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Abstract Weprove aHardy inequality for ultraspherical expansions by using a proper
ground state representation. From this result we deduce some uncertainty principles
for this kind of expansions. Our result also implies a Hardy inequality on spheres with
a potential having a double singularity.
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1 Introduction and Main Result

For d ≥ 3, the classical Hardy inequality states that

(d − 2)2

4

∫
Rd

u2(x)

|x |2 dx ≤
∫
Rd

|∇u(x)|2 dx . (1)
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Due to its applicability, there is an extensive literature about the topic (see the ref-
erences in [16]) covering many extensions of this estimate in several and different
directions. We are interested in one involving the fractional powers of the Laplacian.
We can rewrite (1) as

(d − 2)2

4

∫
Rd

u2(x)

|x |2 dx ≤
∫
Rd

u(x)(−�u(x)) dx

and, taking the fractional Laplacian (−�)σ defined by ̂(−�)σu = | · |2σ û, a natural
extension is the inequality

Cσ,d

∫
Rd

u2(x)

|x |2σ dx ≤
∫
Rd

u(x)(−�)σu(x) dx, (2)

for which the sharp constant Cσ,d is well known (see [3,20]).
From (2), we deduce the positivity (in a distributional sense) of the operator

(−�)σ − Cσ,d

| · |2σ .

Our target is to provide a Hardy inequality like (2) related to ultraspherical expansions
and apply it to prove the positivity of certain operator on the sphere with a potential
having singularities in both poles of the sphere.

Let Cλ
n (x) be the ultraspherical polynomial of degree n and order λ > −1/2. We

consider cλ
n(x) = d−1

n Cλ
n (x) with

d2n =
∫ 1

−1

(
Cλ
n (x)

)2
dμλ(x), dμλ(x) = (1 − x2)λ−1/2 dx .

The sequence of polynomials {cλ
n}n≥0 forms an orthonormal basis of the space L2

λ :=
L2((−1, 1), dμλ). For each cλ

n , it holds that Lλcλ
n = −(n + λ)2cλ

n , where

Lλ = (1 − x2)
d2

dx2
− (2λ + 1)x

d

dx
− λ2.

The ultraspherical expansion of each appropriate function f defined in (−1, 1) is given
by

f �−→
∞∑
n=0

aλ
n ( f )cλ

n ,

where aλ
n ( f ) is the n-th Fourier coefficient of f respect to {cλ

n}n≥0, i.e.,

aλ
n ( f ) =

∫ 1

−1
f (y)cλ

n(y) dμλ(y).
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The fractional powers of the operator Lλ are defined by

(−Lλ)
σ/2 f =

∞∑
n=0

(n + λ)σaλ
n ( f )cλ

n , σ > 0.

This operator should be the natural candidate to prove a Hardy type inequality for the
ultraspherical expansion but, however, it is not the most appropriate in this setting. We
have to consider another one with an analogous behaviour to (−Lλ)

σ/2, in order to
deduce some results on the sphere. For each σ > 0 we define (spectrally) the operator

Aλ
σ = �(

√−Lλ + 1+σ
2 )

�(
√−Lλ + 1−σ

2 )
.

Then for f defined on the interval (−1, 1)

Aλ
σ f (x) =

∞∑
n=0

�(n + λ + 1+σ
2 )

�(n + λ + 1−σ
2 )

aλ
n ( f )cλ

n(x).

Note that
�(n + λ + 1+σ

2 )

�(n + λ + 1−σ
2 )

	 (n + λ)σ , (3)

then the behaviour of (−Lλ)
σ/2 and Aλ

σ is similar. The natural Sobolev space to analyse
Hardy type inequalities is

Hσ
λ =

{
f ∈ L2

λ : ‖ f ‖Hσ
λ

:=
( ∞∑
n=0

(n + λ)σ (aλ
n ( f ))2

)1/2
< ∞

}
.

We have to note that Hσ
λ is equivalent to the space L2

λ,σ introduced in [5].
With the previous notation our Hardy inequality for ultraspherical expansions is

given in the following result.

