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Abstract We prove a Hardy inequality for ultraspherical expansions by using a proper
ground state representation. From this result we deduce some uncertainty principles
for this kind of expansions. Our result also implies a Hardy inequality on spheres with
a potential having a double singularity.
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1 Introduction and Main Result

For d > 3, the classical Hardy inequality states that

d—-2)? f u?(x)
R

4 a |x|?

dxg/ [Vu(x)|*> dx. (1)
Rd
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Due to its applicability, there is an extensive literature about the topic (see the ref-
erences in [16]) covering many extensions of this estimate in several and different
directions. We are interested in one involving the fractional powers of the Laplacian.
We can rewrite (1) as

d—2)? / u?(x)
R

dx 5/ u(x)(—Au(x))dx
4 R4

a |x|?

and, taking the fractional Laplacian (—A)? defined by (—/A)\" u = | - |?°%, a natural
extension is the inequality

2
Cg,d/ ”—(x)de/ u(xX) (=AY u(x) dx, )
R R4

d |x|2‘7

for which the sharp constant Cy; 4 is well known (see [3,20]).
From (2), we deduce the positivity (in a distributional sense) of the operator

C(T,d

(_A)U o | - |20 :

Our target is to provide a Hardy inequality like (2) related to ultraspherical expansions
and apply it to prove the positivity of certain operator on the sphere with a potential
having singularities in both poles of the sphere.

Let C,)} (x) be the ultraspherical polynomial of degree n and order A > —1/2. We
consider ¢ (x) = d, ! C2(x) with

1
dy = f 1 (CH0)" dpa(). dus(x) = (1= x> dx.

The sequence of polynomials {c’},0 forms an orthonormal basis of the space Li =
L2((—1, 1), dpuy). For each ¢}, it holds that £;c} = —(n + 1)%c’, where

L =(- 2)d—z—(z)url) 4 52
A= e Y ix '

The ultraspherical expansion of each appropriate function f definedin (—1, 1) is given
by

=Y ar(fch.
n=0

where aﬁ(f ) is the n-th Fourier coefficient of f respect to {Cﬁ}nzo, ie.,

1
al(f) = / OGO,
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The fractional powers of the operator £ are defined by

(—L)Pf =Y n+1al(f)cy. o >0.

n=0

This operator should be the natural candidate to prove a Hardy type inequality for the
ultraspherical expansion but, however, it is not the most appropriate in this setting. We
have to consider another one with an analogous behaviour to (—£;)°/?, in order to
deduce some results on the sphere. For each o > 0 we define (spectrally) the operator

W I(v/=L + 42)
7 TW-Li+59)

Then for f defined on the interval (—1, 1)

ZF(n+k+1+a) N

AA
Uf(-x) ’ZZOF( +)\’+120.)

n(F)en(x).

Note that

r 2+ to
w ~(n+1)°, 3)

then the behaviour of (—£;)°/? and A’ is similar. The natural Sobolev space to analyse
Hardy type inequalities is

={felL;: o = 3 “(ay 12<o<>.
[reizusimg =X+ @n?) " <o

n=0

We have to note that Hy is equivalent to the space £2 introduced in [5].
With the previous notation our Hardy inequality for ultraspherical expansions is
given in the following result.

Theorem 1 Let A > 0and 0 < o < 1. Then foru € HY

u> 1
(x) A
00 / T ) < / AL dj (). @
where TN
G+ 5%
Qo =2 —4——. )
L'+ 5%
Inequality (4) can be rewritten in terms of the Fourier coefficients
2 1+o
(x) Frn+r+=5>) ,
dp (x —=—(a, ()", 6
Q”/ T MA()_Z(:)F(n+A+15")("( ) ©)
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which is a kind of Pitt inequality for the ultraspherical expansions (for other Pitt
inequalities see [4, 11]). Note that for the right hand side of (4) we have, by (3),

o0

1
/lu(x)Agu(x)dm(x) =y

n=0

Th+r+532) 5
m(% @)™ = Nlully

2
so the space H; is the adequated one.

The proof of Theorem 1 will be a consequence of a proper ground state representa-
tion in our setting, analogous to the given one in the Euclidean case in [9]. Following
the ideas in that paper, we can see that the constant Q, ; is sharp but not achieved.
Similar ideas have been recently exploited in [7,16].

