lambda U^{-1}\sum_{\alpha_1+\alpha_2+\alpha_3=\alpha}\frac{\alpha!(-1)^{|\alpha_2|}}{\alpha_1!\alpha_2!\alpha_3!}\left(|x|^{-\gamma} * J^{\alpha_1}u\overline{J^{\alpha_2}u}\right)J^{\alpha_3}u
$$

$$
= \lambda \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha}\frac{\alpha!(-1)^{|\alpha_2|}}{\alpha_1!\alpha_2!\alpha_3!}U^{-1}\mathcal{T}_{\gamma}\left(J^{\alpha_1}u, J^{\alpha_2}u, J^{\alpha_3}u\right).
$$

Therefore,

$$
\left\{\int_{I_T} \tau^{2n\left(\frac{1}{p}-\frac{1}{2}\right)q} \left\|\left(U^{-1}\mathcal{L}J^{\alpha}\Phi u\right)(\tau)\right\|_{L^p}^q d\tau\right\}^{1/q} \n\leq C \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha} \frac{\alpha!}{\alpha_1!\alpha_2!\alpha_3!} \prod_{j=1}^3 \left\{\left\|x^{\alpha_j}\phi\right\|_{L^p} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}J^{\alpha_j}u\right)(\tau)\right\|_{L^p} d\tau\right\} \n= C \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha} \alpha! \prod_{j=1}^3 \left\{\frac{1}{\alpha_j!} \left\|x^{\alpha_j}\phi\right\|_{L^p} + \frac{1}{\alpha_j!} \int_{I_T} \left\|\left(U^{-1}\mathcal{L}J^{\alpha_j}u\right)(\tau)\right\|_{L^p} d\tau\right\}
$$

and

$$
\int_{I_T} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p} d\tau
$$
\n
$$
= \int_{I_T} \tau^{-2n \left(\frac{1}{p} - \frac{1}{2} \right)} \tau^{2n \left(\frac{1}{p} - \frac{1}{2} \right)} \left\| \left(\partial_\tau U^{-1} J^{\alpha_j} u \right) (\tau) \right\|_{L^p} d\tau
$$
\n
$$
\leq \left\{ \int_{I_T} \tau^{-2n \left(\frac{1}{p} - \frac{1}{2} \right) q'} d\tau \right\}^{1/q'} \left\{ \int_{I_T} \tau^{2n \left(\frac{1}{p} - \frac{1}{2} \right) q} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p}^q d\tau \right\}^{1/q}
$$
\n
$$
= T^{\frac{(2+n-\gamma)p - 2n}{(2-n-\gamma)p + 2n}} \left\{ \int_{I_T} \tau^{2n \left(\frac{1}{p} - \frac{1}{2} \right) q} \left\| \left(U^{-1} \mathcal{L} J^{\alpha_j} u \right) (\tau) \right\|_{L^p}^q d\tau \right\}^{1/q}.
$$

Also we have the difference term

$$
U^{-1}\mathcal{L}(\Phi J^{\alpha}u - \Phi J^{\alpha}v)
$$

= $\lambda \sum_{\alpha_1+\alpha_2+\alpha_3=\alpha} \frac{\alpha!(-1)^{|\alpha_2|}}{\alpha_1! \alpha_2! \alpha_3!} U^{-1} \Big[\mathcal{T}_{\gamma} (J^{\alpha_1}(u-v), J^{\alpha_2}u, J^{\alpha_3}u) + \mathcal{T}_{\gamma} (J^{\alpha_1}v, J^{\alpha_2}v, J^{\alpha_3}(u-v)) + \mathcal{T}_{\gamma} (J^{\alpha_1}v, J^{\alpha_2}(u-v), J^{\alpha_3}u) \Big].$

Therefore,

$$
\sum_{\alpha\geq 0}\frac{a^{\alpha}}{\alpha!}\left\|J^{\alpha}\Phi u\right\|_{X^p_{q,2n\left(\frac{1}{p}-\frac{1}{2}\right)}(I_T)}\leq C\left(\eta+T^{\frac{(2+n-\gamma)p-2n}{(2-n-\gamma)p+2n}\frac{1}{q'}}R\right)^3,
$$

$$
d(\Phi u, \Phi v)d \leq CT^{\frac{(2+n-\gamma)p-2n}{(2-n-\gamma)p+2n}} \frac{1}{q'} \left(\eta + T^{\frac{(2+n-\gamma)p-2n}{(2-n-\gamma)p+2n}} \frac{1}{q'} R\right)^2 d(u, v)
$$

and Φ is a contraction mapping with $R > 0$ and $T > 0$ satisfying

$$
\begin{cases} T^{\frac{(2+n-\gamma)p-2n}{(2-n-\gamma)p+2n}\frac{1}{q'}} < \min\left(\frac{1}{2^{2/3}C\eta^2}, \frac{2^{1/3}-1}{2C\eta^2}\right), \\ R = 2C\eta^3. \end{cases}
$$