Theorem 1 Let λ > 0 and 0 < σ < 1. Then for u ∈ Hσ
λ

Qσ,λ

∫ 1

−1

u2(x)

(1 − x2)σ/2 dμλ(x) ≤
∫ 1

−1
u(x)Aλ

σu(x) dμλ(x), (4)

where

Qσ,λ = 2σ
�(λ

2 + 1+σ
4 )2

�(λ
2 + 1−σ

4 )2
. (5)

Inequality (4) can be rewritten in terms of the Fourier coefficients

Qσ,λ

∫ 1

−1

u2(x)

(1 − x2)σ/2 dμλ(x) ≤
∞∑
n=0

�(n + λ + 1+σ
2 )

�(n + λ + 1−σ
2 )

(aλ
n (u))2, (6)
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which is a kind of Pitt inequality for the ultraspherical expansions (for other Pitt
inequalities see [4,11]). Note that for the right hand side of (4) we have, by (3),

∫ 1

−1
u(x)Aλ

σu(x) dμλ(x) =
∞∑
n=0

�(n + λ + 1+σ
2 )

�(n + λ + 1−σ
2 )

(aλ
n (u))2 	 ‖u‖2Hσ

λ
,

so the space Hσ
λ is the adequated one.

The proof of Theorem 1 will be a consequence of a proper ground state representa-
tion in our setting, analogous to the given one in the Euclidean case in [9]. Following
the ideas in that paper, we can see that the constant Qσ,λ is sharp but not achieved.
Similar ideas have been recently exploited in [7,16].

From (4), by using Cauchy–Schwarz inequality, we can obtain a Heisenberg type
uncertainty principle as it was done for the sublaplacian of the Heisenberg group in
[10], and for the fractional powers of the same sublaplacian in [16].

Corollary 2 Let λ > 0 and 0 < σ < 1. Then for u ∈ Hσ
λ

Qσ,λ

(∫ 1

−1
u2(x) dμλ(x)

)2

≤
∫ 1

−1
u2(x)(1 − x2)σ/2 dμλ(x)

×
∫ 1

−1
u(x)Aλ

σu(x) dμλ(x),

where Qσ,λ is the constant given in (5).

Pitt inequality (6) allows us to prove a logarithmic uncertainty principle for the
ultraspherical expansions. Themain idea comes from [3]. By an elementary argument,
for a derivable function such that φ(0) = 0 and φ(σ) > 0 for σ ∈ (0, ε), with ε > 0,
it is verified that φ′(0+) ≥ 0. Then, taking the function

φ(σ) =
∞∑
n=0

�(n + λ + 1+σ
2 )

�(n + λ + 1−σ
2 )

(aλ
n (u))2 − Qσ,λ

∫ 1

−1

u2(x)

(1 − x2)σ/2 dμλ(x),

we have φ(0) = 0 (this is Parseval identity) and, by (6), φ(σ) > 0 for σ ∈ (0, 1), then
φ′(0+) ≥ 0 and this inequality gives the logarithmic uncertainty principle, which is
written as

(
log 2 + ψ

(
λ

2
+ 1

4

)) ∫ 1

−1
u2(x) dμλ(x)

≤
∞∑
n=0

ψ

(
n + λ + 1

2

)
(an(u))2

+
∫ 1

−1
log(

√
1 − x2)u2(x) dμλ(x),

where ψ(a) = �′(a)
�(a)

.



420 J Fourier Anal Appl (2018) 24:416–430

In next section wewill show an application of Theorem 1 to obtain a Hardy inequal-
ity on the sphere. The results in Sect. 3 are themain ingredients in the proof of Theorem
1 which is given in last section of the paper.

2 An Application to the Sphere

It is well known that L2(Sd) = ⊕∞
n=0Hn(S

d), where Hn(S
d) is the set of spherical

harmonics of degree n in d + 1 variables. If we consider the shifted Laplacian on the
sphere

−�Sd = ˜−�Sd +
(
d − 1

2

)2

,

where ˜−�Sd is the Laplace-Beltrami operator on S

d , it is verified that

−�SdHn(S
d) =

(
n + d − 1

2

)2

Hn(S
d).

