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Abstract Approximation of elliptic PDEs with random diffusion coefficients typi-
cally requires a representation of the diffusion field in terms of a sequence y = (y j ) j≥1
of scalar random variables. One may then apply high-dimensional approximation
methods to the solution map y �→ u(y). Although Karhunen–Loève representations
are commonly used, it was recently shown, in the relevant case of lognormal diffusion
fields, thatmultilevel-type expansionsmay yield better approximation rates.Motivated
by these results, we construct wavelet-type representations of stationary Gaussian
random fields defined on arbitrary bounded domains. The size and localization prop-
erties of these wavelets are studied, and used to obtain polynomial approximation
results for the related elliptic PDE which outperform those achievable when using
Karhunen–Loève representations. Our construction is based on a periodic extension
of the stationary random field, and the expansion on the domain is then obtained by
simple restriction. This makes the approach easily applicable even when the compu-
tational domain of the PDE has a complicated geometry. In particular, we apply this
construction to the class of Gaussian processes defined by the family ofMatérn covari-
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ances. The proposed periodic continuation technique has other relevant applications
such as fast simulation of trajectories. It can be regarded as a continuous analog of
circulant embedding techniques introduced for Toeplitz matrices. One of its specific
features is that the rate of decay of the eigenvalues of the covariance operator of the
periodized process provably matches that of the Fourier transform of the covariance
function of the original process.

Keywords Gaussian random fields · Lognormal diffusion problems · Periodic
continuation · Karhunen–Loève expansions · Wavelets

Mathematics Subject Classification 60G15 · 42C40 · 65T40 · 65T60

1 Introduction

Stochastic PDEs are commonly used to model uncertain physical phenomena. One
suchmodel that is used, for instance, in groundwatermodeling is the diffusion equation

− div(a∇u) = f in D, u|∂ D = 0, (1)

with lognormally distributed coefficient, that is, a = exp(b), where b is a centered
Gaussian random field defined on the computational domain D ⊂ R

d (where typically
d = 2 or d = 3).

Uncertainty quantification aims at describing the statistical properties of the result-
ing solution u, with various computational objectives: evaluating the mean field
ū = E(u), estimating a plausible a based on some measurement data of the solu-
tion, describing the law of a scalar quantity of interest Q(u).

For such objectives, it is most convenient to represent b in the form of an expansion

b =
∑

j≥1

y jψ j , (2)

where y j are i.i.d. N (0, 1), that is, independent scalar standard Gaussian random
variables, and ψ j are suitable functions on D. Once such an expansion is given, one
may introduce approximations to the solution map

y �→ u(y), y = (y j ) j≥1, (3)

for example by multivariate polynomials in the variables y j . Such approximations
provide a fast way to evaluate u(y) for any choice of y up to some prescribed accuracy,
which is of crucial help for the above mentioned tasks. Expansions of the form (2)
can also be of practical use for the fast generation of trajectories, provided that the ψ j

have simple analytic expressions or are easy to compute numerically.
The centered Gaussian field b is characterized by its covariance function

(x, x ′) �→ K (x, x ′) = E(b(x) b(x ′)), x, x ′ ∈ D. (4)
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A standardway of obtaining a representation (2) is by using theKarhunen–Loève (KL)
basis, that is, the L2(D)-orthonormal eigenfunctions (ϕ j ) j≥1 of the integral operator

T : v �→ T v =
∫

D
K (·, z) v(z) dz, (5)

with corresponding eigenvalues λ j ≥ 0 arranged in decreasing order. One then obtains
(2) by setting

ψ j := √
λ jϕ j . (6)

The distinguishing feature of this particular choice is that in addition to the statistical
orthogonality E(y j yk) = δ j,k , the functions ψ j are orthogonal in L2(D). However,
other expansions of the form (2) may also be considered if one does not impose the
L2(D)-orthogonality.

As shown in [23], general expansions of the form (2) with i.i.d.N (0, 1) coefficients
are characterized by the fact that the ψ j form a tight frame of the reproducing kernel
Hilbert space (RKHS)H induced by K . Recall thatH is the closure of the finite linear
combinations of the functions Kz := K (·, z) for z ∈ D, with respect to the norm
induced by the inner product 〈Kx , Kz〉H := K (x, z), see [1] for a general treatment.
Recall also that a tight frame of a Hilbert space H is a complete system that satisfies
the identity ∑

j≥1

|〈g, ψ j 〉H|2 = ‖g‖2H, g ∈ H. (7)

We refer to [11] for classical examples of time-frequency or time-scale frames. In con-
trast to orthonormal bases, such systems may be redundant. The possible redundancy
in (2) can be illustrated by the following trivial example: if y1 and y2 are i.i.d.N (0, 1)
and ψ is a given function, then y1ψ + y2ψ = z(

√
2ψ) with z = (y1 + y2)/

√
2 also

N (0, 1).
As an elementary yet useful example of the different possibilities for expanding a

Gaussian process, consider the Brownian bridge on D = [0, 1] whose covariance is
given by K (x, x ′) = min{x, x ′} − xx ′. On the one hand, the representation based on
the KL expansion is given by the trigonometric functions

ψ j (x) :=
√
2

π j
sin(π j x), j ≥ 1. (8)

On the other hand, another classical representation of this process is given by the
Schauder basis, which consists of the hat functions

ψ j (x) := 2−�/2σ(2�x − k), � ≥ 0, k = 0, . . . , 2� − 1, j = 2� + k, (9)

where
σ(x) := max{1 − |2x − 1|, 0}. (10)

Both systems are orthonormal bases (and thus tight frames) of the RKHS, which in
this case isH = H1

0 (D) endowed with norm ‖v‖H := ‖v′‖L2(D).



624 J Fourier Anal Appl (2018) 24:621–649

Lax–Milgram theory ensures that for each individual y = (y j ) j≥1 ∈ U := R
N

such that
∑

j≥1 y jψ j converges in L∞(D), the corresponding solution u(y) is well

defined in V := H1
0 (D), with a priori bound

‖u(y)‖H1
0

≤ C exp

(∥∥∥
∑

j≥1

y jψ j

∥∥∥
L∞

)
, C := ‖ f ‖V ′ . (11)

Sufficient conditions have been established, either in terms of the covariance function
K or of the size properties of the ψ j , which ensure that the solution map y �→ u(y)

belongs to Lk(U, V, γ ) for all k < ∞, see [3,6,10,17,21]. Here Lk(U, V, γ ) is the
usual Bochner space where γ denotes the countable tensor product of the univariate
standard Gaussian measure.

In turn, approximation can be obtained in L2(U, V, γ ), corresponding to mean-
square convergence, by truncation of the tensor product Hermite expansion

u(y) =
∑

ν∈F
uν Hν(y), uν =

∫

U
u(y)Hν(y)dγ (y) ∈ V, Hν(y) :=

∏

j≥1

Hν j (y j ).

(12)
Here we have denoted by (Hn)n≥0 the sequence of univariate Hermite polynomials
with normalization in L2(R, g(t)dt) where g(t) = 1√

2π
e−t2/2, and by F the set of

finitely supported sequences ν = (ν j ) j≥1 of non-negative integers.
The best error for a given number n of terms retained in the above expansion is

attained by the so-called best n-term Hermite approximation y �→ un(y) obtained by
retaining the indices ν corresponding to the n largest ‖uν‖V . By combining Parseval’s
identity with Stechkin’s lemma [13], the resulting error can be quantified in terms of
the �p-summability of the sequence (‖uν‖V )ν∈F for p < 2, namely

‖u − un‖L2(U,V,γ ) ≤ Cn−s, s := 1

p
− 1

2
, C := ‖(‖uν‖V )ν∈F‖�p(F). (13)

As shown in [3], this extra summabilitymaydepend strongly on the particular represen-
tation (2) that is used, or in other words, on the choice of coordinates (y j ) j≥1.Whereas
previous results establishing summability properties of (‖uν‖V )ν∈F are based only on
the summability of (‖ψ j‖L∞(D)) j≥1, that is, on the absolute sizes of theψ j , the results
in [2,3] also take into account the localization properties of ψ j . More specifically, the
following is shown in [3], assuming that D is a bounded Lipschitz domain.

