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Abstract We briefly review results on generalized solutions to the Cauchy prob-
lem for linear Schrödinger-type equations with non-smooth principal part and their
compatibility with classical and distributional solutions. In the main part, we study
convergence properties of regularized solutions to the standard Schrödinger equation
with initial values corresponding to ‘square roots’ of Dirac measures in various duals
of classical subspaces of the space of continuous functions. In particular, the main
result establishes as limit the invariant mean on the space of almost periodic functions
as the restriction of the Haar measure on the Bohr compactification of R

n .
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Invariant mean
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1 Introduction

Themotivation to study Schrödinger-type linear partial differential operatorswith non-
smooth coefficients can be drawn from at least two fields of mathematical physics:
Geophysical models of seismic wave propagation near the earth’s core and quan-
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tum dynamics of particles in singular potentials. In [20] the basic structures of both
types of models were combined into an abstract mathematical formulation and unique
existence of solutions to the following Cauchy problem was shown in a setting allow-
ing for discontinuous or distributional coefficients, initial data, and right-hand sides:
with T > 0 arbitrary one obtains a unique generalized function u on R

n × [0, T ]
solving

∂t u − i
n∑

k=1

∂xk

(
ck∂xk u

) − iV u = f (1)

u |t=0 = g, (2)

where ck (k = 1, . . . , n), V , and f are generalized functions on R
n × [0, T ] and

g is a generalized function on R
n . Colombeau-generalized solutions to linear and

nonlinear Schrödinger equations with constant coefficient principal part have been
constructed previously in [5,30,31]. The particular case of Schrödinger operators
with δ-potential is also settled in terms of non-standard analysis in [2], and a classic
approach with quadratic forms and a Friedrichs extension is discussed briefly in [32,
Example 2.5.19].

Differential operators of Schrödinger-type with non-smoothness in the principal
symbol arise as paraxial equations in models of wave propagation based on narrow-
angle symbol approximations and have been applied in various fields of optics or
acoustic tomography, but also to seismic wave propagation near the core-mantle
boundary inside the earth in [8]. The leading-order approximation leads to model
equations of Schrödinger-type, where the material properties are encoded into the
regularity structure of the coefficients in the principal part and in [8] a correspond-
ing evolutionary system—meaning unique solvability of the corresponding Cauchy
problem—has been established in an L2-setting allowing the coefficients to be of
Hölder- or Sobolev-type regularity below log-Lipschitz continuity. This result put the
(Hölder or) Sobolev regularity of the solution in relation to the initial data regularity
under lowest possible regularity assumptions on the coefficient, which is crucial in the
so-called inverse media analysis of geophysics.

In the context of quantummechanics one is interested in allowing for the zero-order
term V in the Schrödinger equation ∂t u = i�x u + iV u to model a singular potential.
Moreover, in the classical L2 theory one has initial data u |t=0= u0 such that |u0|2
corresponds to an initial probability density and |u(., t)|2 is then usually interpreted
as the evolved probability density at time t . We may now think of this situation in
more general terms as |u0|2 representing a given initial probability measure μ on R

n ,
i.e., u0 as generalized initial data representing a ‘regularized square root of a given
probability measure’, and of μt := |u(., t)|2 as the time evolved regularized Borel
probabilitymeasure.A result in [20], reviewedbelow inSect. 2, shows how to construct
a Colombeau generalized function whose square is associated with a given probability
measure in the sense of distributional shadows. We may mention that questions about
squares of distributional objects as measures arose also in general relativity theory
(cf. [16, Sect. 5.3] and [22,27–29]). A regularization approach for powers of delta as
initial values in semilinear heat equations has been employed in [23].
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In Sect. 2 we review the regularization approach to generalized functions in the
sense of Colombeau, square roots of probability measures in this framework, the main
result on unique existence of generalized solutions to the Schrödinger-type Cauchy
problem (1–2), and the relation of Colombeau generalized solutions with classical and
distributional solution concepts. Section 3 then discusses in detail the convergence
properties of solutions corresponding to regularizations of initial values modeling
square roots of a Dirac measure in the dual spaces of classical subspaces of the space
of continuous functions. The main result is Theorem 3.11 establishing the (unique)
invariant mean on almost periodic functions as the limit.

2 Regularizations, Generalized Function Solutions, and Coherence
Properties

In this section, we review the main results of [20]. Before going into details, we recall
a few basics from the theory of Colombeau generalized functions.

The fundamental idea of Colombeau-type regularization methods is to model non-
smooth objects by approximating nets of smooth functions, convergent or not, but with
moderate asymptotics and to identify regularizing nets whose differences compared
to the moderateness scale are negligible. For a modern introduction to Colombeau
algebras we refer to [16]. Here we will also make use of constructions and notations
from [15], where generalized functions based on a locally convex topological vector
space E are defined:Let E be a locally convex topological vector spacewhose topology
is given by the family of seminorms {p j } j∈J . The elements of

ME := {(uε)ε ∈ E (0,1] : ∀ j ∈ J ∃N ∈ N p j (uε) = O(ε−N ) as ε → 0}

and

NE := {(uε)ε ∈ E (0,1] : ∀ j ∈ J ∀q ∈ N p j (uε) = O(εq) as ε → 0},

are called E-moderate and E-negligible, respectively. With operations defined com-
ponentwise, e.g., (uε)+(vε) := (uε +vε) etc.,NE becomes a vector subspace ofME .
We define the generalized functions based on E as the factor space GE := ME/NE .
If E is a differential algebra thenNE is an ideal inME and GE is a differential algebra
as well.

Particular choices of E reproduce the standard Colombeau algebras of generalized
functions. For example, E = C with the absolute value as norm yields the generalized
complex numbers GE = C̃; for� ⊆ R

d open, E = C∞(�)with the topology of com-
pact uniform convergence of all derivatives provides the so-called special Colombeau
algebra GE = G(�). Recall that � �→ G(�) is a fine sheaf, thus, in particular, the
restriction u|B of u ∈ G(�) to an arbitrary open subset B ⊆ � is well-defined and
yields u|B ∈ G(B). Moreover, we may embed D′(�) into G(�) by appropriate local-
ization and convolution regularization.

If E ⊆ D′(�), then certain generalized functions can be projected into the space of
distributions by takingweak limits:We say that u ∈ GE is associated withw ∈ D′(�),
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if uε → w in D′(�) as ε → 0 holds for any (hence every) representative (uε) of u.
This fact is also denoted by u ≈ w.