In this way, the analogous of the operator Aλ
σ on S

d is defined by

Aσ f = �
(√−�Sd + 1+σ

2

)
�

(√−�Sd + 1−σ
2

) f

=
∞∑
n=0

�
(
n + d−1

2 + 1+σ
2

)
�

(
n + d−1

2 + 1−σ
2

) projHn(Sd ) f,

where projHn(Sd ) f denotes the projection of f onto the eigenspace Hn(S
d).

The operator Aσ becomes the fractional powers of the Laplacian in the Euclidean
space through conformal transforms as was observed by Branson in [6]. So Aσ is the
natural operator to prove a Hardy type inequality on the sphere. In our proof, we will
write Aσ in terms of Aλ

σ and this is the main reason to consider Aλ
σ in the case of the

ultraspherical expansions. An analogous of the Hardy-Littlewood-Sobolev inequality
for Aσ and some other inequalities for it were given by Beckner in [2]. The operators
Aσ also appear in [18, p. 151] and [17, p. 525].

Each point x ∈ S

d can be written as

x = (t,
√
1 − t2x ′

1, . . . ,
√
1 − t2x ′

d),

for t ∈ (−1, 1) and x ′ := (x ′
1, . . . , x

′
d) ∈ S

d−1, and so

∫
Sd

f (x) dx =
∫ 1

−1

∫
Sd−1

f (t,
√
1 − t2x ′)(1 − t2)(d−2)/2 dx ′ dt.



J Fourier Anal Appl (2018) 24:416–430 421

With these coordinates, see [19, Sect. 3], we have that an orthonormal basis for each
Hn(S

d) is given by

φn, j,k(x) = ψn, j (t)Y
d
j,k(x

′), j = 0, . . . , n,

with

ψn, j (t) = (1 − t2) j/2c j+(d−1)/2
n− j (t)

and {Yd
j,k}k=1,...,d( j) an orthonormal basis of spherical harmonics on S

d−1 of degree

j . The value d( j) indicates the dimension of H j (S
d−1); i.e.,

d( j) = (2 j + d − 2)
( j + d − 3)!
j !(d − 2)! .

Then, the orthogonal projection of f onto the eigenspace Hn(S
d) can be written as

projHn(Sd ) f =
n∑
j=0

d( j)∑
k=1

fn, j,kφn, j,k,

with

fn, j,k =
∫ 1

−1
G j,k(t)c

j+(d−1)/2
n− j (t)(1 − t2) j+(d−2)/2 dt,

G j,k(t) = (1 − t2)− j/2Fj,k(t) and Fj,k(t) =
∫
Sd−1

f (t,
√
1 − t2x ′)Yd

j,k(x
′) dx ′.

It is easy to observe that

f (x) =
∞∑
j=0

d( j)∑
k=1

Fj,k(t)Y
d
j,k(x

′) =
∞∑
j=0

d( j)∑
k=1

(1 − t2) j/2G j,k(t)Y
d
j,k(x

′).

Moreover, from the definition of Aσ , we have

Aσ f (x) =
∞∑
j=0

d( j)∑
k=1

(1 − t2) j/2A j+(d−1)/2
σ G j,k(t)Y

d
j,k(x

′).

Now, considering the Sobolev space

Hσ =
{
f ∈ L2(Sd) : ‖ f ‖Hσ :=

( ∞∑
n=0

(
n + d − 1

2

)σ ‖ projHn(Sd ) f ‖2L2(Sd )

)1/2
< ∞

}
,
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we have the following Hardy inequality on the sphere.

Theorem 3 Let d ≥ 2, 0 < σ < 1, and ed be the north pole of the sphere S

d . Then
for f ∈ Hσ

2σ Qσ,(d−1)/2

∫
Sd

f 2(x)

(|x − ed ||x + ed |)σ dx ≤
∫
Sd

f (x)Aσ f (x) dx, (7)

where Qσ,(d−1)/2 is the constant given in (5).

Proof By the orthogonality of the spherical harmonics, it is elementary to show that

∫
Sd

f (x)Aσ f (x) dx =
∞∑
j=0

d( j)∑
k=1

∫ 1

−1
G j,k(t)A

j+(d−1)/2
σ G j,k(t) dμ j+(d−1)/2.

