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1 Introduction

In this paper we take up the problem of the efficient computation of a Fourier transform
on a finite-dimensional complex semisimple algebra. Thework herein is born of earlier
generalizations framing the classical “fast Fourier transform” (FFT) within the context
of a finite group algebra. In this setting, an FFT is efficient computation of a change
of basis in the group algebra, from a basis of point masses on group elements to a
basis of irreducible matrix elements [4,8,34]. The important case of cyclic groups
finds its origins in work of Gauss (see [9,44]) and the family of efficient algorithms
for computing the Fourier transform on a finite abelian group (usually known as the
discrete Fourier transform or DFT), is collectively referred to as “the FFT”. The FFT
has been and continues to be the engine of the world of digital signal processing (see
e.g., the classic texts [6,15] as well as references in [44]). Applications of nonabelian
Fourier transforms (i.e., when the group is nonabelian) can be found in a range of
domains including voting theory, filter design, coding theory, and domain reduction
for solving PDEs [12,24,37,43,49].

As a linear change of basis in the complex group algebra C[G] (for a finite group
G), a Fourier transform algorithm has an obvious upper bound of |G|2 complex
operations.1 Motivated mainly by the many important applications, there is now a
large and important body of work—whose origin is usually traced to the fundamen-
tal paper of Cooley and Tukey [10]—showing that for the case of abelian groups, a
master algorithm for computing the Fourier transform has computational complexity
O(|G| log |G|) [11]. Careful counting and fine-tuning produce an explicit upper bound
of 8|G| log2 |G| [2].

The abelian result has made an O(|G| logc |G|) (for any constant c, independent
of G) upper bound the standard benchmark for high efficiency. While conjectured
for an arbitrary finite group, to date this has been achieved only for several explicit
families in addition to abelian groups. These include the symmetric groups and their
wreath products [30], abelian extensions [42], and supersolvable groups [1]. However,
recent progress has produced very efficient—if not to the gold standard—algorithms
for the general linear groups over finite fields along with the Weyl groups of type
Bn and Dn [32,35]. The groups SL2(Fp) are a particularly interesting and thorny
special case, as an O(|SL2(Fp)| log |SL2(Fp)|) algorithm could produce an effective
fast matrix multiply algorithm [25,33]. The dependence of efficiency on the type of
group is implicit in the definition of the complexity of a group, denoted C(G) for a
finite group G, and defined as the least upper bound over all choices of complete sets
of inequivalent irreducible representations for computing the Fourier transform on G.

A complex finite group algebra is a specific example of a finite-dimensional
semisimple algebra. As per the group algebra case, the Fourier transform of a complex
semisimple algebra A is a change of basis from some preferred basis to a basis given
by irreducible matrix elements. The complexity of A, C(A) is the least upper bound
of an algorithm effecting such a map and thus bounded above a priori by dim(A)2.

1 We use here a standard definition of operation count as a complex addition and multiplication. In various
places we may break out the number of additions and multiplications separately, but this will have no effect
on the “big O” kinds of results we present here.
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The work presented in this paper, aiming to reduce this naive upper bound, is both
motivated as a next “natural” step in algebraic FFT work (see also extensions to the
semigroup case [27–29]) as well as by a particular application: the study of a certain
random walk on the Birman–Murakami–Wenzl (BMW) algebra [48]. The usefulness
of Fourier analysis for studying random walks on finite groups and algebras is well
known (see e.g., [12,14]) and this paper thus connects with that literature as well.

Herein we show how the separation of variables (SOV) approach [32,35] for effi-
cient group Fourier transforms (used to such great effect in the Sn , Dn , Bn, andGLn(q)

cases) can be applied to derive efficient algorithms in the general semisimple alge-
bra setting. The SOV approach takes advantage of an isomorphism between the path
algebra associated to the Bratelli diagram attached to a subgroup tower to uncover
dependencies and redundancies in the calculation of the Fourier transform.

The natural extension of the finite group case would be to find algorithms
for computing the Fourier transform for a complex semisimple algebra A in
O(dim(A) logc dim(A)) operations. Herein we show that application of the SOV
approach to the Brauer, BMW, and Temperley–Lieb algebras produces in the fol-
lowing bounds.

Theorem 1.1 Let Brn denote the (2n − 1)!!-dimensional Brauer algebra. Then

C(Brn) ≤ (4n2 − n + 4) dim(Brn) ∼ O(dim(Brn) log(dim(Brn))2).

Theorem 1.2 Let BMWn denote the (2n − 1)!!-dimensional BMW algebra. Then

C(BMWn) ≤ (4n2−n+4) dim(BMWn) ∼ O(dim(BMWn) log(dim(BMWn))2).

Theorem 1.3 LetTn denote the Temperley–Lieb algebra, with dimension the nth Cata-
lan number. Then

C(Tn) ≤ n3 + 9n2 + 8n − 12

6
dim(Tn) ∼ O(dim(Tn) log(dim(Tn))3).

These theorems could be summarized as saying that the BMW, Brauer, and
Temperley–Lieb algebras admit FFTs.

In Sect. 2 we provide the necessary background for our results, defining the Fourier
transform on a semisimple algebra, adapted representations, Bratteli diagrams, and
Gel’fand Tsetlin bases. In Sect. 3 we introduce and extend the main tools of the SOV
approach of [35], providing the definitions of the subsets and quivers that enable the
path-counting utilized in the proofs of Theorems 1.1–1.3. In Sect. 4 we first provide
background and definitions of the Brauer, BMW, and Temperley–Lieb algebras, then
prove the complexity results of Theorems 1.1–1.3 using the extended SOV approach.
We also provide a general result for semisimple algebras with special subalgebra
structure. We conclude in Sect. 5 with further directions and questions.