From (4), by using Cauchy—Schwarz inequality, we can obtain a Heisenberg type
uncertainty principle as it was done for the sublaplacian of the Heisenberg group in
[10], and for the fractional powers of the same sublaplacian in [16].

Corollary 2 Let . > 0and 0 < o < 1. Then foru € HY

2

1 1
Q0.1 ( f uz(x)dm(X)> < / W () (1 — x*)7* dpy (x)
-1 -1
1
x / w(@) A% u(x) djas (x),
-1

where Q. is the constant given in (5).

Pitt inequality (6) allows us to prove a logarithmic uncertainty principle for the
ultraspherical expansions. The main idea comes from [3]. By an elementary argument,
for a derivable function such that ¢ (0) = 0 and ¢ (o) > 0 foro € (0, €), with ¢ > 0,
it is verified that ¢'(0,) > 0. Then, taking the function

o0

_ Fa+r+9%9) 0, N TAL6Y)
¢(0) = ;m(an(u)) - Qo,A/_l mdﬂx(x),

we have ¢ (0) = 0 (this is Parseval identity) and, by (6), ¢ (6) > Oforo € (0, 1), then
¢’(04) > 0 and this inequality gives the logarithmic uncertainty principle, which is

written as
Ao b,
<log2 + v (5 + Z)) /lu (x) dpp(x)
< ;w <n + A+ %) (@n(u))*
1
+ / log(v 1 — x2)u? (x) d ;. (x),
-1

where ¥ (a) = ll: ((Z))
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In next section we will show an application of Theorem 1 to obtain a Hardy inequal-
ity on the sphere. The results in Sect. 3 are the main ingredients in the proof of Theorem
1 which is given in last section of the paper.

2 An Application to the Sphere

It is well known that L2(S9) = @52 o Hn (S%), where H,(S?) is the set of spherical
harmonics of degree n in d + 1 variables. If we consider the shifted Laplacian on the
sphere

5 d—1)\?
—Agg = —Aga +| —— ) .
2
where —ASd is the Laplace-Beltrami operator on S9. it is verified that
d—1)\?
—ASdHn(Sd) = <I’l + T) Hn(Sd).

In this way, the analogous of the operator A% on S? is defined by

where projyy, sy f denotes the projection of f onto the eigenspace H, (S%.

The operator A, becomes the fractional powers of the Laplacian in the Euclidean
space through conformal transforms as was observed by Branson in [6]. So A, is the
natural operator to prove a Hardy type inequality on the sphere. In our proof, we will
write A, in terms of A% and this is the main reason to consider A% in the case of the
ultraspherical expansions. An analogous of the Hardy-Littlewood-Sobolev inequality
for A, and some other inequalities for it were given by Beckner in [2]. The operators
A, also appear in [18, p. 151] and [17, p. 525].

Each point x € S¢ can be written as

x = V1=, ..., V1 —1%x),

fort € (=1, 1) and x’" := (x,...,x)) € S9-1 and so

1
/f(x)dx:// F@ V1= 2x")(1 = 24272 gx dr.
sd —1 Jsd-1
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With these coordinates, see [19, Sect. 3], we have that an orthonormal basis for each
H,(S?) is given by

Gn.jk(X) = Y j(OY T (N, j=0,....n,
with
i j+(d—1)/2
Y (0 = (1 =3P 02 )

Jj. The value d(j) indicates the dimension of H ; S i,

(j+d—23)

d(j) = @) +d =2 =

Then, the orthogonal projection of f onto the eigenspace H,(S?) can be written as

n d(j)

Projy, say f = Z Z S, jk®n,j ke,

j=0 k=1

with

1 , '
Fugi= [ Ga@e P 0 = DR g,
—1

Gjx(t)=(—1>)TI2F; () and F,-,k(z)=fd f(t,\/l—tzx’)YJ‘-ik(x’)dx’.
§d-1 '

It is easy to observe that

oo d(j) oo d(j)
FO =YY Famyih =YY (A =2GnY] ().
Jj=0k=1 j=0k=1

Moreover, from the definition of A, we have

oo d(j)
Ao f(x) =) ) (1=)PAITDRG (] ().
j=0k=1

Now, considering the Sobolev space

o0

= {1 e 2@ 1t = (30 (04 C50) proisg e 1) < o0,
n=0

Birkhauser



422 J Fourier Anal Appl (2018) 24:416-430

we have the following Hardy inequality on the sphere.

