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Abstract We propose to combine cepstrum and nonlinear time–frequency (TF) anal-
ysis to study multiple component oscillatory signals with time-varying frequency and
amplitude and with time-varying non-sinusoidal oscillatory pattern. The concept of
cepstrum is applied to eliminate the wave-shape function influence on the TF analysis,
and we propose a new algorithm, named de-shape synchrosqueezing transform (de-
shape SST). The mathematical model, adaptive non-harmonic model, is introduced
and the de-shape SST algorithm is theoretically analyzed. In addition to simulated
signals, several different physiological, musical and biological signals are analyzed to
illustrate the proposed algorithm.
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1 Introduction

Time series is a ubiquitous datatype in our life, ranging from finance, medicine, geol-
ogy, etc. It is clear that different problems depend on different interpretation and
processing of the observed time series. In some situations, the information can be eas-
ily read from the signal, for example, the cardiac arrest could be easily read from the
electrocardiogram (ECG) signal; in others, it is less accessible, for example, the heart
rate variability (HRV) hidden inside the ECG signal; in yet others, the information
might bemasked and cannot be read directly from the observed time series. This comes
from the fact that while the time series encodes the temporal dynamics of the system
under observation, most of the time the dynamical information we could perceive is
masked or deformed due to the observation process and the nature of the physiology.
When the information is masked or deformed but exists in the observed time series,
we might need more sophisticated approaches to extract the information relevant to
the situation we have interest in. In general, inferring the dynamical information from
the time series is challenging.

We could view the challenge in two parts. First, we need to choose a model to
quantify the recorded signal, which captures the features or information about the
underlying dynamical system we have interest in. This model could come from the
field background knowledge, or in some cases it could be relatively blind. Second,
we need to design an associated algorithm to extract the desired features from the
recorded signal. With the acquired features, we could proceed to study the dynamical
problem we have interest in.

We take physiological signals to illustrate the challenge of the modeling issue.
Note that the procedure could be applied to other suitable fields. It is well known
that how the signal oscillates contains plenty of information about a person’s health
condition. Based on the oscillatory behavior and the widely studied Fourier analysis,
common features we could discuss are the frequency, which represents how fast the
signal oscillates, and the amplitude, which represents how strongly the signal oscillates
at that frequency. However, these features have been found limited when the signal
is not stationary, which is a property shared by most physiological signals. Indeed,
these signals mostly oscillate with time-varying frequency and amplitude. To capture
this property, we could consider the adaptive harmonic model encoding the features
instantaneous frequency (IF) and amplitudemodulation (AM) [6,12]; that is, the signal
is modeled as

f0(t) = A(t) cos(2πφ(t)), (1)

where A is a smooth positive function and φ is a smooth monotonically increasing
function. In other words, at time t , the signal f repeats itself as a sinusoidal function
within about 1/φ′(t) seconds, and the oscillation is modulated by the AM function
A(t). These features have been proved useful and could well represent the physi-
ological dynamics and health status, and have been applied to different problems
[38,40,60].

There are actually more detailed features embedded in the oscillatory signals that
cannot be captured by (1). One particular feature is the non-sinusoidal oscillatory pat-
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tern. For example, respiratory flow signals usually do not oscillate like the sinusoidal
function, since the inspiration is normally shorter than the expiration, and this differ-
ence is intrinsic to the respiratory system [4]. These observations lead us to consider
the following model [28,58,62],

f1(t) = A(t)s(φ(t)), (2)

where A(t) and φ(t) are the same as those of (1), and s is a real 1-periodic function
with the unitary L2 norm, that is s(t + 1) = s(t) for all t , so that the first Fourier
coefficient ŝ(1) �= 0, which could be different from the cosine function. We call the
periodic signal s(t) the wave-shape function, φ(t) the phase function, the derivative
φ′(t) the IF, and A(t) the AM of f1(t). Note that when s is smooth enough, (2) could
be expanded pointwisely by the Fourier series as

f1(t) =
∞∑

k=0

A(t)ak cos(2πkφ(t) + αk), (3)

where ak ≥ 0, k ∈ N ∪ {0} are associated with the Fourier coefficients of s, α0 = 0
and αk ∈ [0, 2π), k ∈ N, and a20 + 2

∑∞
k=1 a

2
k = 1. Note that we could have two

different aspects of the same signal f1. First, we could view it as an oscillatory signal
with one oscillatory component with non-sinusoidal oscillation (2). Second, we also
could view it as an oscillatory signal with multiple oscillatory components with the
cosine oscillatory pattern (3); in this case, we call the first oscillatory component
A(t)a1 cos(2πφ(t)+α1) the fundamental component and A(t)ak cos(2πkφ(t)+αk),
k ≥ 2, the kth multiple of the fundamental component. Clearly, the IF of the kth
multiple is k-times that of the fundamental component. Note that A(t)a0 could be
viewed as the trend coming from the DC (direct current) or zero-frequency term of
the wave-shape function. While the second viewpoint (3) is better for the theoretical
analysis, the first viewpoint (2) is more physical in several applications.

Let us take the ECG signal as an example, where the IF, AM and the wave-shape
function have their own physiological meanings. The oscillatory morphology of the
ECG signal, the wave-shape function, reflects not only the electrical pathway inside
the heart and how the sensor detects the electrophysiological dynamics, but also the
respiration as well as the heart anatomy. Several clinical diseases are diagnosed by
reading the oscillatorymorphology.With these physiological understanding, it is better
to consider model (2) to study the ECG signal and view IF, AM and wave-shape
function as separate features. As for IF and AM, it is well known that while the rate
of the pacemaker is constant, the heart rate generally is not constant. The discrepancy
comes from neural and neuro-chemical influences on the pathway from the pacemaker
to the ventricle. This non-constant heart beat rate could be modeled as the IF of the
ECG signal. The AM of the ECG signal is directly related to the respiration via the
variation of thoracic impedance. Indeed, when the lung is full of air, the thoracic
impedance increases and hence and ECG amplitude decreases, and vice versa. Note
that IF and AM could be captured by both (2) and (3).
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Fig. 1 A photoplethysmogram signal. It is visually clear that there are two rhythms inside the signal. The
faster one is associated with the heart rate, which beats about 100 times per minute; the slower one is
associated with the respiration, which is about 18 times per minute

Several algorithmswere proposed to extract IF andAM from a given oscillatory sig-
nal in the past decade, like empirical mode decomposition [29], reassignment method
(RM) [2], synchrosqueezing transform (SST) [12], concentration of frequency and
time [13], Blaschke decomposition [11], iterative filtering [9], sparsification approach
[27], approximation approach [8], convex optimization [35], Gabor transform based
on different selection criteria [3,48], etc. In general, we could view these methods as
a nonlinear time–frequency (TF) analysis. However, to capture the wave-shape func-
tion, an extra step is needed—we could fit a non-sinusoidal periodic function to the
signal after/while extracting the IF by, for example, applying the functional regression
[7, Sect. 4.7], designing a dictionary [28] or unwrapping the phase [62]. The obtained
features have been used to study field problems, such as the sleep stage prediction
[60], the blood pressure analysis [59]. See [13] for a review of the applications.

As useful as the above-mentioned model and algorithms are to extract dynami-
cal features from time series, there are, however, several unsolved limitations. First,
for most physiological signals, the wave-shape function varies from time to time.
The time-varying wave-shape function might prevent the current available methods
from extracting the wave-shape function. We will provide physiological details in
Sect. 2.2. Second, there might be more than one oscillatory component in a signal,
and each oscillatory component has its own wave-shape function. See Fig. 1 for an
photoplethysmogram signal (PPG) as an example. In this PPG signal, there are two
oscillatory components, hemodynamic rhythmand respiratory rhythm.Third, although
we could obtain reasonable information about IF and AM from the above-mentioned
approaches, when the signal has multiple oscillatory components with non-sinusoidal
waves, these methods are limited. In particular, the multiples of different fundamental
components will interfere with each other. Furthermore, an automatic determination of
the number of oscillatory components becomes more difficult when each component
oscillates with a non-sinusoidal wave. Hence, modifications are needed.

In this paper, we resolve these limitations. We introduce the adaptive non-harmonic
model to model oscillatory signals with multiple components and time-varying wave-
shape functions. Motivated by cepstrum, we introduce an algorithm called de-shape
SST to alleviate the influence caused by non-sinusoidal wave-shape functions in the TF
analysis. Hence, we provide an enhanced TF representation in the following sense—
the de-shape SSTwould provide a TF representation with only IF andAM information
without the influence of non-sinusoidal wave-shape functions.

We illustrate the effectiveness of de-shape SST by showing results on a simulated
signal. In this example, the clean signal f (t) is composed of two oscillatory compo-
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Fig. 2 Top panel f1(t); second panel f2(t); third panel the A2(t) (dashed curve) and φ′
2(t) (solid curve)

of f2(t); bottom panel f (t). To enhance the visibility, we only show the signal from the 25th second to the
65th second

nents f1 and f2, where f1(t) = A1(t)(
∑

k∈Z
δk�h)(t)χ[0,60](t), A1(t) = 1.5e−( t−20

100 )2 ,

h(t) = e−18t2 , δk is the Dirac delta measure supported at k, χI is the indicator func-
tion supported on I ⊂ R and f2(t) = A2(t)mod(φ2(t), 1), where A2(t) > 0 and
φ′
2(t) > 0 are two non-constant smooth function and mod(x, 1) := x −	x
 for x ∈ R

and 	x
 means the largest integer less than or equal to x . Clearly, f1 oscillates at the
fixed frequency φ′

1(t) = 1 with a non-sinusoidal wave-shape function—the wave-
shape function of f1 looks like a Gaussian function; f2 oscillates with a time-varying
frequency with the non-sinusoidal wave, which behaves like a sawtooth wave. This
signal is sampled at rate 100 Hz, from t = 0 to t = 100 s. Figure 2 shows the two
constituents of the total signal f (t) = f1(t) + f2(t), as well as A2(t) and φ′

2(t). Note
that f1 “lives” during only part of the full time observation time interval. The panels in
Fig. 3 show the results of short-time Fourier transform of f (t), the SST of f (t) and the
de-shape SST of f (t). It is clear that compared with the TF representation provided
by STFT or SST, the TF representation provided by the de-shape SST contains only
the fundamental frequency information of the two oscillatory components, even when
the wave-shape function is far from the sinusoidal wave. More discussions will be
provided in Sect. 4, including how A2(t) and φ2(t) are generated.

The paper is organized in the following way. In Sect. 2, we discuss the limitations of
model (2), and provide amodifiedmodel, the adaptive non-harmonicmodel. In Sect. 3,
the existing cepstrum algorithms in the engineering field are reviewed, and the new
algorithm de-shape SST is introduced. The theoretical justification of the de-shape
SST is postponed to Appendix. Section 4 shows the numerical results of de-shape
SST on several different simulated, medical, musical, and biological signals. Section
5 discusses numerical issues of the de-shape SST algorithm. Section 6 summarizes
the paper.

2 Adaptive Non-harmonic Model

In this section we first review the phenomenological model based on the wave-shape
function (2) fixed over time. Then, we discuss the relationship between the wave-
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Fig. 3 Upper left the short time Fourier transform (STFT) of f (t); upper right the synchrosqueezed STFT
of f (t); lower left the de-shape SST of f (t). It is clear that the de-shape SST provides only the fundamental
frequency information of the two oscillatory components, even when the wave-shape function is far from
the sinusoidal wave; lower right: the de-shape SST of f (t) superimposed with the ground truth IF’s of both
components in red. To enhance the visibility, we show the de-shape SST only up to 6 Hz in the frequency
axis (Color figure online)

shape function and several commonly encountered physiological signals, and discuss
limitations. This discussion leads us to introduce the adaptive non-harmonic model.

We start from introducing some notations. The Schwartz space is denoted as S;
the tempered distribution space, which is the dual space of the Schwartz space, is
denoted as S ′; �p, where p > 0, indicates the sequence space including all sequences
x : N → R so that

∑
n∈N

|x(n)|p < ∞, where x(n) is the nth element of the
sequence x . For each k ∈ N ∪ {∞}, Ck indicates the space of continuous functions
with all the derivatives continuous, up to the kth derivates, and Ck

c indicates the space
of compactly supported continuous functions with all the derivatives continuous, up
to the kth derivates. For each p ∈ N, L p includes all measurable functions f so
that

∫∞
−∞ | f (x)|pdx < ∞; L∞ includes all measurable functions which are bounded

almost surely. For f ∈ S ′ and g ∈ E ′, where E ′ is the set of compactly supported
distributions, denote f �g to be the convolution.Wewill interchangeably useF f or f̂
to denote the Fourier transform of the function f ∈ S ′. When f ∈ L1(R), the Fourier
transform is equally defined as f (ξ) = ∫∞

−∞ f (t)e−i2πξ t dt ; when f ∈ E ′, we know
that f̂ (ξ) = 〈 f, e−i2πξ ·〉, where 〈·, ·〉 indicates the evaluation of the distributions f
at the C∞ function e−i2πξ t . For a periodic function s, denote ŝ(k), k ∈ Z, to be its
Fourier series coefficients. For each N ∈ N, denote the Dirichlet kernel DN (x) :=∑N

�=−N ei2π�x .
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2.1 Review of the Wave-Shape Function

We continue the discussion of the model (2)

f (t) = A(t)s(φ(t)), (4)

where A ∈ C1(R) is strictly positive, φ ∈ C2(R) is strictly monotonically increasing,
and s ∈ C1,α , α > 1/2, is a 1-periodic function with the unitary L2 norm so that its
Fourier series coefficients satisfy |ŝ(1)| > 0, |ŝ(k)| ≤ δ|ŝ(1)| for some δ ≥ 0 and∑∞

k=N+1 |kŝ(k)| ≤ θ for some θ ≥ 0 and N ∈ N. We need more conditions for the
analysis. Take 0 ≤ ε � 1, we require |φ′′(t)| ≤ εφ′(t) and |A′(t)| ≤ εφ′(t) for all t .
This means that we allow the IF and AM to vary in time, as long as the variations are
slight from one period to the next.

2.2 Limitations in Modeling Physiological Signals

While many physiological signals are oscillatory and have “similar” patterns, at first
glance they could be well modeled by (4) and the analysis could proceed. However,
it is not always possible to do so. In this section we provide examples to discuss
limitations.

2.2.1 Electrocardiographic Signal

The ECG signal, which provides information of the electrical activity of the heart,
is ubiquitous in healthcare setting now. It not only contains a wealth of information
regarding the cardiac/cardiovascular health but also provides a unique non-invasive
portal to physiological dynamical states of the human body, via for example the HRV
assessment.While theHRV, the non-constant heart rate, could be studied by evaluating
the IF of the ECG signal and well estimated by the “R peak detection algorithm”, in
several cases a modern TF analysis could help improve the estimation accuracy [25].