Consider open strips of the form �T = R
n×]0, T [⊆ R

n+1 (with T > 0 arbitrary)
and the spaces E = H∞(�T ) = {h ∈ C∞(�T ) : ∂αh ∈ L2(�T ) ∀α ∈ N

n+1} with
the family of (semi-)norms

‖h‖Hk =
⎛

⎝
∑

|α|≤k

‖∂αh‖2L2

⎞

⎠
1/2

(k ∈ N),

as well as E = W ∞,∞(�T ) = {h ∈ C∞(�T ) : ∂αh ∈ L∞(�T ) ∀α ∈ N
n+1} with

the family of (semi-)norms

‖h‖W k,∞ = max|α|≤k
‖∂αh‖L∞ (k ∈ N).

Clearly, �T satisfies the strong local Lipschitz property [1, Chap. IV, 4.6, p. 66],
hence every element of H∞(�T ) and W ∞,∞(�T ) belongs to C∞(�T ) by the Sobolev
embedding theorem [1, Chap. V, Theorem 5.4, Part II, p. 98].

In the sequel, we will employ the following notation

GL2(Rn × [0, T ]) := GH∞(�T ) and GL∞(Rn × [0, T ]) := GW∞,∞(�T ).

Thus, we will represent a generalized function u ∈ GL2(Rn × [0, T ]) by a net (uε)

with the moderateness property

∀k ∃m : ‖uε‖Hk = O
(
ε−m)

(ε → 0).

If (ũε) is another representative of u, then

∀k ∀p : ‖uε − ũε‖Hk = O
(
ε p) (ε → 0).

Similar constructions and notations are used in case of E = H∞(Rn) and E =
W ∞,∞(Rn). Note that by Young’s inequality ([14, Proposition 8.9.(a)]) any standard
convolution regularization with a scaled mollifier of Schwartz class provides embed-
dings L2 ↪→ GL2 and L p ↪→ GL∞ (1 ≤ p ≤ ∞).

As an example of a detailed regularization model we recall a result from [20],
announced above in the introduction, on Colombeau generalized positive square roots
of arbitrary probability measures, which can serve as initial values in the Cauchy
problem (1–2).

Proposition 2.1 Let μ be a Borel probability measure on R
n. Choose ρ ∈ L1(Rn) ∩

W ∞,∞(Rn) to be positive with
∫

ρ = 1 and satisfying ρ(x) ≥ |x |−m0 when |x | ≥ 1
with some m0 > n. Set ρε(x) = 1

εn ρ( x
ε
) and hε := μ ∗ ρε, then the following hold:

(i) hε is positive and the net (
√

hε) represents an element φ ∈ G(Rn) such that
φ2 ≈ μ;
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(ii) there exists g ∈ GL2(Rn) such that g2 ≈ μ and the class of (gε|�) is equal to
φ|� in G(�), or by slight abuse of notation g|� = φ|�, for every bounded open
subset � ⊆ R

n.

Remark 2.2 For specific choices of ρ in L1(Rn)∩ H∞(Rn) such that
√

ρ ∈ H∞(Rn)

we could obtain that (φε) is also H∞-moderate and directly defines a square root in
GL2(Rn) without having to undergo the cut-off procedure in part (ii) of Proposition
2.1 (which, on the other hand, cannot be avoided for general ρ ∈ H∞). For example,
putting ρ(x) = c(1 + |x |2)−(n+1)/2 with a suitable normalization constant c > 0
provides such a mollifier. However, the above formulation leaves more flexibility in
adapting the regularization to particular applications.

We come now to the main existence and uniqueness result for generalized solutions
to the Cauchy problem (1–2). Recall that a regularization of an arbitrary finite-order
distribution which meets the log-type conditions on the coefficients ck and V in the
following statement is easily achieved by employing a re-scaled mollification process
as described in [24].

Theorem 2.3 Let ck (k = 1, . . . , n) and V be generalized functions in GL∞(Rn ×
[0, T ]) possessing representing nets of real-valued functions, f in GL2(Rn × [0, T ]),
and g be in GL2(Rn). Suppose

(a) ck (k = 1 . . . , n) and V are of log-type, that is, for some (hence every) rep-
resentative (ckε) of ck and (Vε) of V we have ‖∂t ckε‖L∞ = O(log(1/ε)) and
‖∂t Vε‖L∞ = O(log(1/ε)) as ε → 0 and

(b) that the positivity conditions ckε(x, t) ≥ c0 for all (x, t) ∈ R
n ×[0, T ], ε ∈ ]0, 1],

k = 1, . . . , n with some constant c0 > 0 hold (hence with c0/2 for any other
representative and small ε).
Then the Cauchy problem (1–2) has a unique solution u ∈ GL2(Rn × [0, T ]).

Remark 2.4 (Bohmian flow) If u is a generalized solution to a Schrödinger equa-
tion according to the above theorem, then we may define the associated generalized
Bohmian current vector field

|u|2∂t +
n∑

k=1

Im(u ∂xku) ∂xk .

In thisway, the approach of Bohmianmechanics can be extended to the case of singular
initial data, which cause the current vector field to be non-smooth. For example, the
flows for Gaussian regularizations of a δ initial value have been sketched in [17,
Subsection 6.1] and could be put in the context of generalized flows. Note that with
Gaussian wave packets, the limiting behavior at any t �= 0 is |uε(., t)|2 → 1/(4π |t |)
as ε → 0 (compare also with the observation in [26, Sect. 3.3, Example 1]).

In case of smooth coefficients a simple integration by parts argument shows that any
solution to the Cauchy problem obtained from the variational method as in [7, Chap.
XVIII, 7, Sect. 1]) is a solution in the sense of distributions as well. In addition, the
following result from [20] shows further coherence with the Colombeau generalized
solution.
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Corollary 2.5 Let V and ck (k = 1, . . . , n) belong to C∞(�T ) ∩ L∞(�T ) with
bounded time derivatives of first-order, g0 ∈ H1(Rn), and f0 ∈ C1([0, T ], L2(Rn)).
Let u denote the unique Colombeau generalized solution to the Cauchy problem (1–
2), where g, f denote standard embeddings of g0, f0, respectively. Then u ≈ w,
where w ∈ C([0, T ], H1(Rn)) is the unique distributional solution obtained from the
variational method.