Theorem 1.1 Let 0 < p < 2 and let q = q(p) := 2p
2−p . Assume that there exists a

positive sequence (ρ j ) j≥1 such that

sup
x∈D

∑

j≥1

ρ j |ψ j (x)| < ∞ (14)

and
(ρ−1

j ) j≥1 ∈ �q(N). (15)



J Fourier Anal Appl (2018) 24:621–649 625

Then the solution map y �→ u(y) belongs to Lk(U, V, γ ) for all 0 ≤ k < ∞.
Moreover, (‖uν‖V )ν∈F ∈ �p(F). In particular, best n-term Hermite approximations
converge in L2(U, V, γ ) with rate n−s for s = 1

p − 1
2 = 1

q .

Let us mention that although this theorem refers to the particular elliptic equation
(1), inspection of its proof shows that a similar result holds for other types of equation.
This includes in particular fourth-order elliptic equations or parabolic equations, again
with lognormal coefficients (see the discussion in the end of Sect. 2 of [2] in the case
of affine coefficients, which also applies to the lognormal case).

The above result draws an important distinction between representations using
globally or locally supported functions ψ j . If nothing is assumed on the supports of
ψ j , we may only apply the following immediate consequence of Theorem 1.1.

Corollary 1.2 If (ψ j ) j≥1 is a family of functions with arbitrary support such that
(‖ψ j‖L∞) j≥1 belongs to �r (N) for some r < 1, then best n-term Hermite approxima-
tions converge in L2(U, V, γ ) with rate n−s for s = 1

r − 1.

Consider for example the above mentioned Brownian bridge. On the one hand, the
KL functions given by (8) are globally supported with size of order j−1. In turn, for
any q < ∞, there exists no sequence (ρ j ) j≥1 satisfying (14) and (15), and therefore
the best n-term truncation cannot be proved to converge with any algebraic rate. On the
other hand, the Schauder functions given by (9) have local support properties which
allow us to fulfill (14) with ρ j = j s for any s < 1

2 . Hence best n-term Hermite
truncation based on the Schauder representation is ensured to converge with rate n−s

for any s < 1
2 .

The same analysis applies to a general process on a bounded domain D ⊂ R
d if

it admits an expansion (2) where the ψ j have wavelet-like localization properties. In
this case, it is convenient to index the basis functionsψ j by a scale-space index λ, with
|λ| denoting the corresponding scale level. We denote by I the set of these indices,
where #{λ ∈ I : |λ| = �} ∼ 2d� for � ≥ 0.

Corollary 1.3 Let (ψ j ) j≥1 = (ψλ)λ∈I be a wavelet basis such that for some α > 0,

sup
x∈D

∑

|λ|=�

|ψλ(x)| ≤ C2−α�, � ≥ 0. (16)

If (‖ψλ‖L∞)λ∈I belongs to �q(I), which holds for q > d
α

, then the best n-term Hermite
approximations converge in L2(U, V, γ ) with rate n−s for all s < 1

q < α
d .

This leads to the question whether suitable wavelet-type systems (ψ j ) j≥1 forming
orthonormal bases or tight frames of H can also be found for more general b with
given covariance kernel K . In view of the above corollary, we are interested in the
decay exponent α that can be ensured in (16). For practical purposes, we also need
these systems to either have exact analytic expressions or be computable by simple
and efficient numerical procedures.

We shall focus on stationary random fields, that is, covariances of the form

K (x, x ′) = k(x − x ′), x, x ′ ∈ D, (17)
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where k is an even function defined over Rd which is the inverse Fourier transform
of a positive measure. One typical class of examples is given by the family of Matérn
covariances

k(x) = 21−ν

�(ν)

(√
2ν|x |
λ

)ν

Kν

(√
2ν|x |
λ

)
, (18)

where ν, λ > 0 and Kν is themodifiedBessel function of the second kind, with Fourier
transform given by

k̂(ω) = cν,λ

(
2ν

λ2
+ |ω|2

)−(ν+d/2)

, cν,λ := 2dπd/2�(ν + d/2)(2ν)ν

�(ν)λ2ν
. (19)

Here, for the Fourier transform, we use the convention

f̂ (ω) =
∫

Rd
f (x) e−i x ·ω dx . (20)

The parameters ν and λ quantify the smoothness and correlation length, respectively,
of the process.

The idea of usingwavelet-type systems for the representation ofGaussian processes
was put forward in the pioneering works of Ciesielski [7], motivated by the problem of
analyzing the Hölder smoothness of univariate Gaussian processes. This program was
pursued in [8] where Sobolev–Besov smoothnesswas investigated, in particular for the
fractional Brownian motion. These papers were based on representing the processes
of interest in the Schauder basis, with resulting components that are generally not
independent and therefore not of the form (2).

A general approach was proposed in [4] to obtain wavelet-type representations
of Gaussian processes defined on R

d , with independent components. This approach
requires that the covariance function is the Green’s function of an operator of pseudo-
differential type, and it includes Matérn covariances, see also [9]. A related approach
was proposed in [15] for stationary Gaussian processes, motivated by fast methods
for generating trajectories. Both approaches strongly rely on the Fourier transform
over Rd , and do not carry over in a simple manner to the case of a bounded domain
D ⊂ R

d .
A general construction ofwavelet expansions of the form (2) forGaussian processes

was recently proposed in [22], in the general framework of Dirichlet spaces. Here the
needed assumptions are that the covariance operator commutes with the operator that
defines theDirichlet structure. The latter does not have a simple explicit form in the case
of Matérn covariances on a domain D, which makes this approach difficult to analyze
and implement in our setting. Let us also mention the construction in [18], where an
orthonormal basis for the RKHS is built by a direct Gram-Schmidt process, however,
with generally no size and localization bounds on the resulting basis functions.

In the present paper,we propose an approachwhere the complications thatmay arise
due to the geometry of D are circumvented by performing a periodic continuation of
the randomfield b on a larger torusT. The existence of such a continuation is discussed
in Sect. 2. This leads to a simple construction of KL-type andwavelet-type expansions,
by restrictions to D of similar expansions defined on T. While the systems introduced
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on T are bases, their restrictions to D are redundant frames of the RKHS, the amount
of redundancy being essentially reflected by the ratio |T|/|D|. Our construction thus
achieves numerical simplicity at the price of redundancy. Here, D is a general bounded
domain with no particular regularity assumption.

The periodic continuation has some parallels to circulant embedding, proposed
independently in [14] and [28] as an algebraic technique for evaluating a stationary
Gaussian random field, given by k, at the points of a uniform grid. Here, the (block)
Toeplitz matrix formed by the grid values of k is embedded into a (block) circulant
matrix, enabling a factorization by fast Fourier transform. Although it was shown in
[12] that a positive definite Toeplitz matrix can always be embedded into a sufficiently
large positive definite circulant matrix, its required size depends on the particular
k under consideration, similarly to the size of T in our construction. Under more
restrictive assumptions on k, simple procedures produce an embedding into a matrix
of size proportional to the original one [14]. This strategy has also been applied in the
numerical treatment of lognormal diffusion problems by quasi-Monte Carlo (QMC)
methods [19].