This paper necessarily relies on the earlier separation of variables work [32,35]. It
is (regretably) somewhat technical and for reasons of length we cannot reproduce it
here in its entirety. The interested reader should see [35] for the details of the quiver
formulation.
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2 Background

2.1 The Fourier Transform of a Semisimple Algebra

The usual Fourier transform on a finite group, defined using matrix representations,
may be viewed as a special case of a Fourier transform on a semisimple algebra.
We work here exclusively in the context of complex semisimple algebras. Recall
that a complex algebra is simple if it is isomorphic to a complex matrix algebra
and semisimple if isomorphic to a finite direct sum of simple algebras. A complex
representation of an algebra is an algebra homomorphism ρ : A → Md(C), where
Md(C) denotes the complex algebra of d × d matrices with entries in C. We call d
the dimension of ρ.

Results here assume complex representations, unless spelled out otherwise,
although most results go through more generally. For necessary background on the
representation theory of semisimple algebras we refer the reader to [39].

Definition 2.1 Let A be a semisimple algebra with basis {ai }i∈I and let f =∑
i∈I

f (ai )ai be the expansion of a given element of A in terms of the basis {ai }i∈I .

(i) Let ρ be a matrix representation of A. The Fourier transform of f at ρ, denoted
f̂ (ρ), is the matrix sum

f̂ (ρ) =
∑

i∈I

f (ai )ρ(ai ).

(ii) Let R be a set of matrix representations of A. The Fourier transform of f on
R is the direct sum of Fourier transforms of f at the representations in R:

FR( f ) =
⊕

ρ∈R

f̂ (ρ) ∈
⊕

ρ∈R

Mdim ρ(C).

When we compute the Fourier transform for a complete set of inequivalent irre-
ducible representations R of A we refer to the calculation as the computation of a
Fourier transform on A (with respect to R). Notice that this is equivalent to the
calculation of the change of basis from {ai }i∈I to the explicit basis given by the eval-
uation of the matrix elements ρi

jk(a�) (see Lemma 2.7). Thus, the definitions depend
on explicit choices of bases, both in the initial expansion as well as the target.

Example 2.2 When A = C[G], the complex group algebra of a finite group G,with
ai equal to the indicator function that is 1 on the i th element of G and 0 elsewhere,
Definition 2.1 gives the usual definition of the Fourier transform of a function on G
[31,32,35]. Elements ofC[G] are in one-to-one correspondence with complex-valued
functions on G, and the Fourier transform of f : G → C at a matrix representation ρ

of G is

f̂ (ρ) =
∑

s∈G

f (s)ρ(s).
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Definition 2.3 Let A be a semisimple algebra with basis {ai }i∈I and let R be a set of
matrix representations of A.

(i) Let+A(R) (respectively,×A(R)) denote theminimum number of complex arith-
metic additions (resp., multiplications) needed to compute the Fourier transform
of f on R via a straight-line program2 for an arbitrary f = ∑

i∈I f (ai )ai . The
arithmetic complexity of a Fourier transform on R, denoted TA(R), is given by

TA(R) = max (+A(R),×A(R)).

(ii) The complexity of the algebra A, denoted C(A), is given by

C(A) := min
R

{TA(R)},

where R varies over all complete sets of inequivalent irreducible matrix repre-
sentations of A.

(iii) The reduced complexity, denoted tA(R), is given by

tA(R) = 1

dim(A)
TA(R).

Let ρ1, . . . , ρm be a complete set of inequivalent irreducible matrix representa-
tions of an algebra A of dimensions d1, . . . , dm, respectively. Direct computation
of a Fourier transform would require at most dim(A)

∑
d2

i = dim(A)2 arithmetic
operations. Rewriting, for a direct computation we have

C(A) ≤ TG(A) ≤ dim(A)2.

Fast Fourier transforms (FFTs) are algorithms for computing Fourier transforms
that improve on this naive upper bound. A priori, the number of operations needed to
compute the Fourier transform may depend on the specific representations used.

2.2 Fourier Inversion

A complete set R of inequivalent irreducible matrix representations of a semisimple
algebra A determines a basis for A (via the irreducible matrix elements) and in this
case the Fourier transform is an algebra isomorphism from A to a direct sum of matrix
algebras. We recover f through the Fourier inversion formula, Theorem 2.5 below.

Definition 2.4 For A a semisimple algebra, a trace function on A is a C-linear func-
tion τ : A → C such that for all a, b ∈ A,

τ(ab) = τ(ba).

2 A straight-line program is a list of instructions for performing the operations ×, ÷,+, − on inputs and
precomputed values [7].
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A trace function τ gives rise to a symmetric bilinear form 〈·, ·〉τ : A × A → C via

〈a, b〉τ = τ(ab),

for a, b ∈ A.
By linearity the usual trace function on Md(C) is unique up to multiplication by a

constant. Hence, for any trace τ on A and set R of inequivalent irreducible represen-
tations of A, there exist constants tρ ∈ C such that:

τ =
∑

ρ∈R

tρ Tr(ρ(a)).

Theorem 2.5 (Fourier Inversion) Let A be a semisimple algebra with basis {ai }i∈I

and τ a nondegenerate trace on A. Let {a∗
i } be the dual basis to {ai } with respect to

the trace form 〈·, ·〉τ . Then

f (ai ) =
∑

ρ

tρ Tr( f̂ (ρ)ρ(a∗
i )). (1)

Thus, the Fourier transform of f on A with respect to a complete set of inequivalent
irreducible matrix representations R of A is an algebra isomorphism

A
FR−−−−→

⊕

ρ∈R

Mdim(ρ)(C).

Definition 2.6 For R a complete set of inequivalent irreducible matrix representa-
tions of A, the inverse image under the Fourier transform FR of the natural basis of⊕

ρ∈R Mdim(ρ)(C) is the dual matrix coefficient basis for A associated to R.

Lemma 2.7 (E.g., [8,30]) The computation of the Fourier transform of f =∑
i∈I f (ai )ai on A with respect to a complete set of irreducible matrix represen-

tations R is equivalent to computation (rewriting) of

∑

i∈I

f (ai )ai ,

relative to the dual matrix coefficient basis for R.