Theorem 3 Letd > 2,0 < o < 1, and eq be the north pole of the sphere S9. Then
for f e H°

2
27 Qa,(d—l)/Z/ S )

= | f™Asfx)dx, )
st (Ix — eallx + eal)” /S ’

where Qs (a—1)/2 is the constant given in (5).

Proof By the orthogonality of the spherical harmonics, it is elementary to show that

oo d(j)

/ FOAf(x)dx =" / k(OAITDRG () dijyay .

Jj=0k=1

Now, applying Theorem 1, we deduce that

oo d(j) sz(t)

/ FX)As f(x)dx >ZZQ01+@1 1)/2/ A= di@-1/2-

Jj=0k=1

It is known (see [20]) that for 0 < x < y and j > 0 we have that ?83; > % So,
Qo j+@d-1)2 = Qo.(d—1)/2 and

oo d(j) k(t)

/ SAc f(x)dx = Qo (- 1)/222/1 =22 dit@-1/2-
Jj=0k=1
The proof of (7) is finished by using the identity

d
i (1)/ k(t) dp@a—np =2° / f @ dx
| (1= 2oz HE=D/ si (Ix — eallx + eql)®

j=0 k=1

]

The analogous role on the sphere of radially symmetric functions is played by
functions which are invariant under the action of SO (d —1). By SO (d — 1)-invariance
we mean that f is invariant under the action of the group SO (d — 1) on SY~! whenever
SO(d — 1) is embedded into SO(d) in a suitable way. Each function f of this kind
can be written as f(x) = g({x, eg)), for a certain function g defined in (—1, 1). Then
for this kind of functions Theorem 3 reduces to Theorem 1 with A = (d — 1)/2, in
this way we can deduce that the constant 2° Q4 (4—1)/2 in (7) is sharp.

As in the classic case, from Theorem 3 we deduce that in a distributional sense

29Q0,(d-1)/2
(Ix —eqllx +eq)° ~

o
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Note that in this case we are perturbing the operator A, adding a potential with
singularities in both poles of the sphere.

3 Auxiliary Results

The following lemmas give the tools to prove Theorem 1. To be more precise, Lemma
1 provides a nonlocal representation of the operator Aé with a kernel having nice
properties for our target. Lemma 2 shows the action of the operator A% on the family

of weights (1 — x2)~(*/2+1=0)/4),
For f, g € L% we are going to set up the notation

1
(g = / @800 ()

to simplify the writing.

Lemmal Let A > 0and 0 < o < 1. If f is a finite linear combination of ultras-
pherical polynomials, then

1
Ay fx) = / 1 (f) = fFONK;(x, ) dpa(y) + Eonf(x),  x€(=1,1), (8

where the kernel is given by

1

ds—1/2(1)
KX(x,y)=D / ’
(r( }’) o, i —xy— mmt)k+(l+g)/2

with
I & r&EHre+ %2 _ T@r+1D
o T PF 1+ 2 T(—o) T+ 4) 7 25T+ 1/2)2
and
roo+ 492)
1 )
U ro+ 59)

Moreover, for f € H we have

1 1 1
(A f P = 5 / 1 / (W= FODKE ) i) dpa )+ o (F, 1 ©)

) Birkhduser
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Proof We start with the identity

F(n+ 5+ 1£2)
F(n+ 4+ 152)

(10)
for A > 0 (actually it is also true for values A > —1/2)and 0 < o < 1. To deduce the
previous identity it is enough to apply integration by parts with u = ¢~ +++(1-0)/2)1 _
land v = —2¢79//?(sinh t/2) ™% /o, and use [14, Eq. 8, p. 367]

fOO (e—(11+k)t _ e—(c—l)t/Z) (sinh t/z)—a—l dt = 21+0F(_o_)
0

F2—vrev+
2el(Z2 +v+1)

o0
/ e P (cosh(ct) — 1) dt =
0

forc > 0,2v > —1,and p > cv.
Now, we consider the Poisson operator for ultraspherical expansions. It is given by

eV fx) = Ze—(n-irk)t Hf)ck(x) = / FOVPH(x, y) ds (y),
n=0
with
P, y) =Y e Ik (k).