Now, applying Theorem 1, we deduce that

∫
Sd

f (x)Aσ f (x) dx ≥
∞∑
j=0

d( j)∑
k=1

Qσ, j+(d−1)/2

∫ 1

−1

F2
j,k(t)

(1 − t2)σ/2 dμ(d−1)/2.

It is known (see [20]) that for 0 < x ≤ y and j ≥ 0 we have that �( j+y)
�( j+x) ≥ �(y)

�(x) . So,
Qσ, j+(d−1)/2 ≥ Qσ,(d−1)/2 and

∫
Sd

f (x)Aσ f (x) dx ≥ Qσ,(d−1)/2

∞∑
j=0

d( j)∑
k=1

∫ 1

−1

F2
j,k(t)

(1 − t2)σ/2 dμ(d−1)/2.

The proof of (7) is finished by using the identity

∞∑
j=0

d( j)∑
k=1

∫ 1

−1

F2
j,k(t)

(1 − t2)σ/2 dμ(d−1)/2 = 2σ

∫
Sd

f 2(x)

(|x − ed ||x + ed |)σ dx .

��
The analogous role on the sphere of radially symmetric functions is played by

functions which are invariant under the action of SO(d−1). By SO(d−1)-invariance
wemean that f is invariant under the action of the group SO(d−1) on S

d−1 whenever
SO(d − 1) is embedded into SO(d) in a suitable way. Each function f of this kind
can be written as f (x) = g(〈x, ed〉), for a certain function g defined in (−1, 1). Then
for this kind of functions Theorem 3 reduces to Theorem 1 with λ = (d − 1)/2, in
this way we can deduce that the constant 2σ Qσ,(d−1)/2 in (7) is sharp.

As in the classic case, from Theorem 3 we deduce that in a distributional sense

Aσ − 2σ Qσ,(d−1)/2

(|x − ed ||x + ed |)σ ≥ 0.
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Note that in this case we are perturbing the operator Aσ adding a potential with
singularities in both poles of the sphere.

3 Auxiliary Results

The following lemmas give the tools to prove Theorem 1. To be more precise, Lemma
1 provides a nonlocal representation of the operator Aλ

σ with a kernel having nice
properties for our target. Lemma 2 shows the action of the operator Aλ

σ on the family
of weights (1 − x2)−(λ/2+(1−σ)/4).

For f, g ∈ L2
λ we are going to set up the notation

〈 f, g〉λ =
∫ 1

−1
f (x)g(x) dμλ(x)

to simplify the writing.

Lemma 1 Let λ > 0 and 0 < σ < 1. If f is a finite linear combination of ultras-
pherical polynomials, then

Aλ
σ f (x) =

∫ 1

−1
( f (x) − f (y)) K λ

σ (x, y) dμλ(y) + Eσ,λ f (x), x ∈ (−1, 1), (8)

where the kernel is given by

K λ
σ (x, y) = Dσ,λ

∫ 1

−1

dμλ−1/2(t)

(1 − xy − √
1 − x2

√
1 − y2t)λ+(1+σ)/2

,

with

Dσ,λ = c2λ
2λ+(1+σ)/2

�( 1−σ
2 )�(λ + 1+σ

2 )

|�(−σ)|�(1 + λ)
, cλ = �(2λ + 1)

22λ(�(λ + 1/2))2
,

and

Eσ,λ = �(λ + 1+σ
2 )

�(λ + 1−σ
2 )

.

Moreover, for f ∈ Hσ
λ we have

〈Aλ
σ f, f 〉λ = 1

2

∫ 1

−1

∫ 1

−1
( f (x)− f (y))2K λ

σ (x, y) dμλ(y) dμλ(x)+Eσ,λ〈 f, f 〉λ (9)
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Proof We start with the identity

∫ ∞

0

(
e−(n+λ)t − e−(σ−1)t/2

)
(sinh t/2)−σ−1 dt = 21+σ �(−σ)

�(n + λ + 1+σ
2 )

�(n + λ + 1−σ
2 )

(10)
for λ > 0 (actually it is also true for values λ > −1/2) and 0 < σ < 1. To deduce the
previous identity it is enough to apply integration by partswith u = e−(n+λ+(1−σ)/2)t−
1 and v = −2e−σ t/2(sinh t/2)−σ /σ , and use [14, Eq. 8, p. 367]