8 Proof of Theorem [4](#page-7-1)

We define a complete metric space $(B_T^D(R), d)$ by

$$
B_T^D(R) = \left\{ u \in G_{p,q,2n\left(\frac{1}{p} - \frac{1}{2}\right)}^{D} (I_T); \ u(0) = \phi, \sup_{\delta \in D} ||A_{\delta} u||_{X_{q,2n\left(\frac{1}{p} - \frac{1}{2}\right)}^{P} (I_T)} \le R \right\},\newline d(u,v) = \sup_{\delta \in D} ||A_{\delta}(u-v)||_{X_{q,2n\left(\frac{1}{p} - \frac{1}{2}\right)}^{P} (I_T)}.
$$

We show the map $\Phi: u \mapsto \Phi u$, $\Phi u = U\phi - i\lambda S[|u|^2u]$, is a contraction mapping in $(B_T^D(R), d)$. We have

$$
A_{\delta}\Phi u = U e^{\delta \cdot x} \phi - i \lambda S \left[A_{\delta} u \overline{A_{-\delta} u} A_{\delta} u \right],
$$

and

$$
U^{-1} \mathcal{L} A_{\delta} \Phi u = \lambda U^{-1} \left(|x|^{-\gamma} * A_{\delta} u \overline{A_{\delta} u} \right) A_{\delta} u = \lambda U^{-1} \mathcal{T}_{\gamma} (A_{\delta} u, A_{\delta} u, A_{\delta} u).
$$

Therefore,

$$
\left\{\int_{I_T} \tau^{2n\left(\frac{1}{p}-\frac{1}{2}\right)q} \left\|\left(U^{-1}\mathcal{L}A_\delta\Phi u\right)(\tau)\right\|_{L^p}^q d\tau\right\}^{1/q} \leq C \prod_{j=1}^3 \left\{\left\|e^{(-1)^{j+1}\delta \cdot x}\phi\right\|_{L^p} + \int_{I_T} \left\|\left(U^{-1}\mathcal{L}A_{(-1)^{j+1}\delta} u\right)(\tau)\right\|_{L^p} d\tau\right\}
$$

and

$$
\int_{I_T} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1} \delta} u \right) (\tau) \right\|_{L^p} d\tau
$$
\n
$$
= \int_{I_T} \tau^{-2n \left(\frac{1}{p} - \frac{1}{2} \right)} \tau^{2n \left(\frac{1}{p} - \frac{1}{2} \right)} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1} \delta} u \right) (\tau) \right\|_{L^p} d\tau
$$
\n
$$
\leq \left\{ \int_{I_T} \tau^{-2n \left(\frac{1}{p} - \frac{1}{2} \right) q'} d\tau \right\}^{1/q'} \left\{ \int_{I_T} \tau^{2n \left(\frac{1}{p} - \frac{1}{2} \right) q} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1} \delta} u \right) (\tau) \right\|_{L^p}^q d\tau \right\}^{1/q}
$$

B Birkhäuser

$$
= T^{\frac{(2+n-y)p-2n}{(2-n-y)p+2n}\frac{1}{q'}} \left\{ \int_{I_T} \tau^{2n\left(\frac{1}{p}-\frac{1}{2}\right)q} \left\| \left(U^{-1} \mathcal{L} A_{(-1)^{j+1}\delta} u \right) (\tau) \right\|_{L^p}^q d\tau \right\}^{1/q}.
$$

Also we have the difference term

$$
U^{-1} \mathcal{L}(\Phi u - \Phi v)
$$

= $\lambda U^{-1} \left[T_{\gamma} (A_{\delta}(u - v), A_{-\delta}u, A_{\delta}u) + T_{\gamma} (A_{\delta}v, A_{-\delta}v, A_{\delta}(u - v)) + T_{\gamma} (A_{\delta}v, A_{-\delta}(u - v), A_{\delta}u) \right].$

Therefore,

$$
\sup_{\delta \in D} \|A_{\delta} \Phi u\|_{X^{p}_{p',2n\left(\frac{1}{p}-\frac{1}{2}\right)}(I_{T})} \leq C \left(\eta + T^{\frac{(2+n-y)p-2n}{(2-n-y)p+2n\frac{1}{q'}}R}\right)^{3},
$$

$$
d(\Phi u, \Phi v) \leq C T^{\frac{(2+n-y)p-2n}{(2-n-y)p+2n\frac{1}{q'}}}\left(\eta + T^{\frac{(2+n-y)p-2n}{(2-n-y)p+2n\frac{1}{q'}}R}\right)^{2} d(u,v)
$$

and Φ is a contraction mapping with $R > 0$ and $T > 0$ satisfying

$$
\begin{cases} T^{\frac{(2+n-\gamma)p-2n}{(2-n-\gamma)p+2n}\frac{1}{q'}} < \min\left(\frac{1}{2^{2/3}C\eta^2}, \frac{2^{1/3}-1}{2C\eta^2}\right), \\ R = 2C\eta^3. \end{cases}
$$

Acknowledgements The authors would like to thank the anonymous referees for their helpful comments and suggestions.