We now discuss the limitation of modeling the ECG signal by (4). Take the relation-
ship between the RR andQT intervals of the lead II ECG signal EII(t) as an example.1

The nonlinearity relationship between the QT interval and the RR interval has been
well accepted—for example, the Fridericia’s formula (QT interval is proportional to
the cubic root of RR interval) [20] or a fully nonlinear depiction [19, Fig. 3].

1 The P, Q, R, S, and T are significant landmarks of the ECG signal. The Pwave represents atrial depolariza-
tion. The Q wave is any downward deflection after the P wave. The R wave follows as an upward deflection,
which is spiky, and the S wave is any downward deflection after the R wave. The Q wave, R wave, and
S wave form the QRS complex, which corresponds to the ventricular depolarization. The T wave follows
the S wave, which represents the ventricular repolarization. The QT interval (respectively RR interval) is
the length of the time interval between the start of the Q wave and the end of the T wave of one heart beat
(respectively two R landmarks of two consecutive heart beats). We could view the R peak as a surrogate
of the cardiac cycle, and hence the RR interval could be viewed as a surrogate of the inverse of the heart
rate. See Fig. 4 for an example of the P, Q, R, S, and T landmarks and the RR and QT intervals. For more
information about ECG signal, we refer the readers to [21].
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Fig. 4 The ECG signal f recorded for 85 s from a normal subject. The basic landmarks of the ECG signal,
P, Q, R, S, and T, and the QT and RR intervals are shown. Note that the QT interval (respectively RR
interval) is the length of the time interval between the start of the Q wave and the end of the T wave of one
heart beat (respectively two R landmarks of two consecutive heart beats)

If we model EII(t) by the model (4), and have

EII(t) = AII(t)sII(φII(t)) =
∞∑

�=0

AII(t)cII(�) cos(2π�φII(t) + αII,�), (5)

where αII,0 = 0, αII,� ∈ [0, 2π) when � ∈ N, cII(1) > 0 and cII(�) ≥ 0 for � �= 1
are related to Fourier series coefficients of the wave-shape function sII. Here, sII
models the oscillation in the lead II ECG signal, which is non-sinusoidal. Note that
under this model, the QT interval has to be “almost” linearly related to the RR interval.
To see this, suppose there is a 1-periodic function sII for the lead II ECG signal, where
the R peak happens at time 0, and a monotonically increasing function φII(t) so that
the ECG signal could be modeled as sII(φII(t)); that is, the wave-shape function is
fixed all the time. Suppose that the kth R peak happens at time tk , where k ∈ Z; that
is, tk = φ−1

II (k). In this model we have the following relationship for the ECG signal
at time t ∈ [tk, tk+1] :

sII(φII(t)) =
∑

k∈Z

sII(φII(t))χ[tk ,tk+1)(t)

=
∑

k∈Z

sII(φII(tk) + (t − tk)φ
′
II(t̃k))χ[tk ,tk+1)(t)

=
∑

k∈Z

sII

(
t − tk

1/φ′
II(t̃k)

)
χ[tk ,tk+1)(t), (6)

where the second equality holds by the mean value theorem where t̃k ∈ [tk, tk+1],
χ[tk ,tk+1) is a indicator function defined on [tk, tk+1), and the second equality holds
since φII(tk) = k and s is 1-periodic. While the RR interval between the kth and
the (k + 1)th R peaks is proportional to 1/φ′

II(t̃k) up to order O(ε) by the slowly
varying IF assumption of φII, we know that the wave-shape function is approximately
linearly dilated according to 1/φ′

II(t̃k). If the thewave-shape function is linearly dilated
according to the RR interval, then the QT interval should be linearly related with the
RR interval and hence the claim. Clearly, this model contradicts the physiological
finding that the QT interval should be nonlinearly related to the RR interval, so we
need a modified model to better quantify the ECG signal. Note that this argument is
based on the slowly varying IF assumption of the instantaneous frequency. While it
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is possible to consider more general conditions like those in [35,42], to simplify the
discussion we focus ourselves on this assumption.

Furthermore, note that since the cardiac axis varies from time to time due to res-
piration, physical activity and so on, even if the RR interval is fixed all the time and
we focus on the lead II ECG signal, we cannot find a fixed wave-shape function to
exactly model the ECG signal. Note that the wave-shape function variation caused
by respiration could be applied to extract the respiratory information from the ECG
signal [7].

2.2.2 Respiratory Signal

Oscillation is a typical pattern in breathing in normal subjects. It is well known that
there is a rhythmic controller in the Pre-Bötzinger complex in the brain stem which
regularly oscillates. In a normal subject the respiratory period is about 5 s per cycle.
Note that when we are awake, we could also control our respiration by our will, but to
simplify the discussion, we do not take this into account. The existence of breathing
pattern variability has been well known [4]. For example, the period of each respi-
ratory cycle for a normal subject under normal status varies according to time. The
ratio between the length of inspiration period and the length of expiration period is
not linearly related to the instantaneous respiratory rate, and its variability also con-
tains plenty of physiological information [4]. In other words, the wave-shape function
associated with the respiration is not fixed all the time. By the same argument as that
for the ECG signal, this nonlinear relationship between the instantaneous respiratory
rate and the wave-shape function could not be fully captured by (4).

The same argument holds for the other physiological signals, like the photoplethys-
mography signal that reflects the hemodynamics information, the capnogram signal
that monitors inhaled and exhaled concentration or partial pressure of carbon dioxide
and is a surrogate of the oscillatory dynamics of the respiratory system, and so on.

2.2.3 Natural Vibration of Stiff Strings

In this section we discuss the signal commonly encountered in music, in particular
the sound generated by the string musical instrument. The acoustic signal generated
by the string musical instrument could be well modeled by the transversal vibration
behavior of an ideal string. For an ideal string of length L > 0 placed on [0, L] with
both ends fixed ideally, when the string has stiffness; that is, there is a restoring force
proportional to the displacement (or more generally the bending angle), we could
consider the following differential equation for y ∈ R

+ × [0, L] satisfying [17,18]

μ
∂2y

∂t2
= T

∂2y

∂x2
− ESK 2 ∂4y

∂x4
, (7)

where μ > 0 is mass per unit length, T ≥ 0 is tension, E ≥ 0 is Young’s modulus
of the string, S ≥ 0 is the cross-sectional areas of the string, and K ≥ 0 is the radius
of gyration, with the initial condition y(0, x) = 0 for all x ∈ [0, L] and the boundary
condition y(t, 0) = 0 and y(t, L) = 0 for all time t ≥ 0.
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Consider the case of a pinned string, that is, y(t, 0) = y(t, L) = 0 and ∂2 y
∂x2

(t, 0) =
∂2 y
∂x2

(t, L) = 0 for all t . The solution y(t, x) is the transversal displacement of the
string point x at time t [17,18], which is the linear combination of the normal modes

represented by yn(t, x) = sin(2πknx) sin(2πξnt) with kn = n
2L , ξ1 = 1

2L

√
T
μ
and

ξn = nξ1

√
1 + βn2, (8)

where β = π2ESK 2

T L2 ; that is, the nth component with the nth lowest frequency is
deviated from nξ1 in a nonlinear way. In other words, the sound associated with the

solution oscillateswith a non-sinusoidalwave and the fundamental frequency is 1
2L

√
T
μ

with several multiples. Clearly, when E = 0, (7) is reduced to the wave equation, and
the solution is well known.

Inmusic signal processing, this phenomenon iswell known as inharmonicity, which
appears in instruments, like piano and guitar. In these instruments, natural vibration
appears after the excitation (i.e., plucking or pressing the keyboard) of the modes. For
the piano, β is in the ranges from around 10−4 to 10−3. Obviously, the sound with
inharmonicity does not well fit (4).

2.3 Time-Varying Wave-Shape Function

The above discussions indicate that we need a model with time-varying wave-shape
functions. Thus, we wish to generalize (4). To achieve this goal, we will directly
generalize the equivalent expression (3) to capture an oscillatory signal with the “time-
varying wave-shape function”.

Definition 2.1 (Adaptive non-harmonic function) Take ε> 0, a non-negative �1

sequence c = {c(�)}∞�=0, 0 < C < ∞, and N ∈ N. The setDc,C,N
ε ⊂ C1(R)∩L∞(R)

of adaptive non-harmonic (ANH) functions is defined as the set consisting of functions

f (t) = 1

2
B0(t) +

∞∑

�=1

B�(t) cos(2πφ�(t)) (9)

satisfying the following conditions:

– the regularity condition:

B� ∈ C1(R) ∩ L∞(R), for � = 0, . . . ∞, (10)

φ� ∈ C2(R), for � = 1, . . . ∞. (11)

For all t ∈ R, B�(t) ≥ 0 for all � = 0, 1, 2, . . . ,∞ and φ′
�(t) > 0 for all

� = 1, . . . ,∞.
– the time-varying wave-shape condition: for all t ∈ R,

∣∣φ′
�(t) − �φ′

1(t)
∣∣ ≤ εφ′

1(t) (12)
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for all � = 1, . . . ,∞,

B�(t) ≤ c(�)B1(t) (13)

for all � = 0, 1, . . . ,∞,

∞∑

�=N+1

B�(t) ≤ ε

√√√√1

4
B0(t)2 + 1

2

∞∑

�=1

B�(t)2, (14)

and

∞∑

�=1

�B�(t) ≤ C

√√√√1

4
B0(t)2 + 1

2

∞∑

�=1

B�(t)2. (15)

– the slowly varying condition: for all t ∈ R,

|B ′
�(t)| ≤ εc(�)φ′

1(t), for � = 0, . . . ∞, (16)

|φ′′
� (t)| ≤ ε�φ′

1(t), for � = 1, . . . ∞, (17)

and ‖φ′
1‖L∞ < ∞.

The adjective adaptive in ANH function indicates that the frequency and ampli-
tude are time-varying, and the adjective non-harmonic indicates that the oscillation
might be non-sinusoidal. When B�(t)

B1(t)
are constants for all � = 0, 1, . . . ,∞ and

φ�(t) = �φ1(t) + α� for some α� ∈ R for all � = 1, . . . ,∞, (9) is reduced to
(3); when the other conditions for the wave-shape function in (4) are further satis-
fied, (9) is reduced to (4). Thus, (9) is a direct generalization of (3) by allowing c�

and α� in (3) to vary, which quantifies the time-varying wave-shape function. We call
B1(t) cos(2πφ1(t)) the fundamental component and φ′

1 the fundamental IF (or pitch in
the music signal analysis) of the signal f (t). Note that the condition |φ′′

1 (t)| ≤ εφ′
1(t)

says that locally the fundamental IF is nearly constant, but it does not imply that the
fundamental IF is nearly constant globally. By a slight abuse of terminology, for � > 1,
we call B� cos(2πφ�(t)) the �th multiple, although φ� might not be proportional to φ1.

Note that we can “view”
√

1
4 B0(t)2 + 1

2

∑∞
�=1 B�(t)2 as the AM of f (t). This comes

from the fact that in (3), A(t)2a20 + 2
∑∞

�=1 A(t)2a2� = A2(t), and Bk(t) is the the
generalization of A(t)ak in (3) for k = 0, 1, . . . ,∞. In this definition, however, we

do not control how large
√

1
4 B0(t)2 + 1

2

∑∞
�=1 B�(t)2 should be. Also note that the

series
(

B0(t)/2√
1
4 B0(t)

2+ 1
2

∑∞
�=1 B�(t)2

,
B1(t)/

√
2√

1
4 B0(t)

2+ 1
2

∑∞
�=1 B�(t)2

, . . . ,
)
has the unitary �2 norm,

which is a generalization of the assumption that the wave-shape function has the uni-
tary L2 norm. The condition (14) says that only the first N multiples are significant.
The condition (15) is a direct generalization of the C1,α condition of the wave-shape
function in (4).
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To see how the wave-shape function varies according to time, denote tk := φ−1
1 (k).

Clearly, for signals in Ik := [tk, tk+1), we could not find a single 1-periodic function
s(t) so that f

B1(t)
|Ik is the composition of s and φ1(t). Thus, we could view the model

(9) either as an adaptive non-harmonic model with one oscillatory component with
the time-varying wave-shape function, or as an adaptive harmonic model with many
oscillatory components with the sinusoidal wave pattern.

Definition 2.2 (Adaptive non-harmonic model) Take ε> 0 and d > 0. The setDε,d ⊂
C1(R) ∩ L∞(R) consists of superposition of ANH functions, that is

f (t) =
K∑

k=1

fk(t) (18)

for some finite K > 0 and

fk(t) = 1

2
Bk,0(t)+

∞∑

�=1

Bk,�(t) cos(2πφk,�(t)) ∈ Dck ,Ck ,Nk
εk

for some 0 ≤ εk ≤ ε, non-negative sequence ck = {ck(�)}∞�=0, 0 < Ck < ∞ and
Nk ∈ N, where for all t ∈ R, the fundamental IF’s of all ANH functions satisfy

– the frequency separation condition:

φ′
k,1(t) − φ′

k−1,1(t) ≥ d (19)

for k = 2, . . . , K
– the non-multiple condition: for each k = 2, . . . , K ,φ′

k,1(t)/φ
′
�,1(t) is not an integer

for � = 1, . . . , k − 1.

3 De-shape SST

In this section, we propose an algorithm, de-shape SST, to study a given oscillatory
signal. De-shape SST provides a TF representation which contains essentially the
IF and AM information of the fundamental component of each ANH function and
removes the influence caused by the non-trivial wave-shape function. In Sect. 3.1, we
provide a review of how cepstrum is applied in engineering. In Sect. 3.2, the short time
cepstral transform (STCT) is introduced with a theoretical justification in Theorem
3.4 to generalize cepstrum to the time–frequency analysis. The proof of the theorem
is postponed to Appendix. In Sect. 3.3, we introduce the inverse STCT that will be
used in the de-shape algorithm. In Sects. 3.4–3.5, the de-shape STFT and de-shape
SST are discussed.

3.1 A Quick Review of Cepstrum

Cepstrum is a commonly applied signal processing technique [44]. One motivation of
introducing cepstrum is the pitch detection problem in music (recall that pitch means
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the fundamental frequency). It is closely related to the homomorphic signal process-
ing, which aims at converting signals structured by complicated algebraic systems
into simple ones. Since its invention in 1963 [5], the cepstrum has been applied in
various discrete-time signal processing problems, such as detecting the echo delay,
deconvolution, feature representations for speech recognition like the Mel-Frequency
Cepstral Coefficients (MFCC), and estimating the pitch of an audio signal. A thorough
review of the cepstrum can be found in [43,44].