∫ ∞

0
e−ρt (cosh(ct) − 1)ν dt = �(

ρ
c − ν)�(2ν + 1)

2νc�(
ρ
c + ν + 1)

for c > 0, 2ν > −1, and ρ > cν.
Now, we consider the Poisson operator for ultraspherical expansions. It is given by

e−t
√−Lλ f (x) =

∞∑
n=0

e−(n+λ)t aλ
n ( f )cλ

n(x) =
∫ 1

−1
f (y)Pλ

t (x, y) dμλ(y),

with

Pλ
t (x, y) =

∞∑
n=0

e−(n+λ)t cλ
n(x)c

λ
n(y).

By the product formula for ultraspherical polynomials [8, Eq. B.2.9, p. 419]

Cλ
n (x)Cλ

n (y)

Cλ
n (1)

= cλ

∫ 1

−1
Cλ
n (xy +

√
1 − x2

√
1 − y2t) dμλ−1/2(t), λ > 0,

the identity [8, Eq. B.2.8. p. 419]

∞∑
n=0

n + λ

λ
Cλ
n (x)rn = 1 − r2

(1 − 2xr + r2)λ+1 , 0 ≤ r < 1,

and the relation d2n = λ
cλ(n+λ)

Cλ
n (1), we deduce the expression

Pλ
t (x, y) = c2λ

2λ

∫ 1

−1

sinh t

(cosh t − w(s))λ+1 dμλ−1/2(s),

with w(s) = xy + √
1 − x2

√
1 − y2s. The previous identity for Pλ

t is not new, it
appears as formula (2.12) in [12].

Combining (10) and the definition of the Poisson operator, it is clear that

Aλ
σ f (x) = 1

21+σ �(−σ)

∫ ∞

0

(
e−t

√−Lλ f (x) − f (x)e−(σ−1)t/2
)

(sinh t/2)−σ−1 dt,
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which can be splitted in

Aλ
σ f (x)

= 1

21+σ �(−σ)

∫ ∞

0

(
e−t

√−Lλ f (x) − f (x)e−t
√−Lλ1(x)

)
(sinh t/2)−σ−1 dt

+ f (x)

21+σ �(−σ)

∫ ∞

0

(
e−t

√−Lλ1(x) − e−(σ−1)t/2
)

(sinh t/2)−σ−1 dt. (11)

From the obvious identity

e−t
√−Lλ1(x) =

∫ 1

−1
Pλ
t (x, y) dμλ(y) = e−λt ,

for the second term in (11) we have

f (x)

21+σ �(−σ)

∫ ∞

0

(
e−t

√−Lλ1(x) − e−(σ−1)t/2
)

(sinh t/2)−σ−1 dt

= f (x)

21+σ �(−σ)

∫ ∞

0

(
e−λt − e−(σ−1)t/2

)
(sinh t/2)−σ−1 dt

= Eσ,λ f (x),

where we have used (10) with n = 0.
The first integral in (11) verifies

1

21+σ �(−σ)

∫ ∞

0

(
e−t

√−Lλ f (x) − f (x)e−t
√−Lλ1(x)

)
(sinh t/2)−σ−1 dt

= 1

21+σ |�(−σ)|
∫ ∞

0

∫ 1

−1
Pλ
t (x, y)( f (x) − f (y)) dμλ(y) (sinh t/2)−σ−1 dt

= 1

21+σ |�(−σ)|
∫ 1

−1
( f (x) − f (y))

∫ ∞

0
Pλ
t (x, y) (sinh t/2)−σ−1 dt dμλ(y)

=
∫ 1

−1
( f (x) − f (y)) K λ

σ (x, y) dμλ(y),

with

K λ
σ (x, y) = 1

21+σ |�(−σ)|
∫ ∞

0
Pλ
t (x, y) (sinh t/2)−σ−1 dt.

In last computation we have used Fubini theorem. This is justified for finite combina-
tions of ultraspherical polynomials by using the estimate

Pλ
t (x, y) ≤ C sinh t

(1 − x2)λ/2(1 − y2)λ/2(cosh t − xy − √
1 − x2

√
1 − y2)