3 Limit Behavior of Solutions for Initial Value Regularizations
Corresponding to ‘Square Roots’ of Probability Measures

3.1 General Observations

We consider a kind of positive square root of the probability measure μ on R
n rep-

resented by (
√

μ ∗ ρε)ε∈ ]0,1], where ρ is a mollifier similarly as in Proposition 2.1,
but drop the requirement of smoothness and moderateness of the net (ρε), since we
want to focus here on “generic convergence properties” of the regularizations instead
of investigating more structural aspects of Colombeau-type differential algebras. We
simply assume for the mollifier ρ that

(M) ρ ∈ L1(Rn), ρ ≥ 0,
√

ρ ∈ L1(Rn),

∫

Rn
ρ(x) dx = 1

(note that also
√

ρ ∈ L2(R) is implied by this condition) and obtain a standard delta
regularization by ρε(x) := 1

εn ρ( x
ε
), which satisfies

(R) μ ∗ ρε → μ as ε → 0 inS ′(Rn) as well as weakly (in the sense of

probability theory, or in distribution) in the space M(Rn) of finite complex Borel

measures onR
n, i.e.,

lim
ε→0

∫
f (x)(μ ∗ ρε)(x) dx =

∫
f dμ for every f ∈ Cb(R

n)

(bounded continuous functions onR
n).

Remark 3.1 (i) Weak convergence in the sense of probability theory means conver-
gence with respect to the σ(M(Rn), Cb(R

n))-topology defined on M(Rn) via
the dual pair (M(Rn), Cb(R

n)) with (μ, f ) �→ ∫
Rn f dμ (non-degeneracy of this

pairing follows from [12, Kapitel VIII, Satz 4.6]).
(ii) Recall the following results on the classical normed dual spaces (with C0(R

n)

denoting the continuous functions on R
n vanishing at infinity): C0(R

n)′ ∼=
M(Rn) by the Riesz representation theorem (cf. [6, Chap. III, 5.7]), Cb(R

n)′ ∼=
M(βR

n)withβR
n denoting the Stone-Čech compactification ofR

n (cf. [6, Chap.
V,Corollary 6.4]),which also happens to be the spectrum (ormaximal ideal space)
of the Abelian C∗-algebra Cb(R

n) and can be constructed as the weak* closure
of {δx | x ∈ R

n} in Cb(R
n)′.

(iii) If μ = δ we have ρε → δ, but it is easily seen that
√

ρε → 0 in the sense
of distributions by action on a test function ϕ upon substituting y = x/ε in
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∫ √
ρε(x) ϕ(x)dx = εn/2

∫ √
ρ(y) ϕ(εy)dy and applying the dominated con-

vergence theorem (thereby using that
√

ρ ∈ L1). Similar effects have also
been observed in the generalized function model of ultrarelativistic Reissner-
Nordstrøm fields in [27, Eq. (15) and (17)] and are typical of so-called model
delta net regularizations in the form ρε(x) = ρ(x/ε)/ε. However, note that from
the construction in [25, Example 10.6] one could instead obtain an example of a
moderate net (ψε) of smooth functions on R satisfying ψε → δ and ψ2

ε → δ in
S ′(R) as ε → 0.

Let uε denote the unique L2-solution to a typical instance—or model rather, since
here ρε is no longer required to be smooth—of a regularization of the Cauchy problem
(1–2) with initial value

√
μ ∗ ρε, right-hand side fε = 0, constant coefficients ck = 1

(k = 1, . . . , n), and potential Vε = 0, that is

∂t uε = i�uε, uε|t=0 = √
μ ∗ ρε.

The solution is given by application of the strongly continuous unitary group Ut :=
exp(i t�) (t ∈ R) of operators on L2(Rn), with self-adjoint generator� on the domain
H2(Rn), in the form uε(t, x) = (Ut

√
μ ∗ ρε)(x). Here and in the sequel, we will

repeatedly apply the Fourier transform and thereby follow Hörmander’s convention
[19, Chap. 7]. Applying the Fourier transform F on L2(Rn), we have

Fuε(ξ, t) = exp
( − i t |ξ |2)F(√

μ ∗ ρε

)
(ξ), (3)

or, in terms of a spatial convolution (cf. [26, Sect. 3.3, 3.4, 4.2, and 4.4]),

uε(., t) = K (t) ∗ √
μ ∗ ρε, where K (x, t) = e− |x |2

4i t

(4π i t)n/2 . (4)

For t ∈ R letμt
ε denote the positive measure on R

n given by the Lebesgue measure
with density function |uε(t, .)|2. Unitarity of Ut implies

μt
ε(R

n) =
∫

Rn
|uε(t, x)|2 dx =

∫

Rn
(Ut

√
μ ∗ ρε)(x) · (Ut

√
μ ∗ ρε)(x) dx

=
∫

Rn
|√μ ∗ ρε(x)|2 dx =

∫

Rn
μ ∗ ρε(x) dx =

∫

Rn

∫

Rn
ρε(x − y) dμ(y) dx

=
∫

Rn

∫

Rn
ρε(x − y) dx dμ(y) =

∫

Rn
1 dμ(y) = 1,

hence {μt
ε : t ∈ R, ε ∈ ]0, 1]} is a family probability measures on R

n , with μ0
ε having

density μ ∗ ρε, and ‖μt
ε‖ = 1 (t ∈ R, ε ∈ ]0, 1]) holds in the Banach space of finite

complex Borel measures M(Rn).
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3.2 Initial Probability Delta

Recall from (4) that we obtain in this case uε(., t) = K (t) ∗ √
ρε. We observe that

for any t �= 0, the net (uε(t, .))ε∈ ]0,1] of bounded functions on R
n converges to 0 uni-

formly, since
√

ρε ∈ L1(Rn) and the L1-L∞-estimate for the Schrödinger propagator
([26, 4.4, Theorem 1]) implies

‖uε(t, .)‖L∞ ≤ ‖√ρε‖L1

(4π |t |)n/2 = ‖√ρ‖L1

(4π |t |)n/2 εn/2 → 0 (ε → 0). (5)

Therefore, μt
ε → 0 as ε → 0 in S ′(Rn) and also with respect to the vague topol-

ogy on M(Rn), i.e., pointwise as linear functionals on Cc(R
n) (cf. [3,30]). Since

‖μt
ε‖ = 1 for every ε ∈ ]0, 1[, the family of linear functionals H := {μt

ε | ε ∈ ]0, 1[}
is equicontinuous ([33, Exercise 32.5, page 342]). By density of Cc(R

n) in C0(R
n),

the weak* topology, i.e., σ(M(Rn), C0(R
n)), coincides with σ(M(Rn), Cc(R

n)) on
the equicontinuous set H ([33, Proposition 32.5, page 340]), which implies that
limε→0〈μt

