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Abstract We investigate the problem of constructing sparse time–frequency repre-
sentations with flexible frequency resolution, studying the theory of nonstationary
Gabor frames (NSGFs) in the framework of decomposition spaces. Given a painless
NSGF,we construct a compatible decomposition space and prove that theNSGF forms
a Banach frame for the decomposition space. Furthermore, we show that the decom-
position space norm can be completely characterized by a sparseness condition on the
frame coefficients and we prove an upper bound on the approximation error occurring
when thresholding the frame coefficients for signals belonging to the decomposition
space.
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1 Introduction

Redundant Gabor frames play an essential role in time–frequency analysis as these
frames provide expansions with good time–frequency resolution [6,28]. Gabor frames
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are based on translation and modulation of a single window function according to lat-
tice parameters which largely determine the redundancy of the frame. By varying the
support of the window function one can change the overall resolution of the frame,
but it is in general not possible to change the resolution in specific regions of the
time–frequency plane. For signals with varying time–frequency characteristics, a fixed
resolution is often undesirable. To overcome this problem, the usage of multi-window
Gabor frames has been proposed [10,13,35,43].As opposed to standardGabor frames,
multi-window Gabor frames use a whole catalogue of window functions of different
shapes and sizes to create adaptive representations. A recent example is the nonsta-
tionary Gabor frames (NSGFs) which have shown great potential in capturing the
essential time–frequency information of music signals [1,14,33,34]. These frames
use different window functions along either the time- or the frequency axes and guar-
antee perfect reconstruction and an FFT-based implementation in the painless case.
Originally, NSGFs were studied by Hernández et al. [31] and later by Ron and Shen
[41] who named them generalized shift-invariant systems. We choose to work with
the terminology introduced in [1] as we will only consider frames in the painless case
for which several practical implementations have been constructed under the name of
NSGFs [1,14,33]. We consider painless NSGFs with flexible frequency resolution,
corresponding to a sampling grid in the time–frequency plane which is irregular over
frequency but regular over time at each fixed frequency position. This construction is
particularly useful in connection with music signals since the NSGF can be set to coin-
cide with the semitones used in Western music. Based on the nature of musical tones
[9,39], we expect music signals to permit sparse expansions relative to the redundant
NSGF dictionaries.

The main contribution of this paper is a theoretical characterization of the signals
with sparse expansions relative to the NSGF dictionaries. By a sparse expansion we
mean an expansion for which the original signal can be approximated at a certain
rate by thresholding the expansion coefficients. To prove such a characterization, we
follow the approach in [23,24,29] and search for a smoothness space compatible with
the structure of the frame. Classical smoothness spaces such as modulation spaces
[17] or Besov spaces [42] cannot be expected to be linked with sparse expansions
relative to the NSGF dictionaries since these smoothness spaces are not compatible
with the flexible frequency resolution of the NSGFs. Modulation spaces correspond
to a uniform partition of the frequency domain while Besov spaces correspond to
a dyadic partition. Therefore, we study NSGFs in the framework of decomposition
spaces. Decomposition spaces were introduced by Feichtinger and Gröbner [18], and
further studied by Feichtinger [16], and form a large class of function spaces on
R
d including smoothness spaces such as modulation spaces, Besov spaces, and the

intermediate α-modulation spaces as special cases [2,3,26]. We construct the decom-
position spaces using structured coverings, as introduced by Borup and Nielsen [3],
which leads to a partition of the frequency domain obtained by applying invertible
affine transformations {Ak(·) + ck}k∈N on a fixed set Q ⊂ R

d .

Given a painless NSGF, we provide a method for constructing a compatible struc-
tured covering and the associated decomposition space. We then show that the NSGF
forms a Banach frame for the decomposition space and prove that signals belong to
the decomposition space if and only if they permit sparse frame expansions. Based on
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the sparse expansions, we prove an upper bound on the approximation error occurring
when thresholding the frame coefficients for signals belonging to the decomposition
space. All these results are based on the characterization given in Theorem5.1 which
is the main contribution of this article. This theorem yields the existence of constants
0 < C1, C2 < ∞ such that all signals f, belonging to the decomposition space
D(Q, L p, �

q
ωs ), satisfy

C1 ‖ f ‖D(Q,L p,�
q
ωs )

≤
∥
∥
∥
∥

{〈

f, h p
T,n

〉}

T,n

∥
∥
∥
∥
d(Q,�p,�

q
ωs )

≤ C2 ‖ f ‖D(Q,L p,�
q
ωs )

,

with {h p
T,n}T,n denoting L p-normalized elements from the NSGF and d(Q, �p, �

q
ωs )

an associated sequence space. In this way we completely characterize the decompo-
sition space using the frame coefficients from the NSGF.

The outline of the article is as follows. In Sect. 2 we define decomposition spaces
based on structured coverings and in Sect. 3 we define NSGFs in the notation of
[1]. We construct the compatible decomposition space in Sect. 4 and in Sect. 5 we
prove Theorem5.1. In Sect. 6 we show that the NSGF forms a Banach frame for
the compatible decomposition space and in Sect. 7 we provide the link to nonlinear
approximation theory.

Let us now introduce some of the notation used throughout this article. We let
f̂ (ξ) := ∫

Rd f (x)e−2π i x ·ξdx denote the Fourier transform with the usual extension
to L2(Rd). By F � G we mean that there exist two constants 0 < C1, C2 < ∞
such that C1F ≤ G ≤ C2F. For two (quasi-)normed vector spaces X and Y, X ↪→ Y
means that X ⊂ Y and ‖ f ‖Y ≤ C ‖ f ‖X for some constant C and all f ∈ X. We say
that a non-empty open set �′ ⊂ R

d is compactly contained in an open set � ⊂ R
d if

�′ ⊂ � and�′ is compact.We denote thematrix normmax{∣∣ai j
∣
∣} by ‖A‖�∞(Rd×d ) and

we call {ξi }i∈I ⊂ R
d a δ-separated set if inf j,k∈I, j 
=k ‖ξ j − ξk‖2 = δ > 0. Finally, by

Id we denote the identity operator on Rd and by χQ we denote the indicator function
for a set Q ⊂ R

d .

2 Decomposition Spaces

In order to construct decomposition spaces, we first need the notion of a structured
covering with an associated bounded admissible partitions of unity (BAPU) as defined
in Sect. 2.1. ABAPUdefines a (flexible) partition of the frequency domain correspond-
ing to the structured covering. We use the notation of [3] but with slightly modified
definitions for both the structured coverings and the BAPUs.

2.1 Structured Covering and BAPU

For an invertible matrix A ∈ GL(Rd), and a constant c ∈ R
d , we define the affine

transformation
T ξ := Aξ + c, ξ ∈ R

d .
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For a subset Q ⊂ R
d we let QT := T (Q), and for notational convenience we

define |T | := | det(A)|. Given a family T = {Ak(·) + ck}k∈N of invertible affine
transformations on R

d , and a subset Q ⊂ R
d , we set Q := {QT }T∈T and

T̃ := {

T ′ ∈ T
∣
∣ QT ′ ∩ QT 
= ∅} , T ∈ T . (2.1)

We say that Q is an admissible covering of Rd if
⋃

T∈T QT = R
d and there exists

n0 ∈ N such that |T̃ | ≤ n0 for all T ∈ T . We note that the (minimal) number n0 is
the degree of overlap between the sets constituting the covering.