References

- 1. Bergh, J., Löfström, J.: Interpolation Spaces an Introduction. Springer, Berlin (1976)
- 2. Carles, R., Mouzaoi, L.: On the Cauchy problem for the Hartree type equation in the Wiener algebra. Proc. Am. Math. Soc. **142**(7), 2469–2482 (2014)
- 3. Cazenave, T.: Semilinear Schrödinger equations. In: Courant Lecture Notes in Math., vol. 10. American Mathematical Society (2003)
- 4. Cazenave, T., Weissler, F.B.: Some Remarks on the Schrödinger Equation in the Critical Case. Lecture Notes in Mathematics, vol. 1394, pp. 18–29. Springer, Berlin (1989)
- 5. de Bouard, A.: Analytic solution to non elliptic non linear Schrödinger equations. J. Differ. Equ. **104**, 196–213 (1993)
- 6. Ginibre, J., Velo, G.: On a class of nonlinear Schrodinger equations. I: The Cauchy problem. J. Funct. Anal. **32**, 1–32 (1979)
- 7. Grünrock, A.: Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int. Math. Res. Not. **41**, 2525–2558 (2005)
- 8. Hayashi, N., Kato, K.: Analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations. Commun. Math. Phys. **184**, 273–300 (1997)
- 9. Hayashi, N., Saitoh, S.: Analyticity and smoothing effect for the Schrödinger equation. Ann. Inst. Henri Poincaré, Phys. Théor. **52**, 163–173 (1990)
- 10. Hayashi, N., Saitoh, S.: Analyticity and global existence of small solutions to some nonlinear Schrödinger equations. Commun. Math. Phys. **129**, 27–41 (1990)
- 11. Hayashi, N., Ozawa, T.: On the derivative nonlinear Schrödinger equation. Physica D **55**, 14–36 (1992)
- 12. Hoshino, G., Hyakuna, R.: Trilinear L^p estimates with applications to the Cauchy problem for the Hartree-type equation (submitted)
- 13. Hoshino, G., Ozawa, T.: Analytic smoothing effect for a system of nonlinear Schrödinger equations. Differ. Equ. Appl. **5**, 395–408 (2013)
- 14. Hoshino, G., Ozawa, T.: Analytic smoothing effect for nonlinear Schrödinger equation in two space dimensions. Osaka J. Math. **51**, 609–618 (2014)
- 15. Hoshino, G., Ozawa, T.: Analytic smoothing effect form nonlinear Schrödinger equations with quintic nonlinearity. J. Math. Anal. Appl. **419**, 285–297 (2014)
- 16. Hyakuna, R.: Multilinear estimates with applications to the nonlinear Schrödinger and Hartree equation in \widehat{L}^p -spaces (preprint)
Hyglauna **P** Tanaka 7
- 17. Hyakuna, R., Tanaka, T., Tsutsumi, M.: On the global well-posedness for the nonlinear Schrödinger equations with large initial data of infinite *L*² norm. Nonlinear Anal. **74**, 1304–1319 (2011)
- 18. Hyakuna, R., Tsutsumi, M.: On the global wellposedness for the nonlinear Schrödinger equations with L^p -large initial data. Nonlinear Differ. Equ. Appl. **18**, 309–327 (2011)
- 19. Hyakuna, R., Tsutsumi, M.: On existence of global solutions of Schrödinger equations with subcritical nonlinearity for *L ^p*-initial data. Proc. Am. Math. Soc. **140**, 3905–3920 (2012)
- 20. Kato, K., Ogawa, T.: Analytic smoothing effect and single point singularity for the nonlinear Schrödinger equations. J. Korean Math. Soc. **37**, 1071–1084 (2000)
- 21. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Phys. Théor. **46**, 113–129 (1987)
- 22. Kato, T., Masuda, K.: Nonlinear evolution equations and analyticity. I. Ann. Inst. H. Poincaré Anal. Non Linéaire **3**, 455–467 (1986)
- 23. Nakamitsu, K.: Analytic finite energy solutions of the nonlinear Schrödinger equation. Commun. Math. Phys. **260**, 117–130 (2005)
- 24. Ozawa, T., Yamauchi, K.: Analytic smoothing effect for global solutions to nonlinear Schrödinger equation. J. Math. Anal. Appl. **364**, 492–497 (2010)
- 25. Sasaki, H.: Small analytic solutions to the Hartree equation. J. Funct. Anal. **270**, 1064–1090 (2016)
- 26. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)
- 27. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Appl. Math. Sci., vol. 139. Springer (1999)
- 28. Tsutsumi, Y.: *L*2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvac. **30**, 115–125 (1987)
- 29. Yajima, K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. **110**, 415–426 (1987)
- 30. Zhang, H.: Local well-posedness for a system of quadratic nonlinear Schrödinger equations in one or two dimensions. Math. Methods Appl. Sci. **39**, 4257–4267 (2016)
- 31. Zhou, Y.: Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space *Ws*,*^p* for *p*<2, Trans. Am. Math. Soc. **362**, 4683–4694 (2010)