ε, ψ〉 = 0 holds for every ψ ∈ C0(R
n) (alternatively, this can be shown

directly by splitting the integrals into two parts, one part over the complement of
a compact set, where supψ is arbitrarily small, the remaining part on the compact
set is estimated using (5)). However, (μt

ε)ε∈ ]0,1] can certainly not be weakly conver-
gent1 in the sense of probability theory, i.e., pointwise as functionals on Cb(R

n),
since the weak limit would have to be equal to the vague limit, which is 0, but
〈μt

ε, 1〉 = μt
ε(R

n) = 1 �→ 0 as ε → 0 (see also [3, Theorem 30.8]).
To summarize, an initial value regularization with μ = δ = μ0

ε satisfying (M)
implies that for every t �= 0,

(W) μt
ε → 0 as ε → 0 inS ′(Rn), vaguely, and even weak* in M(Rn)

∼= C0(R
n)′, but (μt

ε) does not converge weakly (in the sense of probability

theory) in M(R).

3.2.1 Case Study in One Spatial Dimension by Means of Elementary Analysis

The following one-dimensional example illustrates the failure of weak convergence
in a drastic way, but at the same time it leads to the intuition that “test functions” on
R possessing limits at x = ±∞ or integral averages might restore the convergence.

Example 3.2 Let f ∈ Cb(R) be given by f (x) = ei log(1+|x |) (x ∈ R). If we use
the Gaussian mollifier ρ(x) = exp(−x2/2)/

√
2π in the regularization, then, for any

t �= 0, the net (〈μt
ε, f 〉)0<ε≤1 of complex numbers has uncountably many cluster

points in C: Applying an appropriately scaled version of [26, Section 3.3, Example
1] to accommodate for the square root initial value in our Cauchy problem, a routine
calculation yields the explicit expression

1 Sometimes called Bernoulli convergent.
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|uε(x, t)|2 = cε(t)ρ(cε(t)x), where cε(t) = ε√
t2 + ε4

→ 0 (ε → 0),

hence, by symmetry of f and ρ and a simple change of variables,

〈μt
ε, f 〉 = 2cε(t)

∫ ∞

0
ei log(1+x)ρ(cε(t)x) dx = 2

∫ ∞

0
ei log(1+ y

cε(t) )ρ(y) dy

= 2e−i log cε(t)
∫ ∞

0
ei log(cε(t)+y)ρ(y) dy,

where the last integral converges to γ := ∫ ∞
0 ei log yρ(y) dy = �( 1+i

2 )/(2
√
2π) �= 0

as ε → 0 by dominated convergence; let α ∈ [0, 2π [ and choose a positive real null
sequence (εn)n∈N such that cεn (t) = exp(−α − 2πn) (which is in accordance with
cε → 0) to obtain the following cluster point

lim
n→∞〈μt

ε, f 〉 = lim
n→∞ 2ei(α+2πn)

∫ ∞

0
ei log(cεn (t)+y)ρ(y) dy = 2γ eiα.

Convergence on Bounded Functions Possessing Limits at ±∞ We suppose that t �= 0
and an initial value regularization with μ = δ satisfying (M). One might suspect from
the construction of cluster points in Example 3.2, that a limit of 〈μt

ε, f 〉 exists as
ε → 0, if the function f possesses limits as x → ±∞.

Proposition 3.3 If f ∈ L∞(R) is such that both L±( f ) := lim
x→±∞ f (x) exist, then

lim
ε→0

〈μt
ε, f 〉 = L−( f ) + L+( f )

2
.

Proof Let f be as in the hypothesis. We write

〈μt
ε, f 〉 =

∫ −1

−∞
|uε(x, t)|2 f (x) dx +

∫ 1

−1
|uε(x, t)|2 f (x) dx

+
∫ ∞

1
|uε(x, t)|2 f (x) dx =: aε + bε + cε

and note that (5) implies bε → 0 as ε → 0. We will show that limε→0 cε = L+( f )/2.
The arguments to show limε→0 aε = L−( f )/2 are completely analogous, thus the
proof will be complete.

Applying (4) in the special case n = 1 and upon a simple change of variables, we
have

|uε(x, t)|2 = ε

4π |t |
∣∣∣∣
∫

R

e−i εxz
2t ei ε2z2

4t
√

ρ(z) dz

∣∣∣∣
2

,
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which, upon another change of variables in the outermost integral, gives

cε = 1

4π |t |
∫ ∞

ε

∣∣∣∣
∫

R

e−i r z
2t ei ε2z2

4t
√

ρ(z) dz

∣∣∣∣
2

f
(r

ε

)
dr

=: 1

4π |t |
∫ ∞

ε

|hε(r)|2 f
(r

ε

)
dr.

We observe that f (r/ε) → L+( f ) pointwise as ε → 0 and that a change of variables
yields

hε(r) = 2|t |
∫

R

e−ir yeitε2 y2
√

ρ(2t y) dz = 2|t |Fy→r (e
itε2 y2

√
ρ(2t y))(r),

which converges in L2(R) to h(r) := 2|t |F(
√

ρ(2t.))(r). We estimate

4π |t |
∣∣∣∣cε − 1

4π |t |
∫ ∞

0
|h(r)|2 dr L+( f )

∣∣∣∣

≤
∣∣∣∣
∫ ε

0
|hε(r)|2 f

(r

ε

)
dr

∣∣∣∣ +
∣∣∣∣
∫ ∞

0

(
|hε(r)|2 f

(r

ε

)
− |h(r)|2L+( f )

)
dr

∣∣∣∣

≤ ε‖ f ‖∞‖hε‖2∞ +
∫ ∞

0

(∣∣∣|hε(r)|2 − |h(r)|2
∣∣∣ | f

(r

ε

)
|
)
dr

+
∫ ∞

0

(
|h(r)|2

∣∣∣ f
(r

ε

)
− L+( f )

∣∣∣
)
dr ≤ ε‖ f ‖∞‖√ρ‖21 + ‖ f ‖∞

×
∣∣∣‖hε‖22 − ‖h‖22

∣∣∣ +
∫ ∞

0

(
|h(r)|2

∣∣∣ f
(r

ε

)
− L+( f )

∣∣∣
)
dr

and observe that all terms in the final upper bound tend to 0 as ε → 0: This is obvious
for the first term, is implied by L2 convergence hε → h in the second term, and
follows from dominated convergence in the third term. Therefore,

lim
ε→0

cε = 1

4π |t |
∫ ∞

0
|h(r)|2 dr L+( f )

and it remains to observe that condition (M) and the fact h(−x) = h(x) (since
√

ρ is
real) imply

∫ ∞

0
|h(r)|2 dr = 1

2
‖h‖22 = 2|t |

2
‖F(

√
ρ)‖22 = |t |2π‖√ρ‖22 = 2π |t |‖ρ‖21 = 2π |t |.

