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Abstract We develop new discrete uncertainty principles in terms of numerical spar-
sity, which is a continuous proxy for the 0-norm. Unlike traditional sparsity, the
continuity of numerical sparsity naturally accommodates functions which are nearly
sparse. After studying these principles and the functions that achieve exact or near
equality in them, we identify certain consequences in a number of sparse signal pro-
cessing applications.
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1 Introduction

Uncertainty principles have maintained a significant role in both science and engi-
neering for most of the past century. In 1927, the concept was introduced by Werner
Heisenberg in the context of quantum mechanics [24], in which a particle’s posi-
tion and momentum are represented by wavefunctions f, g ∈ L2(R), and g happens
to be the Fourier transform of f . Measuring the position or momentum of a particle
amounts to drawing a random variable whose probability density function is a normal-
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ized version of | f |2 or |g|2, respectively. Heisenberg’s uncertainty principle postulates
a fundamental limit on the precision with which one can measure both position and
momentum; in particular, the variance of the position measurement is small only if the
momentum measurement exhibits large variance. From a mathematical perspective,
this physical principle can be viewed as an instance of a much broader meta-theorem
in harmonic analysis:

A nonzero function and its Fourier transform cannot be simultaneously localized.

Heisenberg’s uncertainty principle provides a lower bound on the product of the
variances of the probability density functions corresponding to f and f̂ . In the time
since, variousmethods have emerged for quantifying localization. For example, instead
of variance, onemight consider entropy [6], the size of the density’s support [2], or how
rapidly it decays [23]. Furthermore, the tradeoff in localization need not be represented
by a product—as we will see, it is sometimes more telling to consider a sum.

Beyond physics, the impossibility of simultaneous localization has had significant
consequences in signal processing. For example, when working with the short-time
Fourier transform, one is forced to choose between temporal and frequency resolution.
More recently, the emergence of digital signal processing has prompted the investi-
gation of uncertainty principles underlying the discrete Fourier transform, notably by
Donoho and Stark [17], Tao [42], and Tropp [45]. Associated with this line of work is
the uniformuncertainty principle ofCandès andTao [12],which played a key role in the
development of compressed sensing. The present paper continues this investigation of
discrete uncertainty principles with an eye on applications in sparse signal processing.

1.1 Background and Overview

For any finite abelian group G, let �(G) denote the set of functions x : G → C,
and ̂G ⊆ �(G) the group of characters over G. Then taking inner products with these
characters and normalizing leads to the (unitary) Fourier transform F : �(G) → �(̂G),
namely

(Fx)[χ ] := 1√|G|
∑

g∈G
x[g]χ [g] ∀χ ∈ ̂G.

The reader who is unfamiliar with Fourier analysis over finite abelian groups is invited
to learn more in [43]. In the case where G = Z/nZ (which we denote by Zn in the
sequel), the above definition coincides with the familiar discrete Fourier transform
after one identifies characters with their frequencies. The following theorem provides
two uncertainty principles in terms of the so-called 0-norm ‖·‖0, defined to be number
of nonzero entries in the argument.

Theorem 1 ([17, Theorem 1], [42, Theorem 1.1]) Let G be a finite abelian group,
and let F : �(G) → �(̂G) denote the corresponding Fourier transform. Then

‖x‖0‖Fx‖0 ≥ |G| ∀x ∈ �(G)\{0}. (1)

Furthermore, if |G| is prime, then
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‖x‖0 + ‖Fx‖0 ≥ |G| + 1 ∀x ∈ �(G)\{0}. (2)

Proof Sketch For (1), apply the fact that the �1/�∞-induced norm of F is given by
‖F‖1→∞ = 1/

√|G|, along with Cauchy–Schwarz and Parseval’s identity:

‖Fx‖∞ ≤ 1√|G| ‖x‖1 ≤
√

‖x‖0
|G| ‖x‖2 =

√

‖x‖0
|G| ‖Fx‖2

≤
√

‖x‖0‖Fx‖0
|G| ‖Fx‖∞,

where the last step bounds a sum in terms of its largest summand. Rearranging gives
the result.

For (2), suppose otherwise that there exists x �= 0 which violates the claimed
inequality. Denote J = supp(x) and pick some I ⊆ ̂G\ supp(Fx) with |I| = |J |.
Then 0 = (Fx)I = FIJ xJ . Since the submatrix FIJ is necessarily invertible by a
theorem of Chebotarëv [39], we conclude that xJ = 0, a contradiction. �

We note that the additive uncertainty principle above is much stronger than its
multiplicative counterpart. Indeed, with the help of the arithmetic mean–geometric
mean inequality, (1) immediately implies

‖x‖0 + ‖Fx‖0 ≥ 2
√‖x‖0‖Fx‖0 ≥ 2

√|G| ∀x ∈ �(G), (3)

which is sharp when G = Zn and n is a perfect square (simply take x to be a Dirac
comb, specifically, the indicator function 1K of the subgroup K of size

√
n). More

generally, if n is not prime, then n = ab with integers a, b ∈ [2, n/2], and so a + b ≤
n/2+ 2 < n + 1; as such, taking x to be an indicator function of the subgroup of size
a (whose Fourier transform necessarily has 0-norm b) will violate (2). Overall, the
hypothesis that |G| is prime cannot be weakened. Still, something can be said if one
slightly strengthens the hypothesis on x . For example, Theorem A in [44] gives that
for every S ⊆ G,

‖x‖0 + ‖Fx‖0 >
√|G|‖x‖0

for almost every x ∈ �(G) supported on S. This suggests that extreme functions like
the Dirac comb are atypical, i.e., (3) is “barely sharp”.