We start from recalling the complex cepstrum. For a suitable chosen signal f (t) ∈ R,
the cepstrum, denoted as f̃ C (q), where q ∈ R is called quefrency,2 is defined as the
inverse Fourier transform of the logarithm of the Fourier transform [44]:

f̃ C (q) :=
∫

log f̂ (ξ)e2π iqξdξ, (20)

whenever the inverse Fourier transform of log f̂ (ξ) makes sense, where log is defined
on a chosen branch. We call the domain of f̃ C the quefrency domain. Numerically,
since the computation of the complex cepstrum requires the phase unwrapping process,
it causes instability. Therefore, we could also consider the real cepstrum, denoted as
f̃ R , which is represented as

f̃ R(q) =
∫

log | f̂ (ξ)|e−2π iqξdξ, (21)

whenever the Fourier transform of log | f̂ (ξ)| makes sense. Note that there is no dif-
ference to take the Fourier transform or inverse Fourier transform since the signal is in
general real, so we take the Fourier transform instead of the inverse Fourier transform.
In audio signal analysis, the logarithm operation on the magnitude spectrum can be
interpreted to be an approximation of the perceptual scale of sound intensity, thus it is
conventionally measured in dB. Intuitively, the cepstrummeasures “the rate of the har-
monic peaks per Hz”, namely the period of the signal, where the period is the inverse
of the frequency; that is, the prominent peaks in the cepstrum indicate the periods and
their multiples in the signal. Besides periodicity detection, this method has also been
used in a wide variety of fields which requires deconvolution of a source-filter model.

The main idea behind cepstrum is to find “the spectral distribution of the spec-
trum”, which contains the period information of the signal. It is effective since it could
transform the “slow-varying envelope” of the spectrum to the low-quefrency range,
separated from the fast-varying counterpart of the spectrum, which is transformed to
the high-quefrency range and represents the period information of the signal.

Example 1 We consider an acoustic signal to demonstrate how the overall idea beyond
cepstrum or homomorphic signal processing could help in signal processing when the
signal comes from a complicated combination of two components. A human voice
f ∈ C∞ could be modeled by the glottal vibration, which is a pulse sequence g =

2 The term “cepstrum” is invented by reversing the consonants of the first part of the word “spectrum”
in order to signify their difference. Similarly, the word “quefrency” is the inversion of the first part of
“frequency”. By definition, the quefrency has the same unit as time.
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p
∑

k∈Z
δT0k ∈ S ′, where p ∈ S and T0 > 0, convolved with the impulse response of

the vocal tract h ∈ S so that ĥ is a non-negative function, i.e., f (t) = (g � h)(t). A
mission of common interest is to separate these two components.

First, the Fourier transform converts the convolution into multiplication in the
frequency domain f̂ (ξ) = ĥ(ξ)ĝ(ξ), where ĝ = 1

T0
p̂ �

∑
k∈Z

δk/T0 ∈ C∞ by
the Poisson summation formula. Second, the logarithm converts multiplication into
addition, but we have to be careful when we take the logarithm. To simplify the
discussion, we assume that both ĝ and ĥ are positive-valued. Thus, log( f̂ (ξ)) =
log(ĝ(ξ)) + log(ĥ(ξ)). Thus, the convolution operator in the time domain becomes
the addition operator. Although under our simplified assumption, ĝ ∈ C∞ ∩ L∞ and
ĥ ∈ S, after taking logarithm we might not be able to define the Fourier transform. So
we further assume that log(ĝ(ξ)), log(ĥ(ξ)) ∈ S ′ so that we could apply the Fourier
transform. For example, if h is aGaussian function, log(ĥ(ξ)) is a quadratic polynomial
function. We call the domain where F log( f̂ ) is defined the quefrency domain.

In summary, the periodic glottal excitation is modeled as a series of harmonic peaks
in the frequency domain by the Poisson summation formula (contributing to pitch),
while the frequency response of the vocal tract, ĥ(ξ), contributes to the amplitude of
the spectrum. Let us further assume that after taking Fourier transform on log( f̂ (ξ))

the glottal excitation lies in the high quefrency region while the vocal tract in the
low quefrency region,3 then a simple high pass filtering, which is called the liftering
(again an interchange of the consonants of “filtering”) process, can separate the two
components.One simple example of h is thatwhen h is aGaussian function, the Fourier
transform of log(ĥ(ξ)) is proportional to the second distributional derivative of the
Dirac measure supported at 0. These two components could then be reconstructed
by reversing the procedure—apply the Fourier transform, take the exponential and
apply the inverse Fourier transform. The whole process is called the homomorphic
deconvolution.

Although the real cepstrum avoids phase unwrapping, it is still limited by evaluating
the logarithm, which is prone to numerical instability either in synthetic data or real-
world data. To address this issue, it has been proposed in the literature to replace the
logarithm by the generalized logarithm function [34,53,56],

Lγ (x) := |x |γ − 1

γ
, (22)

where γ > 0, or the root function [1,37,53], defined as

gγ (x) := |x |γ , (23)

where γ > 0. Note that Lγ approximates the logarithm function as γ → 0. As
gγ and Lγ are related by a constant and a dilation, there is no practical difference
which relaxation we choose. Thus, although we could also consider the generalized

3 In the music processing, the high-quefrency part in the cepstrum is related to the pitch while the low-
quefrency part to timbre (i.e., sound color).
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logarithm function Lγ [34,56], to simplify the discussion, in this paper we relax the
real cepstrum by the root function gγ , and we call the resulting “cepstrum” the γ -
generalized cepstrum (In the literature it is also called the root cepstrum):

f̃γ (q) :=
∫

gγ ( f̂ (ξ))e−2π iqξdξ. (24)

There are several proposals for the choice of γ . First, when γ = 2, the formulation is
equivalent to the autocorrelation function of f , which is a basic feature for single pitch
detection but has been found unfeasible for multipitch estimation (MPE). To deal with
the issue ofmultipitch,we should considerγ < 2 [34,57].γ = 0.67 is suggested by the
nonlinear relationship between the sound intensity and perceived loudness determined
by experiment, known as a case of Stevens’ power law, which states that the sound
intensity x and the perceived loudness y are related by y ∝ |x |0.67 [24,49,57]. Previous
researches also suggested γ to be 0.6 [36], 0.25 [31] and 0.1 [33]. In short, the γ -
generalized cepstrum has been shown more robust to noise than the real or complex
cepstrum in the literature of speech processing [1,37]. In addition to the robustness,
the γ -generalized cepstrum has been found useful in various problems like speech
recognition [24], speaker identification [63], especially in multiple pitch estimation
[31,33,36,50,51,57]. Due to its usefulness and for the sake of simplification, in the
paper we focus on the γ -generalized cepstrum.

3.2 Combining Cepstrum and Time–Frequency Analysis: Short Time Cepstral
Transform (STCT)

As useful as the Fourier transform is for many practical problem, however, it has
been well known that when the IF or AM is not constant, Fourier transform might
not perform correctly. Indeed, for the ANH functions, since IF and AM are time-
varying, the momentary behavior of oscillation is mixed up by the Fourier transform,
and hence the cepstrum approach discussed in the previous section fails. To study
this kind of dynamical signal, we need a replacement for the Fourier transform. A lot
of efforts have been made in the past few decades to achieve this goal. TF analysis
based on different principles [16] has attracted a lot of attention in the field and many
variations are available. Well known examples include short time Fourier transform
(STFT), continuous wavelet transform (CWT), Wigner-Ville distribution (WVD), etc.
We refer the reader to [13] for a summary of the current progress of TF analysis. In
this paper, we consider STFT, since it is a direct and intuitive generalization of the
Fourier transform. A generalization of cepstrum to other TF analyses will be studied
in future works.

Recall the definition of STFT. For a chosen window function h ∈ S, the STFT of
f ∈ S ′ is defined by

V (h)
f (t, ξ) =

∫
f (τ )h(τ − t)e−i2πξ(τ−t) dτ, (25)
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where t ∈ R indicates time and ξ ∈ R indicates frequency.4 We call V (h)
f (t, ξ) the

TF representation of the signal f . Since STFT could capture the spectrum or local
oscillatory behavior of a signal, we could combine the ideas of STFT and cepstrum,
which leads to the short time cepstral transform (STCT):

Definition 3.1 Fix γ > 0. For f ∈ S ′ and h ∈ S, we have the short time cepstral
transform (STCT):

C (h,γ )

f (t, q) :=
∫

gγ (V (h)
f (t, ξ))e−i2πqξ dξ, (26)

where q ∈ R.

q in C (h,γ )

f (t, q) is called the quefrency, and its unit is second or any feasible unit

in the time domain. Clearly, C (h,γ )

f (t, ·) is the γ -generalized cepstrum of the signal

f (·)h(· − t) and in general C (h,γ )

f (t, q) is not positive. To show the well-definedness

of STCT, note that while f ∈ S ′ and h ∈ S, V (h)
f (t, ξ) ∈ C∞ is smooth and slowly

increasing on both time and frequency axes. By a slowly increasing C∞ function f ,
wemean that f and all its derivatives have at most polynomial growth at infinity. Thus,
we know that gγ (V (h)

f (t, ·)) is continuous and slowly increasing. Hence its Fourier
transform can be well-defined in the distribution sense since a continuous slowly
increasing function is a tempered distribution. In the special case that f ∈ C∞ ∩ L∞,
gγ (V (h)

f (t, ξ)) is a continuous function vanishing at infinity faster than any power of

|ξ |, and henceC (h,γ )

f (t, q) is a well-defined continuous function in the quefrency axis.
As discussed above, since the cepstrum provides the information about periodicity,

we call C (h,γ )

f (t, q) the time-periodicity (TP) representation of the signal f . Before
proceeding, we consider the following example to demonstrate how the STCT works.

Example 2 Consider the Dirac comb f (t) = 1
ξ0

∑
k∈Z

δk/ξ0 , where ξ0 > 0. This is the
typical periodic distribution, and we could view it as an ANH function with K = 1,
the delta measure as the shape function, the constant fundamental frequency ξ0 Hz
and the constant fundamental period 1/ξ0, although the wave-shape function is more
general than what we consider in the ANH model; it is more general than the ANH
model since with the delta measure f (t) does not satisfy the ANH model. By the
Poisson’s summation formula, f (t) = ∑k∈Z

ei2πkξ0t , where the summation holds in
the distribution sense. Choose a smooth window function h ∈ S so that ĥ is supported
on [−�,�], where 0 < � < ξ0/2. By a direct calculation, the STFT of f is

V (h)
f (t, ξ) =

∑

k∈Z

ĥ(ξ − kξ0), (27)

4 The phase factor ei2πξ t in this definition is not always present in the literature, leading to the name
modified STFT for this particular form. To slightly abuse the notation, we still call it STFT.
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and since � < ξ0/2,

|V (h)
f (t, ξ)| =

∑

k∈Z

|ĥ(ξ − kξ0)|. (28)

To evaluate the STCT, where γ > 0, we need to evaluate |V (h)
f (t, ξ)|γ . Under our

assumption, it is trivial and we have

|V (h)
f (t, ξ)|γ =

∑

�∈Z

|ĥ(ξ − �ξ0)|γ = (
∑

�∈Z

δ�ξ0 � |ĥ|γ )(ξ), (29)

where |ĥ|γ ∈ C0
c (R). Note that the convolution is well-defined since

∑
�∈Z

δ�ξ0 is a
tempered distribution and |ĥ|γ is a compactly supported distribution. By taking Fourier
transform of |V (h)

f (t, ξ)|γ and applying the Poisson summation formula, the STCT of
f is

C (h,γ )

f (t, q) =
̂|ĥ|γ (q)

ξ0

∑

�∈Z

δ�/ξ0(q), (30)

which provides the period information.

This example indicates the overall behavior of STCT when there is only one peri-
odic function with a non-sinusoidal wave. In general, when there are more than one
oscillatory functions with non-sinusoidal waves and different fundamental frequen-
cies, the calculation is no longer direct since the multiples of different oscillatory
functions may collide. Moreover, since the frequency and amplitude are time-varying,
the calculation is more intricate. For the signals in the set Dε,d defined in Definition
2.2, however, we have the following Theorem showing how STCT works.

Before stating the theorem, we make the following general assumption about the
window function.

Assumption 3.2 Fix ε> 0 and d > 0. Take f (t) = ∑K
k=1 fk(t) ∈ Dε,d for some

K ≥ 1. Suppose the fundamental frequency satisfies

inf
t∈R

φ′
1,1(t) > 0. (31)

Fix a window function h ∈ S, which is chosen so that ĥ is compactly supported and
supp(ĥ) ⊂ [−�,�], where � > 0. Also assume that � is small enough so that

0 < � < min{inf
t∈R

φ′
1,1(t)/4, d/4}. (32)

For a chosen window h ∈ S, denote

Ik :=
∫

|h(x)||x |kdx, (33)
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where k ∈ {0}∪N. We mention that a more general window could be considered with
more error terms showing up in the proof. Since these extra efforts do not provide
more insight about the theory, we choose to work with this setup.

Definition 3.3 Let φk,�(t) and Bk,�(t) for k = 1, · · · , K and � ∈ N be defined as in
Definition 2.2. Under Assumption 3.2, define

φk,−�(t) := −φk,�(t) and Bk,−�(t) := Bk,�(t)

for � ∈ N,

φk,0 = 0,

and define a set of intervals

Zk,�(t) = [�φ′
k,1(t) − �, �φ′

k,1(t) + �] ⊂ R, (34)

associated with f , where k ∈ {1, . . . , K } and � ∈ Z.

The following Theorem describes the behavior of STCT when the signal is inDε,d .
The proof of Theorem 3.4 is postponed to Appendix.

Theorem 3.4 Suppose Assumption 3.2 holds. The STFT of f at time t ∈ R is

V (h)
f (t, ξ) = 1

2

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t) + ε0(t, ξ), (35)

where ξ ∈ R and ε0(t, ξ) is defined in (62). Furthermore, ε0(t, ξ) is of order ε and
decays at the rate of |ξ |−1 as |ξ | → ∞.

Take 0 < γ ≤ 1. For each k ∈ {1, . . . , K }, denote a series bk ∈ �1, where
bk( j) = 0 for all | j | > Nk and bk( j) = Bγ

k, j (t) for all | j | ≤ Nk. Then, for q > 0, we
have

C (h,γ )

f (t, q) =
̂|ĥ|γ (q)

2γ

K∑

k=1

b̂k(q) + E1 + E2, (36)

where b̂k is is the discrete-time Fourier transform of bk, E1 is defined in (90), which
is the Fourier transform of δ3 defined in (78), and E2 is defined in (91), which is the
Fourier transform of ε3 defined in (75) and in general is a distribution. When K = 1,
E1 = 0, and when K > 1 it satisfies

|E1| ≤ 2�I γ
0

K∑

k=2

Bγ

k,1(t)‖cγ

k ‖�∞Nk

k−1∑

�=1

[
4�

φ′
�,1(t)

+ E (�)(Nk)

]
,

where E (�)(Nk)= o(Nk) is defined in (85). E2 satisfies |E2(ψ)| ≤ ‖ε3(t, ·)‖L∞‖ψ̂‖L1

for all ψ ∈ S, and ε3 is of order εγ .
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Equation (36) does not indicate the relationship between the relationship among
̂|ĥ|γ (q)

2γ

∑K
k=1 b̂k(q), E1, and E2, so we could not conclude that we could obtain the

inverse of the IF from the STCT.We need more conditions to obtain what we are after.
The following corollary is immediate from Theorem 3.4.

