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Abstract In this studywe consider the Cauchy problem for the nonlinear Schrödinger
equations with data which belong to L p, 1 < p < 2. In particular, we discuss
analytic smoothing effect with data which satisfy exponentially decaying condition
at spatial infinity in L p, 1 < p < 2. We construct solutions in the function space of
analytic vectors for the Galilei generator and the analytic Hardy space with the phase
modulation operator based on L p.

Keywords Analytic smoothing effect ·Analytic Hardy space ·Nonlinear Schrödinger
equations

Mathematics Subject Classification 35Q55

1 Introduction

We consider the local Cauchy problem for the nonlinear Schrödinger equations in
setting of the Lebesgue space L p, 1 < p < 2:

Communicated by Luis Vega.

B Gaku Hoshino
g.hoshino@cr.math.sci.osaka-u.ac.jp

Ryosuke Hyakuna
107r107r@gmail.com

1 Waseda University, Shinjuku, Tokyo 169-8555, Japan

2 Present Address: Osaka University, Toyonaka, Osaka 560-0043, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-017-9562-6&domain=pdf


1662 J Fourier Anal Appl (2018) 24:1661–1680

{
i∂t u + 1

2�u = f (u), (t, x) ∈ IT × R
n,

u(0) = φ ∈ L p (1.1)

where IT = [0, T ], T > 0, i = √−1, u : IT × R
n → C, ∂t = ∂/∂t, � =∑n

j=1 ∂2j /∂x
2
j , and n ≥ 1. The nonlinearity f satisfies the gauge condition

eiθ f (u) = f (eiθu), θ ∈ R.

To be specific, we assume the following two types of nonlinearity in this study

f (u) = λ|u|2u, (1.2)

f (u) = λ
(
|x |−γ ∗ |u|2

)
u (1.3)

where λ ∈ C, 0 < γ < n and ϕ ∗ ψ denotes the convolution

(ϕ ∗ ψ)(x) =
∫
Rn

ϕ(x − y)ψ(y)dy, x ∈ R
n .

There is a large literature on the Cauchy problem for the nonlinear Schrödinger equa-
tions in the L2-based framework (see for instance [3,4,6,21,27–29] and reference
therein).

Analyticity and analytic smoothing effect for solutions to nonlinear evolution equa-
tions have been studied in many papers ([5,8–11,13–15,20,22–24]).
In particular, analytic smoothing effect for the nonlinear Schrödinger equations and
the Hartree equations in the L2 setting with data which satisfy exponentially decaying
condition has been studied in [8–11,13–15,23–25] (see also reference therein).

On the other hand, as far as the authors know, there are no results on analytic
smoothing effect for the nonlinear Schrödinger equations in the L p-framework with
p �= 2. In the present paper we discuss the problem of analytic smoothing effect for
solutions to (1.1) in the L p-framework. We believe this problem is interesting since
exponentially decaying L p-functions for 1 < p < 2 do not necessarily belong to L2.

In fact, if 1 < p < 2, there exists

φ ∈ L p\L2

such that

sup
δ∈D

∥∥eδ·xφ
∥∥
L p < ∞.

See Proposition 1 below for details. Furthermore, it is sufficient to consider the case
1 < p < 2, since any exponentially decaying Lq -function with 2 < q < ∞ is an L2-
function. To be more precise, let D ⊂ R

n be a domain with 0 ∈ D and 2 < q < ∞.

If φ ∈ Lq satisfying

sup
δ∈D

∥∥eδ·xφ
∥∥
Lq < ∞,
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then

sup
δ∈D′

∥∥eδ·xφ
∥∥
L1 ≤ C sup

δ∈D
∥∥eδ·xφ

∥∥
Lq

for D′ � D (see Appendix of [15] and Chapter III of [26]). We put

L̂q =
{
φ ∈ S ′; F[φ] ∈ Lq ′}

.

If φ ∈ L̂q satisfying

sup
δ∈D

∥∥eδ·xφ
∥∥
L̂q < ∞,

then by the boundedness of the Fourier transform, we have

sup
δ∈D

∥∥eδ·xφ
∥∥
Lq ≤ C sup

δ∈D
∥∥eδ·xφ

∥∥
L̂q < ∞.

Hence if data satisfy exponentially decaying condition in Lq or L̂q , then data decay
exponentially in L1 ∩ Lq ⊂ L2.

Analytic smoothing effect for the cubic nonlinear Schrödinger equations in min-
imal regularity Sobolev setting based on L2 has been studied in [23,24]. Analytic
smoothing effect for the nonlinear Schrödinger equations with non-gauge invariant
quadratic nonlinearity in terms of the generator of dilations P = 2t∂t + x · ∇ in the
frameworkof negative exponent Sobolev space Hs , s > −3/4has been studied in [20].

In the previous papers [7,12,17–19,30,31], the authors have attempted to construct
solutions and proved the existence of solutions to the nonlinear Schrödinger equations
in the framework of L p and L̂ p.Especially, in the L p-setting, in [31] the author proved
the existence of local solutions to the 1D cubic nonlinear Schrödinger equations for
data in L p with 1 < p < 2. Later, in [12] we exploited his approach to show similar
local well-posedness results for the Hartree equation for data in the Bessel potential
spaces Hs,p under suitable conditions on s, p, n. In particular, for 0 < γ < min(2, n),
we obtained the local well-posedness for data in L p withmax( 2n

n−γ+2 ,
2n
n+γ

) < p < 2.
In this paper, based on these local existence results, we investigate analytic smoothing
effect for the 1D cubic NLS and the Hatree equation for data in L p when p is in the
range stated above. To be more precise, our main purpose of this study is to show
analytic smoothing effect for the Cauchy problem (1.1) in the framework of L p-based
spaces of functions as analytic vector for the Galilei generator J = ei

t
2�xe−i t2� and

the L p-based analyticHardy space characterizedby the operator Aδ = ei
t
2�eδ·xe−i t2�.