��
The above result allows for an interpretation in termsof a limitmeasure concentrated

at infinity: Note that C±(R) := { f ∈ Cb(R) | ∃L−( f ) and ∃L+( f )} is isometrically
isomorphic to C([−∞,∞]), where [−∞,∞] is the two-point compactification of R;
we obtain C±(R)′ ∼= M([−∞,∞]) by the Riesz representation theorem and hence
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Proposition 3.3 implies the following statement (with the slight abuse of notation
considering μt

ε as elements in the dual of C([−∞,∞])).

Corollary 3.4 The net (μt
ε)ε∈ ]0,1] has the weak* limit

1

2
(δ−∞+δ∞) in M([−∞,∞]).

Convergence on Almost Periodic Functions In the sequel, we still assume that t �= 0
and that the initial value regularization with μ = δ has the property (M). In trying
to find a subclass of functions in f ∈ Cb(R), which is substantially different from
C±(R), but allows for the existence of a limit of 〈μt

ε, f 〉 (as ε → 0), periodic functions
come to mind, since an averaging effect in the integrals might produce convergence.

Example 3.5 (Convergence on Trigonometric Polynomials) Recall that 〈μt
ε, 1〉 =

μt
ε(R

n) = 1. If f ∈ Cb(R)\C±(R) is given by f (x) = eixξ with ξ ∈ R\{0}, then we
claim that limε→0 〈μt

ε, f 〉 = 0. Indeed, using Eq. (3) and that
√

ρ is real-valued, we
obtain (with the notation Rg(x) = g(−x))

〈μt
ε, f 〉 = F(μt

ε)(−ξ)

= F(uε(., t) uε(., t))(−ξ) = 1

2π
F(uε(., t)) ∗ F(uε(., t))(−ξ)

= 1

2π
(e−i t |.|2F(

√
ρε)) ∗ (eit |.|2 RF(

√
ρε))(−ξ)

= 1

2π

∫

R

e−i t y2+i t (−ξ−y)2 F(
√

ρε)(y)F(
√

ρε)(ξ + y) dy

= 1

2π

∫

R

eitξ2+2i tξ y F(
√

ρε)(y)F(
√

ρε)(−y − ξ) dz

= eitξ2 F−1(F(
√

ρε)F(eiξ. R
√

ρε)
)
(2tξ)

= eitξ2√ρε ∗ (eiξ. R
√

ρε)(2tξ) = eitξ2

ε

√
ρ(

.

ε
) ∗ (eiξ. R

√
ρ(

.

ε
))(2tξ).

Therefore,

|〈μt
ε, f 〉| ≤ 1

ε

∣∣∣∣

√
ρ

( .

ε

)∣∣∣∣ ∗
∣∣∣∣R

√
ρ

( .

ε

)∣∣∣∣ (2tξ) = √
ρ ∗ R

√
ρ

(
2tξ

ε

)
→ 0 (ε → 0),

since L2(R) ∗ L2(R) ⊂ C0(R) ([9, 14.10.7]).
We conclude that 〈μt

ε, f 〉 converges, if f is a trigonometric polynomial, i.e., f (x) =∑m
j=0 a j eixξ j with a j ∈ C and ξ j ∈ R ( j = 0, . . . , m). Suppose ξ0 = 0 and ξk �= 0,

if k �= 0, then we have

lim
ε→0

〈μt
ε, f 〉 = a0 = lim

R→∞
1

2R

∫ R

−R
f (x) dx,

since 1 ≤ k ≤ m yields
∫ R
−R eixξk dx/(2R) = (ei Rξk − e−i Rξk )/(2iξk R) → 0 as

R → ∞.



J Fourier Anal Appl (2018) 24:1160–1179 1171

Motivated by the above example, we consider the ‖.‖∞-closure of the subspace of
trigonometric polynomials in Cb(R), which is the space AP(R) of almost periodic
functions on R (cf. [21, Chap. VI, Theorems 5.7 and 5.17]). We collect a few basic
properties of AP(R):

(i) The subspace AP(R) is, in fact, a (closedAbelian) unitalC∗ subalgebra ofCb(R).
This follows easily from [21, Chap. VI, Theorem 5.7] and the fact that Cb(R) is
an Abelian unital C∗ algebra.

(ii) If f ∈ AP(R), then the mean

m( f ) := lim
R→∞

1

2R

∫ R

−R
f (x) dx (6)

exists and may be computed in the formm( f ) = limη→0 Fη ∗ f , where Fη(x) :=
ηF(ηx), with any F ∈ L1(R) such that F ≥ 0 and

∫
R

F(x) dx = 1 (cf. [21,
Chap. VI, Subsections 5.10 and 5.11]). In particular, if F is the characteristic
function of the unit interval [0, 1], we obtain

∀ f ∈ AP(R) : m( f ) = lim
R→∞

1

R

∫ R

0
f (x) dx (7)

(which is not true for any f ∈ Cb(R) such that the mean m( f ) according to (6)
exists).

(iii) If f ∈ Cb(R) is the function considered in Example 3.2, recall f (x) =
ei log(1+|x |), then clearly f /∈ C±(R). Moreover, f is not an almost periodic
function on R (as noted in [10, 22.17, Problems 8b) and 12b)]), because the
mean of f does not exist: Direct calculation, using the symmetry of f and
the change of variables 1 + x = es , gives that (1 + i)

∫ R
−R f (x) dx/(2R) =

exp(i log(1 + R)) + exp(i log(1+R))−1
R , where the second term tends to 0 (as

R → ∞), whereas the first term does not converge. Therefore, we have

C±(R) ∪ AP(R) � Cb(R).

(iv) It is not difficult to see that, as subspaces of Cb(R), we have

C±(R) ∩ AP(R) = span {1},

because [21, Chap.VI, Lemma5.3] states that for a given almost periodic function
f and ε > 0 arbitrary, there is a number λ > 0 such that the image f (R) is
contained in the ε-neighborhood of f (I ) for any interval I ⊆ of length λ; if
f ∈ C±(R) in addition, choosing the interval I far out to the right shows that the
function values of f (x) (x ∈ R) vary at most by ε from the limit L+( f ).