,
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which follows from the elementary inequality

∫ 1

−1

(1 − s2)λ−1

(A − Bs)λ+1 ds ≤ C

Bλ(A − B)
, A > B > 0, λ > 0,

and the mean value theorem.
Indeed, taking C f = max{| f ′(x)| : x ∈ [−1, 1]} and using the inequality 1− xy−√
1 − x2

√
1 − y2 ≥ C |x − y|2, we have

∫ ∞

0

∫ 1

−1
Pλ
t (x, y)| f (x) − f (y)| dμλ(y) (sinh t/2)−σ−1 dt

≤ C f

(1 − x2)λ/2

(
C1

∫ 1

0

∫ 1

−1

t−σ |x − y|
t2 + |x − y|2 (1 − y2)λ/2−1/2 dy dt

+C2

∫ ∞

1

∫ 1

−1
e−(σ+1)t/2|x−y|(1 − y2)λ/2−1/2 dy dt

)
=: C f

(1 − x2)λ/2 (I1 + I2).

Obviously, I2 is a finite integral. For I1 the change of variable t = |x − y|s gives

I1 ≤ C1

∫ ∞

0

s−σ

s2 + 1
ds

∫ 1

−1
|x − y|−σ (1 − y2)λ/2−1/2 dy < ∞.

To obtain the expression of K λ
σ we observe that

K λ
σ (x, y)

= c2λ
2λ+1+σ |�(−σ)|

∫ ∞

0

∫ 1

−1

sinh t

(cosh t − w(s))λ+1 dμλ−1/2(s) (sinh t/2)−σ−1 dt

= c2λ
2λ+(1+σ)/2

�( 1−σ
2 )�(λ + 1+σ

2 )

|�(−σ)|�(λ + 1)

∫ 1

−1

dμλ−1/2(s)

(1 − w(s))λ+(1+σ)/2
,

where we have applied Fubini theorem and the change of variable 2(sinh t/2)2 =
z(1−w(s)) in last equality. With the last identity we have concluded the proof of (8).

To prove (9) we follow the argument in [16, Lemma 5.1]. First, we observe that
the kernel K λ

σ (x, y) is positive and symmetric in the sense that K λ
σ (x, y) = K λ

σ (y, x).
Then, (9) is clear when f is a finite linear combination of ultraspherical polynomials.
For f ∈ Hσ

λ we consider a sequence of finite linear combinations of ultraspherical
polynomials {pk}k≥0 such that pk converges to f in Hσ

λ . Then, by using the definition
of Aλ

σ , it is clear that 〈Aλ
σ pk, pk〉λ converges to 〈Aλ

σ f, f 〉λ. Moreover, the result for
polynomial functions implies

〈Aλ
σ pk, pk〉λ = 1

2

∫ 1

−1

∫ 1

−1
(pk(x) − pk(y))

2K λ
σ (x, y) dμλ(y) dμλ(x)

+ Eσ,λ〈pk, pk〉λ < ∞. (12)
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Consequently, the functions Pk(x, y) = pk(x) − pk(y) form a Cauchy sequence
in L2((−1, 1) × (−1, 1), dω) where dω(x, y) = K λ

σ (x, y) dμλ(x) dμλ(y) which
converges to f (x)− f (y) in this norm.Hence, passing to the limit in (12), we complete
the proof of the lemma. ��
Lemma 2 Let λ > 0 and 2λ + 1 > σ > 0. Then

Aλ
σ

(
1

(1 − x2)λ/2+(1−σ)/4

)
= Qσ,λ

(1 − x2)λ/2+(1+σ)/4
, (13)

where Qσ,λ is the constant given in (5).