Corollary 3.5 Fix ε > 0 and d > 0. Take f (t) = ∑K
k=1 fk(t) ∈ Dε,d for some

K ≥ 1. In addition to Assumption 3.2, suppose

Bk,�(t)√
1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t)

> ε1/2 (37)

for all k = 1, . . . , K and � = 0, 1, . . . , Nk. Then, when ε < 1 is sufficiently small,

�Nk is sufficiently small and
√

1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t) is sufficiently large for k =

1, . . . , K, the term
̂|ĥ|γ (q)

2γ

∑K
k=1 b̂k(q) in (36) dominates and b̂k is a real, continuous

and periodic function of period 1/φ′
k,1(t) for k = 1, . . . , K.

The assumption that
√

1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t) is sufficiently large for k =

1, . . . , K means that the ANH functions we have interest in have large enough AMs.
Condition (14) and Assumption (37) together mean that the first Nk multiples of the
fundamental component of the kth ANH function are strong enough, while the remain-
ingmultiples are not significant.When γ is chosen small enough, this assumption leads
to the fact that bk( j) = Bγ

k, j (t) is close to 1 for | j | ≤ Nk , and “small” otherwise.

Thus, the Fourier transform of the �1 series bk reflects faithfully the inverse of the IF.
We could call 1/φ′

k,1(t) the instantaneous period (IP) of the kth ANH function, which
is the inverse of its fundamental frequency.

Note that the assumption (37) can be generalized, but more conditions are needed
to guarantee that we obtain the IP. For example, if the condition (37) failed for � = 2 j
so that Bk,2 j (t) = 0 for j = 1, . . . , 	Nk/2
, then the �1 series bk has an oscillation
of period 2φ′(t), and hence its Fourier transform is dominant in 1

2φ′(t) instead of
1

φ′(t) .
This will lead to an incorrect conclusion about the IF in the end. In this paper, to
simplify the discussion, we focus on this assumption. See more discussions in Sect. 6.

The bounds for E1 and E2 need some discussions.

1. The bound for E1 comes from controlling the possible overlaps between the mul-
tiples of different ANH components in the STFT V (h)

f (t, ξ). When K = 1,
there is no danger of overlapping, so E1 = 0. When K > 1, the term
Nk
∑k−1

�=1[ 4�
φ′

�,1(t)
+ E (�)(Nk)] is the upper bound of all possible overlaps between

the kth component and all �th component, where � ∈ {1, . . . , k − 1}. The ori-
gin of this upper bound is the fundamental Erdös-Turán inequality, which gives
a quantitative form of Weyl’s criterion for equidistribution, and the convergence
rate of E (�)(Nk) → 0 when Nk → ∞ depends on the algebraic nature of the ratio
φ′
k,1(t)/φ

′
�,1(t). Note that even when the IF’s of all oscillatory components are

constant, if K > 1, the E1 term still exists due to the fundamental equidistribution
property.
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2. When K > 1, the bound for E1 is the worst bound. Since we could not control the
locations of the overlaps between those multiples of different ANH components in
the STFT, when we evaluate the STCT by the Fourier transform, the discrepancy
caused by the overlaps, denoted as δ3 in (78), is bounded simply by the Riemann-
Lebesgue theorem.Thebound is shown in (89). SeeRemark1 formore discussions.
The constant could be improved. However, since the focus here is showing how
the result is influenced by the fundamental limitation of the number of overlapped
multiples, no effort has been made to optimize it.

3. Note that the bound of E1 blows up when Nk → ∞. Thus, the bound of E1 is not
useful when Nk is “huge”. In practice, however, most non-sinusoidal oscillatory
signals have Nk less than 20. The most extreme case we have encountered up
to now is the ECG signal, which has Nk about 40. Thus, in practice, we could
choose a small � so that E1 is well controlled for a “reasonable” Nk , and this is
the condition “�Nk is sufficiently small” in Corollary 3.5. However, � cannot be
chosen arbitrarily small. Note that the smaller the� is, the longer the window will
be, and the larger the absolute moments Ik will be. Thus, the smaller the � is, the
worse the bound of E2 is. In sum, when K > 1, except for special non-sinusoidal
oscillations with huge Nk , the bound for E1 could be well controlled for practical
applications.

4. The term E2 comes from the non-constant AM and IF of each ANH component.
When the IF and AM are constant, this term becomes zero. Note that when γ is
chosen small, bk becomes more like a constant sequence and b̂k(q) behaves more
like a Dirichlet kernel. On the other hand, E2 becomes large when γ is small.

The theorem and the corollary say that the STCT encodes the IF information in the
format of IP via a periodic function. To better understand periodic functions b̂k , we
take a look at the following example.

Example 3 Consider a signal f (t) = s(ξ0t), where ξ0 > 0 and s is real, smooth and 1-
periodic. This special case has only one oscillatory component, K = 1, with the fixed
wave-shape function and a constant IF. Thus we do not worry about the error terms E1
and E2 in Theorem 3.4. By a direct expansion, f (t) =∑N

k=0 c(k) cos(2πkξ0t + αk),
where N ∈ N ∪ {∞}, α0 = 0, c(1) > 0 and αk ∈ [0, 2π) and c(k) ≥ 0 for all
k �= 1. To simplify the calculation, we choose a smooth window function h so that
ĥ is supported on [−�,�], where 0 < � < ξ0/2. By the Plancherel identity and a
direct calculation, we have

V (h)
f (t, ξ) =

N∑

k=−N

c(k)ĥ(ξ − kξ0)e
i(2πkξ0t+αk ), (38)

where we denote c(−k) = c(k) for all k ∈ N. Since � < ξ0/2, for 0 < γ � 1, we
have

|V (h)
f (t, ξ)|γ =

N∑

k=−N

c(k)γ |ĥ(ξ − kξ0)|γ =
[

N∑

k=−N

c(k)γ δkξ0 � |ĥ|γ
]

(ξ). (39)
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The evaluation of the Fourier transform of [∑N
k=−N c(k)γ δkξ0 � |ĥ|γ ](ξ) is straight-

forward and we have for q > 0,

C (h,γ )

f (t, q) = F[|V (h)
f (t, ·)|γ ](q)

= ̂|ĥ|γ (q)

N∑

k=−N

c(k)γ e−i2πkξ0q = ̂|ĥ|γ (q)S(γ )
1/ξ0

(q), (40)

where S(γ )
1/ξ0

(q) is a periodic distribution with the period of length 1/ξ0 so that

̂
S(γ )
1/ξ0

(k) = c(k)γ for k ∈ {−N ,−N + 1, . . . , N − 1, N } and ̂
S(γ )
1/ξ0

(k) = 0 otherwise.
We could take a look at a special case to have a better picture of what we get even-

tually. Suppose N is finite and c(k) = 1 for k ∈ {−N , . . . , N }. In this case, we have

C (h,γ )

f (t, q) = ̂|ĥ|γ (q)DN (ξ0q),

where DN (ξ0q) is the Dirichlet kernel, which is periodic with the period 1/ξ0 since
DN (ξ0q) = sin(π(2N+1)ξ0q)

sin(πξ0q)
. Also, it becomes more and more spiky at �/ξ0 and even-

tually the Delta comb supported on �/ξ0, � ∈ Z, when N → ∞. On the other hand,
when N is finite and small, the STCT could be oscillatory but still contains informa-
tion we need. For example, when N = 1, D1(ξ0q) = sin(π3ξ0q)

sin(πξ0q)
and D1(ξ0q) still has

dominant values at q = �/ξ0 for � ∈ Z .

3.3 Inverse STCT

Based on Theorem 3.4 and a careful observation, we see that to determine the fun-
damental frequency for an ANH signal f (t), a candidate frequency should have the
saliency of its multiples in the TF representation V (h)

f (t, ξ), and the associated period

and its multiples in the TP representation C (h,γ )

f (t, q). In [50,51], this observation
is summarized as a practical principle called the constraint of harmonicity, which is
described as follows: at a specific time t0, a pitch candidate, ξ1 > 0, is determined to
be the true pitch when there exists Mv, Mu ∈ N such that there are

1. A sequence of “peaks” found around V (h)
f (t0, ξ1), V (h)

f (t0, 2ξ1), . . ., V (h)
f

(t0, Mvξ1);
2. A sequence of “peaks” found around C (h,γ )

f (t0, q1), C
(h,γ )

f (t0, 2q1), . . ., C (h,γ )

f
(t0, Muq1);

3. ξ1 = 1/q1.

The sequence {ξ1, 2ξ1, . . . , Mvξ1} is commonly called harmonic series associated
with multiples of the pitch ξ1. The constraint of harmonicity principle leads to the
following consideration. If we “invert” the quefrency axis of the TP representation by
the operator I,

I : q �→ 1/q, (41)
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when q > 0, then by the relationship that the period is the inverse of the frequency,
we could obtain information about the frequency in C (h,γ )

f (t, Iq). Note that I is
open from (0,∞) to (0,∞) and the differentiation of I is surjective on (0,∞), so
for a distribution T defined on (0,∞), we could well-define the composition T ◦
I, or the pull-back of T via I [26, Theorem 6.1.2]. Since in general C (h,γ )

f (t, ·)
is a tempered distribution, we could consider the following definition to extract the
frequency information for f :

Definition 3.6 For a function f ∈ S ′, window h ∈ S and γ > 0, the inverse short
time cepstral transform (iSTCT) is defined on R × R

+ as

U (h,γ )

f (t, ξ) := C (h,γ )

f (t, Iξ), (42)

where ξ > 0 and U (h,γ )

f (t, ·) is in general a distribution.
The unit of ξ in U (h,γ )

f (t, ξ) is Hz or any feasible unit in the frequency domain.

We mention that in the special case that f ∈ C∞ ∩ L∞,U (h,γ )

f (t, ξ) is a well-defined

continuous function in the frequency axis.Also, ifC (h,γ )

f (t, ·) is integrable andwewant
to preserve the integrability, we could weight C (h,γ )

f by the Jacobian of I. However,
since the integrability is not the main interest here, we do not consider it. We view
U (h,γ )

f (t, ξ) as a TF representation determined by a nonlinear transform composed of
several transforms. While this operator looks natural at the first glance, it is actually
not stable. See the following example for the source of the instability.

Example 4 Let us continue the discussion of Example 3. Suppose N is finite and hence

C (h,γ )

f (t, q) = ̂|ĥ|γ (q)DN (ξ0q) for q > 0. Thus, by inverting the axis by ξ �→ 1/ξ

when ξ �= 0, the iSTCT becomes U (h,γ )

f (t, ξ) = ̂|ĥ|γ (1/ξ)DN (ξ0/ξ), where ξ > 0.
Clearly, due to the oscillatory nature of the Dirichlet kernel, the non-zero region of
DN (ξ0q) around q = 0would be flipped to the high frequency region, which amplifies
the unwanted information in the low frequency and represents it in the high frequency
region. To be more precise, since DN (ξ0q) decays monotonically from 2N to about
−0.43N as q goes from 0 to x1 ∈ ( 1

(2N+1)ξ0
, 2

(2N+1)ξ0
), where x1 is the local extremal

point, in iSTCT,U (h,γ )

f (t, ξ) increases from about−0.43N to 2N as ξ goes from 1/x1

to ∞. This indicates that |U (h,γ )

f (t, ξ)| > N for all ξ > � for some � > 1/x1.

Motivated by the above example, in practice, we need to apply a filtering process
on the STCT to stabilize the algorithm. Here is the main idea. Since our interest is to
capture the IF’s of the signal, we have to effectively remove components unrelated to
IF’s in the STCT. In practice, the irrelevant components lie in the low quefrency region.
Therefore, we need to apply a long-pass lifter on U (h,γ )

f (t, ξ), where the lifter refers
to a “filter” processed in the cepstral domain, again by inverting the first four letters
of “filter”, to distinguish it from the filter processed in the spectral domain [5,43].
Moreover, since the quefrency is measured in the unit of time, a lifter is identified as a
short-pass or long-pass one rather than a low-pass or a high-pass one [5,43]. In short,
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a long-pass lifter passes mainly the component of high quefrency (long period) while
rejects mainly the component of low quefrency (short period).

3.4 De-shape STFT

Take the music signal as an example to examine the iSTCT. The constraint of har-
monicity principle tells us that while at a fixed time t we could find a harmonic
series associated with multiples of the pitch ξ0 in the TF representation V (h)

f (t, ξ),

we should find a sequence of peaks in the TF representation U (h,γ )

f (t, ξ), denoted
as {ξ1, ξ1/2, . . . , ξ1/Mu} and this sequence is called the sub-harmonic series associ-
ated with the fundamental frequency ξ1 in the literature. This observation motivates
a combination of the STFT and iSTCT to extract the pitch information; that is, we
consider the following combination of the TF representation and TP representation
via the iSTCT, which we coined the name de-shape STFT:

Definition 3.7 For a function f ∈ S ′, window h ∈ S and γ > 0, the de-shape STFT
is defined on R × R

+ as

W (h,γ )

f (t, ξ) := V (h)
f (t, ξ)U (h,γ )

f (t, ξ), (43)

where ξ > 0 is interpreted as frequency.

In general, sinceV (h)
f (t, ξ) is aC∞ function in the frequency axis andU (h,γ )

f (t, ξ) is
a distribution in the frequency axis, the de-shape STFT iswell-defined as a distribution.
Again, in the special case that f ∈ C∞∩L∞,W (h,γ )

f (t, ξ) is awell-defined continuous
function in the frequency axis.

The motivation beyond the nomination “de-shape” is intuitive – since the harmonic
series associated withmultiples of the fundamental frequency ξ0 in V

(h)
f (t, ξ) overlaps

with the sub-harmonic series associated with multiples of the fundamental frequency
ξ0 in U (h,γ )

f (t, ξ) only at ξ0, by multiplying V (h)
f (t, ξ) and U (h,γ )

f (t, ξ), only the
information associated with the pitch is left in the result. Thus, the influence caused
by the non-trivial wave-shape function in the TF representation is removed, and hence
we could view the de-shape process as an adaptive and nonlinear filtering technique
for the STFT. Since ξ > 0 inW (h)

f (t, ξ) is interpreted as frequency, the de-shape STFT
provides a TF representation.