One could analogously argue that, in some sense, (2) is “barely true” when |G| is
prime. For an illustration, Fig. 1 depicts a discrete version of the Gaussian function,
which is constructed by first periodizing the function f (t) = e−nπ t2 over the real line
in order to have unit period, and then sampling this periodized function at multiples
of 1/n. As we verify in Sect. 3.2, the resulting function x ∈ �(Zn) satisfies Fx = x ,
analogous to the fact that a Gaussian function in L2(R) with the proper width is fixed
by the Fourier transform.Given its resemblance to the fast-decayingGaussian function
over R, it comes as no surprise that many entries of this function are nearly zero. In
the depicted case where n = 211 (which is prime), only 99 entries of this function
manage to be larger than machine precision, and so from a numerical perspective, this
function appears to contradict Theorem 1: 99 + 99 = 198 < 212 = 211 + 1.
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Fig. 1 Discrete Gaussian function, obtained by periodizing the function f (t) = e−nπ t2 with period 1
before sampling at multiples of 1/n. The resulting function in Zn is fixed by the n × n discrete Fourier
transform. In this figure, we take n = 211, and only 99 entries are larger than machine precision (i.e.,
2.22×10−16). As such, an unsuspecting signal processor might think ‖x‖0 and ‖Fx‖0 are both 99 instead
of 211. Since 211 is prime and 99 + 99 = 198 < 212 = 211 + 1, this illustrates a lack of numerical
robustness in the additive uncertainty principle of Theorem 1. By contrast, our main result (Theorem 2)
provides a robust alternative in terms of numerical sparsity, though the result is not valid for the discrete
Fourier transform, but rather a random unitary matrix.

To help resolve this discrepancy, we consider a numerical version of traditional
sparsity which is aptly named numerical sparsity:

ns(x) := ‖x‖21
‖x‖22

∀x ∈ C
n\{0}.

See Fig. 2 for an illustration. This ratio appeared as early as 1978 in the context of
geophysics [20]. More recently, it has been used as a proxy for sparsity in various
signal processing applications [14,25,31,36,40]. The numerical rank of a matrix is
analogously defined as the square ratio of the nuclear and Frobenius norms, and has
been used, for example, in Alon’s work on extremal combinatorics [1]. We note that
numerical sparsity is invariant under nonzero scaling, much like traditional sparsity.
In addition, one bounds the other:

ns(x) ≤ ‖x‖0. (4)

To see this, apply Cauchy–Schwarz to get

‖x‖1 = 〈|x |, 1supp(x)〉 ≤ ‖x‖2‖1supp(x)‖2 = ‖x‖2
√‖x‖0,

where |x | denotes the entrywise absolute value of x . Rearranging then gives (4). For
this paper, the most useful feature of numerical sparsity is its continuity, as this will
prevent near-counterexamples like the one depicted in Fig. 1.What follows is our main
result, which leverages numerical sparsity to provide uncertainty principles that are
analogous to those in Theorem 1:

Theorem 2 (Main result1) Let U be an n × n unitary matrix. Then

ns(x) ns(Ux) ≥ 1

‖U‖21→∞
∀x ∈ C

n\{0}, (5)

1 Recall that f (n) = O(g(n)) if there exists C, n0 > 0 such that f (n) ≤ Cg(n) for all n > n0. We write
f (n) = Oδ(g(n)) if the constant C is a function of δ. Also, f (n) = �(g(n)) if g(n) = O( f (n)), and
f (n) = o(g(n)) if f (n)/g(n) → 0 as n → ∞.
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Fig. 2 Traditional sparsity ‖x‖0 (left) and numerical sparsity ns(x) (right) for all x in the unit circle in
R
2. This illustrates how numerical sparsity is a continuous analog of traditional sparsity; we leverage this

feature to provide robust alternatives to the uncertainty principles of Theorem 1. In this case, one may verify
that ns(x) ≤ ‖x‖0 by visual inspection.

where ‖·‖1→∞ denotes the inducedmatrix norm. Furthermore, there exists a universal
constant c > 0 such that if U is drawn uniformly from the unitary group U(n), then
with probability 1 − e−�(n),

ns(x) + ns(Ux) ≥ (c − o(1))n ∀x ∈ C
n\{0}. (6)

Perhaps the most glaring difference between Theorems 1 and 2 is our replace-
ment of the Fourier transform with an arbitrary unitary matrix. Such generalizations
have appeared in the quantum physics literature (for example, see [29]), as well
as in the sparse signal processing literature [15,16,21,40,44,45]. Our multiplicative
uncertainty principle still applies when U = F , in which case ‖U‖1→∞ = 1/

√
n.

Considering (4), the uncertainty principle in this case immediately implies the analo-
gous principle in Theorem 1. Furthermore, the proof is rather straightforward: Apply
Hölder’s inequality to get

ns(x) ns(Ux) = ‖x‖21
‖x‖22

· ‖Ux‖21
‖Ux‖22

≥ ‖x‖21
‖x‖22

· ‖Ux‖22
‖Ux‖2∞

= ‖x‖21
‖Ux‖2∞

≥ 1

‖U‖21→∞
. (7)

By contrast, the proof of our additive uncertainty principle is not straightforward,
and it does not hold if we replace U with F . Indeed, as we show in Sect. 3.2, the
discrete Gaussian function depicted in Fig. 1 has numerical sparsity O(

√
n), thereby

violating (6); recall that the same function is a near-counterexample of the analogous
principle in Theorem 1. Interestingly, our uncertainty principle establishes that the
Fourier transform is rare in that the vast majority of unitary matrices offer much more
uncertainty in the worst case. This naturally leads to the following question:

Problem 3 For each n, what is the largest c = c(n) for which there exists a unitary
matrix U that satisfies ns(x) + ns(Ux) ≥ cn for every x ∈ C

n\{0}?
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Letting x = e1 gives ns(x)+ns(Ux) ≤ 1+‖Ux‖0 ≤ n+1, and so c(n) ≤ 1+o(1);
a bit more work produces a strict inequality c(n) < 1+1/n for n ≥ 4. Also, our proof
of the uncertainty principle implies lim infn→∞ c(n) ≥ 1/540,000.