2.3 Bratteli Diagrams and Quivers

The computational methodology that we present here is a recasting of a divide-and-
conquer (or when viewed from the bottom up, a dynamic programming approach) for
computing the Fourier transform in terms of graded quivers, which is an elaboration
of the path algebras derived from Bratteli diagrams. This is a natural extension of the
work in [35]. Herein we give the necessary definitions and extensions of the needed
lemmas. The interested reader should see the original paper for details.
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Definition 2.8 For a subalgebra B of a semisimple algebra A, a complete set R of
inequivalent irreducible matrix representations of A is B-adapted if there exists a
complete set RB of inequivalent irreducible matrix representations of B such that for
all ρ ∈ R, ρ ↓B= ⊕

γs , for (not neccessarily distinct) representations γs in RB . The
set R is adapted to the chain A = An > An−1 > · · · > A0 if for each 1 ≤ i ≤ n
there is a complete set Ri of inequivalent representations of Ai such that Ri is Ai−1-
adapted and Rn = R. A set of bases for the representation spaces that give rise to
adapted representations is an adapted basis.

For the FFT results of this paper we assume the ability to construct adapted sets
of representations. This requirement is not a limitation, as any set of representations
is equivalent to an adapted set of representations. One such construction is outlined
in [32].

Definition 2.9 A quiver Q is a directed multigraph with vertex set V (Q) and edge
set E(Q). For an arrow (directed edge) e ∈ E(Q) from vertex β to vertex α, we call
α the target, t (e), of e and β the source, s(e), of e. A quiver Q is graded if there is
a function gr : V (Q) → N such that for each e ∈ E(Q), gr(t (e)) > gr(s(e)).

For Ai a subalgebra of Ai+1 consider a chain of semisimple algebras An > An−1 >

· · · > A1 > A0. To associate a graded quiver to this chain, we follow the language of
[40]. Let ρ be an irreducible representation of Ai , i.e., an irreducible Ai -module. Upon
restriction to Ai−1, ρ ↓Ai−1 decomposes as a direct sum of irreducible Ai−1-modules.
For γ an irreducible representation of Ai−1, let M(ρ, γ ) denote the multiplicity of γ

in ρ ↓Ai−1 .

Definition 2.10 For a chain of semisimple algebras An > An−1 > · · · > A1 > A0
the associated Bratteli diagram is the graded quiver described by

(i) The vertices of grading i are labeled by the (equivalence classes of) irreducible
representations of Ai ;

(ii) A vertex labeled by an irreducible representation γ of Ai−1 is connected to a
vertex labeled by an irreducible representation ρ of Ai by M(ρ, γ ) arrows.

For a Bratteli diagram B, let Bi denote the set of vertices of grading i in B.

Example 2.11 (Brauer algebras) Brauer algebras are among the non-group algebras
of interest in this paper. We denote the Brauer algebra on n points as Brn > (See
Sect. 4.1 for a brief description of the Brauer algebra).

Irreducible representations of Bri are indexed by partitions of i −2k, 0 ≤ k ≤ i/2,
with a “branching rule” like that of the symmetric groupwhere an edge betweenρ ∈ Bi

and λ ∈ Bi−1 if ρ is obtained from λ by adding or removing a box [26]. Figure1 shows
the Bratteli diagram for the chain of Brauer algebras Br3 > Br2 > Br1 > Br0. The
grading of the Bratteli diagram is listed at the top. (We distinguish Br1 from Br0 for
convenience in future indexing so that vertices at level i correspond to representations
of Bri .) The Brauer algebra Bratteli diagram of Fig. 1 is an example of amultiplicity-
free diagram in that there is at most one edge from any vertex of grading i to any
vertex of grading i + 1.
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Fig. 1 Bratteli diagram for
Br3 > Br2 > Br1 > Br0

3 2 1 0

∅

∅

Given a Bratteli diagram B, there is a canonical chain of algebras associated to B
called the chain of path algebras. For more details, see e.g., [19,23].

Definition 2.12 Let B be a Bratteli diagram. The path algebra (at level i), denoted
C[Bi ], is the C-vector space with basis given by ordered pairs of paths of length i in
B which start at the root and end at the same vertex at level i .

Note that for a vertex v, labeled by a representation ρ, the dimension of ρ is given
by the number of paths from the root to v. Moreover, each path corresponds to a
subgroup-equivariant embedding of C into the representation space of ρ (for more
details, see [19,35]).

Further, C[Bi ] embeds into C[Bi+1] as a subalgebra by mapping any pair of paths
(P, Q) ∈ C[Bi ] to the sum

∑

e

(e ◦ P, e ◦ Q),

over all arrows e such that the source of e is the target of P (equivalently, of Q), and
◦ denotes concatenation of paths. Thus, elements in these subalgebras are effectively
determined by the initial “legs” of their paths. This is also equivalent to a choice of
basis in the corresponding Artin–Wedderburn decomposition of the algebra as a direct
sum of matrix algebras, recognizing that for a given element, a number of irreducible
matrix elements will take on the same value, equal to the total number of distinct paths
that have the common middle “source” the target of P (for a thorough discussion and
proof of the Artin–Wedderburn decomposition see e.g., [45]). Identification of this
kind of common “unit” (formalized by the injection of one quiver into another) is the
fundamental observation and technique of the quiver-based SOV approach.

Multiplication in the path algebra C[Bi ] is the linear extension of (P, Q) ∗
(P ′, Q′) = δQ P ′(P, Q′) and is illustrated in Fig. 2. The first arrow represents glu-
ing two pairs of paths along identical middle paths Q = P ′ and the second arrow
represents summation over all possible gluings.

For aBratteli diagramB associated to a chain of semisimple algebras An > An−1 >

· · · > A0, consider the associated chain of path algebras: C[Bn] > C[Bn−1] > · · · >
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−→ −→Q

P

Q′

P ′
Q′

Q = P ′

P

Q′

P

Fig. 2 Multiplication in the path algebra

C[B1] > C[B0]. It is not too difficult to see that there exists an isomorphism between
these algebra chains.

Lemma 2.13 Let A = An > An−1 > · · · > A1 > A0 be a chain of semisimple
algebras with Bratteli diagram B. Then the chain of path algebras associated to B is
isomorphic to the group algebra chain.