Finally, the condition p > 2n
n+γ

for the localwell-posedness for theHartree equation
may seem unusual, since it is stronger than the condition for the cubic NLS. However,
it is conjectured that this condition is optimal. See Remark 3 below.

We use the following notation throughout this paper. L p = L p(Rn), 1 ≤ p ≤ ∞
is the usual Lebesgue space. The Fourier transform F : ψ �→ ψ̂ is defined by
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ψ̂(ξ) = 1

(2π)n/2

∫
Rn

e−iξ ·xψ(x)dx, ξ ∈ R
n,

where x · y = ∑n
j=1 x j y j is the usual scaler product in R

n, and F−1 is the
inverse Fourier transform. The Schrödinger propagator is defined by U (t)ψ =
(Uψ) (t) = ei

t
2�ψ = F−1

[
e−i t2 |ξ |2F [ψ]

]
, t ∈ R, we often use the notation

U−1(t)ψ = (
U−1ψ

)
(t) = U (−t)ψ, t ∈ R. As well known, U and U−1 have

the following factorization formula (see Chapter 2 of [3]):

U (t)ψ = M(t)D(t)FM(t)ψ, U−1(t)ψ = M(−t)F−1D−1(t)M(−t)ψ

for t �= 0, where the phase modulation operator M(t) : ψ �→ ei
|x |2
2t ψ, dilations

D(t) : ψ �→ (i t)−n/2ψ
( ·
t

)
and its inverse D−1(t) = in D

(
t−1

)
, t �= 0. We put the

linear Schrödinger operator by

L = i∂t + 1

2
� = Ui∂tU

−1.

The Duhamel integral operator is defined by S [ f ] (t) = (∫ ·
0 U (· − s) f (τ )dτ

)
(t) =∫ t

0 U (t − τ) f (τ )dτ , t ∈ R. The Galilei generator is defined by

J (t) = U (t)xU (−t) = x + i t∇, t ∈ R.

We introduce an operator which gives analytic continuation (see also [11,15,23])

Aδ(t) = U (t)eδ·xU (−t), δ ∈ R
n

for t ∈ R. We see that Aδ has another representation such as

Aδ(t) = M(t)eitδ·∇M(−t), t �= 0,

where eitδ·∇ψ = F−1
[
e−tδ·ξ ψ̂

]
, δ ∈ R

n . The following commutation relation

[J,L] = U [x, i∂t ]U−1 = 0, [Aδ,L] = U [eδ·x , i∂t ]U−1 = 0

holds. The analytic Hardy space is defined by (see Chapter III of [26]):

Hp(�) =
{

ψ : analytic on R
n + i�; ‖ψ‖Hp(�) = sup

y∈�

‖ψ(· + iy)‖L p < ∞
}

with domain � ⊂ R
n .
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2 Function Spaces

We introduce the following basic function spaces

X (IT )

=
{
u : IT ×R

n → C; U−1u∈C(IT ; L p), ‖u‖X (IT ) =
∥∥∥U−1u

∥∥∥
L∞(IT ;L p)

<∞
}
,

X p
q,θ (IT )

=
{
u : IT ×R

n → C; ‖u‖X p
q,θ (IT ) =

{∫
IT

τ θq
∥∥∥(U−1Lu

)
(τ )

∥∥∥q
L p

dτ

}1/q
< ∞

}

for 1 ≤ p, q ≤ ∞, θ > 0 and we put the function spaces associated with X p
q,θ (IT )

by

X̃ p
q,θ (IT ) =

{
u ∈ X p

q,θ (IT ); u(0) ∈ L p, ‖u‖X̃ p
q,θ (IT )

= ‖u(0)‖L p + ‖u‖X p
q,θ (IT )

< ∞
}

.

The function spaces such as above are firstly introduced in [31].
We introduce the following weighted function spaces:

Ga
p =

⎧⎨
⎩φ ∈ L p; ‖φ‖Ga

p
=
∑
α≥0

aα

α!
∥∥xαφ

∥∥
L p < ∞

⎫⎬
⎭ ,

GD
p =

{
φ ∈ L p; ‖φ‖GD

p
= sup

δ∈D
∥∥eδ·xφ

∥∥
L p < ∞

}
.

The function space of analytic vectors for J is defined by

Ga
p,q,θ (IT ) =

⎧⎨
⎩u ∈ X̃ p

q,θ (IT ); ‖u‖Ga
p,q,θ

(IT ) = ‖u(0)‖Ga
p

+
∑
α≥0

aα

α!
∥∥Jαu

∥∥
X p
q,θ

(IT )
< ∞

⎫⎬
⎭ ,

for a ∈ (0,∞)n and the analytic Hardy space with respect to Aδ is defined by

GD
p,q,θ (IT ) =

{
u ∈ X̃ p

q,θ (IT ); ‖u‖GD
p,q,θ

(IT )
= ‖u(0)‖GD

p
+ sup

δ∈D
‖Aδu‖X p

q,θ
(IT )

< ∞
}

for domain D ⊂ R
n .