We mention that in the music field, a similar idea called the combined temporal
and spectral representations has been applied to the single pitch detection problem
[15,46]. With our notation, the proposed idea of detecting the pitch at time t , denoted
as ξ0(t), is simply by ξ0(t) = argmaxξ>0|W (h,γ )

f (t, ξ)| [15,46]. In the last section
of [46], the authors showed a figure of polyphonic music and slightly addressed the
“potential” of this idea in multiple pitch estimation problems. But this idea was not
noticed until [50,51], which gives an explicit methodology, systematic investigation,
and evaluation of using this idea in multiple pitch estimation.
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3.5 Sharpen De-shape STFT by the Synchrosqueezing Transform: De-shape
SST

While the de-shape STFT could alleviate the influence of the wave-shape function, it
again suffers from the Heisenberg–Gabor uncertainty principle and tends to be blurred
in the TF representation [16]. One approach to sharpen a TF representation is by
applying the SST, and we propose to combine SST to obtain a sharp TF representation
without the influence of the wave-shape function. SST is a nonlinear TF analysis
technique, which is special case of the more general RM method [2]. In summary, it
aims at moving the spectral-leakage terms caused by Heisenberg–Gabor uncertainty
principle to the correct location, and therefore sharpens the TF representation with
high concentration [6,12,42,55]. The main step in SST is estimating the frequency
reassignment vector, which guides how the TF representation should be nonlinearly
deformed. The resulting TF representation has been applied to several fields. For
example, in the physiological signal processing, SST leads to a a better estimation
of IF and AM, which is applied to study sleep dynamics [60], coupling [30] and
others, or a better spectral analysis, which is applied to study the noxious stimulation
problem [39]; in the mechanical engineering, it has been applied to estimate speed of
rotating machinery [61] and others; in finance, it is applied to detect the non-stationary
dynamics in the financial system [23]; in the music processing, such an approach can
better discriminate closely-located components, and applications have be found in
chord recognition [32], sinusoidal synthesis [47] and others.

The frequency reassignment vector associated with a function f ∈ S ′ is determined
by

�
(h,υ)
f (t, ξ) :=

⎧
⎪⎨

⎪⎩
−� V (Dh)

f (t,ξ)

2πV (h)
f (t,ξ)

when |V (h)
f (t, ξ)| > υ

−∞ when |V (h)
f (t, ξ)| ≤ υ

, (44)

where Dh(t) is the derivative of the chosen window function h ∈ S, � means the
imaginary part and υ > 0 gives a threshold so as to avoid instability in computation
when |V (h)

f (t, ξ)| is small. The theoretical analysis of the frequency reassignment
vector has been studied in several papers [6,12,58], and we refer the reader with
interest to these papers. In general, we could consider variations of the reassignment
vectors for different purposes. For example, the reassignment vectors used in the
second order SST [42]. To keep the discussion simple, we focus on the original SST.

The SST of V (h)
f (t, ξ) is therefore defined as

SV (h,υ)
f (t, ξ) =

∫

Nυ(t)
V (h)
f (t, η)

1

α
g

( |ξ − �
(h,υ)
f (t, η)|
α

)
dη. (45)

where ξ ≥ 0, α > 0, g ∈ S and 1
α
g( ·

α
) converges weakly to the Dirac measure

supported at 0 when α → 0, Nυ(t) := {ξ ≥ 0| |V (h)
f (t, ξ)| > υ}; similarly, we have

the de-shape SST defined as
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SW (h,γ,υ)

f (t, ξ) =
∫

Nυ(t)
W (h,γ )

f (t, η)
1

α
g

( |ξ − �
(h,υ)
f (t, η)|
α

)
dη, (46)

where ξ ≥ 0. Numerically, g could be chosen to be the Gaussian function with
α > 0 or as a direct discretization of the Dirac measure when α � 1. For numerical
implementation details and the stability results of SST, we refer the reader with interest
to [6].

With the de-shape STFT, the wave-shape information is decoupled from the IF
and AM in the TF representation; with the de-shape SST, the TF representation is
further sharpened. We could continue to do the analysis to, for example, carry out
the wave-shape reconstruction, count the oscillatory components, etc. Furthermore,
we could combine the de-shape SST information and current wave-shape analysis
algorithms, including the functional regression [7, Sect. 4.7], designing a dictionary
[28] or unwrapping the phase [62], to study the oscillatory signal with time-varying
wave-shape function. The work of estimating the time-varying wave-shape function
with applications will be explored systematically in a coming work.

4 Numerical Results

In this section we demonstrate how the de-shape SST performs in various kinds of
signals with multiple ANH components with non-trivial time-varying shape function.
We consider a wide range of physiological, biological, audio and mechanical signals,
which are generated in different dynamical system and recorded by different sensors.
The signals are: (1) abdominal fetal ECG signal, (2) different photoplethysmography
signals under different challenges – respiratory and heartbeat, motion and heartbeat,
and non-contact PPG signal, (3) music and bioacoustic signals including the violin
sonata, choir and wolves sound. The code of SST and de-shape SST and test datasets
are available via request.

For a fair comparison, the parameters for computing the de-shape SST are set to be
the same for all signals throughout the paper: γ = 0.3 for the STCT and υ = 10−4%
of the root mean square energy of the signal under analysis for the de-shape SST.

4.1 Simulated Signal

We continue the example shown in Sect. 1, make clear how f2 is generated, and
consider a more complicated example. Take W to be the standard Brownian motion
defined on R and define random processes �A,σ,a := (|W |+1)�Kσ

‖(|W |+1)�Kσ ‖L∞[0,100] + a and

�φ,σ,b,c := b|W |
‖W‖L∞[0,100] �Kσ +c, where a, b, c ∈ R, Kσ is the Gaussian function with

the standard deviation σ > 0. A2(t) is a realization of �A,10,0.9, A3(t) is a realization
of �A,10,0.9, φ2(t) is a realization of �φ,5,2,π/2, and A3 is a realization of �φ,5,1,4 on
[0, 100]. Here all realizations are independent.

The signal f2 is generated by A2(t)mod(φ2, 1). To generate f3, denote tk = φ−1
3 (k).

The signal f3 is A3(t)χ[30,100](
∑

k δtk � χ[−3/100,3/100]).
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Fig. 5 Top the simulated signal f3; top middle f = f1+ f2+ f3; top bottom ξ(t), bottom Y = f (t)+ξ(t).
To enhance visibility, we only show the signal over [25, 65]

Consider a clean signal f (t) = f1(t)+ f2(t)+ f3(t) from t = 0 to t = 100 sampled
at 100 Hz. Clearly, while f1, f2 and f3 are oscillatory, the wave-shape functions are
all non-trivial and the wave-shape functions of f2 and f3 are time-varying, and f2
and f3 exist for only part of the full time observation time. To further challenge the
algorithm, we add a white noise ξ(t) to g by considering Y (t) = f (t) + ξ(t), where
for all t , ξ(t) is a student t4 random variable with the standard deviation 0.5. The
signal-to-noise (SNR) ratio of Y (t) is 1.8 dB, where SNR is defined as 20 log std( f )

std(ξ)
and std means the standard deviation. The signal f1 and f2 are shown in Fig. 2, and
the signal of f3(t), g(t) and Y (t) are shown in Fig. 5. The results of STCT, iSTCT,
de-shape STFT and de-shape SST of g(t) and Y (t) are shown in Fig. 6. The ground
truths are superimposed for the comparison.

There are several findings. Note that even when the signal is clean, we could see
several interferences in either STFT or SST. For example, we could see the “bubbling
pattern” in these TF representations around 2 Hz from 0 to 60 s (indicated by red
arrows), which comes from the interference of the second-multiple of f1 and the
fundamental component of f2. These interferences are eliminated in de-shape SST,
since the wave-shape is “decomposed” in the analysis. Second, when the signal is
clean, we could see a “curve” starting from about 3.4 Hz at 0 s and climbing up to
4 Hz at 40 s in STFT and SST (indicated by green arrows). Certainly this is not a true
component but an artifact, which comes from the incidental appearance of different
multiples of different ANH functions. This might mislead us and conclude that there
is an extra component. Note that this possible artifact is eliminated in the de-shape
SST. Third, around 85 s, the IF’s of f2 and f3 cross over (indicated by blue arrows).
How to directly decouple signals with this kind of cross-over IF’s with TF analysis
technique is still an open question. Last but not the least, while the SNR is low, the
de-shape SST could still be able to provide a reasonable IF information regarding the
components. This comes from the robustness of the frequency reassignment vector,
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Fig. 6 Top left the STFT of the clean signal f , |V (h)
f (t, ξ)|; top middle the SST of f , |SV (h)

f (t, ξ)|. The
colored arrows indicates three findingsmentioned in themain context; top right the STCT of f , |C(h)

f (t, ξ)|;
middle left the inverse STCTof f , |U (h,γ )

f (t, ξ)|;middlemiddle de-shape STFTof f , |W (h,γ )
f (t, ξ)|;middle

right the de-shapeSSTof f , |SW (h,γ )
f (t, ξ)|;bottom left the STFTof the noisy signalY , |V (h)

Y (t, ξ)|;bottom
middle the de-shape SST of the noisy signal Y , |SW (h,γ )

Y (t, ξ)|; bottom right the de-shape SST of the clean

signal f , |SW (h,γ )
f (t, ξ)|, superimposed with φ′

1(t), φ
′
2(t) and φ′

3(t) in red (Color figure online)

which has been discussed in [6]. We mention that we could further stabilize the TF
representation determined by the de-shape SST by the currently proposed multi-taper
technique called concentration of frequency and time (ConceFT) [13]. We refer the
reader with interest to [13] for a detailed discussion of ConceFT.

4.2 ECG Signal

As discussed in Sect. 2.2.1, we need themodifiedwave-shape function to better capture
the features in the ECG signal.We now show that by the de-shape SST,we could obtain
a TF representation without the influence of the time-varying wave-shape function.
For the ECG signal, we follow the standard median filter technique to remove the
baseline wandering [10], and the sliding window is chosen to be 0.1 s.
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Fig. 7 Top theECGsignal f recorded for 85 s fromanormal subject. To enhance the visibility,we only show

the first 30 s. Second row, left panel |V (h)
f (t, ξ)|; middle panel |SV (h)

f (t, ξ)|; right panel |SW (h,γ )
f (t, ξ)|.

Third row, left panel |C(h,γ )
f (t, ξ)|;middle panel |U (h,γ )

f (t, ξ)|; right panel |SW (h,γ )
f (t, ξ)| superimposed

with the instantaneous heart rate. To enhance the visibility, we show |C(h,γ )
f (t, ξ)|, |U (h,γ )

f (t, ξ)| and
|SW (h,γ )

f (t, ξ)| only up to 4 Hz in the frequency axis

4.2.1 Normal ECG Signal

The lead II ECG signal f (t) is recorded from a normal subject for 85 s, which is
sampled at 1000 Hz. The average heart rate of the subject is about 70 times per
minute; that is, the IF is about 1.2 Hz. By reading Fig. 7, it is clear that the ECG signal
is oscillatory with a non-trivial wave-shape function, and the wave-shape function is
time varying, as is discussed in Sect. 2.2.1.

Figure 7 shows the analysis result. We could see a dominant curve in the STCT,
which shows the period information of the oscillation and it is about 0.9 s per wave.
The iSTCT flips the period information back to frequency information, and hence we
see a dominant curve around 1.2 Hz. Eventually, the multiples associated with the
ECG wave-form are well eliminated by the de-shape STFT SW (h)

f and the TF repre-
sentation is sharp. Thus we conclude that the de-shape SST provides a more faithful
TF representation and decouples the IF, AM and the wave-shape function informa-
tion. Moreover, the dominant curve around 1.2 Hz fits the ground truth instantaneous
heart rate (IHR), which indicates the potential of the de-shape SST in the ECG signal
analysis.
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Fig. 8 Top the abdominal fetal ECG signal f recorded for 300 s from a recorded in labor, between 38
and 41 weeks gestation. To enhance the visibility, we only show the signal of 30 s long. The annotation

of the fetal heart beats are marked in red. Middle left panel |V (h)
f (t, ξ)|; middle right panel |SV (h)

f (t, ξ)|;
bottom left panel |SW (h,γ )

f (t, ξ)|; bottom right panel |SW (h,γ )
f (t, ξ)| superimposed with the fetal IHR

determined by a group of cardiologists. To enhance the visibility, we show |SW (h,γ )
f (t, ξ)| only up to 4 Hz

in the frequency axis. The curve around 1.5 Hz is the IHR associated with the maternal heart beats (Color
figure online)

4.2.2 Abdominal Fetal ECG

The fetal ECG could provide critical information for physicians to make clinical deci-
sion. While several methods are available to obtain the fetal ECG, the abdominal fetal
ECG signal is probably the most convenient and cheap one. We take the abdominal
fetal ECG signal with the annotation provided by a group of cardiologists from Phy-
sioNet [22]. In this database, four electrodes are placed around the navel, a reference
electrode is placed above the pubic symphysis and a common mode reference elec-
trode is placed on the left leg, which leads to four channels of abdominal ECG signal.
The signal is recorded at 1000 Hz for 300 s. In this example we show the result with
the third abdominal ECG signal. Note that while the signal is carefully collected, the
signal to noise ratio of the abdominal fetal ECG is relatively low. We refer the reader
with interest to https://www.physionet.org/physiobank/database/adfecgdb/ for more
details.

https://www.physionet.org/physiobank/database/adfecgdb/
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The results of different TF analyses, including de-shape SST, are shown in Fig. 8.
In the STFT and SST, we could see a light curve around 2Hz, which coincides with the
fetal IHR we have interest in. However, this information is masked by the multiples of
the maternal ECG signal. In the de-shape SST, the wave-shape influence is removed
and the fetal IHR is better extracted, and the estimated fetal IHR coincideswellwith the
annotation provided by the physician. The curve around 1.5 Hz is the IHR associated
with the maternal heart beats. The potential of applying de-shape SST to study fetal
ECG will be explored and reported in future works.

4.3 PPG Signal

Pulse waves represent the hemodynamics, and it can be monitored via plethysmo-
graphic technologies in different regions of the body. These technologies often use
photo sensors usually placed on the earlobe or finger, by illuminating the tissue and
simultaneously measuring the transmitted or the reflected light using a specific wave-
length. More recently, noncontact techniques such as video signals (e.g., PhysioCam
[14]) have been used tomonitor the pulsewave from the face at a distance. Collectively,
the application of photosensors to monitor pulse wave are known as photoplethysmog-
raphy (PPG). See, for example, [14] for a review of the PPG technique. In addition
to acquire the hemodynamical information, it also contains the respiration informa-
tion. Indeed, mechanically, inspiration leads to a reduction in tissue blood volume,
which leads to a lower amplitude of the PPG signal. Since none of the pulse wave or
the respiration-induce variation oscillates like a sinusoidal wave, the signal should be
modeled by the ANH model.

4.3.1 PPG Signal with Respiration

Figure 9 shows a PPG signal from the Capnobase dataset5 and its analysis result with
the de-shape STFT. The PPG signal, the capnogram signal and the ECG signal are
simulateneously recorded from a subject without any motion at 300 Hz for 480 s. By a
visual inspection, it is clear that there are two oscillations inside the PPG signal—the
faster (respectively slower) oscillations are associated with the heartbeat (respectively
respiration). Clearly, the non-sinusoidal oscillatory waves complicate STFT V (h)

f and

SST SV (h)
f , while these multiples are elliminated in the de-shape STFT and de-shape

SST. Also, we could see that the estimated IHR and instantaneous respiratory rate
(IRR) estimated from the PPG signal fit the IHR and IRR derived directly from the
ECG signal and the capnogram signal. This indicates the potential of simultaneously
obtaining IHR and IRR from the PPG signal.

We mention that when γ is chosen to be 2, the heartbeat component is missed (the
result is not shown). This coincides with the general knowledge that γ = 2 is not a
good periodicity detector when there exists multiple periodicity in the signal.