Definition 2.1 (Q-Moderate Weight) LetQ := {QT }T∈T be an admissible covering.
A function u:Rd → (0, ∞) is called Q-moderate if there exists C > 0 such that
u(x) ≤ Cu(y) for all x, y ∈ QT and all T ∈ T . AQ-moderate weight (derived from
u) is a sequence {ωT }T∈T := {u(ξT )}T∈T with ξT ∈ QT for all T ∈ T .

For the rest of this article we shall use the explicit choice u(ξ) := 1+ ‖ξ‖2 for the
function u in Definition2.1. We now define the concept of a structured covering, first
considered in [3]. To ensure that the resulting decomposition spaces are complete, we
consider an extended version of the definition given in [3].

Definition 2.2 (Structured Covering) Given a family T = {Ak(·) + ck}k∈N of
invertible affine transformations on R

d , suppose there exist two bounded open sets
P ⊂ Q ⊂ R

d , with P compactly contained in Q, such that

(1) {PT }T∈T and {QT }T∈T are admissible coverings.

(2) There exists K > 0, such that
∥
∥
∥A−1

k′ Ak

∥
∥
∥

�∞(Rd×d )
≤ K holds whenever

(Ak′Q + ck′) ∩ (AkQ + ck) 
= ∅.

(3) There exists K∗ > 0, such that
∥
∥
∥A−1

k

∥
∥
∥

�∞(Rd×d )
≤ K∗ holds for all k ∈ N.

(4) There exists a δ-separated set {ξT }T∈T ⊂ R
d , with ξT ∈ QT for all T ∈ T , such

that {ωT }T∈T := {u(ξT )}T∈T is a Q-moderate weight.
(5) There exists γ > 0, such that |QT | ≤ ω

γ

T for all T ∈ T .

Then we call Q = {QT }T∈T a structured covering.

Remark 2.1 Definition2.2(3)–(5) are new additions compared to the definition given
in [3] and are necessary for provingTheorem2.1.Wenote thatDefinition2.2(2) implies
|QT ′ | � |QT | uniformly for all T ∈ T and all T ′ ∈ T̃ , and Definition2.2(3) implies
a uniform lower bound on |QT |.

For a structured coveringwehave the associated concept of aBAPU,first considered
in [3,18]. With a small modification of the proof of [3, Proposition 1] we have the
following result.

Proposition 2.1 Given a structured coveringQ = {QT }T∈T , there exists a family of
non-negative functions {ψT }T∈T ⊂ C∞

c (Rd) satisfying

(1) supp(ψT ) ⊂ QT for all T ∈ T .

(2)
∑

T∈T ψT (ξ) = 1 for all ξ ∈ R
d .
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(3) supT∈T |QT |1/p−1
∥
∥
∥F−1ψT

∥
∥
∥
L p

< ∞ for all 0 < p ≤ 1.

(4) For all α ∈ N
d
0 , there exists Cα > 0 such that |∂αψT (ξ)| ≤ CαχQT (ξ), for all

ξ ∈ R
d and all T ∈ T .

We say that {ψT }T∈T is a BAPU subordinate to Q.

Remark 2.2 Proposition2.1(3) is necessary to ensure that the decomposition spaces
under consideration will be well-defined for 0 < p < 1. This case is of specific
interest since it plays an essential role in connection with nonlinear approximation
theory (cf. Sect. 7).

Remark 2.3 Proposition2.1(4) is a new addition compared to [3, Proposition 1] and is
necessary for provingTheorem2.1. The proof of Proposition2.1(4) follows easily from
the arguments in the proof of [3, Proposition 1] and Definition2.2(3). Finally, it should
be noted that the assumptions in Definition2.2(4)–(5) are not necessary for proving
Proposition2.1, however, these assumptions are needed for the proof of Theorem2.1.

The proof of [3, Proposition 1] is constructive and provides a method for con-
structing the associated BAPU. Given a structured covering {QT }T∈T (with P being
compactly contained in Q), the method goes as follows:

(1) Pick a non-negative function � ∈ C∞
c (Rd) with �(ξ) = 1 for all ξ ∈ P and

supp(�) ⊂ Q.

(2) For all T ∈ T , define

ψT (ξ) = �(T−1ξ)
∑

T ′∈T �(T ′−1ξ)
.

(3) Then {ψT }T∈T is a BAPU subordinate to Q = {QT }T∈T .

In the next section we define decomposition spaces based on structured coverings.

2.2 Definition of Decomposition Spaces

Given a structured covering Q = {QT }T∈T with corresponding Q-moderate weight
{ωT }T∈T and BAPU {ψT }T∈T . For s ∈ R and 0 < q ≤ ∞, we define the associated
weighted sequence space �

q
ωs (T ) as the sequences of complex numbers {aT }T∈T

satisfying

∥
∥{aT }T∈T

∥
∥

�
q
ωs

:= ∥
∥
{

ωs
T aT

}

T∈T
∥
∥

�q
< ∞.

Given {aT }T∈T ∈ �
q
ωs (T ), we define {a+

T }T∈T by a+
T := ∑

T ′∈T̃ aT ′ . Since {ωT }T∈T
is Q-moderate, {aT }T∈T → {a+

T }T∈T defines a bounded operator on �
q
ωs (T ) [18,

Remark 2.13 and Lemma 3.2]. Denoting its operator norm by C+, we have

∥
∥
{

a+
T

}

T∈T
∥
∥

�
q
ωs

≤ C+
∥
∥{aT }T∈T

∥
∥

�
q
ωs

, ∀ {aT }T∈T ∈ �
q
ωs (T ). (2.2)
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We will use (2.2) several times throughout this article. Using the notation of [3] we
define the Fourier multiplier ψT (D) by

ψT (D) f := F−1 (ψTF f ) , f ∈ L2
(

R
d
)

.

Combining Proposition2.1(3) with Lemma 8.2 and [3, Lemma 1] we can show
the existence of a uniform constant C > 0 such that all band-limited functions
f ∈ L p(Rd) satisfy

‖ψT (D) f ‖L p ≤ C ‖ f ‖L p ,

for all T ∈ T and all 0 < p ≤ ∞. That is, ψT (D) extends to a bounded operator
on the band-limited functions in L p(Rd), uniformly in T ∈ T . Let us now give the
definition of decomposition spaces on the Fourier side.

Definition 2.3 (Decomposition space) Let Q = {QT }T∈T be a structured cover-
ing of Rd with corresponding Q-moderate weight {ωT }T∈T and subordinate BAPU
{ψT }T∈T . For s ∈ R and 0 < p, q < ∞, we define the decomposition space
D(Q, L p, �

q
ωs ) as the set of distributions f ∈ S ′(Rd) satisfying

‖ f ‖D(Q,L p,�
q
ωs )

:= ∥
∥
{‖ψT (D) f ‖L p

}

T∈T
∥
∥

�
q
ωs

< ∞.

Remark 2.4 According to [18, Theorem 3.7], two different BAPUs yield the same
decomposition space with equivalent norms so D(Q, L p, �

q
ωs ) is in fact well defined

and independent of the BAPU. Actually, the results in [18] show that decomposition
spaces are invariant under certain geometric modifications of the covering Q, but we
will not go into detail here.

Remark 2.5 In their most general form, decomposition spaces D(Q, B, Y ) are con-
structed using a local component B and a global component Y [18]. This construction
is similar to the construction of Wiener amalgam spaces W (B, C) with local compo-
nent B and global component C [15,30,40]. However, Wiener amalgam spaces are
based on bounded uniform partitions of unity, which corresponds to a uniform upper
bound on the size of the members of the covering. We do not find such an assumption
natural in relation to NSGFs (cf. Sect. 3) and have therefore chosen the more general
framework of decomposition spaces.