Also in the setting of sampling-based methods such as QMC, our results have
several potentially advantageous features. They yield a periodically extended random
field on all of D, rather than on a uniform spatial grid. Any further approximation
(e.g. on unstructured finite element meshes) can thus be adjusted independently of the
periodic extension and of a chosen expansion of the random field. Furthermore, the
decay properties of the KL eigenvalues of the periodic process are directly controlled
by the decay of the Fourier transform of k.

In the case of KL-type expansions, which are studied in Sect. 3, the functions ψ j

that we obtain are simply the restrictions to D of trigonometric functions. This is
an advantage in term of numerical simplicity compared to the L2(D)-orthogonal KL
functions of b which may not be easy to compute accurately, and in addition may
not satisfy uniform L∞ bounds. Wavelet-type expansions are defined in Sect. 4, and
we establish their localization and size properties. In the case of Matérn covariances,
they correspond to the value α = ν in (16), where ν is the smoothness parameter
in (19). Therefore, corresponding best n-term Hermite approximations converge with
algebraic rate n−s for any 0 < s < ν/d. Finally, in Sect. 5 details are given on
numerical procedures which may be applied to define the periodic continuation and to
construct the resulting wavelets, in the case of Matérn covariance, depending on the
parameters λ, ν.

Remark 1.4 Our efforts in this paper are directed at improving the choice of the basis
(ψ j ) j≥1 in the representation of a Gaussian process, in the sense of achieving the
property

sup
x∈D

∑

j≥1

ρ j |ψ j (x)| < ∞ (21)

with (ρ−1
j ) ∈ �q for the smallest possible value of q. While the wavelet bases that we

construct are superior toKLbases in that particular sense, in the case ofMatérn process,
an open question is whether they are optimal among all possible representations.
Closely related is the question of the choice of a representation that optimizes the
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convergence of the trunctated randomseries bn = ∑n
j=1 y jψ j in the L∞ norm towards

the randomfield b.While KL bases are known to be optimal in the sense ofminimizing
the mean square error E(‖b − bn‖2

L2), they are generally suboptimal when replacing

L2 by L∞ in the norm measuring the truncation error. The condition (21) can be used
to estimate the convergence ‖b − bn‖L∞ in various ways, for example in the almost
sure sense. Indeed, we may write

‖b − bn‖L∞ ≤ C sup
j>n

ρ−1
j |y j |, C := sup

x∈D

∑

j≥1

ρ j |ψ j (x)|. (22)

Then, observing that ifω j is a slowly increasing sequence such that
∑

j≥1 exp(−ω2
j ) <

∞ (for example, take ω j = √
2 ln j + 1), it is easily checked that sup j>n ω−1

j |y j | is
finite with probability one. This allows us to derive that, almost surely,

sup
n≥1

α−1
n ‖b − bn‖L∞ < ∞, αn := sup

j>n
ρ−1

j ω j . (23)

If (ρ−1
j ) ∈ �q , and assuming without loss of generality that the ρ j are in increasing

order, then it follows that ρ−1
j ≤ Cn−1/q and therefore we obtain the almost sure

convergence rate n−s in L∞ for any 0 < s < 1
q . In the case of Matérn covariances,

using the constructed wavelet bases, we obtain such convergence rates for all values of
ν > 0, which does not seem to be achievable when using KL bases. It is again an open
question to understand whether wavelet bases provide the best possible convergence
rate.

Notation: Throughout the paper, as in the above introduction, we use C to denote a
constant that may change between occurences (even in a chain of inequalities), and
when necessary we indicate its value or the parameters on which it depends.

2 Periodic Continuation of a Stationary Process

Let (b(x))x∈Rd be a real-valued, stationary and centered Gaussian process defined on
R

d , whose covariance is of the form

E(b(x)b(x ′)) = k(x − x ′), (24)

where k is a real-valued and even function which is the inverse Fourier transform of a
non-negative function k̂. We work under the assumption that k̂ is such that

0 ≤ k̂(ω) ≤ C(1 + |ω|2)−r , ω ∈ R
d , (25)

for some r > d/2 and C > 0. Obviously, the Matérn covariances (18) satisfy this
assumption with r = ν+d/2 andC depending on (d, λ, ν). We consider the restricted
process (b(x))x∈D defined on the bounded domain D of interest.
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We aim for representations of the general form (2) where the y j are i.i.d. N (0, 1)
and the (ψ j ) j≥1 are a given sequence of functions defined on D. As explained in
the introduction, one natural choice is ψ j = √

λ jϕ j , where (ϕ j , λ j ) are the eigen-
functions and eigenvalues of the covariance operator. However, this renormalized KL
representation may not meet our requirements due to the possibly global support of
theψ j and due to the slow decay of their L∞ norms, while other representations could
be more appropriate.

Our strategy for deriving better representations of the process over D is to view it as
the restriction to D of a periodic stationary Gaussian process bp defined on a suitable
larger torus T. As a consequence, any representation

bp =
∑

j≥1

y j ψ̃ j , (26)

with y j i.i.d.N (0, 1) and (ψ̃ j ) j≥1 a given system of functions, yields a representation

b =
∑

j≥1

y jψ j , ψ j := ψ̃ j |D. (27)

The construction of bp requires additional assumptions on the covariance function k.
Let δ := diam(D), so that in a suitable coordinate system, D can be embedded

into the box [− δ
2 ,

δ
2 ]d . We want to construct a periodic process (bp(x))x∈T on a torus

T = [−γ, γ ]d with γ > δ, whose restriction bp|D on D is such that bp|D ∼ b, that is,
bp|D and b share the same law. This is feasible provided that we can find an even and
T-periodic function kp which agrees with k over [−δ, δ]d and such that the Fourier
coefficients

cn(kp) :=
∫

T

kp(z) e−i π
γ

n·z dz, n ∈ Z
d , (28)

are non-negative. In addition we would like that these Fourier coefficients have a
similar rate of decay as the function k̂, that is,

0 ≤ cn(kp) ≤ C(1 + |n|2)−r , n ∈ Z
d , (29)

for some C > 0. Note that kp generally differs from the periodization
∑

n∈Zd k(· +
2γ n), which corresponds to a periodic process that does not agree with b on D.

One natural way of constructing the function kp is by truncation and periodization:
first we choose a sufficiently smooth and even cutoff function φ : Rd → R, to be
specified further, such that φ|[−δ,δ]d = 1 and φ(x) = 0 for x /∈ [−κ, κ]d where
κ := 2γ − δ, and define the truncation

kt(z) := k(z) φ(z). (30)

We now define kp as the periodization of kt , that is,

kp(z) =
∑

n∈Zd

kt(z + 2γ n). (31)
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Obviously, kp agrees with k over [−δ, δ]d , and

cn(kp) = k̂t

(
π

γ
n

)
. (32)

Therefore (29) follows if we can establish

0 ≤ k̂t(ω) ≤ C(1 + |ω|2)−r , ω ∈ R
d , (33)

for some C > 0. Since we have

k̂t = (2π)−d k̂ ∗ φ̂, (34)

it is easily seen that the upper inequality in (33) follows from the upper inequality in
(25), provided that φ is chosen sufficiently smooth such that

|φ̂(ω)| ≤ C(1 + |ω|2)−r , (35)

for some C > 0. Indeed, combining (34) with (25) and (35), we obtain

(2π)d |k̂t(ω)| ≤
∣∣∣∣
∫

|ξ |≤|ω|/2
k̂(ξ) φ̂(ω − ξ) dξ

∣∣∣∣ +
∣∣∣∣
∫

|ξ |≥|ω|/2
k̂(ξ) φ̂(ω − ξ) dξ

∣∣∣∣

≤ ‖k̂‖L1 max|ξ |≥|ω|/2 |φ̂(ξ)| + ‖φ̂‖L1 max|ξ |≥|ω|/2 |k̂(ξ)|
≤ C(1 + |ω|2)−r . (36)