1.2 Outline

The primary focus of this paper is Theorem2.Having already proved themultiplicative
uncertainty principle in (7), it remains to prove the additive counterpart, which we do
in the following section. Next, Sect. 3 considers functions which achieve either exact
or near equality in (5) when U is the discrete Fourier transform. Surprisingly, exact
equality occurs in (5) precisely when it occurs in (1). We also show that the discrete
Gaussian depicted in Fig. 1 achieves near equality in (5). We conclude in Sect. 4 by
studying a few applications, specifically, sparse signal demixing, compressed sensing
with partial Fourier operators, and the fast detection of sparse signals.

2 Proof of Additive Uncertainty Principle

In this section,we prove the additive uncertainty principle in Theorem2. The following
provides a more explicit statement of the principle we prove:

Theorem 4 Draw U uniformly from the unitary group U(n). Then with probability
≥ 1 − 8e−n/4096,

ns(x) + ns(Ux) ≥ 1

9

⌊

n

60,000

⌋

∀x ∈ C
n\{0}.

For the record, we did not attempt to optimize the constants. Our proof of this
theorem makes use of several ideas from the compressed sensing literature:

Definition 5 Take any m × n matrix � = [ϕ1 · · ·ϕn].
(a) We say � exhibits (k, θ)-restricted orthogonality if

|〈�x,�y〉| ≤ θ‖x‖2‖y‖2
for every x, y ∈ C

n with ‖x‖0, ‖y‖0 ≤ k and disjoint support.
(b) We say � satisfies the (k, δ)-restricted isometry property if

(1 − δ)‖x‖22 ≤ ‖�x‖22 ≤ (1 + δ)‖x‖22
for every x ∈ C

n with ‖x‖0 ≤ k.
(c) We say � satisfies the (k, c)-width property if

‖x‖2 ≤ c√
k
‖x‖1

for every x in the nullspace of �.
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The restricted isometry property is a now-standard sufficient condition for uni-
formly stable and robust reconstruction from compressed sensing measurements (for
example, see [11]). As the following statement reveals, restricted orthogonality implies
the restricted isometry property:

Lemma 6 [4, Lemma 11] If a matrix satisfies (k, θ)-restricted orthogonality and its
columns have unit norm, then it also satisfies the (k, δ)-restricted isometry property
with δ = 2θ .

To prove Theorem 4, we will actually make use of the width property, which was
introduced by Kashin and Temlyakov [27] to characterize uniformly stable �1 recon-
struction for compressed sensing. Luckily, the restricted isometry property implies the
width property:

Lemma 7 ([9, Theorem11], cf. [27]) If amatrix satisfies the (k, δ)-restricted isometry
property for some positive integer k and δ < 1/3, then it also satisfies the (k, 3)-width
property.

What follows is a stepping-stone result that we will use to prove Theorem 4, but it
is also of independent interest:

Theorem 8 Draw U uniformly from the unitary group U(n). Then [I U ] satisfies the
(k, δ)-restricted isometry property with probability ≥ 1 − 8e−δ2n/256 provided δ < 1
and

n ≥ 256

δ2
k log

(

en

k

)

. (8)

This is perhaps not surprising, considering various choices of structured random
matrices are known to form restricted isometries with high probability [3,8,12,28,
34,35,37]. To prove Theorem 8, we show that the structured matrix enjoys restricted
orthogonality with high probability, and then appeal to Lemma 6. Before proving this
result, we first motivate it by proving the desired uncertainty principle:

Proof of Theorem 4 Take k = �n/60,000� and δ = 1/4. We will show ns(x) +
ns(Ux) ≥ k/9 for every nonzero x ∈ C

n . If k = 0, the result is immediate, and so n ≥
60,000 without loss of generality. In this regime, we have k ∈ [n/120,000,n/60,000],
and so

256

δ2
k log

(

en

k

)

≤ 4096 log(120,000e) · k ≤ 60,000k ≤ n.

Theorem 8 and Lemma 7 then give that [I U ] satisfies the (k, 3)-width property with
probability ≥ 1 − 8e−n/4096. Observe that z = [Ux;−x] resides in the nullspace of
[I U ] regardless of x ∈ C

n . In the case where x (and therefore z) is nonzero, the width
property and the arithmetic mean–geometric mean inequality together give
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k

9
≤ ‖z‖21

‖z‖22
= (‖x‖1 + ‖Ux‖1)2

‖x‖22 + ‖Ux‖22
= ‖x‖21 + 2‖x‖1‖Ux‖1 + ‖Ux‖21

2‖x‖22
≤ ns(x) + ns(Ux).

�
Proof of Theorem 8 Take [I U ] = [ϕ1 · · ·ϕ2n], and let k be the largest integer satisfy-
ing (8).Wewill demonstrate that [I U ] satisfies the (k, δ)-restricted isometry property,
which will then imply the (k′, δ)-restricted isometry property for all k′ < k + 1, and
therefore all k satisfying (8). To this end, define the random quantities

θ
(U ) := max
x,y∈C2n

‖x‖0,‖y‖0≤k
supp(x)∩supp(y)=∅

|〈�x,�y〉|
‖x‖2‖y‖2 , θ(U ) := max

x,y∈C2n

‖x‖0,‖y‖0≤k
supp(x)⊆[n]
supp(y)⊆[n]c

|〈�x,�y〉|
‖x‖2‖y‖2 .

We first claim that θ
(U ) ≤ θ(U ). To see this, for any x, y satisfying the constraints
in θ
(U ), decompose x = x1 + x2 so that x1 and x2 are supported in [n] and [n]c,
respectively, and similarly y = y1 + y2. For notational convenience, let S denote the
set of all 4-tuples (a, b, c, d) of k-sparse vectors inC2n such that a and b are disjointly
supported in [n], while c and d are disjointly supported in [n]c. Then (x1, y1, x2, y2) ∈
S. Since supp(x) and supp(y) are disjoint, and since I and U each have orthogonal
columns, we have

〈�x,�y〉 = 〈�x1,�y2〉 + 〈�x2,�y1〉.