Lemma 2.13 provides the key translation in the group algebra case [35] as it allows
for computation of the Fourier transform to be reformulated in the path algebra. As
this result holds in the semisimple algebra setting, we can extend the SOV approach
to any semisimple algebra.

2.4 Gel’fand–Tsetlin Bases

The analogous concept in the path algebra of adapted bases associated to a group
algebra chain is a system of Gel’fand–Tsetlin bases.

Definition 2.14 Let B be the Bratteli diagram associated to a chain of group algebras.
A system of Gel’fand–Tsetlin bases for B consists of a collection of bases for the
representation spaces {Vα| α ∈ V (B)} of the representations corresponding to α

indexed by paths from the root to α, along with maps from the paths to the basis
vectors; i.e., a set of basis vectors along with knowledge of the path corresponding to
each vector.

Gel’fand–Tsetlin bases provide a means to better understand the isomorphism of
Lemma 2.13 between a chain of semisimple algebras and the corresponding chain of
path algebras. SinceGel’fand–Tsetlin bases are indexedbypaths inB and abasis for the
path algebraC[Bn] consists of pairs of paths,we identify the semisimple algebra Awith
its realization in coordinates relative to the Gel’fand–Tsetlin basis, indexed by pairs of
paths of length n inB that share the same endpoint. For a complete set R of inequivalent
irreducible representations of A adapted to the chain A = An > An−1 > · · · > A0
let Di be the dual matrix coefficient basis for Ai associated to R. For a ∈ A let ã be
the image of a in the path algebra under the path algebra isomorphism. Note that the
image of the set of dual matrix coefficient bases Di is a Gel’fand Tsetlin basis. Then
Lemma 2.7 becomes
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Lemma 2.15 The computation of the Fourier transform of f (originally expressed
with respect to a basis {ai }i∈I ) on a semisimple algebra A with respect to a complete
set of inequivalent irreducible representations R adapted to the chain An > An−1 >

· · · > A0 is the same as computation (rewriting) of

∑

i∈I

f (ai )ãi ,

relative to a Gel’fand Tsetlin basis for the path algebra associated to the chain.

3 The Separation of Variables Approach

At the heart of the SOV approach are two main steps. The first is to express a path
algebra element as a factorization over subsets of the Bratteli diagram in such a way
as to disentangle the dependencies in the sum. To extend to the semisimple algebra
setting, we need a coset-like factorization of basis elements of A.

Definition 3.1 Let A be a semisimple algebra with basis Â and B a subalgebra with
basis B̂. A factor set for A over B is a set Y ⊆ Â such that each basis element of A
can be written as yb, with y ∈ Y and b ∈ B̂.

Note that a factor set isweaker than the group notion of a set of coset representatives.
However, since Â ⊆ {yb | y ∈ Y, b ∈ B̂}, computation of

∑
f (yb)yb requires more

operations (or the same number) as computation of
∑

f (ai )ai , so we may use it to
bound computation of the Fourier transform.

For Y a factor set of A over B, Ỹ = {ỹ | y ∈ Y }, and Fy (for each y ∈ Y ) an
arbitrary element in the path algebra of B, define

m A(R, Y, B)= 1

dim(A)
×

{
minimum number of operations required to compute∑

y∈Ỹ yFy in a system of Gel’fand–Tsetlin bases for B.

Lemma 3.2 Let B be a subalgebra of A, R a complete B-adapted set of inequivalent
irreducible matrix representations of A, and Y a factor set for A over B. Then

tA(R) ≤ tB(RB) + m A(R, Y, B).

Lemma 3.2 is a restatement of Lemma 3.1 of [35], Lemma 2.10 of [30] and Propo-
sition 1 of [13]. It shows that to compute the Fourier transform of a complex function
defined on A at a set of B-adapted representations, we need only compute the pieces

FY :=
∑

y∈Ỹ

yFy .

In doing so, the complexity estimate “reduces” to a close study of the computation
of FY . This idea can be iterated through a chain of subalgebras. Assuming a set of
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Fig. 3 The quiver associated to
Xi and xi

Qi

i−i+ 0n

representations R adapted to a chain A = An > An−1 > · · · > A0 and factor sets
Yi ⊆ Ai , iteration of Lemma 3.2 gives

tA(R) ≤ tA0(RA0) +
n∑

i=1

m Ai (RAi , Yi , Ai−1). (2)

Lemma 2.15 casts computation of a Fourier transform on A in terms of computation
in the path algebra. Lemma 3.2 shows how this can be accomplished via factoring in
the semisimple algebra. In particular, we rely on the special and sparse structure of
elements that are in the intersection of sublalgebras and centralizers of subalgebras, a
class of elements of particular importance in the examples of interest for this paper.
This follows the approach taken in [35] wherein further details and examples can be
found. We outline the ideas below.

Definition 3.3 Let B be a Bratteli diagramwith highest grading at least n correspond-
ing to a subalgebra chain for A. For X ⊆ (C[Bn])m = C[Bn] × · · · × C[Bn], let i+
denote the smallest integer such that xi ∈ C[Bi+] for all i th entries xi of elements
of X . Similarly, let i− denote the largest integer less than or equal to i+ such that
xi ∈ Centralizer(C[Bi−]) for all i th entries xi of elements of X . Then for 1 ≤ i ≤ m
define

Xi := C[Bi+] ∩ Centralizer(C[Bi−]).

To each space Xi , associate the quiver Qi of Fig. 3. (Note that Qi is also the quiver
associated to every element of Xi .) Let Hom(Qi ;B) denote the set ofmorphisms of Qi

into the Bratteli diagramB and A(Qi ;B) denote the space of finitely supported formal
C-linear combinations of such morphisms. By Lemma 5.5 of [35], Xi ∼= A(Qi ;B).
Thus, dim(Xi ) = # Hom(Qi ;B), for # Hom(Qi ;B) the number of morphisms from
Qi into B.

In this setting (bilinear) group algebra multiplication is transformed into a bilin-
ear map on products of associated spaces of quiver morphisms ∗ : A(Q1; B) ×
A(Q2; B) → A(Q1�Q2; B), for Q1�Q2 the symmetric difference of Q1 and Q2,
i.e., the induced graph on the edges of Q1 ∪ Q2 not in Q1 ∩ Q2.