n=0

By the product formula for ultraspherical polynomials [8, Eq. B.2.9, p. 419]

C}» C)\. 1
GGG C,\/ Crixy +vV1—=x2/1 =y dur1p(0),  *>0,
-1

Cr()
the identity [8, Eq. B.2.8. p. 419]

2

1_
§”+ Crr = L 0=r<l,
= A (1 = 2xr +r?)**

and the relation d,% == (n vy ———=C (1), we deduce the expression

P’\( ) ci /1 sinh ¢ d )
xX,y) === —1/2(s5),
P Z ok | (cosht — w(s))y+1 “HAT12

with w(s) = xy + ~/1 — x2y/1 — y2s. The previous identity for P} is not new, it
appears as formula (2.12) in [12].
Combining (10) and the definition of the Poisson operator, it is clear that

AGf(x) = —21+011(_0) /OOO (e_’mf(x) - f(x)e—("—”f/z) (sinhz/2)~° ! a1,

) Birkhduser
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which can be splitted in

AL f(x)
1 > - — — — L) . —0—
= W(—U)/o (e WL () — fx)e ™V E 1(x)) (sinh/2)=~
f) ST —(o— . o
+m A (e ! 1(x) — e € l)t/z) (sinhz/2) Var. a1

From the obvious identity

1
eV (x) =/ PHx, y)dps(y) = e,
1

for the second term in (11) we have

FO [ - o
m A (e WL (x) — e ¢ 1)’/2) (sinht/2) Udr

o0
=—21+‘{1E‘);)—0) \ (e—“—e—("—”’ﬁ) (sinht/2)" " di

= EO',)»f(x)s

where we have used (10) with n = 0.
The first integral in (11) verifies

] o0
TS /0 (e”m Fx) - f(x)efwfﬁkl(x)) (sinh/2)"°~" dr
1 oo pl . o
— sty | [ PG = £ din ) sinhe/2) 7 d
1 1 00 ) o
— sy | SO =700 [ By sinhe2) 7 drdp )
1
- / (@ = FOD KA di ).
with
KX (x,y) = ;/w P (x, y) (sinh7/2)° ! dr.
7 24 N (=) Jo T

In last computation we have used Fubini theorem. This is justified for finite combina-
tions of ultraspherical polynomials by using the estimate

Csinht
(1 — x2)*/2(1 — y2)*/2(cosht — xy — /1T —x2,/1 —y2)’

Pl(x,y) <

) Birkhduser



426 J Fourier Anal Appl (2018) 24:416-430

which follows from the elementary inequality

L] — g2yr1 c
( ) ds < , A>B>0, X2>0,
_1 (A = Bs)*t1 B*(A — B)

and the mean value theorem.
Indeed, taking C y = max({| f'(x)| : x € [—1, 1]} and using the inequality 1 —xy —

T=x%/1 =32 > Clx — y|%, we have

00 1
/0 / PHoe MIF ) = FOIdpa(y) (sinh1/2) =0~ d

—O’
lx =yl 2\A/2—1/2
—<1—x2w2( //1r2+|x ypt Ty e

_ _ c
+C2f / D2 2 1/2dydt) — W([l + D).
1 —1 -

a

Obviously, I is a finite integral. For I the change of variable t = |x — y|s gives

0 ¢—Oo 1
L §C1/ 5 ds/ Ix — y|77(1 = yH?7 12 gy < 0.
0o s°+1 —1

To obtain the expression of K2 we observe that

K}(x.y)
/ / sinh 7 d (s) (sinh1/2)~ " di
_ S
2“'1+U|F( o) | (cosh 7 — w(s)y+1 “HA=172
_ g &R+t dpipG)
PR )P G+ D))oy (= w172

where we have applied Fubini theorem and the change of variable 2(sinh¢/2)> =
z(1 — w(s)) in last equality. With the last identity we have concluded the proof of (8).