In Theorem2.1 below we prove that D(Q, L p, �
q
ωs ) is in fact a (quasi-)Banach

space. Before presenting this result, let us first consider some examples of famil-
iar decomposition spaces. By standard arguments, one can easily show that
D(Q, L2, �2) = L2(Rd) with equivalent norms for any structured covering Q. The
next two examples are not as straightforward and demand some structure on the cov-
ering. Recall that {ξT }T∈T denotes the δ-separated set from Definition2.2(4).

Example 2.1 (Modulation spaces) Let Q ⊂ R
d be an open cube with center 0 and

side length r > 1. Define T := {Tk}k∈Zd , with Tkξ := ξ − k, and set ξTk := k for
all k ∈ Z

d . With Q := {QT }T∈T then D(Q, L p, �
q
ωs ) = Ms

p,q(R
d) for s ∈ R and

0 < p, q < ∞, see [17, Sect. 4] for further details. ��
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Example 2.2 (Besov spaces) Let E2 := {±1, ±2}, E1 := {±1} and E := Ed
2 \ Ed

1 .

For j ∈ N and k ∈ E define c j,k := 2 j (v(k1), . . . , v(kd)), where

v(x) := sgn(x) ·
{

1/2 for x = ±1,
3/2 for x = ±2.

Let Q ⊂ R
d be an open cube with center 0 and side length r > 2. Define

T := {I, Tj,k} j∈N,k∈E , with Tj,kξ := 2 jξ + c j,k, and set ξTj,k := c j,k for all j ∈ N

and k ∈ E . With Q := {QT }T∈T then D(Q, L p, �
q
ωs ) = Bs

p,q(R
d) for s ∈ R and

0 < p, q < ∞, see [42, Sect. 2.5.4] for further details. ��
Let us now study some important properties of decomposition spaces, in particular

completeness.

Theorem 2.1 Given a structured covering Q = {QT }T∈T with Q-moderate weight
{ωT }T∈T and subordinate BAPU {ψT }T∈T . For s ∈ R and 0 < p, q < ∞,

(1) S(Rd) ↪→ D(Q, L p, �
q
ωs ) ↪→ S ′(Rd).

(2) D(Q, L p, �
q
ωs ) is a quasi-Banach space (Banach space if 1 ≤ p, q < ∞).

(3) S(Rd) is dense in D(Q, L p, �
q
ωs ).

Remark 2.6 As was pointed out in [22], the definition of decomposition spaces given
in [3] cannot guarantee completeness in the general case. However in [4], this problem
was fixed by imposing certain weight conditions on the structured covering. Our proof
of Theorem2.1 is based on the approach taken in [4].

InAppendixwehaveprovided a sketch of the proof forTheorem2.1. Theunderlying
ideas for the proof are similar to those of [4, Proposition 5.2] and several references
are made to results in [4]. However, in [4] the authors considered only coverings made
up from open balls and not all arguments carry over to the general case of an arbitrary
structured covering.

3 Nonstationary Gabor Frames

In this section we define NSGFs with flexible frequency resolution using the notation
of [1]. Given a set of window functions {hm}m∈Zd in L2(Rd),with corresponding time
sampling steps am > 0, for m, n ∈ Z

d we define atoms of the form

hm,n(x) := hm (x − nam) , x ∈ R
d .

The choice of Zd as index set for m is only a matter of notational convenience; any
countable index set would do. If

∑

m,n |〈 f, hm,n〉|2 � ‖ f ‖22 for all f ∈ L2(Rd), we
refer to {hm,n}m,n as a NSGF. For an NSGF {hm,n}m,n, the frame operator

S f =
∑

m,n∈Zd

〈

f, hm,n
〉

hm,n, f ∈ L2
(

R
d
)

,
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is invertible and we have the expansions

f =
∑

m,n∈Zd

〈

f, hm,n
〉

h̃m,n, f ∈ L2
(

R
d
)

,

with {h̃m,n}m,n := {S−1hm,n}m,n being the canonical dual frame of {hm,n}m,n . An
NSGF with flexible frequency resolution corresponds to a grid in the time–frequency
plane which is irregular over frequency but regular over time at each frequency posi-
tion. This property allows for adaptive time–frequency representations as opposed to
standardGabor frames. According to [1, Corollary 2], we have the following important
result for NSGFs with band-limited window functions.

Theorem 3.1 Let {hm}m∈Zd ⊂ L2(Rd) with time sampling steps {am}m∈Zd , am > 0

for all m ∈ Z
d . Assuming supp(ĥm) ⊆

[

0, 1
am

]d + bm, with bm ∈ R
d for all m ∈ Z

d ,

the frame operator for the system

hm,n(x) = hm (x − nam) , ∀m, n ∈ Z
d , x ∈ R

d ,

is given by

S f (x) =
⎛

⎝F−1

⎛

⎝
∑

m∈Zd

1

adm

∣
∣
∣ĥm

∣
∣
∣

2

⎞

⎠ ∗ f

⎞

⎠ (x), f ∈ L2
(

R
d
)

.

The system {hm,n}m,n∈Zd constitutes a frame for L2(Rd), with frame-bounds
0 < A ≤ B < ∞, if and only if

A ≤
∑

m∈Zd

1

adm

∣
∣
∣ĥm(ξ)

∣
∣
∣

2 ≤ B, for a.e. ξ ∈ R
d , (3.1)

and the canonical dual frame is then given by

h̃m,n(x) = F−1

⎛

⎜
⎝

ĥm
∑

l∈Zd
1
adl

∣
∣
∣ĥl

∣
∣
∣

2

⎞

⎟
⎠ (x − nam) , x ∈ R

d . (3.2)

Remark 3.1 We note that the canonical dual frame in (3.2) posses the same structure
as the original frame, which is a property not shared by general NSGFs. We also
note that the canonical tight frame can be obtained by taking the square root of the
denominator in (3.2).

Traditionally, an NSGF satisfying the assumptions of Theorem 3.1 is called a
painless NSGF, referring to the fact that the frame operator is simply a multiplication
operator (in the frequency domain) and therefore easily invertible. This terminology is
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adopted from the classical painless nonorthogonal expansions [7], which corresponds
to the painless case for standard Gabor frames.

By slight abuse of notation we use the term “painless” to denote the NSGFs sat-
isfying Definition3.1 below. In order to properly formulate this definition, we first
need some preliminary notation. Let {hm}m∈Zd ⊂ L2(Rd) satisfy the assumptions in
Theorem3.1. Given C∗ > 0 we denote by {Im}m∈Zd the open cubes

Im :=
(

−εm,
1

am
+ εm

)d

+ bm, m ∈ Z
d , (3.3)

with εm := C∗/am for all m ∈ Z
d . We note that supp(ĥm,n) ⊂ Im for all m, n ∈ Z

d .

For m ∈ Z
d we define

m̃ :=
{

m′ ∈ Z
d
∣
∣ Im′ ∩ Im 
= ∅

}

,

using the notation of (2.1). With this definition, |m̃| denotes the number of cubes
overlapping with Im . Finally, we recall the choice u(ξ) := 1 + ‖ξ‖2 for the function
u in Definition2.1.

Definition 3.1 (Painless NSGF) Let {hm}m∈Zd ⊂ S(Rd) satisfy the assumptions in
Theorem3.1 and assume that

(1) {ĥm}m∈Zd ⊂ C∞
c (Rd) and for β ∈ N

d
0 there exists Cβ > 0, such that

sup
ξ∈Rd

∣
∣
∣∂

β
ξ ĥm(ξ)

∣
∣
∣ ≤ Cβa

d/2+|β|
m , for all m ∈ Z

d .