Our motivation of this study is based on the following proposition:

Proposition 1 Let 1 < p < 2 and bounded domain D ⊂ R
n . Then

GD
p \L2 �= ∅.
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Proof The following function belongs to GD
p \L2,

φ(x) =
{

|x |−n/(2−ε), |x | ≤ 1,

e−r |x |, |x | > 1

where 0 < ε < 2 − p and sufficiently large r > 0. ��
The analyticity of functions which belong to Ga

p,q,θ (IT ) or GD
p,q,θ (IT ) is shown

by the following proposition:

Proposition 2 Let 1 ≤ p < 2 and 1
q + 1

θ
> 1.

(1) Let u ∈ Ga
p,q,θ (IT ). Then

(
M−1u

)
(t) ∈ Hp′ (∏n

j=1(−a j t, a j t)
)
t �= 0, where

a ∈ (0,∞)n.
(2) Let u ∈ GD

p,q,θ (IT ). Then
(
M−1u

)
(t) ∈ Hp′

(t D) , t �= 0, where D ⊂ R
n is a

domain with 0 ∈ D.

Proof Because

X̃ p
q,θ (IT ) ⊂ X (IT )

with

‖u‖X (IT ) ≤ ‖u(0)‖L p + T
1−θ

(
1− 1

q

)
‖u‖X p

q,θ (IT )

≤ max

{
1, T

1−θ
(
1− 1

q

)}
‖u‖X̃ p

q,θ (IT ) ,

we see that

sup
δ∈∏n

j=1(−a j ,a j )

∥∥∥eδ·xU−1u
∥∥∥
L∞(IT ;L p)

≤
∑
α≥0

aα

α!
∥∥∥xαU−1u

∥∥∥
L∞(IT ;L p)

< ∞.

Hence, it is sufficient to show real analyticity of u ∈ G�
p,q,θ with� = ∏n

j=1(−a j , a j )

in the case (1) and with � = D in the case (2). We see that

∥∥eδ·xU (−t)u(t)
∥∥
L1 =

∥∥∥eδ·xF−1D−1(t)M(−t)u(t)
∥∥∥
L1

=
∥∥∥eδ·x D(t)F−1M(−t)u(t)

∥∥∥
L1

=
∥∥∥D(t)etδ·xF−1M(−t)u(t)

∥∥∥
L1

= |t |n/2
∥∥∥etδ·xF−1M(−t)u(t)

∥∥∥
L1

= |t |n/2
∥∥∥e−tδ·ξF

[
(M−1u)(t)

]∥∥∥
L1

< ∞
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for all t �= 0, δ ∈ �. Therefore, (M−1u)(t) is real analytic and has an analytic
continuation(

M−1Aδu
)

(t, x) = eitδ·∇M−1u(t, x)

= 1

(2π)n/2

∫
Rn

ei(x+i tδ)·ξF
[(

M−1u
)

(t)
]
(ξ)dξ

for all x + i tδ ∈ R
n + i t� (see Appendix of [15]). Also we have

sup
δ∈D

∥∥∥(M−1Aδu
)

(t)
∥∥∥
L p′ ≤ C |t |−n

(
1
2− 1

p′
)
sup
δ∈D

∥∥∥eδ·x (U−1u
)

(t)
∥∥∥
L p

< ∞

and

sup
δ∈∏n

j=1(−a j ,a j )

∥∥∥(M−1Aδu
)

(t)
∥∥∥
L p′ ≤

∑
α≥0

aα

α!
∥∥(Jαu

)
(t)
∥∥
L p′

≤ C |t |−n
(
1
2− 1

p′
)∑

α≥0

aα

α!
∥∥∥xα

(
U−1u

)
(t)
∥∥∥
L p

< ∞.

��
By the relation eδ·xU−1Uφ = eδ·xφ, we immediately have the following fact for

the free solutions:

Corollary 1 Let 1 ≤ p < 2.

(1) If φ ∈ Ga
p, then U (t)φ, t ∈ R\{0}, is real analytic and has an analytic continu-

ation to R
n + i t

∏n
j=1(−a j , a j ).

(2) If φ ∈ GD
p , then U (t)φ, t ∈ R\{0}, is real analytic and has an analytic continu-

ation to R
n + i t D.

3 Main Results

We put the interval IT = [0, T ].
Theorem 1 Let n = 1, 1 < p < 2 and a ∈ (0,∞). Then for any η > 0 there
exists T = T (η) > 0 such that; for any φ ∈ Ga

p, satisfying ‖φ‖Ga
p

≤ η then the

Cauchy problem (1.1)–(1.2) has a unique solution u ∈ Ga

p,p′,2
(
1
p − 1

2

)(IT ). Further-

more,
(
M−1u

)
(t) ∈ Hp′

((−at, at)), t ∈ IT \{0}.
Theorem 2 Let n = 1, 1 < p < 2. Let a domain D ⊂ R satisfying 0 ∈ D and
−D = D. Then for any η > 0 there exists T = T (η) > 0 such that; for any φ ∈ GD

p ,
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satisfying ‖φ‖GD
p

≤ η then the Cauchy problem (1.1)–(1.2) has a unique solution

u ∈ GD

p,p′,2
(
1
p − 1

2

)(IT ). Furthermore,
(
M−1u

)
(t) ∈ Hp′

(t D), t ∈ IT \{0}.