As such, the triangle inequality gives

θ
(U ) = max
x,y∈C2n

‖x‖0,‖y‖0≤k
supp(x)∩supp(y)=∅

|〈�x1,�y2〉 + 〈�x2,�y1〉|
‖x‖2‖y‖2

≤ max
(x1,y1,x2,y2)∈S

|〈�x1,�y2〉| + |〈�x2,�y1〉|
√

‖x1‖22 + ‖x2‖22
√

‖y1‖22 + ‖y2‖22
≤

(

max
(x1,y1,x2,y2)∈S

‖x1‖2‖y2‖2 + ‖x2‖2‖y1‖2
√

‖x1‖22 + ‖x2‖22
√

‖y1‖22 + ‖y2‖22

)

θ(U )

≤ θ(U ),

where the last step follows from squaring and applying the arithmetic mean–geometric
mean inequality:

(
√
ad + √

bc√
(a + b)(c + d)

)2

= ad + bc + 2
√
acbd

(a + b)(c + d)
≤ ad + bc + (ac + bd)

(a + b)(c + d)
= 1.

At this point, we seek to bound the probability that θ(U ) is large. First, we observe
an equivalent expression:
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θ(U ) = max
x,y∈Cn

‖x‖2=‖y‖2=1
‖x‖0,‖y‖0≤k

|〈x,Uy〉|.

To estimate the desired probability, we will pass to an ε-net Nε of k-sparse vectors
with unit 2-norm. A standard volume-comparison argument gives that the unit sphere
in Rm enjoys an ε-net of size ≤ (1+ 2/ε)m (see [47, Lemma 5.2]). As such, for each
choice of k coordinates, we can cover the corresponding copy of the unit sphere in
C
k = R

2k with ≤ (1 + 2/ε)2k points, and unioning these produces an ε-net of size

|Nε | ≤
(

n

k

)(

1 + 2

ε

)2k

.

To apply this ε-net, we note that ‖x − x ′‖2, ‖y − y′‖2 ≤ ε and ‖x ′‖2 = ‖y′‖2 = 1
together imply

|〈x,Uy〉| = |〈x ′ + x − x ′,U (y′ + y − y′)〉|
≤ |〈x ′,Uy′〉| + ‖x − x ′‖2 + ‖y − y′‖2 + ‖x − x ′‖2‖y − y′‖2
≤ |〈x ′,Uy′〉| + 3ε,

where the last step assumes ε ≤ 1. As such, the union bound gives

Pr(θ(U ) > t)

= Pr

(

∃x, y ∈ C
n, ‖x‖2 = ‖y‖2 = 1, ‖x‖0, ‖y‖0 ≤ k s.t. |〈x,Uy〉| > t

)

≤ Pr

(

∃x, y ∈ Nε s.t. |〈x,Uy〉| > t − 3ε

)

≤
∑

x,y∈Nε

Pr
(

|〈x,Uy〉| > t − 3ε
)

=
(

n

k

)2(

1 + 2

ε

)4k

Pr
(

|〈e1,Ue1〉| > t − 3ε
)

, (9)

where the last step uses the fact that the distribution of U is invariant under left- and
right-multiplication by any deterministic unitary matrix (e.g., unitary matrices that
send e1 to x and y to e1, respectively). It remains to prove tail bounds on U11 :=
〈e1,Ue1〉. First, we apply the union bound to get

Pr(|U11| > u) ≤ Pr

(

|Re(U11)| >
u√
2

)

+ Pr

(

| Im(U11)| >
u√
2

)

= 4 Pr

(

Re(U11) >
u√
2

)

, (10)

where the last step uses the fact that Re(U11) has even distribution. Next, we observe
that Re(U11) has the same distribution as g/

√
h, where g has standard normal distri-
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bution and h has chi-squared distribution with 2n degrees of freedom. Indeed, this can
be seen from one method of constructing the matrix U : Start with an n × n matrix G
with iid N (0, 1) + i N (0, 1) complex Gaussian entries and apply Gram–Schmidt to
the columns; the first column of U is then the first column of G divided by its norm√
h. Let s > 0 be arbitrary (to be selected later). Then g/

√
h > u/

√
2 implies that

either g >
√
su/

√
2 or h < s. As such, the union bound implies

Pr

(

Re(U11) >
u√
2

)

≤ 2max

{

Pr

(

g >
√
s
u√
2

)

,Pr(h < s)

}

. (11)

For the first term, Proposition 7.5 in [19] gives

Pr

(

g >
√
s
u√
2

)

≤ e−su2/4. (12)

For the second term, Lemma 1 in [30] gives Pr(h < 2n−√
8nx) ≤ e−x for any x > 0.

Picking x = (2n − s)2/(8n) then gives

Pr(h < s) ≤ e−(2n−s)2/(8n). (13)

We use the estimate
(n
k

) ≤ (en/k)k when combining (9)–(13) to get

log
(

Pr(θ(U ) > t)
)

≤ 2k log

(

en

k

)

+ 4k log

(

1 + 2

ε

)

+ log 8 − min

{

s(t − 3ε)2

4
,
(2n − s)2

8n

}

.

Notice n/k ≥ (256/δ2) log(en/k) ≥ 256 implies that taking ε = √

(k/n) log(en/k)
gives

√

en

k
− 2

ε
=

(

1 − 2
√

e log(n/k)

)√

en

k
≥

(

1 − 2
√

e log(256)

)√
256e ≥ 1,

which can be rearranged to get

log

(

1 + 2

ε

)

≤ 1

2
log

(

en

k

)

.

As such, we also pick s = n and t = √

(64k/n) log(en/k) to get

log
(

Pr(θ(U ) > t)
)

≤ 4k log

(

en

k

)

+ log 8 − 25

4
k log

(

en

k

)

≤ log 8 − 2k log

(

en

k

)

.
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Since we chose k to be the largest integer satisfying (8), we therefore have θ(U ) ≤
√

(64k/n) log(n/k)with probability≥ 1−8e−δ2n/256. Lemma 6 then gives the result.
�

3 Low Uncertainty with the Discrete Fourier Transform

In this section, we study functions which achieve either exact or near equality in our
multiplicative uncertainty principle (6) in the case where the unitary matrix U is the
discrete Fourier transform.