To prove (9) we follow the argument in [16, Lemma 5.1]. First, we observe that
the kernel K (x, y) is positive and symmetric in the sense that K2 (x, y) = KX (y, x).
Then, (9) is clear when f is a finite linear combination of ultraspherical polynomials.
For f € H; we consider a sequence of finite linear combinations of ultraspherical
polynomials { px }x>0 such that p; converges to f in H. Then, by using the definition
of A%, it is clear that (A% py, px); converges to (A% f, f);. Moreover, the result for
po]ynom1a] functions implies

1 1 1
(AL pr, pi)s. = E/lfl(pk(x) — Pk KE G, ¥) dpa () dis (x)

+ Eq 3 (Pk, Pk)s < 00. (12)

) Birkhduser
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Consequently, the functions Pr(x,y) = pr(x) — pi(y) form a Cauchy sequence
in L2((—1,1) x (=1, 1), dw) where dw(x,y) = K();(x, y)duy(x)dp, (y) which
converges to f (x)— f(y) in this norm. Hence, passing to the limit in (12), we complete
the proof of the lemma. O

Lemma2 Let A > 0and?2)+1 > o > 0. Then

1 Oo.a
s . o,
Ao ((1 —x2)k/2+(1—o>/4) T (1 = x2) 2+ (H0)/A (13)

where Q) is the constant given in (5).

Proof First of all, we have to realize that the ultraspherical polynomial C}}(x) is odd
forn =2m + 1, m € Z™; therefore, for 8 > 0, the function (1 — xz)ﬂ’lcﬁ\mﬂ(x) is
an odd function and its integral over the interval (—1, 1) is zero. For n = 2m we use
[15, Eq. 15, p. 519] to obtain

1
/1(1 —xHPICh (x) dx

=@ T(B)
=T @m)! T(B+1/2)
__2X)om Fra+1/2r( —r+1/2)

=T om)! A2 -mUA+m+1/2TB+m+1/2T(B—r—m+1/2)’

3Fo(=2m, 2% + 2m, B; 28, A + 1/2; 1)

where in last identity we have evaluated the hypergeometric function with the so-called
Watson formula [13, Eq. 16.4.6, p. 406]. Therefore, if we denote o = 1/2+ (1 —0)/4,
we obtain that

1 1
/ (1= ¥}, () dx = Ry, / (1 — 22tk (ydx, (14
—1 —1

with

B ()T — A+ 1/2)
S Ta+o0/2T(@—A+1/240/2)
FNa+m+124+0c/QT(x—1—m+1/24+0/2)
x Tatm+ 12T @—r—m+1/2)

RU,A

In this way, if we prove the identity

2 I'@Cm+2a +o0)

Rs) = 15
oA QU,A F(2m+2a) ( )

we will conclude the proof, because (14) implies

3 1 _ 4T +20+0) , 1
“”((1—x2>“+0/2)_Q">* (1 + 2a) “"((1—x2>“>’

) Birkhduser
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where we have had in mind that the n-th Fourier coefficient is null when n = 2m + 1.
Let us check that (15) actually holds. Using the reflection formula [1, Eq. 6.1.17,
p- 256] twice we have

Mo —A2—m+1/2+0/2) _ IMNo+m+40/2) sin(m(ow — A —m + 1/2))
MNa—X—m+41/2) a I'(a +m) sin(m(@ — A —m+1/24+0/2))

_Tla+m+o0/2) M)l (@ =2 +1/240/2)

T T(a+m) T(@+o/2T(a@—xr+1/2)’

and then
_ T@? T@+m+o/QT(@+m+0/2+1/2)
T T(a +0/2)2 T +m)T(a+m+1/2)
— 0" 1 TC2m + 20 +0)
oA TQ2m+2a)
by the duplication formula [1, Eq. 6.1.18, p. 256]. O

4 Proof of Theorem 1

Polarizing the identity (9) in Lemma 1 we obtain

(g, ALf) /n /~ Fe, K2, v) dis (0) dis () + Eo (g, fa,  (16)

with F(x, y) = (g(x) —g(y)(f(x) — f(y).
Let us take g(x) = (1 — x2)™4/2=0=9)/4 and f(x) = u?(x)/g(x) foru € HY.
Then

u(x) u<y>>2

Fx,y) = ) —u(y)?* — gx)g(y) (
x) g

and (16) becomes

(8. AL f)a
u(x)  u(y)