Theorem 3 Let n ≥ 1, 0 < γ < min (n, 2) , max
(

2n
n+γ

, 2n
n−γ+2

)
< p < 2 and

a ∈ (0,∞)n . Then for any η > 0 there exists T = T (η) > 0 such that; for any
φ ∈ Ga

p, satisfying ‖φ‖Ga
p

≤ η then the Cauchy problem (1.1)–(1.3) has a unique

solution u ∈ Ga

p,q,2n
(
1
p − 1

2

)(IT ), with q = 2p
(n+γ )p−2n . Furthermore,

(
M−1u

)
(t) ∈

Hp′ (∏n
j=1(−a j t, a j t)

)
, t ∈ IT \{0}.

Theorem 4 Let n ≥ 1, 0 < γ < min(n, 2) and max
(

2n
n+γ

, 2n
n−γ+2

)
< p < 2.

Let a domain D ⊂ R
n satisfying 0 ∈ D and −D = D. Then for any η > 0 there

exists T = T (η) > 0 such that; for any φ ∈ GD
p , satisfying ‖φ‖GD

p
≤ η then

the Cauchy problem (1.1)–(1.3) has a unique solution u ∈ GD

p,q,2n
(
1
p − 1

2

)(IT ), with

q = 2p
(n+γ )p−2n . Furthermore,

(
M−1u

)
(t) ∈ Hp′

(t D), t ∈ IT \{0}.
Remark 1 Ga

p ⊂ G�
p ⊂ Gb

p, with � = ∏n
j=1(−a j , a j ), and 0 < b j < a j , j =

1, 2, · · · , n (see Theorem 2 in [15]).

Remark 2 Let 1 ≤ p ≤ ∞. We see that

Ga
p ⊂ Gb

1, 0 < b j < a j , GD1
p ⊂ GD2

1 , D2 � D1,

Hp(D1) ⊂ H∞(D2), D2 � D1

where D1, D2 ⊂ R
n are domain (see Appendix of [15] and Chapter III of [26]).

Therefore, the Cauchy data φ ∈ G�
p , satisfy φ ∈ G�′

1 and solutions obtained in

Theorems 1–4,
(
M−1u

)
(t) ∈ Hp′

(t�), t �= 0, satisfy
(
M−1u

)
(t) ∈ H∞(t�′),

t �= 0, where �′ � � with � = ∏n
j=1(−a j , a j ) or � = D.

Remark 3 In Theorems 3 and 4, we need

p >
2n

n − γ + 2
and p >

2n

n + γ
.

The exponent 2n
n−γ+2 appearing in the first condition is called a scaling limit which

is well known and is considered as one candidate of the thresholds for the local well-
posedness of (1.1)–(1.3). Thus our local result can reach almost critical L p spaces if
n ≥ 2 and γ > 1. The exponent in the second condition, on the other hand, seems
unfamiliar and one may wonder if the local result still holds for p below this exponent.
However, it is conjectured that the Cauchy problem is ill posed for p < 2n

n+γ
, because

of the singularity at zero frequency. This is deduced from the recent works [2] and [16]
which study the well-posendess of (1.1)–(1.3) in L̂ p. For details, see the introduction
in [16]. Note that 2n

n+γ
→ 1 as γ → n and thus the limit coincides with the lower
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threshold of the local results for the cubic NLS (Theorems 1 and 2). Note also that
p = 2n

n+γ
is the exponent such that the trilinear operator

(u1, u2, u3) �→ F
[(|x |−γ ∗ (u1u2)

)
u3
]

is defined and is continuous from L p × L p × L p to L p.

4 Key Lemmas

We introduce the following two types of trilinear form T0 and Tγ by

T0(u1, u2, u3) = u1u2u3

and

Tγ (u1, u2, u3) = (|x |−γ ∗ u1u2
)
u3,

respectively. Then, we see that

U (−t)T0(u1, u2, u3)
= M(−t)F−1

ξ→x i
n D(t−1)(M(−t)u1M(−t)u2)M(−t)u3

= Ct−nM(−t)F−1
ξ→x (D(t−1)M(−t)u1D(t−1)M(−t)u2)D(t−1)M(−t)u3

= Ct−n
(
M(t)U (−t)u1 ∗

(
M(t)U (−t)u2(−·)

))
∗U (−t)u3

and

U (−t)Tγ (u1, u2, u3)

= M(−t)F−1
ξ→x i

n D(t−1)(|ξ |−γ ∗ M(−t)u1M(−t)u2)M(−t)u3

= C |t |−γM(−t)F−1
ξ→x (|ξ |−γ ∗ D(t−1)M(−t)u1D(t−1)M(−t)u2)

× D(t−1)M(−t)u3

= C |t |−γ
(
|x |−(n−γ )M(t)U (−t)u1 ∗

(
M(t)U (−t)u2(−·)

))
∗U (−t)u3,

for t �= 0.