Themain problem is to guarantee the lower inequality in (33), that is, the non-negativity
of k̂t . Note that φ̂ cannot be non-negative: since 1 = φ(0) = (2π)−d

∫
Rd φ̂(ω)dω, the

non-negativity of φ̂ would imply that

|φ(x)| = (2π)−d
∣∣∣∣
∫

Rd
φ̂(ω) eix ·ω dω

∣∣∣∣ < 1, x �= 0, (37)

therefore contradicting the assumption φ|[−δ,δ]d = 1.
It follows that for any such φ, the convolution operator

v �→ v ∗ φ̂, (38)

does not preserve positivity for all functions v. Here, we are only interested in pre-
serving positivity for the particular function k̂. However, the following result shows
that this is in general not feasible only under the assumption (25).

Theorem 2.1 For any r > d/2, there exists an even function k that satisfies (25) and
such that for any φ satisfying |φ̂(ω)| ≤ C(1+ |ω|2)−s for some s > r , φ|[−δ,δ]d = 1,

φ(x) = 0 for x /∈ [−κ, κ]d for some κ > δ, the function k̂t = (2π)−d k̂ ∗ φ̂ is not
non-negative.
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Proof Let h be a non-negative, smooth, even function on R
d with h(0) = 1 and

support contained in the unit ball. For � ∈ N, we choose arbitrary but fixed ω� ∈ R
d

such that |ω�| = 2�. We now define k by its Fourier transform as

k̂(ω) :=
∑

�≥1

2−2r�
(

h
(
�(ω − ω�)

) + h
(
�(ω + ω�)

))
. (39)

Then clearly, (25) is satisfied. As demonstrated above, there exists ω∗ ∈ R
d such that

φ̂(ω∗) < 0. For � > 1, consider

k̂t(ω
∗ +ω�) = (2π)−d

∫

Rd
φ̂(ω∗ − ξ) k̂(ξ +ω�) dξ = (2π)−d(

I1(�)+ I2(�)
)
, (40)

where

I1(�) :=
∫

Rd
φ̂(ω∗ − ξ)2−2r�h(�ξ) dξ = �−d2−2r�

∫

Rd
φ̂(ω∗ − �−1ξ) h(ξ) dξ,

I2(�) :=
∫

Rd
φ̂(ω∗ − ξ)

(
k̂(ξ + ω�) − 2−2r�h(�ξ)

)
dξ.

On the one hand,

lim
�→∞ �d22r� I1(�) = φ̂(ω∗)

∫

Rd
h(ξ) dξ < 0. (41)

On the other hand, k̂ ∈ L1(Rd) and k̂(ξ + ω�) − 2−2r�h(�ξ) vanishes for |ξ | ≤ 2�−2.
As a consequence,

|I2(�)| ≤ ‖k̂‖L1(Rd ) max
|ξ |≥2�−2

|φ̂(ω∗ − ξ)|. (42)

For � such that 2�−2 > 2|ω∗|, we thus have

|I2(�)| ≤ C‖k̂‖L1(Rd )(1 + 22�−6)−s . (43)

Therefore
lim

�→∞ �d22r�|I2(�)| = 0. (44)

As a consequence, k̂t(ω∗ + ω�) < 0 for sufficiently large �. ��
The above counterexample reveals that further assumptions are needed on the

covariance function k. Specifically, we work under the stronger assumptions

c(1 + |ω|2)−s ≤ k̂(ω) ≤ C(1 + |ω|2)−r , (45)
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for some s ≥ r > d/2 and 0 < c ≤ C , and

lim
R→∞

∫

|x |>R
|∂αk(x)| dx = 0, |α| ≤ 2�s�, (46)

where �s� is the smallest integer greater or equal to s.

Remark 2.2 In the case of the Matérn covariance (18) with parameters ν, λ > 0, the
assumption (45) holdswith s = r = ν+d/2 as a consequence of (19). The assumption
(46) actually holds for all derivation orders α, as a consequence of the exponential
decay of the modified Bessel functions of the second kind Kν and of their derivatives.
This exponential decay can be seen, for example, from the integral representation

Kν(x) =
∫ ∞

0
e−x cosh t cosh νt dt, (47)

see [26, p. 181]. While in the present paper we focus on the example of Matérn
covariances, there are of course other relevant processes that satisfy (45), in particular
anisotropic processes. As an example consider a d-dimensional stationary process
with anisotropic covariance given by

k(x) = kν1,λ1(x1) . . . kνd ,λd (xd), (48)

where kν,λ stands for the one-dimensional Matérn covariance as given in (18). Taking
the Fourier transform, it is easily seen that (45) again holds, however with values s > r
in contrast to the isotropic case.

Theorem 2.3 Let k be an even function such that (45) and (46) hold. Then for κ > δ

sufficiently large, there exists φ satisfying (35), φ|[−δ,δ]d = 1, and φ(x) = 0 for

x /∈ [−κ, κ]d such that k̂t = (2π)−d k̂ ∗ φ̂ is positive.

Proof We first choose a function φ2δ ∈ C2p(Rd) with p := �s�, supported on
[−2δ, 2δ]d and such that φ2δ|[−δ,δ]d = 1. Then for each κ ≥ 2δ, we define

φκ(x) = φ2δ(2δx/κ). (49)

We thus have, for all κ ≥ 2δ,

max|α|≤2p
‖∂αφκ‖L∞ ≤ max|α|≤2p

‖∂αφ2δ‖L∞ =: M < ∞. (50)

Note that φκ satisfies (35) with a constant C that depends on κ . For a value of κ to be
fixed further, we take φ := φκ , and let θ := 1 − φ. Then

k̂t(ω) = k̂(ω) − k̂θ(ω) ≥ c(1 + |ω|2)−s − k̂θ(ω), (51)
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and

∣∣k̂θ(ω)
∣∣ ≤ (1+|ω|2)−p

∫

Rd
|(I −�)p(kθ)| dx ≤ (1+|ω|2)−s

∫

Rd
|(I −�)p(kθ)| dx .

(52)
By repeated application of Leibniz’ rule and separately bounding each term, one finds

∫

Rd
|(I − �)p(kθ)| dx ≤ C(κ) := (1 + 4d)p M max|α|≤2p

∫

|x |>κ/2
|∂αk(x)| dx . (53)

Since limκ→∞ C(κ) = 0 by (46), it follows that k̂t is positive for κ chosen large
enough such that C(κ) ≤ c. ��
Remark 2.4 From the proof of Theorem 2.3, for a given k and a choice of φ2δ one may
also extract an upper bound for the required size of κ (and hence γ ) from the decay
of the right side of (53); note that here, p and M also depend on k via s. For the case
of Matérn covariances, the resulting requirements on γ are illustrated numerically in
Fig. 1 of Sect. 5.1.

3 Karhunen–Loève Representations

Let us recall that the standard Karhunen–Loève (KL) decomposition of the stationary
Gaussian process b has the form (2) with

ψ j = ψKL
j := √

λ j ϕ j , (54)

where (λ j ) j≥1 is the sequence of positive eigenvalues of the covariance operator

T : v �→ T v =
∫

D
k(· − x) v(x) dx, (55)

arranged in decreasing order, and (ϕ j ) j≥1 is the associated L2(D)-orthonormal basis
of eigenfunctions.