(2) supm∈Zd am := a < ∞.

(3) There exists C∗ > 0 and n0 ∈ N, such that the open cubes {Im}m∈Zd satisfy
|m̃| ≤ n0 and am′ � am uniformly for all m ∈ Z

d and all m′ ∈ m̃.

(4) The centerpoints {bm}m∈Zd forms a δ-separated set and the sequence
{ωm}m∈Zd := {u(bm)}m∈Zd constitutes a {Im}m∈Zd -moderate weight.

(5) There exists γ > 0 such that |Im | ≤ ω
γ
m for all m ∈ Z

d .

Then we refer to {hm,n}m,n∈Zd as a painless NSGF.

Remark 3.2 Definition3.1(2) implies a uniform lower bound on |Im | and Def-
inition3.1(4) guarantees a minimum distance between the center of the cubes.
Furthermore, Definition3.1(3) implies that each cube Im has at most n0 overlap with
other cubes and that the side-length of Im is equivalent to the side-length of any
overlapping cube.

Remark 3.3 The assumptions inDefinition3.1 are natural in relation to decomposition
spaces and are easily satisfied. However, the support conditions for {ĥm}m∈Zd given in
Theorem3.1 are rather restrictive and deserves a discussion. In fact, compact support
of the window functions is not a necessary assumption for characterizing modulation
spaces [28], Besov spaces [21], or even general decomposition spaces [38]. However,
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a certain structure of the dual frame is needed and general NSGFs does not provide
such structure. We choose to work with the painless case and base our argument on the
fact that the dual frame posses the same structure as the original frame. We expect that
it is possible to extend the theory developed in this paper to a more general setting by
applying existence results for general NSGFs [11,12,32] or generalized shift invariant
systems [31,36,37,41]. In particular, the paper [32] by Holighaus seems to provide
interesting results in this regard. In this paper, it is shown that for compactly supported
window functions, the sampling density in Theorem3.1 can (under mild assumptions)
be relaxed such that the dual frame posses a structure similar to that of the original
frame. However, it is outside the scope of this paper to include such results and we
will not go into further details.

We now provide a simple example of a set of window functions satisfying Defini-
tion3.1(1).

Example 3.1 Let ϕ ∈ C∞
c (Rd) \ {0} with supp(ϕ) ⊆ [0, 1]d and for m ∈ Z

d define

ĥm(ξ) := ad/2
m ϕ (am (ξ − bm)) , ∀ξ ∈ R

d ,

with bm ∈ R
d and am > 0. Then supp(ĥm) ⊆

[

0, 1
am

]d + bm . Furthermore, with

w := am(ξ − bm) the chain rule yields

∣
∣
∣∂

β
ξ ĥm(ξ)

∣
∣
∣ =

∣
∣
∣

[

∂
β
ξ ϕ

]

(w)

∣
∣
∣ a

d/2+|β|
m ≤ Cβa

d/2+|β|
m χ[

0, 1
am

]d+bm
(ξ), ∀ξ ∈ R

d .

This shows Definition3.1(1). ��
In the next section we consider painless NSGFs in the framework of decomposition

spaces in order to characterize signals with sparse expansions relative to the NSGF
dictionaries.

4 Decomposition Spaces Based on Nonstationary Gabor Frames

We first provide a method for constructing a structured covering which is compati-
bly with a given painless NSGF {hm,n}m,n∈Zd ⊂ S(Rd). We recall the definition of
εm = C∗/am used in the construction of {Im}m∈Zd in (3.3). Define Q := (0, 1)d

together with the set of affine transformations T := {Am(·) + cm}m∈Zd with

Am :=
(

2εm + 1

am

)

· Id and (cm) j := −εm + (bm) j , 1 ≤ j ≤ d.

Then Q := {QT }T∈T = {Im}m∈Zd and, furthermore, we have the following result.

Lemma 4.1 Q is a structured covering of Rd .
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Proof Define the set

P :=
(

C∗
2C∗ + 1

,
C∗ + 1

2C∗ + 1

)d

.

By straightforward calculations, it is easy to show that P is compactly contained in

Q and P := {PT }T∈T =
{(

0, 1
am

)d + bm

}

m∈Zd
. Let us now show that P and Q

satisfy the five conditions of Definition2.2.

(1) First we show thatP coversRd .We note that this immediately implies thatQ also
coversRd .AssumeP does not coverRd , i.e., that there exists some ξ ′ ∈ R

d such

that ξ ′ /∈
(

0, 1
am

)d+bm for allm ∈ Z
d .Since supp(ĥm) ⊆

[

0, 1
am

]d+bm, and ĥm

is continuous, we get ĥm(ξ ′) = 0 for all m ∈ Z
d . This contradicts the inequality

in (3.1) concerning the lower frame bound and thus shows thatP coversRd .Now,
Definition3.1(3) is precisely the admissibility condition forQ and thus guarantees
that both P and Q are admissible coverings. This shows Definition2.2(1).

(2) If (Am′Q + cm′) ∩ (AmQ + cm) 
= ∅, then am′ � am according to Definition
3.1(3). Furthermore, since A−1

m′ Am is a diagonal matrix and εm = C∗/am,

∥
∥
∥A−1

m′ Am

∥
∥
∥

�∞(Rd×d )
= am′

am
≤ Kam

am
= K ,

for some K > 0, so Definition2.2(2) is satisfied.
(3) To show Definition2.2(3) we note that

∥
∥
∥A−1

m

∥
∥
∥

�∞(Rd×Rd )
= am

2C∗ + 1
≤ a

2C∗ + 1
, ∀m ∈ Z

d ,

according to Definition3.1(2).
(4) Finally, Definition2.2(4)–(5) follow directly from Definition3.1(4)–(5).

��
Since Q is a structured covering, Proposition2.1 applies and we obtain a BAPU

{ψT }T∈T subordinate to Q. Given parameters s ∈ R and 0 < p, q < ∞ we
may, therefore, construct the associated decomposition space D(Q, L p, �

q
ωs ). For

notational convenience, we change notation and write {hT,n}T∈T ,n∈Zd , such that

supp(ĥT,n) ⊂ QT for all T ∈ T and all n ∈ Z
d . Since AT = (2εT + a−1

T ) · Id ,
the chain rule and Definition3.1(1) yield

∣
∣
∣∂

β
ξ

[

ĥT (T ξ)
]∣
∣
∣ =

∣
∣
∣

[

∂
β
ξ ĥT

]

(T ξ)

∣
∣
∣ ·

(

2εT + 1

aT

)|β|

≤ Cβa
d/2
T · (2C∗ + 1)|β|χQT (T ξ) = C ′

βa
d/2
T χQ(ξ), ∀ξ ∈ R

d .

(4.1)

Using (4.1) we can prove the following decay property of {hT,n}T,n .
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Proposition 4.1 For every N ∈ N there exists a constant CN > 0 such that for
T = AT (·) + cT ∈ T and n ∈ Z

d ,

∣
∣hT,n(x)

∣
∣ ≤ CN |T |1/2 (1 + ‖AT (x − naT )‖2)−N , ∀x ∈ R

d .