Lemma 1 ([31]) Let n = 1. We have

∥∥∥(U−1T0(u1, u2, u3)
)

(t)
∥∥∥
L1

≤ C |t |−1
3∏
j=1

∥∥∥(U−1u j

)
(t)
∥∥∥
L1

,
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for t �= 0,

sup
τ∈IT

(
τ

∥∥∥(U−1T0 (u1, u2, u3)
)

(τ )

∥∥∥
L1

)

≤ C
3∏
j=1

{∥∥u j (0)
∥∥
L1 +

∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L1

dτ

}
,

and {∫
IT

∥∥∥(U−1T0(u1, u2, u3)
)

(τ )

∥∥∥2
L2

dτ

}1/2

≤ C
3∏
j=1

{∥∥u j (0)
∥∥
L2 +

∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L2

dτ

}
.

Lemma 2 Let n ≥ 1 and 0 < γ < n. We have

∥∥∥(U−1Tγ (u1, u2, u3)
)

(t)
∥∥∥
L

2n
n+γ

≤ C |t |−γ
3∏
j=1

∥∥∥(U−1u j

)
(t)
∥∥∥
L

2n
n+γ

for all t �= 0,

sup
τ∈IT

(
τγ
∥∥∥(U−1Tγ (u1, u2, u3)

)
(τ )

∥∥∥
L

2n
n+γ

)

≤ C
3∏
j=1

(∥∥u j (0)
∥∥
L

2n
n+γ

+
∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L

2n
n+γ

dτ

)

and if 0 < γ < min(n, 2), then{∫
IT

∥∥∥(U−1Tγ (u1, u2, u3)
)

(τ )

∥∥∥2/γ
L2

}γ /2

≤ C
3∏
j=1

{∥∥u j (0)
∥∥
L2 +

∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L2

dτ

}
.

Proof

|t |γ ∥∥U (−t)Tγ (u1, u2, u3)
∥∥
L p0

= C
∥∥∥|x |−(n−γ )M(t)U (−t)u1 ∗

(
M(t)U (−t)u2(−·)

)
∗U (−t)u3

∥∥∥
L p0

≤ C
∥∥∥|x |−(n−γ )M(t)U (−t)u1 ∗

(
M(t)U (−t)u2(−·)

)∥∥∥
Lρ1

‖U (−t)u3‖L p3

= C

∥∥∥∥F−1
[
|ξ |−γ ∗ ̂M(t)U (−t)u1

̂
(
M(t)U (−t)u2(−·)

)]∥∥∥∥
Lρ1

‖U (−t)u3‖L p3
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≤ C

∥∥∥∥|ξ |−γ ∗ ̂M(t)U (−t)u1
̂

(
M(t)U (−t)u2(−·)

)∥∥∥∥
Lρ′

1

‖U (−t)u3‖L p3

for 1
p0

= 1
ρ1

+ 1
p3

− 1, with 2 ≤ ρ1 ≤ ∞. By the Hardy–Littlewood–Sobolev

inequality, with 1
ρ′
1

= 1
ρ2

+ γ
n − 1, 2 ≤ ρ2 ≤ ∞ and n − γ < n

ρ2
, we have

|t |γ ∥∥U (−t)Tγ (u1, u2, u3)
∥∥
L p0

≤ C

∥∥∥∥|ξ |−γ ∗ ̂M(t)U (−t)u1
̂

(
M(t)U (−t)u2(−·)

)∥∥∥∥
Lρ′

1

‖U (−t)u3‖L p3

≤ C
∥∥∥F [

M(t)U (−t)u1 ∗
(
M(t)U (−t)u2

)
(−·)

]∥∥∥
Lρ2

‖U (−t)u3‖L p3

≤ C
∥∥∥M(t)U (−t)u1 ∗

(
M(t)U (−t)u2

)
(−·)

∥∥∥
Lρ′

2
‖U (−t)u3‖L p3

≤ C
3∏
j=1

∥∥U (−t)u j
∥∥
L p j

for 1
ρ′
2

= 1
p1

+ 1
p2

− 1 and 1
p0

= ∑3
j=1

1
p j

+ γ
n − 1. In particular, p j = 2n

n+γ
,

j = 0, 1, 2, 3, satisfies these conditions. By

u j = Uu j (0) − i S
[
Lu j

]
, U−1u j = u j (0) − iU−1S

[
Lu j

]
,

we obtain the first and second inequalities. Finally, by the Hardy–Littlewood–Sobolev
inequality with γ

3n = 3n−2γ
3n + γ

n −1 and the Hölder inequality with 1
2 = γ

3n + 3n−2γ
6n ,

we have

{∫
IT

∥∥Tγ (u1, u2, u3)
∥∥2/γ
L2

}γ /2

≤ C
3∏
j=1

∥∥u j
∥∥
L6/γ

(
IT ;L

6n
3n−2γ

) ,

where
(
6
γ
, 6n
3n−2γ

)
is an admissible pair and by the Strichartz estimate

{∫
IT

∥∥Tγ (u1, u2, u3)(τ )
∥∥2/γ
L2 dτ

}γ /2

≤ C
3∏
j=1

{∥∥u j (0)
∥∥
L2 +

∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L2

dτ

}
.

This completes the proof. ��

We obtain the following two inequalities by the multi-linear interpolation between
τ−αL∞ (

τ−2dτ, IT ; L1
)
and τ−αLq(τ−2dτ, IT ; L2), for α = 1, γ respectively (see
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Chapter 4 of [1] and [31]), where

‖u‖ταLr (τ−2dτ,IT ;L p) =
{∫

IT
ταr ‖u(τ, ·)‖rL p τ−2dτ

}1/r
, 1 ≤ r < ∞, 1 ≤ p ≤ ∞

and

‖u‖ταL∞(τ−2dτ,IT ;L p) = sup
τ∈IT

τα ‖u(τ, ·)‖L p , 1 ≤ p ≤ ∞.