Working under assumptions (45) and (46), the periodized construction described
in the previous section provides us with an alternative decomposition based on the
covariance operator associated to the periodized process bp, that is,

Tp : v �→ Tpv =
∫

T

kp(· − x) v(x) dx, (56)

withT = [−γ, γ ]d . The L2(T)-orthonormal eigenfunctions of this operator are explic-
itly given by the trigonometric functions

θn(z) := tn1(z1) · · · tnd (zd), n = (n1, . . . , nd) ∈ N
d
0 , (57)
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where t0(z) = (2γ )−1/2 and

t2m(z) = γ −1/2 cos

(
mπ z

γ

)
and t2m−1(z) = γ −1/2 sin

(
mπ z

γ

)
, m ≥ 1.

(58)
The eigenvalues are related to the Fourier coefficients cn(kp) defined in (28). For the
above eigenfunction θn , with n = (n1, . . . , nd) and each ni being either of the form
2mi or 2mi − 1, the corresponding eigenvalue is

cm(kp), m = (m1, . . . , md). (59)

We denote by (λp, j ) j≥1 a decreasing rearrangement of these eigenvalues, with corre-
sponding eigenfunctions (ϕp, j ) j≥1. We may thus write

bp =
∑

j≥1

y jψp, j , (60)

where the y j are i.i.d. N (0, 1) and

ψp, j := √
λp, j ϕp, j . (61)

Since bp ∼ b on D, this yields a decomposition of b by restriction, that is, taking

ψ j = ψR
j := √

λp, j ϕp, j |D. (62)

From (29), we obtain that, for some C > 0,

#{n ∈ Z
d : |cn(kp)| ≥ η} ≤ Cη−2r/d , η > 0. (63)

Thus, by decreasing rearrangement, we obtain a decay estimate of the form

λp, j ≤ C j−
2r
d , j ≥ 1, (64)

for some C > 0. One first observation is that a similar decay estimate holds for the
original eigenvalues λ j .

Theorem 3.1 If the covariance function satisfies (45) and (46), then we have

λ j ≤ C j−
2r
d , j ≥ 1, (65)

for some C > 0.

Proof We denote by
Vn = span{ϕ1, . . . , ϕn}, (66)
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the spaces generated by the Karhunen–Loève functions. These spaces satisfy the opti-
mality property

∑

j>n

λ j = E
(‖b − PVn b‖2L2(D)

) = min
dim(V )=n

E
(‖b − PV b‖2L2(D)

)
, (67)

where PV is the L2(D)-orthogonal projector. With

Vp,n := span{ϕp,1, . . . , ϕp,n}, (68)

the spaces generated by the KL functions of bp, we denote by

Wn := span{ϕp,1|D, . . . , ϕp,n|D} (69)

their restriction to D. We thus have

∑

j>n

λ j ≤ E
(‖b − PWn b‖2L2(D)

)
, (70)

and since b and bp agree on D, it follows that

∑

j>n

λ j ≤ E
(‖bp − PVp,n bp‖2L2(T)

)
, (71)

where PVp,n is the L2(T)-orthogonal projector. Therefore

∑

j>n

λ j ≤
∑

j>n

λp, j ≤ Cn1− 2r
d , n ≥ 1, (72)

where the second inequality follows from (64). Since the λ j are positive non-
increasing, we obtain

λ j ≤ 2

j

∑

� j
2 �<l≤ j

λl ≤ 2

j

∑

l>� j
2 �

λl ≤ C j−
2r
d , (73)

which is (65). ��
Remark 3.2 In the case of the Matérn covariance, in view of (19), we therefore obtain
(65) with the value r := ν + d/2. This estimate was derived in [20] by a different
approach, using the theory developed by Widom for the eigenvalues of convolution-
type operators. This theory makes the assumption that k̂ is unimodal in each variable,
see [27, p. 290], which holds for Matérn covariances, but is not needed in the above
construction based on assumptions (45) and (46).
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One interest of using the representation based on the functions ψR
j defined by

restriction according to (62) is that the functions ϕp, j are explicitly given by tensorized
trigonometric functions. In particular, they are uniformly bounded. It follows that

‖ψR
j ‖L∞ ≤ Cλ

1/2
p, j , j ≥ 1, (74)

and therefore, by (64),
‖ψR

j ‖L∞ ≤ C j−
r
d , j ≥ 1. (75)

In contrast, such uniform bounds for the L∞(D) norms are generally not available
for the KL functions ϕ j , which are in addition not easily computable in the case of a
general multivariate domain.

In the particular case of Matérn covariances, the L∞ norms of these functions
have been estimated in [20], by arguments which use their natural connections with
Hilbertian Sobolev spaces. We give below a similar argument which improves on
the estimates established in [20]. Fixing an s such that d

2 < s < r = ν + d/2, and
assuming that the domain D satisfies the uniform cone condition, we may use Sobolev
embedding to obtain

‖ϕ j‖L∞(D) ≤ C‖ϕ j‖Hs (D). (76)

We then find by interpolation inequalities between Sobolev spaces that

‖ϕ j‖L∞(D) ≤ C‖ϕ j‖1−s/r
L2(D)

‖ϕ j‖s/r
Hr (D) = C‖ϕ j‖s/r

Hr (D). (77)

In order to estimate the Hr (D) norms of the functions ϕ j , we use the following bound
for the covariance operator T : for any v ∈ L2(D), denoting byw its extension by zero
to Rd , we have

‖T v‖2Hr (D) = ‖(k ∗ w)|D‖2Hr (D) ≤ ‖k ∗ w‖2Hr (Rd )

= C
∫

Rd
(1 + |ω|2)r |k̂(ω)ŵ(ω)|2dω

≤ C
∫

Rd
(1 + |ω|2)−r |ŵ(ω)|2dω

≤ C
∫

Rd
k̂(ω)|ŵ(ω)|2dω

= C〈k ∗ w,w〉L2(Rd ) ≤ C‖T v‖L2(D)‖v‖L2(D),

where we have used the characterization of Hilbertian Sobolev spaces by Fourier
transforms and the particular form of the Matérn covariance (recall that by convention
the constant C is allowed to change value in the above chain of inequalities). Taking
v = ϕ j and using T ϕ j = λ jϕ j , we thus obtain

‖ϕ j‖Hr (D) ≤ Cλ
−1/2
j . (78)
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In summary we have obtained the non-uniform bound

‖ϕ j‖L∞(D) ≤ Cλ
− s

2r
j (79)

and therefore, by (65),
‖ψKL

j ‖L∞(D) ≤ C j−
r−s

d . (80)

In particular, we may take s = d
2 + ε for any sufficiently small ε > 0 to obtain

‖ψKL
j ‖L∞(D) ≤ C j−

r
d + 1

2+ε. (81)

This needs to be comparedwith (64),which in the present case of theMatérn covariance
yields

‖ψR
j ‖L∞(D) ≤ C j−

r
d , (82)

since ‖ϕp, j‖L∞(D) ≤ 1.
Let us mention that in the particular univariate case d = 1, numerical experiment

seem to indicate that ‖ϕ j‖L∞(D) stays bounded independently of j , and therefore that
the upper bound (79) is not always sharp. On the other hand, one can also exhibit
examples of stationary processes such that the corresponding KL functions on the
domain D are not uniformly bounded. Take for example the case D = [−1, 1] and
k such that k̂ = χ[−F,F] for which the KL functions ϕ j coincide with the univari-
ate prolate spheroidal functions introduced in [25]. It is known that these functions
are uniformly close to the Legendre polynomials L j as j → ∞, which shows that
‖ϕ j‖L∞(D) ∼ j1/2, see [5].