3.1 Exact Equality in the Multiplicative Uncertainty Principle

Weseek to understandwhen equality is achieved in (6) in the special case of the discrete
Fourier transform. For reference, the analogous result for (1) is already known:

Theorem 9 [17, Theorem 13] Suppose x ∈ �(Zn) satisfies ‖x‖0‖Fx‖0 = n. Then x
has the form x = cT aMb1K ,where c ∈ C, K is a subgroupofZn, and T, M : �(Zn) →
�(Zn) are translation and modulation operators defined by

(T x)[ j] := x[ j − 1], (Mx)[ j] := e2π i j/nx[ j] ∀ j ∈ Zn .

Here, i denotes the imaginary unit
√−1.

In words, equality is achieved in (1) by indicator functions of subgroups, namely,
the so-called Dirac combs (as well as their scalar multiples, translations, modulations).
We seek an analogous characterization for our uncertainty principle (6). Surprisingly,
the characterization is identical:

Theorem 10 Suppose x ∈ �(Zn). Then ns(x) ns(Fx) = n if and only if ‖x‖0‖Fx‖0 =
n.

Proof (⇐) This follows directly from (4), along with Theorems 1 and 2.
(⇒) It suffices to show that ns(x) = ‖x‖0 and ns(Fx) = ‖Fx‖0. Note that both F

and F−1 are unitary operators and ‖F‖21→∞ = ‖F−1‖21→∞ = 1/n. By assumption,
taking y := Fx then gives

ns(F−1y) ns(y) = ns(x) ns(Fx) = n.

We will use the fact that x and y each achieve equality in the first part of Theorem 2
with U = F and U = F−1, respectively. Notice from the proof (7) that equality
occurs only if x and y satisfy equality in Hölder’s inequality, that is,

‖x‖1‖x‖∞ = ‖x‖22, ‖y‖1‖y‖∞ = ‖y‖22. (14)

To achieve the first equality in (14),

∑

j∈Zn

|x[ j]|2 = ‖x‖22 = ‖x‖1‖x‖∞ =
∑

j∈Zn

|x[ j]|max
k∈Zn

|x[k]|.
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This implies that |x[ j]| = maxk |x[k]| for every j with x[ j] �= 0. Similarly, in order
for the second equality in (14) to hold, |y[ j]| = maxk |y[k]| for every j with y[ j] �= 0.
As such, |x | = a1A and |y| = b1B for some a, b > 0 and A, B ⊆ Zn . Then

ns(x) = ‖x‖21
‖x‖22

= (a|A|)2
a2|A| = |A| = ‖x‖0,

and similarly, ns(y) = ‖y‖0. �

3.2 Near Equality in the Multiplicative Uncertainty Principle

Having established that equality in the new multiplicative uncertainty principle (5)
is equivalent to equality in the analogous principle (1), we wish to separate these
principles by focusing on near equality. For example, in the case where n is prime, Zn

has no nontrivial proper subgroups, and so by Theorem 9, equality is only possible
with identity basis elements and complex exponentials. On the other hand, we expect
the new principle to accommodate nearly sparse vectors, and so we appeal to the
discrete Gaussian depicted in Fig. 1:

Theorem 11 Define x ∈ �(Zn) by

x[ j] :=
∑

j ′∈Z
e−nπ(

j
n + j ′)2 ∀ j ∈ Zn . (15)

Then Fx = x and ns(x) ns(Fx) ≤ (2 + o(1))n.

In words, the discrete Gaussian achieves near equality in the uncertainty principle
(5). Moreover, numerical evidence suggests that ns(x) ns(Fx) = (2 + o(1))n, i.e.,
the 2 is optimal for the discrete Gaussian. Note that this does not depend on whether
n is prime or a perfect square. Recall that a function f ∈ C∞(R) is Schwarz if
supx∈R |xα f (β)(x)| < ∞ for every pair of nonnegative integers α and β. We use this
to quickly prove a well-known lemma that will help us prove Theorem 11:

Lemma 12 Suppose f ∈ C∞(R) is Schwarz and construct a discrete function x ∈
�(Zn) by periodizing and sampling f as follows:

x[ j] =
∑

j ′∈Z
f

(

j

n
+ j ′

)

∀ j ∈ Zn . (16)

Then thediscreteFourier transformof x is determinedby f̂ (ξ) := ∫ ∞
−∞ f (t)e−2π iξ t dt:

(Fx)[k] = √
n

∑

k′∈Z
f̂ (k + k′n) ∀k ∈ Zn .
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Proof Since f is Schwarz, we may apply the Poisson summation formula:

x[ j] =
∑

j ′∈Z
f

(

j

n
+ j ′

)

=
∑

l∈Z
f̂ (l)e2π i jl/n .

Next, the geometric sum formula gives

(Fx)[k] = 1√
n

∑

j∈Zn

(

∑

l∈Z
f̂ (l)e2π i jl/n

)

e−2π i jk/n

= 1√
n

∑

l∈Z
f̂ (l)

∑

j∈Zn

(

e2π i(l−k)/n
) j = √

n
∑

l∈Z
l≡k mod n

f̂ (l).

The result then follows from a change of variables. �

Proof of Theorem 11 It is straightforward to verify that the function f (t) = e−nπ t2

is Schwarz. Note that defining x according to (16) then produces (15). Considering
f̂ (ξ) = n−1/2e−πξ2/n , onemayuseLemma12 to quickly verify that Fx = x . To prove
Theorem 11, it then suffices to show that ns(x) ≤ (

√
2 + o(1))

√
n. We accomplish

this by bounding ‖x‖2 and ‖x‖1 separately.
To bound ‖x‖2, we first expand a square to get

‖x‖22 =
∑

j∈Zn

(

∑

j ′∈Z
e−nπ(

j
n + j ′)2

)2

=
∑

j∈Zn

∑

j ′∈Z

∑

j ′′∈Z
e−nπ [( j

n + j ′)2+(
j
n + j ′′)2].