Proof First of all, we have to realize that the ultraspherical polynomial Cλ
n (x) is odd

for n = 2m + 1, m ∈ Z

+; therefore, for β > 0, the function (1− x2)β−1Cλ
2m+1(x) is

an odd function and its integral over the interval (−1, 1) is zero. For n = 2m we use
[15, Eq. 15, p. 519] to obtain

∫ 1

−1
(1 − x2)β−1Cλ

2m(x) dx

= √
π

(2λ)2m

(2m)!
�(β)

�(β + 1/2)
3F2(−2m, 2λ + 2m, β; 2β, λ + 1/2; 1)

= π
(2λ)2m

(2m)!
�(β)�(λ + 1/2)�(β − λ + 1/2)

�(1/2 − m)�(λ + m + 1/2)�(β + m + 1/2)�(β − λ − m + 1/2)
,

where in last identitywe have evaluated the hypergeometric functionwith the so-called
Watson formula [13, Eq. 16.4.6, p. 406]. Therefore, if we denote α = λ/2+(1−σ)/4,
we obtain that

∫ 1

−1
(1 − x2)α−1Cλ

2m(x) dx = Rσ,λ

∫ 1

−1
(1 − x2)α+σ/2−1Cλ

2m(x) dx, (14)

with

Rσ,λ = �(α)�(α − λ + 1/2)

�(α + σ/2)�(α − λ + 1/2 + σ/2)

× �(α + m + 1/2 + σ/2)�(α − λ − m + 1/2 + σ/2)

�(α + m + 1/2)�(α − λ − m + 1/2)
.

In this way, if we prove the identity

Rσ,λ = Q−1
σ,λ

�(2m + 2α + σ)

�(2m + 2α)
(15)

we will conclude the proof, because (14) implies

aλ
n

(
1

(1 − x2)α+σ/2

)
= Q−1

σ,λ

�(n + 2α + σ)

�(n + 2α)
aλ
n

(
1

(1 − x2)α

)
,
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where we have had in mind that the n-th Fourier coefficient is null when n = 2m + 1.
Let us check that (15) actually holds. Using the reflection formula [1, Eq. 6.1.17,

p. 256] twice we have

�(α − λ − m + 1/2 + σ/2)

�(α − λ − m + 1/2)
= �(α + m + σ/2)

�(α + m)

sin(π(α − λ − m + 1/2))

sin(π(α − λ − m + 1/2 + σ/2))

= �(α + m + σ/2)

�(α + m)

�(α)�(α − λ + 1/2 + σ/2)

�(α + σ/2)�(α − λ + 1/2)
,

and then

Rσ,λ = �(α)2

�(α + σ/2)2
�(α + m + σ/2)�(α + m + σ/2 + 1/2)

�(α + m)�(α + m + 1/2)

= Q−1
σ,λ

�(2m + 2α + σ)

�(2m + 2α)
,

by the duplication formula [1, Eq. 6.1.18, p. 256]. ��

4 Proof of Theorem 1

Polarizing the identity (9) in Lemma 1 we obtain

〈g, Aλ
σ f 〉λ = 1

2

∫ 1

−1

∫ 1

−1
F(x, y)K λ

σ (x, y) dμλ(y) dμλ(x) + Eσ,λ〈g, f 〉λ, (16)

with F(x, y) = (g(x) − g(y))( f (x) − f (y)).
Let us take g(x) = (1 − x2)−λ/2−(1−σ)/4 and f (x) = u2(x)/g(x) for u ∈ Hσ

λ .
Then

F(x, y) = (u(x) − u(y))2 − g(x)g(y)

(
u(x)

g(x)
− u(y)

g(y)

)2

and (16) becomes

〈g, Aλ
σ f 〉λ

= 〈u, Aλ
σ u〉λ − 1

2

∫ 1

−1

∫ 1

−1
g(x)g(y)

(
u(x)

g(x)
− u(y)

g(y)

)2

K λ
σ (x, y) dμλ(y) dμλ(x).

Now, by (13), we have

〈g, Aλ
σ f 〉λ = 〈Aλ

σ g, f 〉λ = Qσ,λ

∫ 1

−1

u2(x)

(1 − x2)σ/2 dμλ(x)
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and then we can deduce the ground state representation

〈u, Aλ
σ u〉λ − Qσ,λ

∫ 1

−1

u2(x)

(1 − x2)σ/2 dμλ(x)

= 1

2

∫ 1

−1

∫ 1

−1
g(x)g(y)

(
u(x)

g(x)
− u(y)

g(y)

)2

× K λ
σ (x, y) dμλ(y) dμλ(x). (17)

So, due to the positivity of the kernel K λ
σ , we conclude the proof.
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