1 1 1 2
= (u, Abu); — —/ / g(x)g(y) (— — —) KX (x, y) dps(y) dps, (x).
2J)0Ja glx) g

Now, by (13), we have

2
(5. 45 1)1 = (A, fn—QM/ T i)

) Birkhduser
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and then we can deduce the ground state representation

1 2
A= Qo [ S dia

u(x)  u(y)\?
f/g(x)()<g<x> g(y))

x K} (x, y) dpa () d s (x). a7)

So, due to the positivity of the kernel K, we conclude the proof.
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Spanish Government.

References

11.

12.

13.

14.

15.

16.

17.

. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions: with Formulas, Graphs,

and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55, Wash-
ington (1964)

. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser—Trudinger inequality. Ann. Math.

138, 213-242 (1993)

. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Am. Math. Soc. 123, 1897-1905

(1995)

. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136, 1871-1885

(2008)

. Betancor, J.J., Faria, J.C., Rodrguez-Mesa, L., Testoni, R., Torrea, J.L.: A choice of Sobolev spaces

associated with ultraspherical expansions. Publ. Mat. 54, 221-242 (2010)

. Branson, T.P.: Sharp inequalities, the functional determinant, and the complementary series. Trans.

Am. Math. Soc. 347, 3671-3742 (1995)

. Ciaurri, O., Roncal, L., Thangavelu, S.: Hardy-type inequalities for fractional powers of the Dunkl—

Hermite operator. Proc. Edinburgh Math. Soc. (to appear). Preprint: arXiv:1602.04997

. Dai, E, Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New

York (2013)

. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy-Lieb-Thirring inequalities for fractional Schrodinger

operators. J. Am. Math. Soc. 21, 925-950 (2008)

. Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle

and unique continuation. Ann. Inst. Fourier (Grenoble) 40, 313-356 (1990)

Gorbachev, D.V., Ivanov, V.I., Yu Tikhonov, S.: Sharp Pitt inequality and logarithmic uncertainty
principle for Dunkl transform in L2.]. Approx. Theory 202, 109-118 (2016)

Muckenhoupt, B., Stein, E.M.: Classical expansions and their relation to conjugate harmonic functions.
Trans. Am. Math. Soc. 118, 17-92 (1965)

Olver, EW.J. (ed.): NIST Handbook of Mathematical Functions. Cambridge University Press, New
York (2010)

Prudnikov, A.P., Brychkov, Y.A., Marichev, O.1.: Integrals and Series. Vol. 1. Elementary Functions.
Translated from the Russian and with a preface by N.M. Queen. Gordon and Breach Science Publishers,
New York (1986)

Prudnikov, A.P., Brychkov, Y.A., Marichev, O.1.: Integrals and Series. Vol. 2. Special Functions. Trans-
lated from the Russian by N. M. Queen. Gordon and Breach Science Publishers, New York (1986)
Roncal, L., Thangavelu, S.: Hardy’s inequality for fractional powers of the sublaplacian on the Heisen-
berg group. Adv. Math. 302, 106-158 (2016)

Rubin, B.: Introduction to Radon Transforms. With Elements of Fractional Calculus and Harmonic
Analysis, Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York
(2015)

) Birkhduser


http://arxiv.org/abs/1602.04997

430 J Fourier Anal Appl (2018) 24:416-430

18. Samko, S.G.: Hypersingular Integrals and their Applications, Analytical Methods and Special Func-
tions. Taylor & Francis, London (2002)

19. Sherman, T.O.: The Helgason Fourier transform for compact Riemannian symmetric spaces of rank
one. Acta Math. 164, 73—144 (1990)

20. Yataev, D.: Sharp constants in the Hardy—Rellich inequalities. J. Funct. Anal. 168, 121-144 (1999)

) Birkhduser



	A Hardy Inequality for Ultraspherical Expansions with an Application to the Sphere
	Abstract
	1 Introduction and Main Result
	2 An Application to the Sphere
	3 Auxiliary Results
	4 Proof of Theorem 1
	Acknowledgements
	References