Definition 3.4 Let R be a graded quiver with subquivers Q1, Q2. Let E1 (respectively
E2) be the edge set of Q1 (respectively Q2). The symmetric difference, Q1�Q2, of
Q1 and Q2 is the induced graph on the edge set (E1 ∪ E2) \ (E1 ∩ E2).

We now define separation of variables for the computation of a Fourier transform
on an algebra:
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Separation of Variables (SOV) Approach 3.5 I. Choose m ∈ N and a subset X ⊆
(C[Bn])m such that |X | = |Y | and for each y ∈ Ỹ there exists (x1, . . . , xm) ∈ X
with yFy = x1 · · · xm . Thus, X can be thought of as a choice of factorization into
m elements (some of which may be the identity) of each term yFy.

II. For 1 ≤ i ≤ m let Xi be as in Definition 3.3. For σ ∈ Sm, let wi = xσ(i). The
bilinear map ∗ is such that x1 · · · xm = (((w1 ∗ w2) ∗ w3) · · · ∗ wm),

III. For 0 ≤ i < m, let Wi = {(wi+1, . . . , wm) | (x1, . . . , xm) ∈ X}. Let Wm = ∅.

Note that Wi ⊆ Xσ(i+1) × · · · × Xσ(m).

The SOV approach gives a method for organizing computation
∑

y∈Ỹ yFy in a
manner that allows the complexity to be determined by counting the number of occur-
rences of subgraphs in the Bratteli diagram. Proof of the following theorem follows
Theorem 3.8 from [35], essentially word for word, but in the more general setting of
semisimple algebras.

Theorem 3.6 For xi and σ as above, let Qσ
i denote the quiver associated to wi =

xσ(i). Then we may compute
∑

y∈Ỹ yFy in at most

m−1∑

i=1

|Wi−1|# Hom((Qσ
1� · · · �Qσ

i ) ∪ Qσ
i+1;B)

multiplications and fewer additions.

4 The Complexity of Fourier Transforms on the Brauer and BMW
Algebras

The SOV approach first factors the elements of a factor set, then translates path algebra
multiplication into maps indexed by subgraphs. The complexity is determined by the
size of the factorization sets and the number of occurrences of these subgraphs in the
Bratteli diagram. In this section we apply these ideas to the Braer and BMW algebras
to give complexity results for Fourier transforms on these algebras.

For a parameter q, the Brauer algebra is a semisimple C(q)-algebra, while the
BMW algebra is a “deformation” of the Brauer algebra. For q = 1, the group algebra
of the symmetric group is a subalgebra of the Brauer algebra: C[Sn] < Brn . As such,
these results are natural extensions of Fourier transforms of functions on the symmetric
group, and in fact the proof of Theorem 1.1 yields the same diagrams as in [30].

4.1 Background: The Brauer Algebra

An element in the symmetric group Sn is realized as a diagram on 2n points, consisting
of two rows of n points each, with each point in the top row connected by an edge
to exactly one point in the bottom row (see Fig. 4). For two elements x, y in Sn , the
product xy is the concatenation of the two diagrams: to compute the product xy, place
the diagram for x on top of the one for y and trace the edges from top to bottom (note
that we consider multiplication from left to right) (Fig. 5).
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Fig. 4 (1324) 1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Fig. 5 (1324)*(143) = (23)

=
x

y

q z

Fig. 6 xy = q1z

The simple transpositions {ri = (i i + 1) | 1 ≤ i ≤ n − 1} form a generating set
for the symmetric group.

Elements of the Brauer monoid, Brn , are realized by generalizing symmetric group
diagrams: consider diagrams on 2 rows of n points each, with edges connecting pairs
of points regardless of row and each point part of exactly one edge. Multiplication
is again concatenation of diagrams. Note that in some cases, this introduces a closed
loop. A parameter q is used to keep track of the number of closed loops: for two
diagrams x, y ∈ Brn , let c denote the number of closed loops in the multiplication xy
and let z be the diagram of this product with the closed loops removed. Then xy = qcz.

Two Brauer diagrams d1 and d2 are equivalent if they differ only in the number of
closed loops, i.e., if when q = 1, d1 = d2. For example, for x, y, z as in Fig. 6, the
product xy is equivalent to z. TheBrauermonoid, Brn consists of the set of equivalence
classes of such diagrams and is generated by the set of elements {ri , ei | 1 ≤ i ≤ n−1}
(see Fig. 7). Note that the symmetric group Sn is generated by the transpositions
{ri | 1 ≤ i ≤ n − 1} and so Sn ⊆ Brn .

The Brauer algebra, Brn , is the C(q)-algebra with basis Brn and dimension (2n −
1)!!. Equivalently (see, e.g., [3]), Brn has algebraic presentation given by generating
set

{ri , ei | 1 ≤ i ≤ n − 1},
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. . . . . .

i i+ 1

ri

. . . . . .

i i+ 1

ei

Fig. 7 ri , ei ∈ Brn

and relations:

(1) r2i = 1, (2) ri r j = r j ri , ri e j = e jri , ei e j = e j ei , |i − j | > 1
(3) e2i = qei , (4) eiri = ri ei = ei ,

(5) ri ri+1ri = ri+1ri ri+1, (6) ei ei+1ei = ei , ei+1ei ei+1 = ei+1,

(7) ri ei+1ei = ri+1ei , (8) ei+1eiri+1 = ei+1ri .

In [47], Wenzl showed that the Brauer algebra, Brn(q), is a semisimple algebra
over C(q). In fact, replacing q by α ∈ C, Brn(α) is semisimple for all but finitely
many integers α [46].

4.2 Fourier Transforms on Brn

We first find a factor set for Brn over Brn−1, viewing each diagram in Brn−1 as an
element of Brn by adding a point to the end of the top and bottom rows and connecting
these two points with an edge. With Lemma 3.2, we then use the SOV approach to
compute the Fourier transform of f = ∑

d∈Brn
f (d)d in Brn .