5 http://www.capnobase.org.

http://www.capnobase.org
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Fig. 9 Top row the photoplethysmography signal f recorded from a normal subject for 480 s. To enhance
the visibility, we only show the segment between the 150th second and 250th second. Second row: left

|V (h)
f (t, ξ)|; middle |SV (h)

f (t, ξ)|; right the de-shape SST of the capnogram signal superimposed with the
IRR in red, which is estimated from the PPG signal. Here, only up to 2 Hz in the frequency axis is shown to

enhance the visibility. Bottom row: left |SW (h,γ )
f (t, ξ)|. To enhance the visibility, we show |SW (h,γ )

f (t, ξ)|
only up to 4 Hz in the frequency axis. Clearly, the multiples of each component are eliminated; middle

|SW (h,γ )
f (t, ξ)| superimposed with the estimated IHR and IRR. The red curve around 0.3 Hz is associated

with the IRR and the red curve around 1.6 Hz is associated with the IHR. The blue curve is five times the
IRR curve, which indicates that the component with the higher frequency is not a multiple of the component
with lower frequency; right the de-shape SST of the electrocardiographic signal superimposed with the IHR
in red, which is estimated from the PPG signal. Here, only up to 2 Hz in the frequency axis is shown to
enhance the visibility (Color figure online)

4.3.2 PPG Signal with Motion

Figure 10 shows the result of one PPG sample used in the training dataset of ICASSP
2015 signal processing cup.6 The sample is a 5-minute PPG signal sampled at 125 Hz
when the subject runswith changing speeds, scheduled as: rest (30 s)→ 8 km/h (1min)
→ 15 km/h (1 min) → 8 km/h (1 min) → 15 km/h (1 min) → rest (30 s). From the
recorded signal it is not easy to see how the motion and heartbeat vary. The heartbeat
component starts from around 1.7 Hz at 50 s, to 2.2 Hz from 150 to 170 s, when the

6 http://www.zhilinzhang.com/spcup2015/.

http://www.zhilinzhang.com/spcup2015/
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Fig. 10 Top row the photoplethysmography signal f recorded from a normal subject, who is scheduled to
run at different speeds. Second row the first 100 s photoplethysmography signal f . It is clear that the signal

is composed of several components with complicated dynamics. Third row |V (h)
f (t, ξ)| is shown on the left

and |SV (h)
f (t, ξ)| is shown on the right. Bottom row |U (h,γ )

f (t, ξ)| is shown on the left and |SW (h,γ )
f (t, ξ)|

is shown on the right. The heartbeat component is marked by red arrows. To enhance the visibility, we

shown |U (h,γ )
f (t, ξ)| and |SW (h,γ )

f (t, ξ)| only up to 6 Hz in the frequency axis (Color figure online)

subject has just finished the 15 km/h running section. Then, the heartbeat goes lower
in the 8 km/h section and higher in the final 15 km/h section.

Note that the IF of the heartbeats (marked by the red arrow) lies between two other
components, supposedly contributed by motion. The higher frequency component
associated with motion has IF about twice the IF of the lower one. We conjecture that
the higher one is contributed by the movement of body while the lower is contributed
by the movement of arms and legs. The body finishes a period by just one step, while
the leg finished a period by two steps (one leg needs to finish a forward and backward
movement). This is very similar to the “octave” detection problem in music signal
processing (see Sect. 4.4.1) and it is quite natural to catch two components here as
they are indeed (at least) two different oscillatory signals, where the one has IF almost
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Fig. 11 Top the non-contact PPG signal f recorded from a normal subject walking on the treadmill at

a fixed speed. Middle left |V (h)
f (t, ξ)|; middle right |SV (h,γ )

f (t, ξ)|; bottom left |SW (h,γ )
f (t, ξ)|; bottom

right |SW (h,γ )
f (t, ξ)| superimposed with the instantaneous heart rate. To enhance the visibility, we show

|U (h,γ )
f (t, ξ)| and |SW (h,γ )

f (t, ξ)| only up to 5 Hz in the frequency axis

twice from the other one. An extensive study of this signal is needed to fully understand
how the bodymotion influences the physiological signal andwill be reported in a future
work.

4.3.3 Non-contact PPG Signal

Figure 11 shows the non-contact PPG signal recorded from a normal subject when he
is walking on the treadmill at 0.6 Hz. The sampling rate is 100 Hz. The non-contact
PPG is collected with the PhysioCam technology, and we refer the reader with interest
to [14] for details. The ECG signal is simultaneously recorded from the subject at
the sampling rate 1000 Hz, so we have the true IHR for comparison. Clearly the
signal is noisy and contains the walking rhythm; that is, the non-contact PPG signal
is composed of two oscillatory signals—one is associated with the hemodynamics
and one is associated with the walking rhythm. Despite the heavy corruption terms in
the low frequency, which comes from the “trend” inside the signal, we could see that
the de-shape STFT successfully extracts the walking rhythm around 0.6 Hz and the
IF around 2 Hz, which coincides with the IHR determined from the ECG signal. A
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systematic study of this kind of signal, including the associated de-trend technique, is
critical for practical applications and will be reported in a future work.

4.4 Music and Bioacoustic Sounds

The idea of de-shape STFT has been applied in the task called automatic music tran-
scription (AMT) [15,46,50,51], and this approach has been shown competitive in
comparison to the state-of-the-art AMT methods in the MIREX-MF0 challenge, an
annual competition in the field of music information retrieval (MIR).7 AMT is still
a technology under active development by now, where one big challenge is how to
correctly identify the pitches of the notes played at the same time. In this subsection,
we show the potential of applying the de-shape SST to the AMT problem.

4.4.1 Violin Sonata

Figure 12 shows a 6-second segment fromMozart’s Violin Sonata in E minor, K.304,
where the annotations are provided by musicians. The sampling rate of the signal
is 44.1 kHz. This segment contains the sounds of two instruments, violin (melody)
and piano (accompaniment). The number of concurrent pitches of this signal at every
timestamp varies from 1 to 4, where the violin is played in single pitch and the piano
in multiple pitches. The patterns of the two instruments are different, which can be
seen from reading the TF representations of STFT and SST. The violin sound exhibits
a clear vibrato (i.e., periodic variation of the IF) together with a strong and frequency-
dependent AM effect. See the red arrows in Fig. 12 for an example. It is to say that the
spectral envelope of the sound varies strongly during one cycle of vibrato [18]. On the
other hand, piano notes have stable IF’s, strong attack and long decay of AMs, and,
as mentioned in Sect. 2.2.3, the inharmonicity makes the high-order harmonic peaks
deviate from the integral multiple of the fundamental frequency f1. The notes of this
segment are with pitches ranging from E2 (the fundamental frequency is 82.4 Hz) to
G5 (the fundamental frequency is 784.0 Hz), and they are shown in the red lines in
Fig. 12. The resolution of the labels formatted in Musical Instrument Digital Interface
(MIDI) is one semitone.

We indicate one specific tricky problem commonly encountered in this kind of
signal. Take the signal from 0.76 to 1.14 s as an example. The highest note of piano,
B3 (the fundamental frequency is 246.9 Hz), is just one half of the violin note, B4
(the fundamental frequency is 493.88 Hz). It is to say, all multiples of violin note
are (nearly) overlapped with the piano note, thereby violates the frequency separation
condition in Definition 2.2. The problem of detecting these “overlaps” is commonly
understood as the octave detection [52]. A systematic study of this specific problem
is out of the scope of this paper, and it will be discussed in a future work.

From the result of the de-shape SST,we see that themultiples are distinguished from
the IF’s and are eliminated. All the notes of both violin and piano are well captured.
For violin we can even obtain the vibrato rate and vibrato depth of the notes, which

7 http://www.music-ir.org/mirex/wiki/MIREX_HOME.

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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Fig. 12 Top theMozart violin sonata signal f , which is zoomed in to the period from 4.2 to 4.7 s to enhance
the visualization. Since there are several oscillatory components with complicated wave-shape function, it

is not clear what information is hidden inside, even it is hard to identify oscillations.Middle left |V (h)
f (t, ξ)|;

middle right |SV (h)
f (t, ξ)|; bottom left |SW (h,γ )

f (t, ξ)|, where the red arrows indicate the violin sound with
vibrato; bottom right |SW (h,γ )

f (t, ξ)| with the annotations superimposed in red. To enhance the visibility,

we show |SW (h,γ )
f (t, ξ)| only up to 1000 Hz in the frequency axis (Color figure online)

are not recorded in the MIDI ground truth. We could also see that the octave problem
mentioned above is well resolved. However, we can still see some false detections in
the “inner part” of the music. For example, there is a component appearing at around
330 Hz from 1.46 to 1.8 s, but there is no note played here. To explain this, notice that
the fake component has frequency twice of a piano note while at the same time one
half of the violin note. This causes an issue called the stacked harmonics ambiguity,
which is caused by double or even more octave ambiguities. This open problem has
also been raised in [50,51]. Again, a systematic study of this specific problem is out
of the scope of this paper, and it will be discussed in future works.

4.4.2 Choir

Figure 13 shows the analysis result of a recorded choir music with the annotation
provided by experts. Similar to the above example, the choir music also has multiple
components and usually in consonant intervals. Moreover, in the choir music, every
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Fig. 13 Top the choir signal f , which is zoomed in to the period from 4.2 to 4.7 s to enhance the

visualization. Middle left |V (h)
f (t, ξ)|; middle right |SV (h)

f (t, ξ)|; bottom left |SW (h,γ )
f (t, ξ)|; bottom

right |SW (h,γ )
f (t, ξ)| with the annotations superimposed in red. To enhance the visibility, we show

|SW (h,γ )
f (t, ξ)| only up to 800 Hz in the frequency axis (Color figure online)

perceived individual note is typically sung in unison by more than one performer.
However, since there is always some small and independent variation of the IF among
performers, the resulting sound would have wider mainlobe in the STFT than the other
music sung by a single performer. Such a phenomenon, called pitch scattering [54],
usually appears in choir and symphony music, as a challenge in correctly estimate the
pitch of every note.

This example is a 3-part choir (first soprano, second soprano and alto), with pitches
ranging from B3 (the fundamental frequency is 246.9 Hz) to E5 (the fundamental
frequency is 659.3 Hz). We could see in Fig. 13 that the pitch scattering issue can
be partially addressed by the SST. However, we can still find some intertwined com-
ponents, like the component at around 920 Hz from 2.2 to 3.5 s, which might be
contributed by more than two notes with different vibrato behaviors. By using the
de-shaped SST, this wide-spread terms are correctly identified as the multiples and
removed. All labeled notes are captured and there are few false alarm terms.

Although we have shown the usefulness of de-shape SST in both physiological and
musical signals, we need to emphasize some differences between them. In comparison
to physiological data, musical signals can have a much larger number of components
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(e.g., more than 10 components in a symphony), which complicate the patterns of
the multiples. Besides, most of the musical works are composed following the theory
of harmony, which holds a principle that a sound is consonant when the ratio of the
IF’s are in simple ratios. This implies that the spectra of the components are highly
overlapped. Moreover, the octave is very often seen in music composition. Therefore,
musical signals usually violate Definition 2.2 andmake the problem of AMT ill-posed.
To reduce the ambiguities of octaves and other consonant intervals, we may impose
more strict constraints when we analyze the signal, like the constraint of harmonicity
discussed in Sect. 3.3. For more information of this approach in AMT, readers could
refer to [50,51].

4.4.3 Wolf Howling

An important topic in conservation biology is monitoring the number of wolves in the
field [45]. Analyzing the wolf howling signal is an efficient approach to evaluate how
many wolves are there in the field under survey. In this final example we show the
analysis result with a field signal recorded The sound is downloaded from Wolf Park
website.8 The signal is sampled at 11.025 kHz for 40 s. In Fig. 14 we could directly
see that while TF representations provided by STFT and SST are complicated by the
multiples caused by the non-trivial wave-shape, the TF representation provided by
de-shape SST contains only the fundamental components. By reading the de-shape
SST, we could suggest that there are at least three wolves in the field, since during the
recording period, there are at most three dominant curves at a fixed time. However,
the ground truth for this database is not provided, and identifying each single wolf
needs field experts, so this conclusion is not confirmed, and a further collaborative
exploration with biologists is needed. To sum up, this suggests that the de-shape SST
has potential to provide an audio visualization for this kind of application.

5 Numerical Issues

While the numerical implementation of STCT, iSTCT, de-shape STFT and de-shape
SST are straightforward, we should pay an attention to evaluate iSTCT. In particular,
the map from C (h,γ )

f (t, q) to U (h,γ )

f (t, ξ) depends on the inverse map I, which is
numerically unstable. To stabilize it, there are two critical process: (1) long-pass lifter;
(2) discretize I by a suitable weighting, for example, by the Jacobian of I, so that the
iSTCT is defined on the uniform frequency grid. Let the sampling frequency of the
signal f (t) be ζ > 0 andwe sample N ∈ N points from f . Then, for the N -point STFT,
the frequency axis is discretized into ηn = nζ/N , where n = 0, 1, . . . , N−1, ηn is the
nth index in the frequency axis, and the frequency resolution is�ζ := ζ/N . Similarly,
the quefrency axis in STCT is discretized into qn = n/ζ , where n = 0, 1, . . . , N − 1,
qn is the nth index in the quefrency axis and the quefrency resolution is �q := 1/ζ .
We discretize the frequency axis of iSTCT in the same way as that of STFT; that is,

8 http://www.wolfpark.org/Images/Resources/Howls/Chorus_1.wav.

http://www.wolfpark.org/Images/Resources/Howls/Chorus_1.wav
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Fig. 14 Top the wolf howling signal f . Since each component inside the signal oscillates at the fre-
quency at least 400 Hz, the oscillation could not be visualized except the overall amplitude modulation.

Middle left |V (h)
f (t, ξ)|; middle right |SV (h)

f (t, ξ)|; bottom left |SW (h,γ )
f (t, ξ)|; bottom right the zoom-in

|SW (h,γ )
f (t, ξ)| only up to 1000 Hz in the frequency axis. The three red arrows at around 18 s indicate that

there are at least three wolves (Color figure online)

the frequency axis of iSTCT is discretized into ηn , where n = 0, 1, . . . , N − 1, and
the frequency resolution is �ζ .

To implement the long-pass lifter mentioned in Sect. 3.3, we consider a simple but
effective hard threshold approach by choosing a cutoff quefrency qc, where c ∈ N is
chosen by the user; that is, all entries with index less than c are set to zero and the
other entries are not changed. While it depends on the characteristic of the signal, in
practice we suggest to choose the cutoff quefrency in the range of 10 ≤ c ≤ 20 and
numerically it performs well.