Since all of the terms in the sum are nonnegative, we may infer a lower bound by
discarding the terms for which j ′′ �= j ′. This yields the following:

‖x‖22 ≥
∑

j∈Zn

∑

j ′∈Z
e−2nπ(

j
n + j ′)2 =

∑

k∈Z
e−2πk2/n ≥

∫ ∞

−∞
e−2πx2/ndx − 1 =

√

n

2
− 1,

where the last inequality follows from an integral comparison. Next, we bound ‖x‖1
using a similar integral comparison:

‖x‖1 =
∑

j∈Zn

∑

j ′∈Z
e−nπ(

j
n + j ′)2 =

∑

k∈Z
e−πk2/n ≤

∫ ∞

−∞
e−πx2/ndx + 1 = √

n + 1.

Overall, we have

ns(x) = ‖x‖21
‖x‖22

≤ (
√
n + 1)2√
n/2 − 1

= (
√
2 + o(1))

√
n.

�
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4 Applications

Having studied the new uncertainty principles in Theorem 2, we now take some time
to identify certain consequences in various sparse signal processing applications. In
particular, we report consequences in sparse signal demixing, in compressed sensing
with partial Fourier operators, and in the fast detection of sparse signals.

4.1 Sparse Signal Demixing

Suppose a signal x is sparse in the Fourier domain and corrupted by noise ε which is
sparse in the time domain (such as speckle). The goal of demixing is to recover the
original signal x given the corrupted signal z = x + ε; see [32] for a survey of various
related demixing problems. Provided Fx and ε are sufficiently sparse, it is known that
this recovery can be accomplished by solving

v
 := argmin ‖v‖1 subject to [I F]v = Fz, (17)

where, if successful, the solution v
 is the column vector obtained by concatenating
Fx and ε; see [38] for an early appearance of this sort of approach. To some extent, we
know how sparse Fx and ε must be for this �1 recoverymethod to succeed. Coherence-
based guarantees in [15,16,21] show that it suffices for v
 to be k-sparse with k =
O(

√
n), while restricted isometry–based guarantees [5,11] allow for k = O(n) if

[I F] is replaced with a random matrix. This disparity is known as the square-root
bottleneck [46]. In particular, does [I F] perform similarly to a random matrix, or is
the coherence-based sufficient condition on k also necessary?

In the case where n is a perfect square, it is well known that the coherence-based
sufficient condition is also necessary. Indeed, let K denote the subgroup of Zn of size√
n and suppose x = 1K and ε = −1K . Then [Fx; ε] is 2√n-sparse, and yet z = 0,

thereby forcing v
 = 0. On the other hand, if n is prime, then the additive uncertainty
principle of Theorem 1 implies that every member of the nullspace of [I F] has at
least n + 1 nonzero entries, and so v
 �= 0 in this setting. Still, considering Fig. 1, one
might expect a problem from a stability perspective. In this section, we use numerical
sparsity to show that � = [I F] cannot break the square-root bottleneck, even if n is
prime. To do this, we will make use of the following theorem:

Theorem 13 (see [9,27]) Denote �(y) := argmin ‖x‖1 subject to �x = y. Then

‖�(�x) − x‖2 ≤ C√
k
‖x − xk‖1 ∀x ∈ R

n (18)

if and only if � satisfies the (k, c)-width property. Furthermore, C � c in both direc-
tions of the equivalence.

Take x as defined in (15). Then [x;−x] lies in the nullspace of [I F] and

ns
([x;−x]) = (2‖x‖1)2

2‖x‖22
= 2 ns(x) ≤ (2

√
2 + o(1))

√
n,
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where the last step follows from the proof of Theorem 11. As such, [I F] satisfies the
(k, c)-width property for some c independent of n only if k = O(

√
n). Furthermore,

Theorem 13 implies that stable demixing by �1 reconstruction requires k = O(
√
n),

thereby proving the necessity of the square-root bottleneck in this case.
It is worth mentioning that the restricted isometry property is a sufficient condition

for (18) (see [11], for example), and so by Theorem 8, one can break the square-
root bottleneck by replacing the F in [I F] with a random unitary matrix. This gives
a uniform demixing guarantee which is similar to those provided by McCoy and
Tropp [33], though the convex program they consider differs from (17).

4.2 Compressed Sensing with Partial Fourier Operators

Consider the randomm×n matrix obtained by drawing rows uniformly with replace-
ment from the n × n discrete Fourier transform matrix. If m = �δ(k polylog n),
then the resulting partial Fourier operator satisfies the restricted isometry property,
and this fact has been dubbed the uniform uncertainty principle [12]. A funda-
mental problem in compressed sensing is determining the smallest number m of
random rows necessary. To summarize the progress to date, Candès and Tao [12] first
found that m = �δ(k log6 n) rows suffice, then Rudelson and Vershynin [37] proved
m = �δ(k log4 n), and recently, Bourgain [8] achieved m = �δ(k log3 n); Nelson,
Price and Wootters [34] also achieved m = �δ(k log3 n), but using a slightly differ-
ent measurement matrix. In this subsection, we provide a lower bound: in particular,
m = �δ(k log n) is necessary whenever k divides n. Our proof combines ideas from
themultiplicative uncertainty principle and the classical problem of coupon collecting.

The coupon collector’s problem asks how long it takes to collect all k coupons in
an urn if you repeatedly draw one coupon at a time randomly with replacement. It is
a worthwhile exercise to prove that the expected number of trials scales like k log k.
We will require even more information about the distribution of the random number
of trials:

Theorem 14 (see [13,18]) Let Tk denote the random number of trials it takes to
collect k different coupons, where in each trial, a coupon is drawn uniformly from the
k coupons with replacement.