Let R = {id, r1 · · · rn−1, r2 · · · rn−1, . . . , rn−1} and let E R = {r j · · · ri−1ei · · ·
en−1 | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ i − 1} Let Y = R ∪ E R

Lemma 4.1 Y is a factor set for Brn over Brn−1.

Proof First note that R ⊆ Sn forms a complete set of coset representatives for Sn/Sn−1
[30] and so we need only show that for any d ∈ Brn − Sn , d = yd ′, for y ∈ Y ,
d ′ ∈ Brn−1.

Due to the final factor en−1, each element of E R has exactly one horizontal edge in
its bottom row, connecting the last two points. Each element of E R also has exactly
one horizontal edge in its top row, and each possible such edge corresponds to an
element of E R. As an example, see Fig. 8.

Let d ∈ Brn − Sn . Then d has at least one horizontal edge, e, in its top row. Choose
an element, y, of E R with edge e. This determines an element d ′ in Brn−1 with
d = yd ′. For an example, see Fig. 9. Note that for this example there are two possible
choices for y, and (though not always the case) d ′ is the same for each choice of y.

��
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e1e2e3 r1e2e3 r1r2e3 e2e3 r2e3 e3

Fig. 8 E R in Br4

Fig. 9 d = r1e2e3d ′ = r2e3d ′
= =

Theorem 4.2 (cf. Theorem 1.1) The Fourier transform of an element f in the Brauer
algebraBrn may be computed at a complete set R of irreducible matrix representations
of Brn adapted to the chain of algebras

Brn > Brn−1 > · · · > Br0 = C(q)

in at most (4n2 − n + 4) dim(Brn) operations.

Proof By Lemma 4.1, Y is a factor set for Brn over Brn−1. For Yi = {id, ri , ei },
Y ⊆ {y1y2 · · · yn−1 | yi ∈ Yi }, giving a factorization of Y as required by Step I of the
SOV approach.

Let B be the Bratteli diagram associated to the chain Brn > Brn−1 > · · · > Br0,
let {C[Bi ]} be the associated chain of path algebras, and let Ỹi = {ỹi | yi ∈ Yi }.
Note that Ỹi ⊆ C[Bi+1] ∩ Centralizer(C[Bi−1]). By Lemma 3.2, the complexity of
the computation of a Fourier transform of f on Brn is bounded by the complexity of
computation of:

∑

yi ∈Ỹi

y1 · · · yn−1Fy1···yn−1

for Fy1···yn−1 ∈ C[Bn−1].
We now use the SOV approach.

I. Let X = {y1, y2, . . . , yn−1, Fy1···yn−1 | yi ∈ Ỹi }.
II. Note that i+ = i + 1 and i− = i − 1 for 1 ≤ i < n and that n+ = n − 1,

n− = 0. Figure10 shows the various component subquivers corresponding to
the factors yi . They combine together as per Fig. 11 to give the factorization
y1 · · · yn−1Fy1···yn−1 . Thus, the algorithm proceeds by gluing together quivers Qi

of Fig. 10 (corresponding to Ỹi , Fy1···yn−1 ) to build the quiver Q of Fig. 11.
Let σ = (n n − 1 · · · 1) ∈ Sn .

III. For σ as above, Wi = {(yi , . . . , yn−1) | yi ∈ Ỹi }. Note that |Wi | =
|Ỹi ||Ỹ2| · · · |Ỹn|. Recall that Qσ

i = Qσ(i).
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Fig. 10 Component subquivers
of the factorization

Qn−1 (Ỹn−1)

Qn−2 (Ỹn−2)

...

Q2 (Ỹ2)

Q1 (Ỹ1)

Qn (Fy1···yn−1)

0n n − 2

0n n − 1 n − 3

0n 3 1

0n 2

0n n − 1

G

Ỹ2Ỹ3Ỹ4Ỹn−1Ỹn

Fy2···yn

. . .

01

1

2

23

3

4n − 2

n − 3

n − 1

n − 1 n − 2

n

Fig. 11 The full quiver factorization

By Theorem 3.6, we may compute
∑

yi ∈Ỹi
y1 · · · yn−1Fy1···yn−1 (and hence bound

computation of
∑

y∈Ỹ yFy) in at most

m−1∑

i=1

|Wi−1|# Hom((Qσ
1� · · · �Qσ

i ) ∪ Qσ
i+1;B)

multiplications, with (Qσ
1� · · · �Qσ

i )∪ Qσ
i+1 as in Fig. 12. LetHn

i denote this quiver.
Thus, the complexity of the computation comes down to determining # Hom(Hn

i ↑
Q;B), i.e., the number of occurences of each quiver Hn

i in the Bratteli diagram B.
Note that Hn

i is exactly Fig. 14 of [35] and (4.1.7) of [30] (Moreover, Q is exactly
(4.9) in [30]). Then by [30,35], # Hom(Hn

i ↑ Q;B) is given by

∑

α j ,β j ∈B j

M(βn−1, βi−1)M(βi−1, βi−2)M(αi , αi−1)M(αi , βi−1)M(αi−1, βi−2)dαi−1dβn−1 ,

where M(ρ, γ ) denotes the number of paths from γ to ρ in B.
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Fig. 12 Subquiver schema for
the Brn calculation

Hn
i

Ỹi

0̂βn−1 βi−2βi − 1

αi−1αi

In Appendix A we use path counting in B to show

# Hom(Hn
i ↑ Q;B) ≤ 16i − 17

2n − 1
dim(Brn).

Then by Lemma 3.2,

tBrn (R) ≤ tBrn−1(RBrn−1) + 2
n∑

i=2

16i − 17

2n − 1

= tBrn−1(RBrn−1) + 2
(n − 1)(8n − 1)

(2n − 1)

≤ tBr1(RBr1) + 2
n∑

i=2

(i − 1)(8i − 1)

(2i − 1)

≤ tBr1(RBr1) + (4n2 − n + 3)

= 4n2 − n + 4.