One main issue of the mapping I is that it maps uniform grid to a non-uniform
grid and hence there are insufficient low-quefrency elements in C (h,γ )

f (t, Iq), which

could be directly implemented by inverting the quefrency axis index of C (h,γ )

f (t, q),

to represent the high-frequency content in U (h,γ )

f (t, ξ). For example, we have only

about 	0.1/�q
 = 	0.1ζ
 entries on the quefrency interval [0.1, 0.2] in C (h,γ )

f (t, q),

while we have 	 5N
ζ


 entries on the frequency interval [5, 10] in U (h,γ )

f (t, ξ). On the
other hand, there are toomany high-quefrency elements to represent the low-frequency
content. Therefore, we suggest to do interpolation over the quefrency axis in the STCT
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to alleviate this issue. Denote the finer grid in the quefrency axis as q̃ j , j = 1, . . . , M
and M > N . Further, if we want to preserve the integrability of the function after
the mapping I, we should weight the entries by the Jacobian of I. To sum up, after
obtaining C (h,γ )

f with a finer resolution in the quefrency axis, the elements in C (h,γ )

f
are weighted and summed up to the closest frequency bin corresponding to it; that is,
we implement iSTCT by

U (h,γ )

f (t, ηn) =
∑

j∈P(ηn)

C (h,γ )

f

(
t, q̃ j

)
q̃ j , (47)

where P(ηn) := { j : 1/(ηn + 0.5�ζ) < q̃ j ≤ 1/(ηn − 0.5�ζ)} for each n =
0, 1, . . . , N − 1.

6 Conclusions

Tohandle oscillatory signals in the realworld,we provide amodel capturing oscillatory
features, including IF, AM and time-varying wave-shape function. To alleviate the
limitation of TF analysis caused by the existence of non-trivial wave-shape function,
we consider the idea of cepstrumand introduce the STCT, de-shapeSTFTand de-shape
SST. A theoretical proof is provided to study how STCT works. When the STCT and
its theoretical proof is combined with the previous study of SST, we have a theoretical
understanding of the efficiency of de-shape SST. In addition to the simulated signal,
several real datasets are studied and confirm the potential of the proposed algorithms.
The proposed algorithm could be easily combined with several other algorithms to
study a given database. For example, we could apply ConceFT [13] to stabilize the
influence of the noise, the RM technique [2] could be applied to further sharpen the TF
representation if causality is not an issue, we could apply the adaptive local iterative
filtering [9] to reconstruct each oscillatory component, we could consider the template
fitting scheme by designing a good dictionary based on the available information from
the de-shape SST [27], to name but a few. However, there are several problems left
unanswered in this paper. We summarize them below.

To facilitate the discussion, we could call the sequence {Bk,�(t)}Nk
�=−Nk

in (35) the
spectral envelope of the kth ANH model. The assumption in Theorem 3.4 says that
the spectral envelope of an ANH function should be “far away” from 0. In the ideal
case, we would expect that the spectral envelope is “slow-varying” in comparison
to the harmonic series in the spectrum, so that the cepstrum can well extract the
periodicity-related elements from the filter-like elements. This ideal case is satisfied
by the assumption in Theorem 3.4 in the sense that the IP information is recovered in
the STCT. However, this is not always true for real-world signals; in some challenging
cases we could see non-trivial patterns in the spectral envelope, which breaks the
assumptions in Theorem 3.4. This contaminates the information associated with the
IP informationwe have interest in, and hence causes fake detection of periodicity. Here
we discuss two real scenarios when the spectral envelope has a non-trivial pattern.

The first scenario could be observed in the ECG signal with the fundamental fre-
quency around ξ1 > 0. For example, in some cases, we could find relatively stronger
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peaks around 3ξ1, 6ξ1 and 9ξ1 in comparison to other peaks in the spectrum. There-
fore, in the cepstrum we can find not only a prominent peak at q1 = 1/ξ1 but also a
small bump around q1/3. To take a closer look at this phenomenon, we recall that it
has been well known that the 12-lead ECG signals, denoted as E(t) ∈ R

12, are the
projection of the representative dipole current, denoted as d(t) ∈ R

3, where t ∈ R, of
the electrophysiological cardiac activity on different directions. Physiologically, for a
normal subject d(t) is oscillatory with the period about 1 s. If we could record d(t),
the recorded signal is called the vectocardiogram signal. For the �th ECG channel,
where � = 1, . . . , 12, there is an associated projection direction v� ∈ R

3. The �th ECG
channel is thus the projection of d(t) on v�; that is, E�(t) = vT� d(t) or E(t) = vT d(t),
where v = [v1v2 . . . v12] ∈ R

3×12. In general, v changes according to time due to
the cardiac axis deviation caused by the respiratory activity and other physical move-
ments. To simplify the discussion, we ignore this facts. Thus, since d(t) is oscillatory,
it is clear that E�(t) is also oscillatory. In some cases, this complicated procedure leads
to an oscillation in the spectral envelop, and hence the first scenario.

The second example is the sound of clarinets. Clarinet is one kind of woodwind
instrument which makes air resonating in a cylindrical tube with one ended closed.
Because of such a physical structure, the even-numbered harmonics including 2ξ1 and
4ξ1 are highly suppressed,9 which breaks the assumption of Corollary 3.5, and is dis-
cussed after Corollary 3.5. But, in many real cases, the cepstrum of the clarinet note do
have a peak at q1 and its multiples because the even-number harmonics are not totally
eliminated. In several real examples, including the Clarinet and ECG examples, the
unwanted terms in the above situations can be simply eliminated by hard-thresholding;
however, it is not that easy to achieve this naive idea, and a systematic study of this
challenge is needed, where we might incorporate more background knowledge into
the analysis.

Next, we discuss another scenario when the proposed method works on multi-
component signals. Consider an octave signal mentioned in Sect. 4.4.1, where one of
the two components has the fundamental frequency ξ1,1 and the one of the other is
higher than it by one octave, thereby with the fundamental frequency 2ξ1,1. Suppose
the phases of these two components match in a way so that the spectrum of the multi-
component signal has stronger peaks at even-order harmonics, especially ξ1,2 = 2ξ1,1,
ξ1,4 = 4ξ1,1, ξ1,6 = 6ξ1,1, ξ1,8 = 8ξ1,1, etc. In this special case, the spectral envelope
oscillates and we may recall the IF’s of both components in the de-shape SST. Note
that this special case contradicts the assumption of the ANH model so that we could
not model it as a composition of two ANH functions, and the proposed method may
or may not work. In the real-world music, the condition of phase matching does not
always happen, and it makes the octave detection problem even harder, as is discussed
in Sect. 4.4.1. We mention that while it is a difficult job in signal processing, human
beings could identify the difference via learning the oscillatory pattern of the signal
or the “timbre”. For example, the timbre of the note C4, which has the fundamental
frequency 262 Hz, is different from that of the combined note (or called “an interval”
in music) C4 + C5, where the fundamental frequency of C5 is 524 Hz. By learning the

9 The absence of even harmonics is (part of) what is responsible for the “warm” or “dark” sound of a
clarinet compared to the “bright” sound of a saxophone.
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timbre, we could tell the difference. The above scenarios all have their own interest
but are out of the scope of this paper. We will report a systematic study in a future
work.

We mention that there are several challenging cases in processing real-world multi-
pitch signals, like missing fundamental or stacked harmonics, both of which have
been discussed in [50,51]. These could be treated as exceptional cases of the proposed
model and a modification of the model and algorithm is needed to better handle these
signals.

Last but not the least, from the data analysis viewpoint, in general we cannot decide
the model parameters, like the ε, and the sequence c, a priori. This is an estimation
problem in nature, and has been open for a while. However, for most problems we
face in practice, we have some background knowledge that could guide us to “guess
the model”. For example, for the fetal ECG extraction problem, the heart rates of the
mother and the fetus have awell-known range guided by the physiological background,
and this is the informationwecoulduse to determine theparameters.But for a randomly
given dataset without any background knowledge, at this moment, there is still no ideal
way to determine the model parameters directly from the data itself. This fundamental
estimation problem will be explored in a future work.
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Appendix

Proof of Theorem 3.4

In this section, we provide an analysis of STCT in Theorem 3.4 step by step

– first step: approximate the ANH function by a “harmonized” function by Taylor’s
expansion and evaluate its STFT;

– second step: evaluate the γ power of the absolute value of STFT. Since in general
there will be more than one ANH component in the ANH function, we have to
handle the possible interference between different ANH components. We will
apply the Erdös–Turán inequality to control the interference;

– third step: find the Fourier transform of the γ power of the absolute value of STFT
and finish the proof.

We start from the first Lemma, which allows us to locally approximate an ANH
function by a sinusoidal function.

Lemma 7.1 Take ε> 0, a sequence c ∈ �1, N ∈ N and 0 < C < ∞. For f (t) =
1
2 B0(t) +∑∞

�=1 cos(2πφ�(t)) ∈ Dc,C,N
ε , for each � ∈ {0} ∪ N we have

|B�(t + s) − B�(t)| ≤εc(�)|s|(φ′
1(t) + 1

2
‖φ′′

1‖L∞|s|), (48)
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|φ′
�(t + s) − φ′

�(t)| ≤ε�|s|(φ′
1(t) + 1

2
‖φ′′

1‖L∞|s|). (49)

Proof Assume that s > 0. The proof for s ≤ 0 is the same. By the assumption of
B�(t), we have

|B�(t + s) − B�(t)| =
∣∣∣∣
∫ s

0
B ′

�(t + u)du

∣∣∣∣

≤ εc(�)
∫ s

0
φ′
1(t + u)du by the slowly varying condition (16),

≤ εc(�)
∫ s

0

(
φ′
1(t) +

∫ u

0
φ′′
1 (t+y)dy

)
du

≤ εc(�)

(
φ′
1(t)s + 1

2
‖φ′′

1‖L∞s2
)

.

The proof of (49) follows by the same argument.

|φ′
�(t + s) − φ′

�(t)| =
∣∣∣∣
∫ s

0
φ′′

� (t + u)du

∣∣∣∣

≤ ε�

∫ s

0
φ′
1(t + u)du by the slowly varying condition (16),

= ε�

∫ s

0

(
φ′
1(t) +

∫ u

0
φ′′
1 (t + y)dy

)
du

≤ ε�

(
φ′
1(t)s + 1

2
‖φ′′

1‖L∞s2
)

.

��
The following Lemma leads to the first part of the Theorem 3.4, regarding the STFT.

In short, for the superposition of ANH functions in Dε,d , at each time t the function
behaves like a sinusoidal function and the STFT could be approximately explicitly.

Lemma 7.2 Fix ε> 0 and d > 0. Take f (t) = ∑K
k=1 fk(t) ∈ Dε,d . Then, the STFT

of f at t ∈ R is

V (h)
f (t, ξ) = 1

2

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t) + ε0(t, ξ), (50)

where ξ ∈ R and ε0(t, ξ) is defined in (62). Furthermore, |ε0(t, ξ)| is of order ε and
decays at the rate of |ξ |−1 as |ξ | → ∞.

Proof Since f ∈ L∞ ∩ C1 ⊂ S ′ and h ∈ S, by the linearity of the STFT, we have

V (h)
f (t, ξ) =

K∑

k=1

∞∑

�=0

V (h)
fk,�

(t, ξ), (51)
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where fk,0 = 1
2 Bk,0(·) and fk,�(·) := Bk,�(·) cos(2πφk,�(·)) for � = 1, 2, . . .. Denote

Ṽ (h)
fk,�

(t, ξ) :=
∫

Bk,�(t) cos(2π(φk,�(t) + φ′
k,�(t)(x − t)))h(x − t)e−i2πξ(x−t)dx

Ṽ (h)
fk,0

(t, ξ) = 1

2

∫
Bk,0(t)h(x − t)e−i2πξ(x−t)dx (52)

where k = 1, · · · , K and � = 1, · · · ,∞. Next, fix k ∈ {1, . . . , K }, we evaluate the
difference between V (h)

fk,�
(t, ξ) and Ṽ (h)

fk,�
(t, ξ). For each � ∈ N ∪ {0}, denote

εk,�(t, ξ) := V (h)
fk,�

(t, ξ) − Ṽ (h)
fk,�

(t, ξ). (53)

We show that |εk,�(t, ξ)| is of order ε and linearly dependent on ck(�) for all t, ξ ∈ R.
First, note that

∣∣εk,�(t, ξ)
∣∣ ≤

∫ ∣∣Bk,�(x) − Bk,�(t)
∣∣ |h(x − t)| dx

+ Bk,�(t)
∫ ∣∣cos(2πφk,�(x)) − cos(2π(φk,�(t) + φ′

k,�(t)(x − t)))
∣∣

× |h(x − t)| dx (54)

and that

∣∣cos(2πφk,�(x)) − cos(2π(φk,�(t) + φ′
k,�(t)(x − t))

∣∣

≤ 2π
∣∣φk,�(x) − φk,�(t) − φ′

k,�(t)(x − t)
∣∣ ≤ 2π

∫ x−t

0

∣∣φ′
k,�(t + u) − φ′

k,�(t)
∣∣ du

(55)

Denote

Mk := ‖φ′
k,1‖L∞ .

Clearly, ‖φ′′
k,1‖L∞ ≤ εMk . Combining the above inequalities and Lemma 7.1, we

have

|εk,�(t, ξ)| ≤
∫

|Bk,�(x) − Bk,�(t)||h(x − t)|dx

+ 2πBk,�(t)
∫ ∫ x−t

0
|φ′

k,�(t + u) − φ′
k,�(t)|du|h(x − t)|dx

≤ ε
[
ck(�)

(
φ′
k,1(t)I1 + 1

2
εMk I2

)+ πBk,�(t)�(φ
′
k,1(t)I2 + 1

3
εMk I3)

]

which is of order ε since φ′
k,1(t) and Bk,1(t) are bounded. Note that εk,0(t, ξ) ≤

εck(�)(φ′
k,1(t)+εMk I2/2) since the phase φk,0 = 0. Furthermore, note that |εk,�(t, ξ)|

decays at the rate of |ξ |−1 as |ξ | → ∞ since
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Bk,�(x) cos(2πφk,�(x)) − Bk,�(t) cos(2π(φk,�(t)) + φ′
k,�(t)(x − t)) ∈ C1. (56)

Denote

E (1)
k (t, ξ) :=

∞∑

�=0

εk,�(t, ξ),

which converges by (15) that
∑∞

�=1 �Bk,�(t) ≤ Ck

√
1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t), and

hence

|E (1)
k (t, ξ)| ≤ ε

(
‖ck‖�1

[
φ′
k,1(t)I1 + 1

2
εMk I2

]

+ πCk

√√√√1

4
B2
k,0(t) + 1

2

∞∑

�=1

B2
k,�(t)(φ

′
k,1(t)I2 + 1

3
εMk I3)

)
. (57)

Thus, E (1)
k (t, ξ) is of order ε.

Finally, for each k ∈ {1, . . . , K }, denote

E (2)
k (t, ξ) :=

∞∑

�=Nk+1

Ṽ (h)
fk,�

(t, ξ).

By the Plancherel identity, we have

Ṽ (h)
fk,�

(t, ξ) = 1

2
Bk,�(t)

[
ĥ(ξ − φ′

k,�(t))e
i2πφk,�(t) + ĥ(ξ + φ′

k,�(t))e
−i2πφk,�(t)

]
.