Lemma 3 ([12,31])We have{∫
IT

τ
2
(
1
p − 1

2

)
q
∥∥∥(U−1T0(u1, u2, u3)

)
(τ )

∥∥∥q
L p

dτ

}1/q

≤ C
3∏
j=1

{∥∥u j (0)
∥∥
L p +

∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L p

dτ

}
,

for n = 1, 1 < p < 2, q = p′ and{∫
IT

τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1Tγ (u1, u2, u3)

)
(τ )

∥∥∥q
L p

dτ

}1/q

≤ C
3∏
j=1

{∥∥u j (0)
∥∥
L p +

∫
IT

∥∥∥(U−1Lu j

)
(τ )

∥∥∥
L p

dτ

}
,

for 0 < γ < min(n, 2), 2n
n+γ

< p < 2, q = 2p
(n+γ )p−2n .

Lemma 4

(1) Let 1 ≤ p < 2, 1 ≤ q ≤ ∞, θ > 0 and let u ∈ GD
p,q,θ (IT ). Then

Aδ(|u|2u) = AδuA−δuAδu

for all δ ∈ D.

(2) Let 2n
n+γ

≤ p < 2, 1 ≤ q ≤ ∞, θ > 0 and let u ∈ GD
p,q,θ (IT ). Then

Aδ

(
(|x |−γ ∗ |u|2)u

)
= (|x |−γ ∗ (AδuA−δu)

)
Aδu

for all δ ∈ D.

Proof Let t �= 0. It is sufficient to show

eδ·xU (−t)
[
(|u|2u)(t)

]
∈ L1
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for all δ ∈ D, by Proposition 1 above. Indeed, we have

eδ·xU (−t)
[
(|u|2u)(t)

]
= Ct−n

(
eδ·xM(t)U (−t)u(t) ∗

(
eδ·xM(t)U (−t)u(t)(−·)

))
∗ eδ·xU (−t)u(t) ∈ L1

for all δ ∈ D, because eδ·xU (−t)u(t) ∈ L1∩L p for all δ ∈ D.Hence (M−1|u|2u)(t)
is analytic on R

n + i t D and its analytic continuation is represented as

(M−1|u|2u)(t, x + i tδ) = eitδ·∇(M−1|u|2u)(t, x), x + i tδ ∈ R
n + i t D,

and

Aδ(|u|2u)(t) = M(t)eitδ·∇M(−t)(|u|2u)(t) = (Aδu) (t)(A−δu) (t) (Aδu) (t)

for all δ ∈ D. Similarly, we have

eδ·xU (−t)[((|x |−γ ∗ |u|2)u)(t)]
= C |t |−γ

(
|x |−(n−γ )eδ·xM(t)U (−t)u(t) ∗

(
eδ·xM(t)U (−t)u(t)(−·)

))
∗ eδ·xU (−t)u(t) ∈ L

2n
n+γ

for all δ ∈ D by Lemma 2 above and hence

eδ·xU (−t)[((|x |−γ ∗ |u|2)u)(t)]
= C |t |−γ

(
|x |−(n−γ )eδ·xM(t)U (−t)u(t) ∗

(
eδ·xM(t)U (−t)u(t)(−·)

))
∗ eδ·xU (−t)u(t) ∈ L1

for all δ ∈ D. ��

5 Proof of Theorem 1

We define a complete metric space
(
Ba
T (R), d

)
by

Ba
T (R) =

⎧⎨
⎩u ∈ Ga

p,p′,2
(
1
p − 1

2

)(IT ); u(0) = φ,
∑
α≥0

aα

α!
∥∥Jαu

∥∥
X p

p′,2
(
1
p − 1

2

)(IT )
≤ R

⎫⎬
⎭,

d(u, v) =
∑
α≥0

aα

α!
∥∥Jα(u − v)

∥∥
X p

p′,2
(
1
p − 1

2

)(IT )
.
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We show the map Φ : u �→ Φu, Φu = Uφ − iλS[|u|2u], is a contraction mapping
in (Ba

T (R), d). We have

JαΦu = Uxαφ − iλ
∑

β+γ+δ=α

α!(−1)|γ |

β!γ !δ! S
[
Jβu J γ u J δu

]

and

U−1LJαΦu = λU−1
∑

α1+α2+α3=α

α!(−1)|α2|

α1!α2!α3! J
α1u Jα2u Jα3u

= λ
∑

α1+α2+α3=α

α!(−1)|α2|

α1!α2!α3! U
−1T0

(
Jα1u, Jα2u, Jα3u

)
.

Therefore,

{∫
IT

τ
2
(
1
p − 1

2

)
p′ ∥∥∥(U−1LJαΦu

)
(τ )

∥∥∥p′

L p
dτ

}1/p′

≤ C
∑

α1+α2+α3=α

α!
α1!α2!α3!

3∏
j=1

{∥∥xα j φ
∥∥
L p +

∫
IT

∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

}

= C
∑

α1+α2+α3=α

α!
3∏
j=1

{
1

α j !
∥∥xα j φ

∥∥
L p + 1

α j !
∫
IT

∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

}

and ∫
IT

∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

=
∫
IT

τ
−2
(
1
p − 1

2

)
τ
2
(
1
p − 1

2

) ∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

≤
{∫

IT
τ p−2dτ

}1/p {∫
IT

τ
2
(
1
p − 1

2

)
p′ ∥∥∥(U−1LJα j u

)
(τ )

∥∥∥p′

L p
dτ

}1/p′

= T
1
p′
{∫

IT
τ
2
(
1
p − 1

2

)
p′ ∥∥∥(U−1LJα j u

)
(τ )

∥∥∥p′

L p
dτ

}1/p′

.