(3)

��

4.3 The BMW Algebra

The BMW algebra is a semisimple C(q, m, l)-algebra that can be described in a
manner similar to the Brauer algebra (see e.g., [18]). Defined independently as the
Kauffman tangle algebra by Murakami [38] and algebraically by Birman and Wenzl
[5], it was shown in an unpublished paper by Wasserman [36] that these two notions
are equivalent, giving rise to the single BMW algebra. The Bratteli diagram for the
BMW algebra is identical to that of the Brauer algebra [21]. Further, a natural basis,
Bn = {Td | d ∈ Brn} for the BMW algebra is indexed by Brauer monoid elements.
As such, Theorem 1.1 extends to the BMW algebra:

Theorem 4.3 (cf. Theorem 1.2) The Fourier transform of an element f in the BMW
algebra BMWn may be computed at a complete set R of irreducible matrix repre-
sentations of BMWn adapted to the chain of algebras

BMWn > BMWn−1 > · · · > BMW0

in at most (4n2 − n + 4) dim(BMWn) operations.
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∅

Fig. 13 Bratteli diagram for T4 > T3 > T2 > T1 > T0

4.4 Background: The Temperley–Lieb Algebra

The Temperley–Lieb algebra, Tn is most easily defined as the subalgebra of the Brauer
algebra generated by {id, e1, . . . , en−1}with relations inherited by theBrauer algebra:

(1) e2i = qei , (2) ei e j = e j ei , |i − j | > 1
(3) ei ei+1ei = ei , ei+1ei ei+1 = ei+1

As a diagram algebra, Tn is generated by diagrams on 2n points connected by non-
intersecting lines. For more background and the equivalence of these two definitions,
see [41]. The dimension of Tn is given by the nth Catalan number (in [41], a bijection
is demonstrated betweeh the set of generating diagrams of Tn and the set of increasing
walks on Z

2 from (0, 0), to (n, n) which avoid crossing the diagonal).
Figure13 shows the Bratteli diagram for the chain of Temperley–Lieb algebras

T4 > T3 > T2 > T1 > T0. Note that we distinguish T1 from T0 only so that vertices
at level i correspond to representations of Ti . Irreducible representations of Ti are
indexed by partitions of i with two or fewer parts, with an edge between ρ ∈ T i and
λ ∈ T i−1 if ρ is obtained from λ by adding a box [17]. Note that the Bratteli diagram
of Tn is a subquiver of Young’s lattice, the Bratteli diagram of the symmetric group
Sn .

4.5 Fourier Transforms on Tn

We first find a factor set for Tn over Tn−1, then use the SOV approach to compute the
Fourier transform of f = ∑

d∈Tn
f (d)d, for Tn the set of diagrams generating Tn .

Let E = {ei · · · en−1 | 1 ≤ i ≤ n −1} It follows immediately from Lemma 4.1 that
E ∪ {id} is a factor set for Tn over Tn−1. Note that this is also the factor set arising
from the Jones Normal Form of elements in the Temperley–Lieb algebra (see e.g.,
Proposition 2.3 of [41]).

Theorem 4.4 (cf. Theorem 1.3) The Fourier transform of an element f in the
Temperley–Lieb algebra Tn may be computed at a complete set R of irreducible matrix
representations of Tn adapted to the chain of algebras

Tn > Tn−1 > · · · > T0 = C(q)
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in at most
n3 + 9n2 + 8n − 12

6
dim(Tn) operations.

Proof As noted above, Y = E ∪{id} is a factor set for Tn over Tn−1. For Yi = {id, ei },
Y ⊆ {y1y2 · · · yn−1 | yi ∈ Yi }, giving a factorization of Y as required by Step I of
the SOV approach. Note that this is identical to the factorization in the proof of
Theorem 1.1, with the only exception the size of Yi . Thus, following the same steps
in the SOV approach, the complexity of the computation comes down to determining
# Hom(Hn

i ↑ Q;B), i.e., the number of occurences of each quiver Hn
i of Fig. 12 in

the Bratteli diagram B associated to the chain of Temperley–Lieb algebras.
Again by [30,35], # Hom(Hn

i ↑ Q;B) is given by

∑

α j ,β j ∈B j

M(βn−1, βi−1)M(βi−1, βi−2)M(αi , αi−1)M(αi , βi−1)M(αi−1, βi−2)dαi−1dβn−1 ,

where M(ρ, γ ) denotes the number of paths from γ to ρ in B.
In Appendix B we use path counting in B to show

# Hom(Hn
i ↑ Q;B) ≤ (4i − 6 + 2i2)(n + 1)(n)

i(2n)(2n − 1)
dim(Tn).

Then by Lemma 3.2,

tTn (R) ≤ tTn−1(RTn−1) +
n∑

i=2

(4i − 6 + 2i2)(n + 1)(n)

i(2n)(2n − 1)

≤ tT1(RT1) +
n∑

i=2

i(i + 5)(i + 1)

(4i − 2)

≤ n3 + 9n2 + 8n − 12

6
.

(4)

��

4.6 General Result

We next give a general result (Theorem 4.5) to find efficient Fourier transforms on
a finite dimensional semisimple algebra A with special subalgebra structure. As the
proof follows the same structure as the proof of Theorem 1.1, we leave it as an exercise.

Suppose

A = An > An−1 > · · · > A0,

is a chain of subalgebras of A with subsets Yi ⊆ Ai such that

(1) Y1 = A1
(2) Ai ⊆ Y2 · · · Yi Ai−1 for 2 ≤ i ≤ n.
(3) Yi commutes with Ai−2.
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Note that the factor sets used for the Brauer algebra satisfied these three properties.
Let B be the Bratteli diagram associated to the chain

An > An−1 > · · · > A0,

and let {C[Bi ]} be the associated chain of path algebras. Let

M(Ai , A j ) := max M(αi , α j )

over all αi ∈ Bi , α j ∈ B j and let | Âi | denote the number of irreducible representations
in a complete set of inequivalent irreducible representations of Ai .

Theorem 4.5 Let Ai , Yi be as described above. Then the Fourier transform of an
element f ∈ A may be computed at a complete set R of irreducible representations
of An adapted to the chain

An > An−1 > · · · > A0

in at most

dim(An)

n∑

k=1

k∑

i=2

M(Ai−1, Ai−2)
2| Âi−2| dim(Ai )

dim(Ai−1)

dim(Ak−1)

dim(Ak)

k∏

j=i

|B j |

operations.