Remark 3.6 If f ∈ L∞(R) is as in Proposition 3.3, i.e., the limits L±( f ) at±∞ exist,
then the mean m( f ) exists and m( f ) = (L−( f ) + L+( f ))/2 holds. This is easily
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seen as follows: Let ε > 0; first note that L−( f ) = L+( f̌ ), if f̌ (x) := f (−x); thus,
we consider without loss of generality only

1

R

∫ R

0
f (x)dx − L+( f ) = 1

R

∫ r

0
( f (x) − L+( f ))dx + 1

R

∫ R

r
( f (x) − L+( f ))dx,

and choose 0 < r < R such that | f (x) − L+( f )| ≤ ε/2, if x ≥ r , and r(‖ f ‖∞ +
|L+( f )|)/R ≤ ε/2. This observation connects Proposition 3.7 below with the limit
formula given in Proposition 3.3, but note that the proof of the latter required no
extra condition on the mollifier ρ and the former is not conclusive for functions in
C±(R) � AP(R).

Proposition 3.7 Suppose, in addition to (M), that

(MM) x �→ (1 + x)
√

ρ(x) and x �→ d

dx

√
ρ(x) belong to L1(R) ∩ L2(R),

(8)
then

∀ f ∈ AP(R) : lim
ε→0

〈μt
ε, f 〉 = m( f ).

Proof As in the beginning of the proof of Proposition 3.3 we start by splitting the
integral according to 〈μt

ε, f 〉 = ∫ −1
−∞ |uε|2 f dx + ∫ 1

−1 |uε|2 f dx + ∫ ∞
1 |uε|2 d =:

a′
ε + dε + aε and recall that (5) immediately implies dε → 0 as ε → 0. We will first
investigate limε→0 aε, the evaluation of limε→0 a′

ε is completely analogous.
Again similarly to the proof of Proposition 3.3, we may call on the explicit repre-

sentation |uε(x, t)|2 = ε
4π |t |

∣∣∣∣
∫
R

e−i εxz
2t ei ε2z2

4t
√

ρ(z) dz

∣∣∣∣
2

to write

4π |t |aε = ε

∫ ∞

1
|hε(εx)|2 f (x) dx, where hε(y) =

∫

R

e−i yz
2t ei ε2z2

4t
√

ρ(z) dz.

We note that (|hε|2)′ = h′
εhε + hεhε

′ ∈ L1(R), since by assumption (MM) we have√
ρ and z �→ z

√
ρ(z) in L2(R). Integration by parts then gives

4π |t |aε = lim
x→∞ ε|hε(εx)|2

∫ x

0
f (r) dr

︸ ︷︷ ︸
=:bε

− ε|hε(ε)|2
∫ 1

0
f (r) dr

︸ ︷︷ ︸
=:nε

−
∫ ∞

1

d

dx

(
ε|hε(εx)|2)

∫ x

0
f (r) dr dx

︸ ︷︷ ︸
=:cε

,

where clearly nε → 0 (ε → 0), since ‖hε‖∞ ≤ ‖√ρ‖1.
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We claim that bε = 0, which follows from

bε = lim
x→∞ ε|hε(εx)|2

∫ x

0
f (r) dr = lim

x→∞ εx |hε(εx)|2 1

x

∫ x

0
f (r) dr

= lim
y→∞ y|hε(y)|2 · lim

x→∞
1

x

∫ x

0
f (r) dr,

where the rightmost limit equals m( f ) due to (7) and the next to last factor is 0, since
y �→ (1 + y)hε(y) is a bounded function by our hypothesis (M M) on ρ.

It remains to investigate

cε =
∫ ∞

1
ε2

(|hε|2
)′
(εx)

∫ x

0
f (r) dr dx =

∫ ∞

ε

ε
(|hε|2

)′
(y)

∫ y/ε

0
f (r) dr dy

=
∫ ∞

ε

y
(|hε|2

)′
(y)

1

y/ε

∫ y/ε

0
f (r) dr dy,

where we note that by (7), the factor 1
y/ε

∫ y/ε

0 f (r) dr in the final integrand converges
to m( f ) pointwise as ε → 0 and is bounded uniformly by ‖ f ‖∞. Furthermore, hε(y)

clearly converges pointwise to

h(y) :=
∫

R

e−i yz
2t

√
ρ(z) dz = F(

√
ρ)

( y

2t

)
,

but we need to show that even y
(|hε|2

)′
(y) → y

(|h|2)′
(y) in a sufficiently strong

mode of convergence to prove the following “educated guess”, which we formulate
as claim

(C) lim
ε→0

cε = m( f )

∫ ∞

0
y
(|h|2)′

(y) dy. (9)

We consider

|cε − m( f )

∫ ∞
0

y
(|h|2)′(y) dy| ≤

∣∣∣∣∣

∫ ∞
0

(
y
(|hε |2

)′
(y)

1

y/ε

∫ y/ε

0
f (r) dr − y

(|h|2)′(y) m( f )
)
dy

∣∣∣∣∣
︸ ︷︷ ︸

βε

+
∣∣∣∣∣

∫ ε

0
y
(|hε |2

)′
(y)

1

y/ε

∫ y/ε

0
f (r) dr dy

∣∣∣∣∣
︸ ︷︷ ︸

αε

.

Using bounds on the integrand in αε due to (MM), we have

αε ≤ ε‖ f ‖∞ sup
0≤y≤ε

|y| |(|hε|2
)′
(y)| ≤ ε‖ f ‖∞ sup

y∈R
|y| 2 |h′

ε(y)| |hε(y)|

≤ ε‖ f ‖∞2 ‖z
√

ρ(z)‖1‖
√

ρ‖1,

hence αε → 0 as ε → 0.
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We may insert appropriate “mixed terms” in the integrand of βε and apply the
triangle inequality to obtain

βε ≤
∫ ∞

0

∣∣∣y
(|hε|2

)′
(y) − y

(|h|2)′
(y)

∣∣∣
∣∣∣
1

y/ε

∫ y/ε

0
f (r) dr

∣∣∣ dy

+
∫ ∞

0

∣∣∣y
(|h|2)′

(y)

∣∣∣
∣∣∣
1

y/ε

∫ y/ε

0
f (r) dr − m( f )

∣∣∣ dy =: γε + sε,

where sε → 0 by dominated convergence thanks to (7), the bound
∣∣∣ 1

y/ε

∫ y/ε

0 f (r) dr −
m( f )