Also we have the difference term

U−1L
(
Φ Jαu − Φ Jαv

)
= λ

∑
α1+α2+α3=α

α!(−1)|α2|

α1!α2!α3! U
−1
[
T0
(
Jα1u, Jα2u, Jα3(u − v)

)

+ T0
(
Jα1v, Jα2v, Jα3(u − v)

)+ T0
(
Jα1u, Jα2(u − v), Jα3v

) ]
.
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Therefore,

∑
α≥0

aα

α!
∥∥JαΦu

∥∥
X p

p′,2
(
1
p − 1

2

)(IT )
≤ C

(
η + T

1
p′ R

)3

,

d(Φu, Φv) ≤ CT
1
p′
(

η + T
1
p′ R

)2

d(u, v)

and Φ is a contraction mapping with R > 0 and T > 0 satisfying

⎧⎨
⎩T

1
p′ < min

(
1

22/3Cη2
, 21/3−1

2Cη2

)
,

R = 2Cη3.

6 Proof of Theorem 2

We define a complete metric space
(
BD
T (R), d

)
by

BD
T (R) =

{
u ∈ GD

p,p′,2
(
1
p − 1

2

)(IT ); u(0) = φ, sup
δ∈D

‖Aδu‖X p

p′,2
(
1
p − 1

2

)(IT ) ≤ R

}
,

d(u, v) = sup
δ∈D

‖Aδ(u − v)‖X p

p′,2
(
1
p − 1

2

)(IT ) .

We show the mapΦ : u �→ Φu, Φu = Uφ − iλS[|u|2u], is a contraction mapping
in (BD

T (R), d). We have

AδΦu = Ueδ·xφ − iλS
[
AδuA−δuAδu

]
,

and

U−1LAδΦu = λU−1AδuA−δuAδu = λU−1T0(Aδu, A−δu, Aδu).

Therefore,

{∫
IT

τ
2
(
1
p − 1

2

)
p′ ∥∥∥(U−1LAδΦu

)
(τ )

∥∥∥q
L p

dτ

}1/q

≤ C
3∏
j=1

{∥∥∥e(−1) j+1δ·xφ
∥∥∥
L p

+
∫
IT

∥∥∥(U−1LA(−1) j+1δu
)

(τ )

∥∥∥
L p

dτ

}

and∫
IT

∥∥∥(U−1LA(−1) j+1δu
)

(τ )

∥∥∥
L p

dτ
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=
∫
IT

τ
−2
(
1
p − 1

2

)
τ
2
(
1
p − 1

2

) ∥∥∥(U−1LA(−1) j+1δu
)

(τ )

∥∥∥
L p

dτ

≤
{∫

IT
τ p−2dτ

}1/p {∫
IT

τ
2
(
1
p − 1

2

)
p′ ∥∥∥(U−1LA(−1) j+1δu

)
(τ )

∥∥∥p′

L p
dτ

}1/p′

= T
1
p′
{∫

IT
τ
2
(
1
p − 1

2

)
p′ ∥∥∥(U−1LA(−1) j+1δu

)
(τ )

∥∥∥p′

L p
dτ

}1/p′

.

Also we have the difference term

U−1L(Φu − Φv)

= λU−1 [T0 (Aδu, A−δu, Aδ(u − v)) + T0 (Aδv, A−δv, Aδ(u − v))

+T0 (Aδu, A−δ(u − v), Aδv)
]
.

Therefore,

sup
δ∈D

‖AδΦu‖X p

p′,2
(
1
p − 1

2

)(IT ) ≤ C

(
η + T

1
p′ R

)3

,

d(Φu, Φv) ≤ CT
1
p′
(

η + T
1
p′ R

)2

d(u, v)

and Φ is a contraction mapping with R > 0 and T > 0 satisfying⎧⎨
⎩T

1
p′ < min

(
1

22/3Cη2
, 21/3−1

2Cη2

)
,

R = 2Cη3.

7 Proof of Theorem 3

We define a complete metric space
(
Ba
T (R), d

)
by

Ba
T (R) =

⎧⎨
⎩u ∈ Ga

p,q,2n
(
1
p − 1

2

)(IT ); u(0) = φ,
∑
α≥0

aα

α!
∥∥Jαu

∥∥
X p

q,2n
(
1
p − 1

2

)(IT )
≤ R

⎫⎬
⎭ ,

d(u, v) =
∑
α≥0

aα

α!
∥∥Jα(u − v)

∥∥
X p

q,2n
(
1
p − 1

2

)(IT )
.

We show the mapΦ : u �→ Φu, Φu = Uφ − iλS[|u|2u], is a contraction mapping
in (Ba

T (R), d). We have

JαΦu = Uxαφ − iλ
∑

β+γ+δ=α

α!(−1)|γ |

β!γ !δ! S
[
Jβu J γ u J δu

]
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and

U−1LJαΦu = λU−1
∑

α1+α2+α3=α

α!(−1)|α2|

α1!α2!α3!
(|x |−γ ∗ Jα1u Jα2u

)
Jα3u

= λ
∑

α1+α2+α3=α

α!(−1)|α2|

α1!α2!α3! U
−1Tγ

(
Jα1u, Jα2u, Jα3u

)
.