In summary, we have obtained substantially better bounds on the decay of
‖ψR

j ‖L∞(D) than available for ‖ψKL
j ‖L∞(D), and in addition the ψR

j are easily com-

puted numerically while this is generally not the case for the ψKL
j . However, (82) still

leads to rather severe restrictions on the values of r for which Theorem 1.1 is applica-
ble via Corollary 1.2, due to the global supports of the functions ψR

j . In the following
section we consider an alternative wavelet-type construction for which Theorem 1.1,
with Corollary 1.3, yields an approximation rate for corresponding solutions of u for
any r > d

2 .

4 Wavelet Representations

Our starting point is an L2(R)-orthonormal wavelet basis, that is a basis of the form

{ϕ(· − n)}n∈Z ∪ {2�/2ψ(2� · −n)}�≥0,n∈Z (83)

whereϕ andψ are the scaling function andmotherwavelet, respectively. For simplicity
we use the Meyer wavelets, whose construction is detailed in [11,24], and for which

supp(ϕ̂) =
[
−4π

3
,
4π

3

]
and supp(ψ̂) =

[
−8π

3
,−2π

3

]
∪

[
2π

3
,
8π

3

]
. (84)
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The functions ϕ̂ and ψ̂ may be chosen to be smooth, but for our purpose it will be
enough to assume that they have M uniformly bounded derivatives with an integer
M ≥ d + 1.

Denoting ψ0 := ϕ and ψ1 := ψ , the multivariate scaling function and wavelets are
defined by

�(x) := ϕ(x1) · · · ϕ(xd), �ε(x) := ψε1(x1) · · · ψεd (xd), ε ∈ C, (85)

where C := {0, 1}d \ {(0, . . . , 0)}. Then

{�(· − n) : n ∈ Z
d} ∪ {�ε,n,� : n ∈ Z

d , � ≥ 0, ε ∈ C}, (86)

is an orthonormal basis of L2(Rd), where we have used the notation

�ε,n,� := 2d�/2�ε(2
� · −n). (87)

We obtain an orthonormal basis of L2(T) by rescaling and periodization. This basis
consists of the constant scaling function

�p(x) :=
∑

m∈Zd

(2γ )−d/2�
(
(2γ )−1x − m

) = (2γ )−d/2, (88)

and the T-periodic wavelets

�
p
ε,�,n(x) :=

∑

m∈Zd

(2γ )−d/2�ε,n,�

(
(2γ )−1x − m

)
, (89)

for n ∈ {0, . . . , 2� − 1}d , � ≥ 0, ε ∈ C. From the Poisson summation formula,
and the support properties of ϕ̂ and ψ̂ , it is easily seen that the above wavelets, at a
given scale level �, are finite linear combinations of the Fourier exponentials en with
‖n‖∞ ≤ 2�+2. In other words, they are trigonometric polynomials of degree at most
2�+2 in each variable.

We now make the following general observation: let (g j ) j≥1 be any orthonormal
basis of L2(T), with each basis function having the Fourier expansion

g j = (2γ )−d/2
∑

n∈Zd

cn(g j ) en, (90)

where
en(z) := (2γ )−d/2ei π

γ
n·z

, n ∈ Z
d . (91)

Then, defining the functions (ḡ j ) j≥1 by ḡ j := Sg j , where S is the filtering operator

v �→ Sv := (2γ )−d/2
∑

n∈Zd

√
cn(kp) cn(v) en, (92)
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we obtain a decomposition
bp =

∑

j≥1

y j ḡ j , (93)

where the y j are i.i.d. N (0, 1), and therefore b = ∑
j≥1 y j ḡ j |D .

We apply this procedure to the above described periodic wavelet basis, therefore
obtaining new periodic functions

�̄p = S�p and �̄
p
ε,�,n := S�

p
ε,�,n, (94)

which are adapted to the decomposition of bp. By construction �̄p is again a constant
functionwith value (2γ )−d/2

√
c0(kp), and the functions �̄

p
ε,�,n are trigonometric poly-

nomials of degree at most 2�+2 in each variable. We next study in more detail the size
and localization properties of these functions and show that they essentially behave
like a wavelet basis with normalization 2�(d/2−r) in place of 2�d/2. This geometric
decay of the L∞ norms, combined with the localization properties, will allow us to
apply Theorem 1.1 and Corollary 1.3 for any value of r > d

2 .
Note that since kp has been obtained by periodizing the truncated function kt = kφ,

an equivalent construction of the functions �̄
p
ε,�,n is obtained by first defining overRd

the rescaled and filtered wavelets �̄ε,�,n according to

̂̄�ε,�,n(ω) = k̂
1
2
t (ω) (2γ )d/2�̂ε,�,n(2γω), (95)

and then applying T-periodization, that is,

�̄
p
ε,�,n(x) =

∑

m∈Zd

�̄ε,�,n(x + 2γ m). (96)

We thus focus our attention on the size and localization properties of the functions
�̄ε,�,n .

Note that these functions inherit from the wavelet basis the translation invariance
structure, since, at any given scale level �, the functions �̄ε,�,n are translates by 2γ 2−�n
of �̄ε,�,0, that is,

�̄ε,�,n = �̄ε,�,0(· − 2γ 2−�n). (97)

However, they do not inherit the dilation invariance structure, since the functions �̄ε,�,0
are not obtained by a simple rescaling of �̄ε,0,0. We introduce rescaled functions Fε,�

such that
�̄ε,�,0(x) = 2�(d/2−r)Fε,�(2

�x), (98)

that is, Fε,� is defined by

Fε,�(x) = 2−�(d/2−r)�̄ε,�,0(2
−�x). (99)

Our objective is now to show that the functions Fε,� satisfy a uniform localization
estimate, independently of ε and �.
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For this purpose, we require some additional assumptions on the covariance func-
tion, namely that (45) holds with s = r , and that the partial derivatives of k̂ satisfy
improved decay estimates

|∂α k̂(ω)| ≤ C(1 + |ω|2)−(r+|α|/2), |α| ≤ M, (100)

for an M ≥ d + 1. It is easily seen that Matérn covariances satisfy such estimates, by
straightforward differentiation of (19).

Lemma 4.1 Let k satisfy (45), (46) with s = r and (100) with an integer M ≥ d + 1.
Then φ in Theorem 2.3 can be chosen such that

|∂α k̂
1
2
t (ω)| ≤ C(1 + |ω|)−(r+|α|), 0 ≤ |α| ≤ M. (101)

Proof Weproceed exactly as in the proof ofTheorem2.3 to obtain a family of functions
φκ ∈ C2p(Rd) for κ ≥ 2δ, supported on [−2δ, 2δ]d and such that φ2δ|[−δ,δ]d = 1,
and satisfying

max|α|≤2p
‖∂αφκ‖L∞ ≤ D < ∞ (102)

for some D > 0, but here with p := �r + M/2�.
As in the proof of Theorem 2.3, we obtain that for φ := φκ with κ sufficiently

large, there exist c̃, C̃ > 0 such that

c̃(1 + |ω|2)−r ≤ k̂t(ω) ≤ C̃(1 + |ω|2)−r . (103)

Note that φ obtained in this manner satisfies

|φ̂(ω)| ≤ C(1 + |ω|2)−p. (104)

Since k̂t = (2π)−d k̂ ∗ φ̂, we have ∂α k̂t = (2π)−d ∂α k̂ ∗ φ̂ and therefore

|∂α k̂t(ω)| = (2π)−d |(∂α k̂ ∗ φ̂)(ω)| ≤ C(1 + |ω|2)−(r+|α|/2), |α| ≤ M, (105)

by the same argument used for the upper inequality in (33).
We now turn to (101). For α = 0, this simply follows from (100) combined with