∣∣∣ ≤ 2‖ f ‖∞, and the fact that y �→ y
(|h|2)′

(y) = 2Re(h′(y) · yh(y)) ∈ L2(R) ·
L2(R) ⊆ L1(R) due to (MM); furthermore, we have

γε ≤ ‖ f ‖∞
∫ ∞

0
|y(|hε|2

)′
(y) − y

(|h|2)′
(y)| dy,

where

∫ ∞

0
|y(|hε|2

)′
(y) − y

(|h|2)′
(y)| dy =

∫ ∞

0
|h′

ε(y) yhε(y) − h′(y) yh(y)| dy

≤
∫ ∞

0
|h′

ε(y) yhε(y) − h′
ε(y) yh(y)| dy +

∫ ∞

0
|h′

ε(y) yh(y) − h′(y) yh(y)| dy

≤
∫ ∞

0
|h′

ε(y)| |yhε(y) − yh(y)| dy +
∫ ∞

0
|h′

ε(y) − h′(y)| |yh(y)| dy

≤ ‖h′
ε‖2‖yhε(y) − yh(y)‖2 + ‖h′

ε(y) − h′(y)‖2‖yh(y)‖2
≤ ‖z

√
ρ(z)‖2‖yhε(y) − yh(y)‖2 + ‖h′

ε(y) − h′(y)‖2‖(
√

ρ)′‖2 → 0 (ε → 0)

by (MM), the formulae h(y) = F(
√

ρ)(
y
2t ) and hε(y) = Fz→y(ei ε2z2

4t
√

ρ(z))( y
2t ),

and the exchange between multiplication and derivative by the Fourier transform.
Thus, γε → 0 and therefore claim (C) is proved, i.e., we obtain in summary

lim
ε→0

aε = −1

4π |t | limε→0
cε = −m( f )

4π |t |
∫ ∞

0
y
(|h|2)′

(y) dy,

and analogously, limε→0 a′
ε = −m( f )

4π |t |
0∫

−∞
y
(|h|2)′

(y) dy. Thus, we combine and arrive

at

lim
ε→0

〈μt
ε, f 〉 = −m( f )

4π |t |
∫

R

y
(|h|2)′

(y) dy.

It remains to determine the value of the integral, where we apply integration by parts
and Parseval’s identity, to obtain
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∫

R

y
(|h|2)′

(y) dy =
∫

R

y(h′(y)h(y) + h(y)h′(y)) dy = −
∫

R

h(y)(yh(y))′ dy

+
∫

R

h(y)yh′(y) dy = −
∫

R

h(y)h(y) dy −
∫

R

h(y)yh′(y) dy

+
∫

R

h(y)yh′(y) dy = −
∫

R

|h(y)|2 dy = −
∫

R

|F(
√

ρ)(
y

2t
)|2 dy

= −2|t | ‖F(
√

ρ)‖22 = −2|t |2π‖√ρ‖22 = −4|t |π‖ρ‖21 = −4|t |π,

which completes the proof. ��
We may also give a weak* interpretation of the limit formula in Proposition 3.7

upon recalling a few facts from the theory of locally compact Abelian groups and Bohr
compactifications (cf. [13, Sect. 4.7]). The Bohr compactification bR of R is obtained
as the group of all (including also the discontinuous) characters on R, i.e., group
homomorphisms from R into the one-dimensional torus group S1, and is equipped
with the topology of pointwise convergence, which renders bR an Abelian compact
Hausdorff topological group. The real line R is continuously embedded into bR as a
dense subgroup, but the embedding is not a homeomorphismonto its image.A function
in Cb(R) is almost periodic, if and only if it is the restriction to R of a (unique)
continuous function on bR; thus, we obtain an isometric isomorphism AP(R) ∼=
C(bR), which in turn implies AP(R)′ ∼= C(bR)′ ∼= M(bR) (cf. [18]). By abuse of
notation, we consider μt

ε as elements in M(bR). We claim that

H B the net (μt
ε)ε∈ ]0,1] converges to the normalized Haar measure on

the Bohr compactification bRwith respect to the weak* topology in M(bR).

To see this, consider the linear functional l : C(bR) → C, defined by

l(h) := m(h |R) (h ∈ C(bR)).

We clearly have that l = weak*- limε→0 μt
ε, l is continuous (since |l(h)| ≤ ‖h‖∞), l is

positive, i.e., l(h) ≥ 0 for every nonnegative h ∈ C(bR), and that l is normalized, i.e.,
l(1) = 1. It remains to show that l is also translation invariant, i.e., l(h(.−z)) = l(h) for
every z ∈ bR, then the uniqueness of the normalized Haar measure λ on the compact
Abelian group bR in combination with the Riesz representation theorem imply

∀h ∈ C(bR) : l(h) =
∫

bR
h dλ.

Since bR is compact, the map z �→ h(. − z) is continuous bR → C(bR) for every
h ∈ C(bR) ([13, Proposition 2.6]), hence also the composition Gh(z) := l(h(. − z))
defines a continuous map Gh : bR → C. Invariance of l with respect to translations
z ∈ R follows from [21, 5.13, Eq. (5.9)] and means that Gh(z) = Gh(0) for every
z in the dense subgroup R of bR. Therefore, continuity of Gh implies l(h(. − z)) =
Gh(z) = Gh(0) = l(h) for every z ∈ bR, that is, translation invariance of l and
hence
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m(h |R) =
∫

bR
h dλ (h ∈ C(bR)).

Remark 3.8 A theorem in harmonic analysis by Blum-Eisenberg (cf. [4, Theorem 1])
states that a sequence of probability measures (νk)k∈N on the locally compact Abelian
group G is weak* convergent to the Haar measure on the Bohr compactification bG of
G, if and only if for every nontrivial character χ on G the sequence of Fourier trans-
forms (ν̂k(χ))k∈N converges to 0. We will take up this line of argument in discussing
the higher dimensional case in the following subsection. This implies that, in fact, we
could deduce already from the result in Example 3.5 the convergence of μt

ε to the
(normalized) Haar measure on bR. This gives an independent proof of (HB), without
additional regularity assumptions on ρ, and as a side effect also shows that (μt

ε)ε∈ ]0,1]
is ergodic. Moreover, [11, Theorem 16.3.1] implies that μt

ε converges to the unique
invariant mean on AP(R). Thus, we obtain a stronger version of Proposition 3.7 even
without additional requirements on ρ.