(a) For each a ∈ R,

lim
k→∞Pr

(

Tk ≤ k log k + ak
)

= e−e−(a+γ )

,

where γ ≈ 0.5772 denotes the Euler–Mascheroni constant.
(b) There exists c > 0 such that for each k,

sup
a∈R

∣

∣

∣

∣

Pr
(

Tk ≤ k log k + ak
)

− e−e−(a+γ )

∣

∣

∣

∣

≤ c log k

k
.

Lemma 15 Suppose k divides n, and drawm iid rows uniformly from the n×n discrete
Fourier transform matrix to form a random m × n matrix �. If m < k log k, then the
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nullspace of � contains a k-sparse vector with probability ≥ 0.4− c(log k)/k, where
c is the constant from Theorem 14(b).

Proof Let K denote the subgroup of Zn of size k, and let 1K denote its indicator
function. We claim that some modulation of 1K resides in the nullspace of � with the
probability reported in the lemma statement. Let H denote the subgroup of Zn of size
n/k. Then the Fourier transform of each modulation of 1K is supported on some coset
of H . Letting M denote the random row indices that are drawn uniformly from Zn ,
a modulation of 1K resides in the nullspace of � precisely when M fails to intersect
the corresponding coset of H . As there are k cosets, each with probability 1/k, this
amounts to a coupon-collecting problem (explicitly, each “coupon” is a coset, and
we “collect” the cosets that M intersects). The result then follows immediately from
Theorem 14(b):

Pr(Tk ≤ m) ≤ e−e−(m/k−log k+γ ) + c log k

k
≤ e−e−γ + c log k

k
≤ 0.6 + c log k

k
.

�
Presumably, one may remove the divisibility hypothesis in Lemma 15 at the price

of weakening the conclusion. We suspect that the new conclusion would declare the
existence of a vector x of numerical sparsity k such that ‖�x‖2 � ‖x‖2. If so, then �

fails to satisfy the so-called robust width property, which is necessary and sufficient for
stable and robust reconstruction by �1 minimization [9]. For the sake of simplicity, we
decided not to approach this, but we suspect that modulations of the discrete Gaussian
would adequately fill the role of the current proof’s modulated indicator functions.

What follows is the main result of this subsection:

Theorem 16 Let k be sufficiently large, suppose k divides n, and draw m iid rows
uniformly from the n × n discrete Fourier transform matrix to form a random m × n
matrix �. Take δ < 1/3. Then � satisfies the (k, δ)-restricted isometry property with
probability ≥ 2/3 only if

m ≥ C(δ)k log(en),

where C(δ) is some constant depending only on δ.

Proof In the event that � satisfies (k, δ)-RIP, we know that no k-sparse vector lies in
the nullspace of �. Therefore, Lemma 15 implies

m ≥ k log k, (19)

since otherwise � fails to be (k, δ)-RIP with probability ≥ 0.4 − c(log k)/k > 1/3,
where the last step uses the fact that k is sufficiently large. Next, we leverage standard
techniques from compressed sensing: (k, δ)-RIP implies (18) with C = C1(δ) (see
[10, Theorem 3.3]), which in turn implies

m ≥ C2(δ)k log

(

en

k

)

(20)
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by Theorem 11.7 in [19]. Since � is (k, δ)-RIP with positive probability, we know
there exists anm×nmatrixwhich is (k, δ)-RIP, and sommust satisfy (20). Combining
with (19) then gives

m ≥ max

{

k log k,C2(δ)k log

(

en

k

)}

.

The result then follows from applying the bound max{a, b} ≥ (a + b)/2 and then
taking C(δ) := (1/2)min{1,C2(δ)}. �

We note that the necessity of k log n random measurements contrasts with the
proportional-growth asymptotic adopted in [7] to study the restricted isometry property
of Gaussian matrices. Indeed, it is common in compressed sensing to consider phase
transitions in which k, m and n are taken to infinity with fixed ratios k/m and m/n.
However, since random partial Fourier operators fail to be restricted isometries unless
m = �δ(k log n), such a proportional-growth asymptotic fails to capture the so-called
strong phase transition of these operators [7].

The proof of Theorem 16 relies on the fact that the measurements are drawn at
random. By contrast, it is known that every m × n partial Hadamard operator fails
to satisfy (k, δ)-RIP unless m = �δ(k log n) [22,41]. We leave the corresponding
deterministic result in the Fourier case for future work.

4.3 Fast Detection of Sparse Signals

The previous subsection established fundamental limits on the number of Fourier
measurements necessary to perform compressed sensing with a uniform guarantee.
However, for some applications, signal reconstruction is unnecessary. In this subsec-
tion, we consider one such application, namely sparse signal detection, in which the
goal is to test the following hypotheses:

H0 : x = 0

H1 : ‖x‖22 = n

k
, ‖x‖0 ≤ k.

Here, we assume we know the 2-norm of the sparse vector we intend to detect, and
we set it to be

√
n/k without loss of generality (this choice of scaling will help

us interpret our results later). We will assume the data is accessed according to the
following query–response model:

Definition 17 (Query–response model) If the i th query is ji ∈ Zn , then the i th
response is (Fx)[ ji ] + εi , where the εi ’s are iid complex random variables with some
distribution such that

E|εi | = α, E|εi |2 = β2.

The coefficient of variation v of |εi | is defined as

v =
√
Var |εi |
E|εi | =

√

β2 − α2

α
. (21)



952 J Fourier Anal Appl (2018) 24:935–956

Note that for any scalar c �= 0, the mean and variance of |cεi | are |c|α and |c|2 Var |εi |,
respectively. As such, v is scale invariant and is simply a quantification of the “shape”
of the distribution of |εi |. We will evaluate the responses to our queries with an �1
detector, defined below.

Definition 18 (�1 detector) Fix a threshold τ . Given responses {yi }mi=1 from the query–
response model, if

m
∑

i=1

|yi | > τ,

then reject H0.