Proof We will use the fact that

u(ξ)N = (1 + ‖ξ‖2)N �
∑

|β|≤N

∣
∣ξβ

∣
∣ , ξ ∈ R

d , (4.2)

for any N ∈ N with β ∈ N
d
0 . Let ĝT (ξ) := ĥT (T ξ) such that supp(ĝT ) ⊂ Q for all

T ∈ T . Using (4.2) we get

|gT (x)| ≤ C1 (1 + ‖x‖2)−N
∑

|β|≤N

∣
∣xβgT (x)

∣
∣

= C1 (1 + ‖x‖2)−N
∑

|β|≤N

∣
∣
∣F−1

[

∂
β
ξ ĝT

]

(x)
∣
∣
∣

≤ C1 (1 + ‖x‖2)−N
∑

|β|≤N

∫

Rd

∣
∣
∣∂

β
ξ ĝT (ξ)

∣
∣
∣ dξ, x ∈ R

d .

Applying (4.1) we may continue and write

|gT (x)| ≤ C2a
d/2
T (1 + ‖x‖2)−N

∑

|β|≤N

∫

Rd
χQ(ξ)dξ = C3a

d/2
T (1 + ‖x‖2)−N .

(4.3)
Now, since εT = C∗/aT ,

|T | |Q| = |QT | =
(

2εT + 1

aT

)d

= (2C∗ + 1)d (aT )−d . (4.4)

Hence, ad/2
T = C |T |−1/2 so (4.3) yields

|gT (x)| ≤ C4 |T |−1/2 (1 + ‖x‖2)−N , x ∈ R
d . (4.5)

Using the fact that AT is a diagonal matrix, we obtain the relationship

hT (x) =
∫

Rd
ĥT (ξ)e2π iξ ·xdξ = |T |

∫

Rd
ĝT (u)e2π i(AT u+c)·xdu

= e2π ic·x |T |
∫

Rd
ĝT (u)e2π iu·AT xdu = e2π ic·x |T | gT (AT x) , x ∈ R

d .

(4.6)
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Combining (4.6) and (4.5) we arrive at

∣
∣hT,n(x)

∣
∣ = |hT (x − naT )| = |T | |gT (AT (x − naT ))|
≤ C4 |T |1/2 (1 + ‖AT (x − naT )‖2)−N , x ∈ R

d .

This proves the proposition. ��

As a direct consequence of Proposition4.1 we can prove the following lemma.

Lemma 4.2 For 0 < p < ∞, we have

sup
x∈Rd

{∥
∥
{

hT,n(x)
}

n∈Zd

∥
∥

�p

}

≤ C |T |1/2 , and (4.7)

sup
n∈Zd

∥
∥hT,n

∥
∥
L p ≤ C ′ |T |1/2−1/p , (4.8)

with constants C, C ′ > 0 independent of T ∈ T .

Proof We will use the fact that

∫

Rd
u(ξ)−mdξ =

∫

Rd
(1 + ‖ξ‖2)−m dξ < ∞, (4.9)

for any m > d. Choosing N > d/p in Proposition4.1, then (4.9) yields

∥
∥
{

hT,n(x)
}

n∈Zd

∥
∥

�p
≤ C1 |T |1/2

⎛

⎝
∑

n∈Zd

(1 + ‖AT (x − naT )‖2)−Np

⎞

⎠

1/p

≤ C2 |T |1/2
(

adT |T |
)−1/p

. (4.10)

According to (4.4), adT = C |T |−1, which inserted into (4.10) yields (4.7). To show
(4.8), we again let N > d/p in Proposition4.1, so (4.9) yields

∥
∥hT,n

∥
∥
L p ≤ C1 |T |1/2

(∫

Rd
(1 + ‖AT (x − naT )‖2)−Np dx

)1/p

≤ C2 |T |1/2−1/p .

This proves (4.8). ��

In the next section we use the painless NSGF {hT,n}T,n to prove a complete charac-
terization of the corresponding decomposition space D(Q, L p, �

q
ωs ).
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5 Characterization of Decomposition Spaces

The main result of this section is the characterization given in Theorem5.1. To prove
this result, we follow the approach taken in [3]where the authors proved a similar result
for a certain type of tight frames for Rd (see [3, Proposition 3]). Since the frames we
consider are not assumed to be tight we need to modify the arguments given in [3].
We start with the following observations.

Lemma 5.1 For 0 < p < ∞, the Fourier multiplier

ψh
T (D) f := F−1

(

ψh
TF f

)

:= F−1
(

ψT

∑

l∈T̃ 1
adl

∣
∣
∣ĥl

∣
∣
∣

2F f

)

, (5.1)

is bounded on the band-limited functions in L p(Rd) uniformly in T ∈ T . Further,

sup
x∈Rd

{∥
∥
∥

{

ψh
T (D)hT ′,n

}

n∈Zd

∥
∥
∥

�p

}

≤ C |T |1/2 , T ∈ T , T ′ ∈ T̃ , (5.2)

with a constant C > 0 independent of T ∈ T .

Proof Let ψh′
T (ξ) := ψh

T (T (ξ)). For N > d/p, (4.9) and (4.2) imply

∥
∥
∥F−1ψh′

T

∥
∥
∥
L p

≤ C1

∥
∥
∥u(·)NF−1ψh′

T

∥
∥
∥
L∞ ≤ C2

∑

|β|≤N

∥
∥
∥(·)βF−1ψh′

T

∥
∥
∥
L∞

= C2

∑

|β|≤N

∥
∥
∥F−1

(

∂βψh′
T

)∥
∥
∥
L∞ ≤ C2

∑

|β|≤N

∥
∥
∥∂βψh′

T

∥
∥
∥
L1

. (5.3)

Since εT = C∗/aT , the chain rule yields

∂βψh′
T (ξ) =

(

∂βψh
T

)

(T ξ)

(

2εT + 1

aT

)|β|
= Ca−|β|

T

(

∂βψh
T

)

(T ξ). (5.4)

For estimating ∂βψh
T we use the quotient rule. Because all derivatives of ψT are

bounded according to Proposition2.1(4), we need only to consider the derivatives of
the denominator of ψh

T . The sum in the denominator consists of at most n0 terms and
for each term in the sum, the chain rule andDefinition3.1(1)–(2) imply an upper bound
of Ca|β|

T . Therefore, (5.4) yields |∂βψh′
T (ξ)| ≤ C ′χQ(ξ), since supp(ψh′

T ) ⊂ Q for

all T ∈ T . Combing this with (5.3) we get ‖F−1ψh′
T ‖L p ≤ C3. It now follows from

Lemma8.2 that f → F−1(ψh′
T F f ) defines a bounded operator on the band-limited

functions in L p(Rd) uniformly in T ∈ T . Finally, applying [3, Lemma 1] we obtain
the same statement for ψh

T (D).

We now prove (5.2). Repeating the arguments from the proof of Proposi-
tion4.1 [using (3.1) and Definition 3.1(1)] we can prove the same decay property
for ψh

T (D)hT ′,n . The result therefore follows from the arguments in the proof
of (4.7). ��
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The statement in Theorem5.1 follows directly once we have proven the following
technical lemma. We use the notation ψ̃T := ∑

T ′∈T̃ ψT ′ .

Lemma 5.2 Given f ∈ S(Rd) and 0 < p < ∞. For all T ∈ T ,

∥
∥
{〈

f, hT,n
〉}

n∈Zd

∥
∥

�p
≤ C |T |1/p−1/2

∥
∥ψ̃T (D) f

∥
∥
L p , and (5.5)

‖ψT (D) f ‖L p ≤ C ′ |T |1/2−1/p
∑

T ′∈T̃

∥
∥
{〈

f, hT ′,n
〉}

n∈Zd

∥
∥

�p
, (5.6)

with constants C1, C2 > 0 independent of T ∈ T .