3.2.2 Direct Application of the Bohr Compactification in Higher Space Dimensions

We will make use of the observation made in the previous remark to first prove the
n-dimensional extension of (HB) and then deduce a generalization of Proposition 3.7.
In fact, all boils down to applying [4, Theorem 1] (described in Remark 3.8) once the
required convergence property of the Fourier transformed measures is established.

Lemma 3.9 If μ = δa with arbitrary a ∈ R
n and we suppose that the basic condition

(M) holds for ρ, then lim
ε→0

F(μt
ε)(ξ) = 0 for every t �= 0 and ξ �= 0.

Proof Let ξ �= 0 and t �= 0. Similarly as in Example 3.5, noting that μ ∗ ρε(x) =
ρε(x − a) =: Taρε(x) we obtain (again appealing to Eq. (3), to the fact that

√
Taρε is

real-valued, and employing the notation Rg(x) = g(−x))

F(μt
ε)(ξ) = F(uε(., t) uε(., t))(ξ) = 1

(2π)n
F(uε(., t)) ∗ F(uε(., t))(ξ)

= 1

(2π)n

(
e−i t |.|2F(

√
Taρε)

)
∗

(
eit |.|2 RF(

√
Taρε)

)
(ξ)

= 1

(2π)n

∫

Rn
e−i t |y|2+i t |ξ−y|2 F(

√
Taρε)(y)F(

√
Taρε)(−ξ + y) dy

= 1

(2π)n

∫

Rn
eit |ξ |2−2i t〈ξ,y〉 F(

√
Taρε)(y)F(

√
Taρε)(−y − ξ) dy

= eit |ξ |2 F−1(F(
√

Taρε)F(ei〈ξ,.〉 R
√

Taρε)
)
(−2tξ)

= eit |ξ |2√Taρε ∗
(

ei〈ξ,.〉 R
√

Taρε

)
(−2tξ).

Therefore, we have upon an ε-scaling followed by a translation of the variable of
integration,
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|F(μt
ε)(ξ)| ≤

∫

Rn

√
ρ(x + a

ε
)

√

ρ

(
x + a

ε
+ 2tξ

ε

)
dx

=
∫

Rn

√
ρ(x)

√

ρ

(
x + 2tξ

ε

)
dx = (

√
ρ ∗ R

√
ρ)

( − 2tξ

ε

) → 0 (ε → 0)

exactly as in Example 3.5, since L2(Rn) ∗ L2(Rn) ⊆ C0(R
n) ([9, 14.10.7]). ��

We may again call on the Bohr compactification bR
n of R

n (cf. [13, Sect. 4.7]), an
Abelian compact Hausdorff topological group, described as in the one-dimensional
case mentioned above simply as the group of all characters on R

n equipped with the
topology of pointwise convergence. Then R

n is continuously embedded into bR
n as a

dense subgroup (but not homeomorphic onto its image). Considering μt
ε as elements

in M(bR
n), we may then apply2 [4, Theorem 1] to extract from Lemma 3.9 a direct

proof of the following.

Proposition 3.10 If μ = δa (a ∈ R
n), then the net (μt

ε)ε∈ ]0,1] converges to the
normalized Haar measure on the Bohr compactification bR

n with respect to the weak*
topology in M(bR

n).

Following from the general definitions and results in [11, Sect. 16.1–3], the space
AP(Rn) of almost periodic functions on R

n is defined as the uniform closure of the
characters on R

n in Cb(R
n), i.e., the uniform closure of the subspace of trigonometric

polynomials also in this case.Moreover, a function inCb(R
n) is almost periodic, if and

only if it is the restriction to R
n of a unique continuous function on bR

n , which yields
an isometric isomorphism AP(Rn) ∼= C(bR

n) and implies AP(Rn)′ ∼= C(bR
n)′ ∼=

M(bR
n). Therefore, we easily obtain from Proposition 3.10 and the statement in [11,

Theorem 16.3.1] on the unique invariant mean m : AP(Rn) → C an immediate proof
of the following.

Theorem 3.11 Suppose that μ = δa (a ∈ R
n) and ρ satisfies (M), then

∀ f ∈ AP(Rn) : lim
ε→0

〈μt
ε, f 〉 = m( f ).

Finally we briefly illustrate why the conclusions of Theorem 3.11 and Proposition
3.10 cannot hold for arbitrary initial probability measures μ on R

n .

Remark 3.12 The statement in [4, Theorem 1] is that null convergence of the Fourier
transforms F(μt

ε)(ξ) at every ξ �= 0 is equivalent to weak* convergence of μt
ε to

the Haar measure. Thus, failure of the former for specific initial probability measures
μ0

ε = μ ( �= δa) allows to deduce that μt
ε does not converge to the invariant mean in

that case. For example, let μ be given by a nonnegative density function h ∈ Cc(R
n)

(times the Lebesgue measure) and suppose that ρ ∈ Cc(R
n) (in addition to (M)).

2 The result is about sequences of probabilitymeasures, but holds also for nets with index set ]0, 1] (directed
downward by ε → 0), since their convergence may equivalently be checked via sequences (εk )k∈N with
εk → 0.
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Then we claim that the conclusion of Lemma 3.9 cannot hold for μt
ε constructed from

solutions of the Schrödinger equation according to the regularization of μ = h dx via
ρ; more precisely, we claim that the following holds:
(∗) for every t �= 0 there is ξ ∈ R

n , ξ �= 0, such that F(μt
ε)(ξ) �→ 0 (ε → 0).

By a calculation similar to that in the beginning of the proof of Lemma 3.9,

F(μt
ε)(ξ) = eit |ξ |2√h ∗ ρε ∗

(
ei〈ξ,.〉 R

√
h ∗ ρε

)
(−2tξ).

Due to uniform convergence h ∗ ρε → h as ε → 0 and compactness of supports for
all factors in the convolutions, we obtain

lim
ε→0

F(μt
ε)(ξ) = eit |ξ |2√h ∗

(
ei〈ξ,.〉 R

√
h
)

(−2tξ).

Suppose (∗) were false, then the above limit relation implies

∀ξ �= 0 : 0 =
∫

ei〈ξ,x〉√h(x)
√

h(x + 2tξ) dx .

Buth is a probability density and a continuous functions, hencedominated convergence
yields the contradiction

0= lim
0 �=ξ→0

∫
ei〈ξ,x〉√h(x)

√
h(x+2tξ) dx =

∫ √
h(x)

√
h(x) dx =

∫
h(x) dx = 1.
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