5 Further Directions

In this paper we extended the SOV approach of [32,35] to the semisimple algebra
setting and provided the first known complexity upper bounds for Fourier transforms
on the Brauer, BMW, and Temperley–Lieb algebras.

Efficiency counts are determined by the choice of factor sets, size of the factor-
ization sets of these factor sets, and the number of occurrences of the corresponding
subgraphs in the Bratteli diagram.While the choice of factor set for the Brauer algebra
(Lemma 4.1) is easy to describe, it is by no means ‘canonical’. On the other hand,
while the choice of factor set for the Temperley–Lieb algebra is canonical in that it
comes from Jones Normal Form, the bound of Theorem 1.3 is worse than anticipated
given that the Temperley–Lieb algebra is a subalgebra of the Brauer algebra. Future
directions could explore different choices of factor sets and the bounds they provide,
as well as more refined path-counting.

The examples in this paper only touch on the wealth of semisimple algebras whose
structure and Bratelli diagrams are known. In [20], Grood constructs the irreducible
representations of the rook partition algebra and the associated Bratteli diagram, while
Halverson et al. [16,22] determine analogues of the seminormal representations of Sn

for the rook-Brauer algebra and planar-rook algebra. It is an interesting and ongoing
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project to extend and apply the results of this paper to these other examples by develop-
ing an understanding of the centralizers and irreducible representations and to explore
the resulting combinatorial path-counting questions to provide efficient counts.

Acknowledgements Daniel N. Rockmore was partially supported by AFOSR Award FA9550-11-1-0166
and the Neukom Institute for Computational Science at Dartmouth College. Sarah Wolff was partially
supported by an NSF Graduate Fellowship.

Appendix A: Brauer Algebra Combinatorial Lemmas

Let B denote the Bratteli diagram associated to the chain of Brauer algebras Brn >

Brn−1 > · · ·Br1 > Br0 (Fig. 1). The following two lemmas provide a bound for
# Hom(Hn

i ↑ G;B), for Hn
i as in Fig. 12.

Lemma A.1 (1) # Hom(Hn
i ↑ G;B) = dim(Brn−1)

dim(Bri−1)
# Hom(Hi

i ↑ G;B),

(2) # Hom(Hi
i ↑ G;B)

≤ 2
dim(Bri−1)

2

dim(Bri−2)
+

∑

βi−1∈Bi−1

(4 jmp(βi−1)
2 + 2 jmp(βi−1) + 1)(dβi−1)

2,

where jmp denotes the jump of a partition, i.e, the number of ways to remove a single
box to form a new partition.

Proof Part (1) has the same proof as Lemma D.3 in [35].
To prove (2), consider

# Hom(Hi
i ↑ G;B)

=
∑

α j ,β j ∈B j

MB(βi−1, βi−2)MB(αi , αi−1)MB(αi , βi−1)MB(αi−1, βi−2)dβi−1dαi−1

=
∑

αi−1 �=βi−1

+
∑

αi−1=βi−1

,

for
∑

αi−1 �=βi−1

the sum

∑

α j ,β j ∈B j

αi−1 �=βi−1

MB(βi−1, βi−2)MB(αi , αi−1)MB(αi , βi−1)MB(αi−1, βi−2)dβi−1dαi−1

and
∑

αi−1=βi−1

the sum

∑

α j ,β j ∈B j

αi−1=βi−1

MB(βi−1, βi−2)
2MB(αi , βi−1)

2(dβi−1)
2.
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First suppose αi−1 and βi−1 are distinct partitions. Then they jointly determine αi

up to two choices. This is clear if αi−1 and βi−1 both partition k, as they then jointly
determine exactly one partition of k + 1 and one partition of k − 1. Now suppose,
without loss of generality, that αi−1 is a partition of k while βi−1 is a partition of k −2.
Then to both be connected to a vertex, αi , at level i , βi−1 must be obtained from αi−1
by removing two boxes, which can only be done in two ways.

Then as in the proof of Lemma D.3 of [35],

∑

αi−1 �=βi−1

≤ 2

(
dim(Bri−1)

2

dim(Bri−2)
−

∑
jmp(βi−1)(dβi−1)

2

)
. (5)

Now suppose αi−1 = βi−1. Then αi is obtained from βi−1 by either adding or
removing a box, and similarly for βi−2. Thus,

∑

αi−1=βi−1

=
∑

βi−1∈Bi−1

(2 jmp(βi−1) + 1)(2 jmp(βi−1) + 1)(dβi−1)
2. (6)

Summing Eqs. (5) and (6) gives part (2). ��
Combining Lemma A.1 with the fact that jmp(βi )

2 ≤ 2i (see proof of [30, Lemma
5.3]) gives the following bound:

Corollary A.2 # Hom(Hn
i ↑ G;B) ≤ 16i−17

2n−1 dim(Brn).

Appendix B: Temperley–Lieb Algebra Combinatorial Lemmas

Let B denote the Bratteli diagram associated to the chain of Temperley–Lieb algebras
Tn > Tn−1 > · · · T1 > T0 (Fig. 13). The following two lemmas provide a bound for
# Hom(Hn

i ↑ G;B), for Hn
i as in Fig. 12.

Lemma B.1 (1) # Hom(Hn
i ↑ G;B) = dim(Tn−1)

dim(Ti−1)
# Hom(Hi

i ↑ G;B),

(2) # Hom(Hi
i ↑ G;B) ≤ dim(Ti−1)

2

dim(Ti−2)
+

∑

βi−1∈Bi−1

(jmp(βi−1)
2(dβi−1)

2.

Proof This is exactly Lemma 5.2 of [30], replacing the order of the symmetric group
with the dimension of the Temperley–Lieb algebra. ��

Combining Lemma A.1 with the fact that jmp(βi )
2 ≤ 2i

Corollary B.2 # Hom(Hn
i ↑ G;B) ≤ (4i−6+2i2)(n+1)(n)

i(2n)(2n−1) dim(Tn).
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