Proof The proof of (5.5) follows directly from (4.7) and the arguments for the first
part of the proof for [3, Lemma 2]. To prove (5.6) we first assume p ≤ 1 and note

‖ψT (D) f ‖L p ≤ C1

∑

T ′∈T̃

∑

n∈Zd

∣
∣
〈

f, hT ′,n
〉∣
∣

∥
∥
∥ψT (D)h̃T ′,n

∥
∥
∥
L p

(5.7)

≤ C2

∑

T ′∈T̃

⎛

⎝
∑

n∈Zd

∣
∣
〈

f, hT ′,n
〉∣
∣
p
∥
∥
∥ψT (D)h̃T ′,n

∥
∥
∥

p

L p

⎞

⎠

1/p

,

with {h̃T,n}T,n being the dual frame given in (3.2). Applying (5.1) and (4.8) this proves
(5.6) for the case p ≤ 1. For p > 1, we note that Holder’s inequality (with p′ being
the conjugate index of p) yields

∥
∥
∥
∥
∥
∥

∑

n∈Zd

〈

f, hT ′,n
〉

ψT (D)h̃T ′,n

∥
∥
∥
∥
∥
∥

p

L p

≤
∫

Rd

∑

n∈Zd

∣
∣
〈

f, hT ′,n
〉∣
∣p

∣
∣
∣ψT (D)h̃T ′,n(x)

∣
∣
∣

⎛

⎝
∑

n′∈Zd

∣
∣
∣ψT (D)h̃T ′,n′(x)

∣
∣
∣

⎞

⎠

p/p′

dx

≤ C1 |T |p/2p′−1/2
∑

n∈Zd

∣
∣
〈

f, hT ′,n
〉∣
∣p ,

according to Lemma5.1 and (4.8). Taking the p′th root on both sides and applying
(5.7) finishes the proof of (5.6) for p > 1. ��
Using the notation of [3] we define L p-normalized atoms h p

T,n := |T |1/2−1/p hT,n,

for all T ∈ T , n ∈ Z
d and 0 < p < ∞. We also define the coefficient space

d(Q, �p, �
q
ωs ) as the set of coefficients {cT,n}T∈T ,n∈Zd ⊂ C satisfying

∥
∥
∥

{

cT,n
}

T∈T ,n∈Zd

∥
∥
∥
d(Q,�p,�

q
ωs )

:=
∥
∥
∥

{∥
∥
{

cT,n
}

n∈Zd

∥
∥

�p

}

T∈T

∥
∥
∥

�
q
ωs

< ∞.
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Combining Lemma5.2 with the fact that S(Rd) is dense in D(Q, L p, �
q
ωs ) we obtain

a characterization similar to that of [3, Proposition 3].

Theorem 5.1 For s ∈ R and 0 < p, q < ∞ we have the equivalence

‖ f ‖D(Q,L p,�
q
ωs )

�
∥
∥
∥
∥

{〈

f, h p
T,n

〉}

T∈T ,n∈Zd

∥
∥
∥
∥
d(Q,�p,�

q
ωs )

,

for all f ∈ D(Q, L p, �
q
ωs ).

Remark 5.1 The characterization in Theorem5.1 differs from the one given in [3,
Proposition 3] in two ways. In [3] the frame elements are obtained directly from
the structured covering such that the resulting system forms a tight frame. In our
framework we take the “reverse” approach and explicitly state sufficient conditions
which guarantee the existence of a compatible decomposition space for a given NSGF
(cf. Definition3.1). More importantly, we show that the assumption on tightness of
the frame can be replaced with the structured expression for the dual frame given in
(3.2).

In the next section we use the characterization given in Theorem5.1 to prove that
{h p

T,n}T,n forms a Banach frame for D(Q, L p, �
q
ωs )with respect to d(Q, �p, �

q
ωs ) for

s ∈ R and 0 < p, q < ∞.

6 Banach Frames for Decomposition Spaces

Let us start by giving the general definition of a Banach frame [27,28]. Traditionally,
Banach frames are only defined for Banach spaces but we will also use the concept
for quasi-Banach spaces.

Definition 6.1 (Banach Frame) Let X be a (quasi-)Banach space and let Xd be an
associated (quasi-)Banach sequence space on N. A Banach frame for X, with respect
to Xd , is a sequence {yn}n∈N in the dual space X ′, such that

(1) The coefficient operator CX : f → {〈 f, yn〉}n∈N is bounded from X into Xd .

(2) Norm equivalence:

‖ f ‖X � ∥
∥{〈 f, yn〉}n∈N

∥
∥
Xd

, ∀ f ∈ X.

(3) There exists a bounded operator RXd from Xd onto X, called a reconstruction
operator, such that

RXdCX f = RXd

({〈 f, yn〉}n∈N
) = f, ∀ f ∈ X.

Remark 6.1 We will actually prove that {h p
T,n}T,n forms an atomic decomposi-

tion [5,19,20] for D(Q, L p, �
q
ωs ) as the reconstruction operator takes the form

f = ∑

T,n〈 f, h p
T,n〉xT,n with {xT,n} ⊂ D(Q, L p, �

q
ωs ) (see Theorem6.1 below).
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In order to show that that {h p
T,n}T,n forms a Banach frame for D(Q, L p, �

q
ωs ), we

first note that {

h p
T,n

}

T∈T ,n∈Zd
⊂ S

(

R
d
)

⊂ D′ (Q, L p, �
q
ωs

)

,

as required byDefinition6.1. Furthermore, the equivalence in Theorem5.1 implies that
Definition6.1(2) is satisfied and the corresponding proof reveals that Definition6.1(1)
is satisfied. What remains to be shown is the existence of a bounded reconstruction
operator such that Definition6.1(3) holds. For {cT,n}T,n ∈ d(Q, �p, �

q
ωs ), we define

the reconstruction operator as

Rd(Q,�p,�
q
ωs )

({

cT,n
}

T,n

)

=
∑

T∈T , n∈Zd

cT,n |T |1/p−1/2 h̃T,n, (6.1)

with {h̃T,n}T∈T ,n∈Zd being the dual frame given in (3.2). We now provide the main
result of this section.

Theorem 6.1 Given s ∈ R and 0 < p, q < ∞, {h p
T,n}T∈T ,n∈Zd forms a Banach

frame for D(Q, L p, �
q
ωs ). Furthermore, we have the expansions

f =
∑

T∈T , n∈Zd

〈

f, hT,n
〉

h̃T,n, ∀ f ∈ D
(

Q, L p, �
q
ωs

)

, (6.2)

with unconditional convergence.