(1 + |ω|2) ≤ (1 + |ω|)2. For α �= 0 such that |α| ≤ M , we obtain by induction that

∂α k̂
1
2
t is of the form

∂α k̂
1
2
t =

|α|∑

m=1

∑

β1+···+βm=α

Cβ1,...,βm k̂
1
2−m
t

m∏

�=1

∂β� k̂t (106)
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for certain Cβ1,...,βm ∈ R. Note that we are allowed to divide by k̂t since it is positive
by (103). Since for β1, . . . , βm such that β1 + · · · + βm = α, we have

k̂
1
2−m
t (ω)

m∏

�=1

∂β� k̂t(ω) ≤ C(1 + |ω|2)− r
2+mr

m∏

�=1

(1 + |ω|2)−(r+|β�|/2), (107)

and thus

k̂
1
2−m
t (ω)

m∏

�=1

∂β� k̂t(ω) ≤ C(1 + |ω|)−(r+|α|), (108)

we arrive at (101). ��
Theorem 4.2 Let k satisfy (45), (46) with s = r and (100) with an integer M ≥ d +1,
and let φ be chosen as in Lemma 4.1. Then the functions Fε,� satisfy

|Fε,�(x)| ≤ C(1 + |x |)−M , (109)

for some C > 0 that is independent of � and ε.

Proof From its definition (99) we have

F̂ε,�(ω) = 2�(d/2+r)̂̄�ε,�,0(2
�ω), (110)

and therefore by (95),

F̂ε,�(ω) = (2γ )d/22�(d/2+r)k̂
1
2
t (2�ω) �̂ε,�,0(2γ 2

�ω)=(2γ )d/22�r k̂
1
2
t (2�ω) �̂ε(2γω),

(111)
where we have used the scaling relation between �ε,�,0 and �ε. The functions F̂ε,�

are uniformly compactly supported since

|ω|∞ ≥ 8π

6γ
�⇒ �̂ε(2γω) = 0. (112)

Applying partial differentiation for anyα such that |α| ≤ M , and using themultivariate
Leibniz formula, we find that

∂α F̂ε,�(ω) = (2γ )d/22�r
∑

β≤α

(
α

β

) (
2�|β|∂β k̂

1
2
t (2�ω)

)(
(2γ )|α|−|β|∂α−β�̂ε(2γω)

)
.

(113)
The second factor (2γ )|α|−|β|∂α−β�̂ε(2γω) in each term is uniformly bounded inde-
pendently of ω and β, in view of the smoothness assumption that we have imposed
on ψ̂ . As to the first factor, since we only consider 2π

6γ ≤ |ω| ≤ √
d 8π
6γ , we may use

(101) to conclude that

|2�|β|∂β k̂
1
2
t (2�ω)| ≤ C2−r�. (114)
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It follows that the derivatives ∂α F̂ε,�(ω) are uniformly bounded, independently of �

and ε, for all |α| ≤ M , which implies (109) since they are in addition uniformly
compactly supported. ��

As we shall show next, Theorem 4.2 implies that Corollary 1.3 can be applied to
the wavelet basis defined by (96), that is, with the basis in the corollary chosen as the
scaling function �̄p and the wavelets �̄

p
ε,�,n ordered by increasing scale level.

Corollary 4.3 Under the assumptions of Theorem 4.2, for each � ≥ 0 one has

sup
x∈T

∑

ε∈C

∑

n∈{0,...,2�−1}d

|�̄p
ε,�,n(x)| ≤ C2−α�, (115)

with α := r − d
2 and C independent of �.

Proof For the summation over n in (115), by (96) and (98) we obtain

∑

n∈{0,...,2�−1}d

|�̄p
ε,�,n(x)| ≤ 2�(d/2−r)

∑

m∈Zd

∑

n∈{0,...,2�−1}d

|Fε,�

(
2�x + 2γ (2�m − n)

)|

= 2�(d/2−r)
∑

k∈Zd

|Fε,�(2
�x + 2γ k)|.

By Theorem 4.2,

∑

k∈Zd

|Fε,�(2
�x+2γ k)| ≤ C

∑

k∈Zd

(1+|2�x+2γ k|)−M ≤ C max
z∈T

∑

k∈Zd

(1+|z+2γ k|)−M ,

(116)
and the expression on the right is bounded since M ≥ d + 1. ��
Remark 4.4 In the estimate (115), the precise value of M enters only into the constant
C . For numerical purposes, however, larger values of M corresponding to stronger
spatial localization of the functions �̄

p
ε,�,n can be advantageous. Note that in the case

of the Matérn covariance, if φ ∈ C∞, then Lemma 4.1 can be applied for any integer
M ≥ d + 1. If in addition ϕ̂, ψ̂ ∈ C∞ holds for the functions generating the Meyer
wavelets, then Theorem 4.2 can be applied for any such M as well, and the resulting
spatial decay of �̄

p
ε,�,n is faster than any polynomial order.

5 Numerical Aspects

We now discuss in more concrete detail the periodic continuation and the resulting KL
and wavelet representations in the case of the Matérn covariances (18). In particular
we discuss how these representations can be efficiently computed by using FFT and
show some numerical examples which reveal the effect of the parameters λ and ν of
the Matérn covariance. While these computational principles apply in any dimension,
we work in the univariate setting, both for the sake of notational simplicity and for
visualization purposes. Our computational domain is thus an interval

]− δ
2 ,

δ
2

[
for some
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δ > 0. Note however that varying the correlation length parameter λ in (18) amounts
to rescaling the interval. Therefore we fix δ = 1, that is

D :=
]
−1

2
,
1

2

[
, (117)

and study the effect of varying λ.

5.1 Truncation and Positivity

We need to first choose a φ satisfying the conditions in Theorem 2.3 such that kt = kφ

has nonnegative Fourier transform. One option, which yields φ ∈ C∞(R), is based
on the function θ defined by

θ(x) :=
{
exp(−x−1), x > 0,

0, x ≤ 0.
(118)

We then set

φ(x) :=
θ
(

κ−|x |
κ−δ

)

θ
(

κ−|x |
κ−δ

)
+ θ

( |x |−δ
κ−δ

) . (119)

Recall that κ = 2γ − δ > δ. In view of Theorem 2.3, in order to ensure k̂t ≥ 0, it then
suffices to take γ sufficiently large.

In order to illustrate the dependence of the required value of γ on the parameters
ν, λ of the Matérn covariance, we now describe, for any chosen value of γ , a simple
scheme for approximating k̂t based on the discrete Fourier transform. Let L > κ

(so that supp kt ⊂ [−L , L]), and let N = 2J for some J > 0. We consider the
approximation of k̂t by the trapezoidal rule,

k̂t(ω) =
∫ L

−L
kt(x) e−iωx dx ≈ h

N/2−1∑

n=−N/2

kt(xn)e−iωxn =: DL ,N (ω), (120)

where h := 2L/N and xn := nh. The sum on the right side can be evaluated by the
FFT to obtain the values DL ,N (ωk) with

ωk := πk

L
, k = − N

2
, . . . ,

N

2
− 1. (121)

Thus, by making N and L large we may approximately compute k̂t on an arbitrarily
large range of ω and with arbitrarily fine sampling rate.

Since kt agrees on [−L , L] with its 2L-periodic extension, we have

kt(xn) =
∑

�∈Z

(
1

2L

∫ L

−L
kt(y) e−π iy�/L dy

)
eπ i xn�/L , (122)
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and consequently

DL ,N (ωk) = h
N/2−1∑

n=−N/2

(∑

�∈Z

1

2L
k̂t(ω�) eπ i xn�/L

)
e−π i xnk/L =

∑

m∈Z
k̂t(ωk+m N ).