The following is the main result of this section:

Theorem 19 Suppose α ≤ 1/(8k). Randomly drawm indices uniformly fromZn with
replacement, input them into the query–response model and apply the �1 detector with
threshold τ = 2mα to the responses. Then

Pr

(

reject H0

∣

∣

∣

∣

H0

)

≤ p (22)

and

Pr

(

fail to reject H0

∣

∣

∣

∣

H1

)

≤ p (23)

provided m ≥ (8k + 2v2)/p, where v is the coefficient of variation defined in (21).

In words, the probability that the �1 detector delivers a false positive is at most p,
as is the probability that it delivers a false negative. These error probabilities can be
estimated better given more information about the distribution of the random noise,
and presumably, the threshold τ can be modified to decrease one error probability at
the price of increasing the other. Notice that we only use O(k) samples in the Fourier
domain to detect a k-sparse signal. Since the sampled indices are random, it will take
O(log n) bits to communicate each query, leading to a total computational burden
of O(k log n) operations. This contrasts with the state-of-the-art sparse fast Fourier
transform algorithms which require �(k log(n/k)) samples and take O(k polylog n)

time (see [26] and references therein). We suspect k-sparse signals cannot be detected
with substantially fewer samples (in the Fourier domain or any domain).

We also note that the acceptable noise magnitude α = O(1/k) is optimal in some
sense. To see this, consider the case where k divides n and x is a properly scaled
indicator function of the subgroup of size k. Then Fx is the indicator function of the
subgroup of size n/k. (Thanks to our choice of scaling, each nonzero entry in the
Fourier domain has unit magnitude.) Since a proportion of 1/k entries is nonzero in
the Fourier domain, we can expect to require O(k) random samples in order to observe
a nonzero entry, and the �1 detector will not distinguish the entry from accumulated
noise unless α = O(1/k).

Before proving Theorem 19, we first prove a couple of lemmas. We start by esti-
mating the probability of a false positive:
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Lemma 20 Take ε1, . . . , εm to be iid complex random variables with E|εi | = α and
E|εi |2 = β2. Then

Pr

( m
∑

i=1

|εi | > 2mα

)

≤ p

provided m ≥ v2/p, where v is the coefficient of variation of |εi | defined in (21).

Proof Denoting X := ∑m
i=1 |εi |, we have EX = mα and Var X = m(β2 − α2).

Chebyshev’s inequality then gives

Pr

( m
∑

i=1

|εi | − mα > t

)

≤ Pr(|X − EX | > t) ≤ Var X

t2
= m(β2 − α2)

t2
.

Finally, we take t = mα to get

Pr

( m
∑

i=1

|εi | > 2mα

)

≤ m
(β2 − α2)

(mα)2
= β2 − α2

mα2 ≤ β2 − α2

α2 · p

v2
= p.

�
Next, we leverage the multiplicative uncertainty principle in Theorem 2 to estimate

moments of noiseless responses:

Lemma 21 Suppose ‖x‖0 ≤ k and ‖x‖22 = n/k. Draw j uniformly from Zn and
define Y := |(Fx)[ j]|. Then

EY ≥ 1

k
, EY 2 = 1

k
.

Proof Recall that ns(x) ≤ ‖x‖0 ≤ k. With this, Theorem 2 gives

n ≤ ns(x) ns(Fx) ≤ k ns(Fx).

We rearrange and apply the definition of numerical sparsity to get

n

k
≤ ns(Fx) = ‖Fx‖21

‖Fx‖22
= ‖Fx‖21

‖x‖22
= ‖Fx‖21

n/k
,

where the second to last equality is due to Parseval’s identity. Thus, ‖Fx‖1 ≥ n/k.
Finally,

EY = 1

n

∑

j∈Zn

|(Fx)[ j]| = 1

n
‖Fx‖1 ≥ 1

k
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and

EY 2 = 1

n

∑

j∈Zn

|(Fx)[ j]|2 = 1

n
‖Fx‖22 = 1

k
.

�

Proof of Theorem 19 Lemma 20 gives (22), and so it remains to prove (23). Denoting
Yi := |(Fx)[ ji ]|, we know that |yi | ≥ Yi − |εi |, and so

Pr

( m
∑

i=1

|yi | ≤ 2ma

)

≤ Pr

( m
∑

i=1

Yi −
m

∑

i=1

|εi | ≤ 2ma

)

. (24)

For notational convenience, put Z := ∑m
i=1 Yi − ∑m

i=1 |εi |. We condition on the size
of the noise and apply Lemma 20 with the fact that m ≥ v2/(p/2) to bound (24):

Pr(Z ≤ 2mα) = Pr

(

Z ≤ 2mα

∣

∣

∣

∣

m
∑

i=1

|εi | > 2mα

)

Pr

( m
∑

i=1

|εi | > 2mα

)

+ Pr

(

Z ≤ 2mα

∣

∣

∣

∣

m
∑

i=1

|εi | ≤ 2mα

)

Pr

( m
∑

i=1

|εi | ≤ 2mα

)

≤ p

2
+ Pr

( m
∑

i=1

Yi ≤ 4mα

)

. (25)

Nowwe seek to bound the second term of (25). Taking X = ∑m
i=1 Yi , Lemma 21 gives

EX ≥ m/k and Var X = m Var Yi ≤ mEY 2
i = m/k. As such, applying Chebyshev’s

inequality gives

Pr

( m
∑

i=1

Yi <
m

k
− t

)

≤ Pr(X ≤ EX − t) ≤ Pr(|X − EX | > t) ≤ Var(X)

t2
≤ m

kt2
.

Recalling that α ≤ 1/(8k), we take t = m/(2k) to get

Pr

( m
∑

i=1

Yi ≤ 4mα

)

≤ Pr

( m
∑

i=1

Yi ≤ m

2k

)

= Pr

( m
∑

i=1

Yi ≤ m

k
− t

)

≤ m

kt2
= 4k

m
≤ p

2
, (26)

where the last step uses the fact that m ≥ 8k/p. Combining (24), (25), and (26) gives
the result. �
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