Proof Let R and C denote the reconstruction- and coefficient operator, respectively.
We first prove that R is bounded from d(Q, �p, �

q
ωs ) onto D(Q, L p, �

q
ωs ). For

{cT,n}T,n ∈ d(Q, �p, �
q
ωs ) we let g := R({cT,n}T,n). For T ∈ T , Lemma 5.1 implies

‖ψT (D)g‖L p =

∥
∥
∥
∥
∥
∥
∥

F−1

⎛

⎜
⎝

ψT

∑

l∈T̃ 1
adl

∣
∣
∣ĥl

∣
∣
∣

2 · ψ̃T ·
∑

T ′∈T , n∈Zd

cT ′,n
∣
∣T ′∣∣1/p−1/2

ĥT ′,n

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

L p

≤ C1

∥
∥
∥
∥
∥
∥

ψ̃T (D)

⎛

⎝
∑

T ′∈T , n∈Zd

cT ′,n
∣
∣T ′∣∣1/p−1/2

hT ′,n

⎞

⎠

∥
∥
∥
∥
∥
∥
L p

. (6.3)

Repeating the arguments from the proof of [3, Lemma 4] we can show that

∥
∥
∥
∥
∥
∥

∑

T∈T , n∈Zd

cT,n |T |1/p−1/2 hT,n

∥
∥
∥
∥
∥
∥
D(Q,L p,�

q
ωs )

≤ C
∥
∥
∥

{

cT,n
}

T,n

∥
∥
∥
d(Q,�p,�

q
ωs )

. (6.4)
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Applying (2.2) to (6.3) and then using (6.4) we get

‖g‖D(Q,L p,�
q
ωs )

≤ C2

∥
∥
∥
∥
∥
∥

∑

T∈T , n∈Zd

cT,n |T |1/p−1/2 hT,n

∥
∥
∥
∥
∥
∥
D(Q,L p,�

q
ωs )

≤ C3

∥
∥
∥

{

cT,n
}

T∈T ,n∈Zd

∥
∥
∥
d(Q,�p,�

q
ωs )

. (6.5)

This proves that R is bounded from d(Q, �p, �
q
ωs ) onto D(Q, L p, �

q
ωs ). Let us now

show the unconditional convergence of (6.2). Given f ∈ D(Q, L p, �
q
ωs ), we can

find a sequence { fk}k≥1, with fk ∈ S(Rd) for all k ≥ 1, such that fk → f in
D(Q, L p, �

q
ωs ) as k → ∞. Furthermore, since {hT,n}T,n forms a frame for L2(Rd),

for each k ≥ 1 we have the expansion

fk =
∑

T∈T , n∈Zd

〈

fk, hT,n
〉

h̃T,n = RC ( fk) ,

with unconditional convergence. Since RC : D(Q, L p, �
q
ωs ) → D(Q, L p, �

q
ωs ) is

continuous, letting k → ∞ yields

f = RC( f ) =
∑

T∈T , n∈Zd

〈

f, hT,n
〉

h̃T,n . (6.6)

Given ε > 0, (6.5) implies that we can find a finite subset F0 ⊂ T × Z
d , such that

∥
∥
∥
∥
∥
∥

f −
∑

(T, n)∈F

〈

f, hT,n
〉

h̃T,n

∥
∥
∥
∥
∥
∥
D(Q,L p,�

q
ωs )

≤ C
∥
∥
∥

{〈

f, hT,n
〉}

(T,n)/∈F
∥
∥
∥
d(Q,L p,�

q
ωs )

< ε,

for all finite sets F ⊇ F0. According to [28, Proposition 5.3.1], this property is
equivalent to unconditional convergence. ��

Weclose this section by discussing the implications of the achieved results. Accord-
ing to Theorems5.1 and 6.1, every f ∈ D(Q, L p, �

q
ωs ) has an expansion of the form

f =
∑

T∈T , n∈Zd

〈

f, h p
T,n

〉

|T |1/p−1/2 h̃T,n, with

‖ f ‖D(Q,L p,�
q
ωs )

�
∥
∥
∥
∥

{〈

f, h p
T,n

〉}

T,n

∥
∥
∥
∥
d(Q,�p,�

q
ωs )

.

Now, assume there exists another set of reconstruction coefficients
{cT,n}T,n ∈ d(Q, �p, �

q
ωs ) which is sparser than {〈 f, h p

T,n〉}T,n when sparseness is

measured by the d(Q, �p, �
q
ωs )-norm. Since the reconstruction operator R is bounded

we get
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∥
∥
∥

{

cT,n
}

T,n

∥
∥
∥
d(Q,�p,�

q
ωs )

≤
∥
∥
∥
∥

{〈

f, h p
T,n

〉}

T,n

∥
∥
∥
∥
d(Q,�p,�

q
ωs )

≤ C1 ‖ f ‖D(Q,L p,�
q
ωs )

= C1

∥
∥
∥R

({

cT,n
}

T,n

)∥
∥
∥
D(Q,L p,�

q
ωs )

≤ C2

∥
∥
∥

{

cT,n
}

T,n

∥
∥
∥
d(Q,�p,�

q
ωs )

.

We conclude that the canonical coefficients {〈 f, h p
T,n〉}T,n are (up to a constant) the

sparsest possible choice for expanding f as

f =
∑

T∈T , n∈Zd

cT,n |T |1/p−1/2 h̃T,n,

when sparseness of the coefficients is measured by the d(Q, �p, �
q
ωs )-norm. Further-

more, f ∈ D(Q, L p, �
q
ωs ) if and only if f permits a sparse expansion relative to the

dictionary {|T |1/p−1/2h̃T,n}T,n .

7 Application to Nonlinear Approximation Theory

In this section we provide the link to nonlinear approximation theory. An important
property of the sparse expansions obtained in Theorem6.1 is that we can obtain a good
compression by simply thresholding the coefficients from the expansion.Asmentioned
in the introduction, NSGFs can create adaptive time–frequency representations as
opposed to standard Gabor frames. Such adaptive representations can be constructed
to fit the particular nature of a given signal, thereby producing a more precise (and
hopefully sparser) time–frequency representation. In particular, NSGFs have proven
to be useful in connection with music signals. For instance, in [1,14] the authors use
NSGFs to construct an invertible constant-Q transformwith good frequency resolution
at the lower frequencies and good time resolution at the higher frequencies. Such a
time–frequency resolution is often more natural for music signals than the uniform
resolution provided by Gabor frames.

The main result of this section is given in (7.2) below. The corresponding proof
follows directly from the results obtained in Sects. 5 and 6 together with standard
arguments from nonlinear approximation theory [24]. Let f ∈ D(Q, Lτ , �τ

ωs ), with
0 < τ < ∞, and let 0 < p < ∞ satisfy α := 1/τ − 1/p > 0. Write the frame
expansion of f with respect to the L p-normalized coefficients

f =
∑

T∈T , n∈Zd

〈

f, h p
T,n

〉

|T |1/p−1/2 h̃T,n . (7.1)

Let {θm}m∈N be a decreasing rearrangement of the frame coefficients and let fN be
the N -term approximation to f obtained by extracting the coefficients in (7.1) corre-
sponding to the N largest coefficients {θm}Nm=1. Then, we can prove the existence of
C > 0 such that for f ∈ D(Q, Lτ , �τ

ωs ) and N ∈ N,

‖ f − fN‖D(Q,L p,�
p
ωs )

≤ CN−α ‖ f ‖D(Q,Lτ ,�τ
ωs )

. (7.2)
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In other words, for f ∈ D(Q, Lτ , �τ
ωs ) we can obtain good approximations in

D(Q, L p, �
p
ωs ) by thresholding the L p-normalized frame coefficients. We note that

for 0 < τ < 2 we obtain good approximations in L2(Rd) with respect to the original
coefficients {〈 f, hT,n〉}T,n .

We now explain the obtained results in the general framework of Jackson- and
Bernstein inequalities [8]. LetD denote the dictionary {|T |1/p−1/2h̃T,n}T,n and define
the nonlinear set of all linear combinations of at most N elements from D as

�N (D) :=
⎧

⎨

⎩

∑

T, n∈�

cT,n |T |1/p−1/2 h̃T,n

∣
∣
∣
∣
#� ≤ N

⎫

⎬

⎭
.

For any f ∈ D(Q, L p, �
p
ωs ), the error of best N -term approximation to f is

σN ( f, D) := inf
h∈�N (D)

‖ f − h‖D(Q,L p,�
p
ωs )

.

Since fN ∈ �N (D), (7.2) yields

σN ( f, D) ≤ CN−α ‖ f ‖D(Q,Lτ ,�τ
ωs )

.