(123)
We thus have the error representation

|k̂t(ωk) − DL ,N (ωk)| =
∣∣∣
∑

m∈Z
m �=0

k̂t(ωk+m N )

∣∣∣. (124)

In view of (19) and (36), in our present setting we obtain

|k̂t(ωk) − DL ,N (ωk)| ≤ C N−(2ν+1), k = − N

2
, . . . ,

N

2
− 1, (125)

where C > 0 is independent of k, L and N .
Based on this approximation, we can check positivity of the obtained approximate

values DL ,N (ωk) for each γ and combine this with a simple bisection scheme to obtain
an estimate of the minimum required value γmin for which k̂t remains non-negative
on the chosen grid. As illustrated in Fig. 1, we observe that γmin remains close to
its lower bound δ = 1 for ν, λ < 1, and shows approximately bilinear growth for
larger ν, λ. In other words, the continuation process requires a significantly larger
domain as smoothness or correlation length increase. This also implies that the KL or
wavelet frames of the RKHS obtained in Sects. 3 and 4 become more redundant as
these parameters increase.

1
8

2

4

4

8

8

16

2 4

32

64

21

128

10.5 0.5
0.25 0.25

Fig. 1 Numerically observed minimum value of γ required for positivity of k̂t , with k as in (18), in
dependence on the Matérn parameters λ, ν
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5.2 Matérn Wavelets

The Meyer scaling function and wavelet can be defined by first taking ϕ̂ to be a
non-negative function such that

|ϕ̂(ω)|2 = β(ω), (126)

where β(ω) is a smooth and even function supported in [− 4π
3 , 4π

3 ], such that

β(ω) = 1, ω ∈
[
−2π

3
,
2π

3

]
, (127)

and
β(π − ω) + β(π + ω) = 1, ω ∈

[
0,

π

3

]
. (128)

Then, one defines ψ̂ by

ψ̂(ω) := (
β(ω/2) − β(ω)

)1/2
eiω/2. (129)

One simple example with explicit expressions of ϕ̂ and ψ̂ , following the construction
given in [11], is

ϕ̂(ω) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, |ω| ≤ 2π
3 ,

cos
(

π
2 ν

(
3|ω|
2π − 1

))
, 2π

3 < |ω| < 4π
3 ,

0, otherwise,

(130)

and

ψ̂(ω) :=

⎧
⎪⎪⎨

⎪⎪⎩

sin
(

π
2 ν

(
3|ω|
2π − 1

))
eiω/2, 2π

3 < |ω| ≤ 4π
3 ,

cos
(

π
2 ν

(
3|ω|
4π − 1

))
eiω/2, 4π

3 < |ω| ≤ 8π
3 ,

0, otherwise,

(131)

where we take

ν(x) := θ(x)

θ(x) + θ(1 − x)
(132)

with θ given by (118).
From these we now construct the one-dimensional versions of �̄p and �̄p described

in Sect. 4. Recall that for the scaling function, �̄p = (2γ )−1/2
√

k̂t(0), which we can

directly approximate using (120). For the wavelets, it suffices to consider �̄
p
ε,�,0 for

eachwavelet type ε and scale level �, since all furtherwavelets are obtained as translates
of these functions. In the present univariate case, there is only a single wavelet type
ε = 1, and we omit the corresponding subscript in what follows.
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By (92) and (32), we have

�̄
p
�,0(x) = 1

2γ

∑

n∈Z

√

k̂t

(
π

γ
n

) (√
21−�γ ψ̂(2−�+1πn)

)
ei π

γ
nx

. (133)

We now choose L in (120) as L = 2γ , that is, ωk = πk
2γ . We assume that γ and

N = 2J , with J > 1, are sufficiently large to ensure DL ,N (ωk) ≥ 0 for the range of
k in (121). This allows us to approximate the above expression by

�̃
p
�,0(x) := 1√

2�+1γ

N/4−1∑

n=−N/4

√
DL ,N (ω2n) ψ̂(2−�+1πn) ei π

γ
nx

. (134)

Using the compact support of ψ̂ and that |ψ̂ | ≤ 1, we obtain

|�̄p
�,0(x) − �̃

p
�,0(x)| ≤ C2−�/2

{ ∑

|n|≥N/4
1
3 2

�<|n|< 4
3 2

�

√
k̂t(πγ −1n)

+
∑

n∈{−N/4,...,N/4−1}
1
3 2

�<|n|< 4
3 2

�

∣∣∣∣
√

k̂t(πγ −1n) − √
DL ,N (ω2n)

∣∣∣∣

}
.

(135)

Recall by (103) we have c(1+ |ω|)−2ν−1 ≤ k̂t(ω) ≤ C(1+ |ω|)−2ν−1. It follows that
the first sum can be bounded according to

∑

|n|≥N/4
1
3 2

�<|n|< 4
3 2

�

√
k̂t(πγ −1n) ≤ C min{N−ν+ 1

2 , 2�N−ν− 1
2 }. (136)

For the second sum, we combine (125) with

∣∣∣∣
√

k̂t(πγ −1n) − √
DL ,N (ω2n)

∣∣∣∣ ≤
∣∣k̂t(πγ −1n) − DL ,N (ω2n)

∣∣
√

k̂t(πγ −1n)

, (137)

to obtain

∑

n∈{−N/4,...,N/4−1}
1
3 2

�<|n|< 4
3 2

�

∣∣∣∣
√

k̂t(πγ −1n) − √
DL ,N (ω2n)

∣∣∣∣ ≤ C N−2ν−1 min{N ν+ 3
2 , 2�N ν+ 1

2 }.

(138)
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Fig. 2 Wavelets �̄
p
�,0 obtained with λ = 1, ν = 1

2 , and γ = 3
2 , for � = 0, . . . , 5

This yields

|�̄p
�,0(x) − �̃

p
�,0(x)| ≤ C2−�/2 min{N−ν+ 1

2 , 2�N−ν− 1
2 } = C2−ν J− 1

2 |J−�|, (139)

where C > 0 depends on ν, λ, γ , but not on J or �.
The sum in (134) can be evaluated by FFT simultaneously for the 2J−1 arguments

x = 4γ k

N
, k = − N

4
, . . . ,

N

4
− 1, (140)

at cost of order J2J . In other words, if we prescribe a grid size h ∼ 2−J , as a
consequence of (139) we can determine the values of the wavelets at any level � at
the grid points up to an error of order hν , using h−1|log h| operations in total. Since
the wavelets are trigonometric polynomials, their values between grid points can be
approximated with similar order of accuracy by local polynomial interpolation of
neighboring grid values.

As an illustration, we display in Figs. 2 and 3 the obtained wavelets at scales � =
0, . . . , 5 for λ = 1 and (ν, γ ) = (1/2, 3/2), (ν, γ ) = (4, 5). Note that these wavelets
behave asymptotically similarly to standard wavelets in terms of scale invariance. As
expected the size decay in scale depends on ν.
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Fig. 3 Wavelets �̄
p
�,0 obtained with λ = 1, ν = 4, and γ = 5, for � = 0, . . . , 5

Remark 5.1 In typical applications, the exact wavelet expansion of the random field b
is truncated to a finite number of terms, up to some prescribed error. The estimate (139)
shows that in additionwe can control the approximation of eachwavelet in the uniform
sense, with arbirarily high precision governed by J . Combining such estimates allows
us to control the resulting error after truncation of the expansion and approximation
of each wavelet.
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