Therefore,

{∫
IT

τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1LJαΦu

)
(τ )

∥∥∥q
L p

dτ

}1/q

≤ C
∑

α1+α2+α3=α

α!
α1!α2!α3!

3∏
j=1

{∥∥xα j φ
∥∥
L p +

∫
IT

∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

}

= C
∑

α1+α2+α3=α

α!
3∏
j=1

{
1

α j !
∥∥xα j φ

∥∥
L p + 1

α j !
∫
IT

∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

}

and

∫
IT

∥∥∥(U−1LJα j u
)

(τ )

∥∥∥
L p

dτ

=
∫
IT

τ
−2n

(
1
p − 1

2

)
τ
2n
(
1
p − 1

2

) ∥∥∥(∂τU
−1 Jα j u

)
(τ )

∥∥∥
L p

dτ

≤
{∫

IT
τ

−2n
(
1
p − 1

2

)
q ′
dτ

}1/q ′ {∫
IT

τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1LJα j u

)
(τ )

∥∥∥q
L p

dτ

}1/q

= T
(2+n−γ )p−2n
(2−n−γ )p+2n

{∫
IT

τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1LJα j u

)
(τ )

∥∥∥q
L p

dτ

}1/q
.

Also we have the difference term

U−1L
(
Φ Jαu − Φ Jαv

)
= λ

∑
α1+α2+α3=α

α!(−1)|α2|

α1!α2!α3! U
−1
[
Tγ

(
Jα1(u − v), Jα2u, Jα3u

)

+ Tγ

(
Jα1v, Jα2v, Jα3(u − v)

)+ Tγ

(
Jα1v, Jα2(u − v), Jα3u

) ]
.

Therefore,

∑
α≥0

aα

α!
∥∥JαΦu

∥∥
X p

q,2n
(
1
p − 1

2

)(IT )
≤ C

(
η + T

(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′ R

)3

,
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d(Φu, Φv)d ≤ CT
(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′
(

η + T
(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′ R

)2

d(u, v)

and Φ is a contraction mapping with R > 0 and T > 0 satisfying

⎧⎨
⎩T

(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′ < min

(
1

22/3Cη2
, 21/3−1

2Cη2

)
,

R = 2Cη3.

8 Proof of Theorem 4

We define a complete metric space
(
BD
T (R), d

)
by

BD
T (R) =

{
u ∈ GD

p,q,2n
(
1
p − 1

2

)(IT ); u(0) = φ, sup
δ∈D

‖Aδu‖X p

q,2n
(
1
p − 1

2

)(IT ) ≤ R

}
,

d(u, v) = sup
δ∈D

‖Aδ(u − v)‖X p

q,2n
(
1
p − 1

2

)(IT ) .

We show the map Φ : u �→ Φu, Φu = Uφ − iλS[|u|2u], is a contraction mapping
in (BD

T (R), d). We have

AδΦu = Ueδ·xφ − iλS
[
AδuA−δuAδu

]
,

and

U−1LAδΦu = λU−1 (|x |−γ ∗ AδuA−δu
)
Aδu = λU−1Tγ (Aδu, A−δu, Aδu).

Therefore,

{∫
IT

τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1LAδΦu

)
(τ )

∥∥∥q
L p

dτ

}1/q

≤ C
3∏
j=1

{∥∥∥e(−1) j+1δ·xφ
∥∥∥
L p

+
∫
IT

∥∥∥(U−1LA(−1) j+1δu
)

(τ )

∥∥∥
L p

dτ

}

and∫
IT

∥∥∥(U−1LA(−1) j+1δu
)

(τ )

∥∥∥
L p

dτ

=
∫
IT

τ
−2n

(
1
p − 1

2

)
τ
2n
(
1
p − 1

2

) ∥∥∥(U−1LA(−1) j+1δu
)

(τ )

∥∥∥
L p

dτ

≤
{∫

IT
τ

−2n
(
1
p − 1

2

)
q ′
dτ

}1/q ′ {∫
IT

τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1LA(−1) j+1δu

)
(τ )

∥∥∥q
L p

dτ

}1/q
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= T
(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′
{∫

IT
τ
2n
(
1
p − 1

2

)
q
∥∥∥(U−1LA(−1) j+1δu

)
(τ )

∥∥∥q
L p

dτ

}1/q
.

Also we have the difference term

U−1L(Φu − Φv)

= λU−1 [Tγ (Aδ(u − v), A−δu, Aδu) + Tγ (Aδv, A−δv, Aδ(u − v))

+Tγ (Aδv, A−δ(u − v), Aδu)
]
.

Therefore,

sup
δ∈D

‖AδΦu‖X p

p′,2n
(
1
p − 1

2

)(IT ) ≤ C

(
η + T

(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′ R

)3

,

d(Φu, Φv) ≤ CT
(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′
(

η + T
(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′ R

)2

d(u, v)

and Φ is a contraction mapping with R > 0 and T > 0 satisfying⎧⎨
⎩T

(2+n−γ )p−2n
(2−n−γ )p+2n

1
q′ < min

(
1

22/3Cη2
, 21/3−1

2Cη2

)
,

R = 2Cη3.
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