This is a so-called Jackson inequality for nonlinear N -term approximation with D. It
provides us with an upper bound for the error obtained by approximating f with the
best possible choice of linear combinations of at most N elements from the dictionary.
The converse inequality is called a Bernstein inequality and is in general much more
difficult to obtain for redundant systems [25]. The existence of a Bernstein inequality
would provide us with a lower bound and hence a full characterization of the error of
best N -term approximation to f with respect to the dictionary D. However, for this
particular system (and for many other redundant systems), the existence of a Bernstein
inequality is still an open question.
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Appendix: Proof of Theorem 2.1

Proof To simplify notation we let Ds
p,q := D(Q, L p, �

q
ωs ). Let us first prove The-

orem2.1(1). Allowing the extension q = ∞, and repeating the arguments from the
proof of [4, Proposition 5.7], we can show that

Ds+ε
p,∞ ↪→ Ds

p,q ↪→ Ds
p,∞, ε > d/q,

for any s ∈ R and 0 < p < ∞ using Definition2.2(4). It therefore suffice to show
that S(Rd) ↪→ Ds

p,∞ ↪→ S ′(Rd) for any s ∈ R and 0 < p < ∞. For N ∈ N, we
define semi-norms on S(Rd) by
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pN (g) := sup
ξ∈Rd

⎧

⎨

⎩
u(ξ)N

∑

|β|≤N

∣
∣∂β ĝ(ξ)

∣
∣

⎫

⎬

⎭
, g ∈ S

(

R
d
)

,

with u(ξ) = 1 + ‖ξ‖2 as usual. Following the approach in [4, p. 149], and applying
Proposition2.1(4), we get

‖ f ‖Ds
p,∞ ≤ CpN ( f ) and ‖ f ‖Ds

1,1
≤ C ′ pN ′( f ),

for sufficiently large N and N ′.This proves thatS(Rd) ↪→ Ds
p,∞ andS(Rd) ↪→ Ds

1,1.

To show that Ds
p,∞ ↪→ S ′(Rd)we need to take a different approach than in [4]. Setting

ψ̃T := ∑

T ′∈T̃ ψT ′ , we first note that for f ∈ Ds
p,∞ and ϕ ∈ S(Rd),

|〈 f, ϕ〉| ≤
∑

T∈T

∥
∥ψT (D) f ψ̃T (D)ϕ

∥
∥
L1 ≤

∑

T∈T
‖ψT (D) f ‖L∞

∥
∥ψ̃T (D)ϕ

∥
∥
L1 .

Using Lemma8.1 below (with g = F−1{ψT f̂ (T ξ)}) we thus get

|〈 f, ϕ〉| ≤ C1

∑

T∈T
|T |1/p ‖ψT (D) f ‖L p

∥
∥ψ̃T (D)ϕ

∥
∥
L1

≤ C1 ‖ f ‖Ds
p,∞

∑

T∈T
|T |1/p ω−s

T

∥
∥ψ̃T (D)ϕ

∥
∥
L1

≤ C2 ‖ f ‖Ds
p,∞

∥
∥
∥

{∥
∥ψ̃T (D)ϕ

∥
∥
L1

}

T∈T
∥
∥
∥

�1
ωγ/p−s

, (7.3)

since |T | = |Q|−1|QT | ≤ |Q|−1ω
γ

T according to Definition2.2(5). Applying (2.2)
we may continue on (7.3) and write

|〈 f, ϕ〉| ≤ C3 ‖ f ‖Ds
p,∞ ‖ϕ‖

Dγ /p−s
1,1

≤ C4 ‖ f ‖Ds
p,∞ pN (ϕ),

for sufficiently large N since S(Rd) ↪→ Ds
1,1. We conclude that Ds

p,∞ ↪→ S ′(Rd)

which proves Theorem2.1(1).
The proof of Theorem 2.1(2) follows directly from Theorem 2.1(1) and the argu-

ments in [4, p. 150].
To prove Theorem 2.1(3) we let f ∈ Ds

p,q and choose I ∈ C∞
c (Rd) with

0 ≤ I (ξ) ≤ 1 and I (ξ) ≡ 1 in a neighbourhood of ξ = 0. Also, we define ( f̃ )̂:= I f̂
and

f̃ε := F−1 {ϕε ∗ ( f̃ )̂
} ∈ S

(

R
d
)

,

with ϕε(ξ) := ε−dϕ(ξ/ε) and ϕ being a compactly supported mollifier. Since supp(I )
is compact, we may choose a finite subset T ∗ ⊂ T , such that supp(I ) ⊂ ∪T∈T ∗QT

and
∑

T∈T ∗ ψT (ξ) ≡ 1 on supp(I ). Using Lemma8.2 below we obtain
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‖ f̃ ‖L p =
∥
∥
∥
∥
∥
F−1 IF

(

F−1

(
∑

T∈T ∗
ψT · f̂

))∥
∥
∥
∥
∥
L p

≤ C
∑

T∈T ∗

∥
∥
∥F−1 I

∥
∥
∥
L p̃

‖ψT (D) f ‖L p < ∞,

with p̃ = min{1, p}. The dominated convergence theorem thus yields

∥
∥ f̃ − f̃ε

∥
∥
Ds

p,q
≤ C

∥
∥
∥

{∥
∥ f̃ − f̃ε

∥
∥
L p

}

T∈T
∥
∥
∥

�
q
ωs

→ 0, as ε → 0,

so the proof is done if we can show that ‖ f − f̃ ‖Ds
p,q

can be made arbitrary small

by choosing f̃ appropriately. To show this, we define the set T◦ := {T ∈ T | I (ξ) ≡
1 on supp(ψT )}. Denoting the complement T c◦ , Lemma 8.2 below yields

∥
∥ f − f̃

∥
∥
q
Ds

p,q
=

∑

T∈T c◦

ω
sq
T

∥
∥
∥F−1

(

ψT ( f̂ − I f̂ )
)∥
∥
∥

q

L p

≤ C1

∑

T∈T c◦

ω
sq
T

(

‖ψT (D) f ‖L p +
∥
∥
∥F−1 IF (ψT (D) f )

∥
∥
∥
L p

)q

≤ C2

∑

T∈T c◦

ω
sq
T ‖ψT (D) f ‖qL p .

Finally, since f ∈ Ds
p,q we can choose supp(I ) large enough, such that

‖ f − f̃ ‖Ds
p,q

< ε, for any given ε > 0. This proves Theorem 2.1(3). ��

In the proof of Theorem2.1 we used the following two lemmas. A proof of
Lemma8.1 can be found in [3, Lemma 3] and a proof of Lemma 8.2 can be found in
[42, Proposition 1.5.1].

Lemma 8.1 Let g ∈ L p(Rd) and supp(ĝ) ⊂ �, with � ⊂ R
d compact. Given an

invertible affine transformation T, let ĝT (ξ) := ĝ(T−1ξ). Then for 0 < p ≤ q ≤ ∞,

‖gT ‖Lq
≤ C |T |1/p−1/q ‖gT ‖L p

,

for a constant C independent of T .

Lemma 8.2 Let � and � be compact subsets of Rd . Let 0 < p ≤ ∞ and p̃ =
min{1, p}. Then there exists a constant C such that

∥
∥
∥F−1MF f

∥
∥
∥
L p

≤ C
∥
∥
∥F−1M

∥
∥
∥
L p̃

‖ f ‖L p ,

for all f ∈ L p(Rd) with supp( f̂ ) ⊂ � and all F−1M ∈ L p̃(Rd) with supp(M) ⊂ �.
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