(58)

Thus, by the assumption that (14) that
∑∞

�=Nk+1 Bk,�(t) ≤ ε√
1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t), we have

∣∣∣E (2)
k (t, ξ)

∣∣∣ ≤ 1

2

∑

�∈Z\{−Nk ,··· ,Nk }
Bk,�(t)|ĥ(ξ − φ′

k,�(t))|

≤ ε I0

√√√√1

4
B2
k,0(t) + 1

2

∞∑

�=1

B2
k,�(t), (59)

where the last inequality holds since ‖ĥ‖L∞ ≤ I0 by a direct bound. Thus, we have

K∑

k=1

∞∑

�=0

Ṽ (h)
fk,�

(t, ξ) = 1

2

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t) +
K∑

k=1

E (2)
k (t, ξ),

(60)
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where |E (2)
k (t, ξ)| is of order ε. Furthermore, |E (2)

k (t, ξ)| decays faster than |ξ |−1 as

|ξ | → ∞ since
∑∞

�=1 Bk,�(t) < ∞ and
∑K

k=1
∑Nk

�=0 Ṽ
(h)
fk,�

(t, ξ) decays faster than

|ξ |−1 as |ξ | → ∞.
We thus have

K∑

k=1

∞∑

�=0

Ṽ (h)
fk,l

(t, ξ) = 1

2

K∑

k=1

∑

�∈Z

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t).

(61)

Putting (53) and (60) together, we have

V (h)
f (t, ξ) =

K∑

k=1

∞∑

�=0

V (h)
fk,�

(t, ξ) =
K∑

k=1

∞∑

�=0

[Ṽ (h)
fk,�

(t, ξ) + εk,�(t, ξ)]

=
K∑

k=1

[1
2

∑

�∈Z

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t) + E (1)
k (t, ξ)],

=
K∑

k=1

[1
2

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t)+E (1)
k (t, ξ) + E (2)

k (t, ξ)
]
.

Denote

ε0(t, ξ) :=
K∑

k=1

[E (1)
k (t, ξ) + E (2)

k (t, ξ)], (62)

which is of order ε and |ε0(t, ξ)| decays at the rate of |ξ |−1 as |ξ | → ∞. We thus have
the proof. ��
Lemma 7.3 Fix ε> 0 and d > 0. Take f (t) = ∑K

k=1 fk(t) ∈ Dε,d . Fix a window
function h ∈ S. For each t ∈ R and ξ ∈ R, we have

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − φ′
k,�(t))e

i2πφk,�(t) (63)

=
K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − �φ′
k,1(t))e

i2πφk,�(t) + ε1(t, ξ),

where ε1(t, ξ) is defined in (67) satisfying

|ε1(t, ξ)| ≤ ε2π I1

K∑

k=1

φ′
k,1(t)

Nk∑

�=−Nk

Bk,�(t)χZ̃k,�
(ξ), (64)
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where Z̃k,�(t) := [(� − ε)φ′
k,1(t) − �, (� + ε)φ′

k,1 + �]. Note that the support of
ε1(t, ξ) is inside [−maxk((Nk + ε)φ′

k,1(t)) − �, maxk((Nk + ε)φ′
k,1(t)) + �]. In

particular, we have

V (h)
f (t, ξ) = 1

2

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − �φ′
k,1(t))e

i2πφk,�(t) + ε2(t, ξ), (65)

where ε2(t, ξ) = ε0(t, ξ) + ε1(t, ξ), which is of order ε and |ε2(t, ξ)| decays at the
rate of |ξ |−1 as |ξ | → ∞.

Proof The proof is straightforward by the smoothness assumption of h and Taylor’s

expansion. Indeed, by the assumption that

∣∣∣∣
φ′
k,�(t)

φ′
k,1(t)

− �

∣∣∣∣ ≤ ε, we know that |φ′
k,�(t) −

�φ′
k,1(t)| ≤ εφ′

k,1(t) for all � = 1, . . .. Thus, since ĥ is compactly supported on

[−�,�], we have that for ξ ∈ Z̃k,�,

|ĥ(ξ − φ′
k,�(t)) − ĥ(ξ − �φ′

k,1(t))| ≤ εφ′
k,1(t)‖ĥ′‖L∞ ≤ 2πεφ′

k,1(t)I1, (66)

where we use the bound ‖ĥ′‖L∞ ≤ 2π I1; for ξ /∈ Z̃k,�,

|ĥ(ξ − φ′
k,�(t)) − ĥ(ξ − �φ′

k,1(t))| = 0.

Denote

ε1(t, ξ) :=
K∑

k=1

Nk∑

�=−Nk

Bk,�(t)(ĥ(ξ − φ′
k,�(t)) − ĥ(ξ − �φ′

k,1(t)))e
i2πφk,�(t). (67)

By a direct bound, we have

|ε1(t, ξ)| =
∣∣∣∣∣∣

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)(ĥ(ξ − φ′
k,�(t)) − ĥ(ξ − �φ′

k,1(t)))e
i2πφk,�(t)

∣∣∣∣∣∣
(68)

≤
K∑

k=1

Nk∑

�=−Nk

Bk,�(t)
∣∣∣ĥ(ξ − φ′

k,�(t)) − ĥ(ξ − �φ′
k,1(t))

∣∣∣

≤ ε2π I1

K∑

k=1

φ′
k,1(t)

Nk∑

�=−Nk

Bk,�(t)χZ̃k,�
,

which leads to the claim. The proof of (65) comes from a direct combination of (50)
and (63). ��

By the assumption that 0 < � ≤ φ′
1,1(t)/4, we know that for a fixed k ∈

{1, . . . , K }, Zk,i (t) ∩ Zk, j (t) = ∅ for all i �= j , where Zk,� is defined in (34).
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Thus, when K = 1, we know that for any γ > 0, the γ power of the absolute value
of the major term in (65) becomes

∣∣∣∣∣∣

N1∑

�=−N1

B1,�(t)ĥ(ξ − φ′
1,�(t))e

i2πφ1,�(t)

∣∣∣∣∣∣

γ

=
N1∑

�=−N1

Bγ

1,�(t)|ĥ(ξ − φ′
1,�(t))|γ

since the supports of ĥ(ξ − φ′
1,i (t)) and ĥ(ξ − φ′

1, j (t)) do not overlap, when i �= j .
However, when K > 1, although Zk,1(t) ∩ Z�,1(t) = ∅ when k �= � since � < d/4,
there is no guarantee that Zk,i (t) ∩ Z�, j (t) = ∅ when k �= � and i �= j . So, when
K > 1, we need to be careful when we take the power.

Definition 7.4 Fix ε> 0 and d > 0. Take f (t) =∑K
k=1 fk(t) ∈ Dε,d . Define S1(t) =

∅, and for each k ∈ {2, . . . , K }, define

Sk(t) := {i,−i | 1 ≤ i ≤ Nk, Zk,i (t)

∩ Z�, j (t) �= ∅, j ∈ {1, . . . , N�}\S�(t), � = 1, . . . , k − 1}∪{0}. (69)

Furthermore, define

Yno-OL(t) := ∪K
k=1 ∪i∈{0,±1,...,±Nk }\Sk Zk,i (t) ⊂ R (70)

Ywith-OL(t) := ∪K
k=1 ∪i∈Sk Zk,i (t) ⊂ R.

The set Sk(t) indicates the multiples of the kth ANH function that have the danger
of overlapping with the other ANH functions. To be more precise, for k ∈ {2, . . . , K }
and � ∈ {1, . . . , k − 1}, the supports of ĥ(ξ − iφ′

k(t)) and ĥ(ξ − jφ′
�(t)), where

i ∈ {0,±1, . . . ,±Nk}\Sk and j ∈ {0,±1, . . . ,±N�}\S� do not overlap. The sets
Yno-OL(t) and Ywith-OL(t) are used to control the overlapping of multiples associ-
ated with different ANH components. Note that the supports of all summands in∑K

k=1
∑

�∈{0,±1,...,±Nk }\Sk Bk,�(t)|ĥ(ξ − �φ′
k,1(t))| do not overlap.

To evaluate |V (h)
f (t, ξ)|γ , we need the following bounds to control the influence of

taking the γ power.

Lemma 7.5 Suppose x ≥ y ≥ 0. For 0 < γ ≤ 1, we have

(x + y)γ ≤ xγ + γ yγ . (71)

Proof When x = y = 0, this is the trivial case. Suppose x ≥ y > 0 or x > y ≥ 0.
By Taylor’s expansion, we have

(x + y)γ = xγ (1 + y

x
)γ ≤ xγ + γ

y

x
xγ = xγ + γ

( y
x

)1−γ
yγ . (72)

Since y/x ≤ 1, we obtain the bound. ��



498 J Fourier Anal Appl (2018) 24:451–505

Lemma 7.6 Suppose Assumption 3.2 holds and take 0 < γ ≤ 1. Then we have

|V (h)
f (t, ξ)|γ = 1

2γ

K∑

k=1

Nk∑

�=−Nk

Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ + δ3(t, ξ) + ε3(t, ξ),

(73)

where δ3(t, ξ) is defined in (74) and ε3(t, ξ) is defined in (75). Moreover, δ3(t, ξ) = 0
when K = 1. When K > 1, δ3(t, ξ) is supported on Ywith-OL(t) and is bounded by
I γ
0
2γ

∑K
k=2
∑

�∈Sk B
γ

k,�(t)χZk,� (ξ). ε3(t, ξ) satisfies |ε3(t, ξ)| ≤ |ε2(t, ξ)|γ .
Proof Let δ3(t, ξ) and ε3(t, ξ) be defined as

δ3(t, ξ) :=
∣∣∣
1

2

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − �φ′
k,1(t))e

i2πφk,�(t)
∣∣∣
γ

− 1

2γ

K∑

k=1

Nk∑

�=−Nk

Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ (74)

and

ε3(t, ξ) := |V (h)
f (t, ξ)|γ −

∣∣∣
1

2

K∑

k=1

Nk∑

�=−Nk

Bk,�(t)ĥ(ξ − �φ′
k,1(t))e

i2πφk,�(t)
∣∣∣
γ

. (75)

That is,

|V (h)
f (t, ξ)|γ = 1

2γ

K∑

k=1

Nk∑

�=−Nk

Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ + δ3(t, ξ) + ε3(t, ξ).

(76)

According to Lemmas 7.5 and 7.3, when ε is small enough, by the triangular inequality
that

∣∣|V (h)
f (t, ξ)| − | 12

∑K
k=1
∑Nk

�=−Nk
Bk,�(t)ĥ(ξ − �φ′

k,1(t))e
i2πφk,�(t)|∣∣ ≤ |ε2(t, ξ)|,

we have

|ε3(t, ξ)| ≤ |ε2(t, ξ)|γ . (77)

Note that when ξ ∈ Yno-OL(t), δ3(t, ξ) = 0 since the supports of all summands
in
∑K

k=1
∑Nk

�=−Nk
Bk,�(t)|ĥ(ξ − �φ′

k,1(t))| do not overlap for each ξ ∈ Yno-OL(t).
Therefore, we have

δ3(t, ξ) = 1

2γ

⎛

⎝
∣∣∣

K∑

k=2

∑

�∈Sk
Bk,�(t)ĥ(ξ − �φ′

k,1(t))e
i2πφk,�(t)

∣∣∣
γ

−
K∑

k=2

∑

�∈Sk
Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ

⎞

⎠ . (78)
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Hence,

|δ3(t, ξ)| =
∣∣∣∣∣∣

∣∣∣
1

2

K∑

k=1

∑

�∈Sk(t)
Bk,�(t)ĥ(ξ − �φ′

k,1(t))e
i2πφk,�(t)

∣∣∣
γ

− 1

2γ

K∑

k=1

∑

�∈Sk (t)
Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ

∣∣∣∣∣∣

= 1

2γ

K∑

k=1

∑

�∈Sk (t)
Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ

−
∣∣∣∣∣∣
1

2

K∑

k=1

∑

�∈Sk(t)
Bk,�(t)ĥ(ξ − �φ′

k,1(t))e
i2πφk,�(t)

∣∣∣∣∣∣

γ

,

since
∣∣ 1
2

∑K
k=1
∑

�∈Sk (t) Bk,�(t)ĥ(ξ − �φ′
k,1(t))e

i2πφk,�(t)
∣∣γ ≤ 1

2γ

∑K
k=1
∑

�∈Sk (t)
Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ by Lemma 7.5. Note that when K = 1, S1(t) = ∅. Putting

these together, we have

|δ3(t, ξ)| ≤ 1

2γ

K∑

k=2

∑

�∈Sk
Bγ

k,�(t)‖ĥ‖γ

L∞χZk,� (ξ) ≤ I γ
0

2γ

K∑

k=2

∑

�∈Sk
Bγ

k,�(t)χZk,� (ξ)

(79)

which completes the proof. ��
Before finishing the proof, we need to control the error introduced by δ3(t, ξ) in

Lemma 7.6 when K ≥ 2. Note that δ3(t, ξ) is supported on Ywith-OL(t). We now
control this set.

Lemma 7.7 Suppose Assumption 3.2 holds and K > 1. For each t ∈ R, we have for
each k ∈ {2, . . . , K } the following bound:

#Sk(t)

Nk
≤

k−1∑

�=1

[ 4�

φ′
�,1(t)

+ E (�)(Nk)
]
, (80)

where #Sk(t) is the cardinal number of the set Sk(t) and E (�)(Nk) ≥ 0 is defined in
(85). Clearly #S1(t)

N1
= 0.

This Lemmagives a bound of the set Sk(t), which indicates that only a small fraction
of the multiples of the kth ANH function has the danger of overlapping with other
ANH function.

Proof Fix k ∈ {2, 3, . . . , K } and � ∈ {1, . . . , k − 1}. Define a set

Sk,�(t) := {m|m ∈ N ∪ {0}, Zk,m(t) ∩ Z�, j �= ∅, j ∈ N ∪ {0}}, (81)
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which is the set of multiples of φ′
k,1(t) that overlap some multiples of φ′

�,1(t). Clearly,

Sk(t) ⊂ ∪k−1
�=1Sk,�(t) and Sk,�1(t) and Sk,�2(t) might overlap when �1 �= �2. Thus,

#Sk(t) ≤ ∑k−1
�=1#Sk,�(t). To evaluate the cardinality of the set Sk,�(t), denote a

sequence sk,�(m), m ∈ N, so that

sk,�(m) = mφ′
k,1(t) (mod φ′

�,1(t)). (82)

By the compactly supported assumption of ĥ, when sk,�(m) lands in

Zk,� := [0, 2�] ∪ [φ′
�,1(t) − 2�,φ′

�,1(t)),

we know that Zk,m(t) ∩ Z�, j �= ∅ for some j ; that is,

Sk,�(t) = {0 ≤ m ≤ Nk | sk,�(m) ∈ Zk,�}.

When φ′
k,1(t)/φ

′
�,1(t) is a rational number, that is, φ′

k,1(t)/φ
′
�,1(t) = a/b, where

a, b ∈ N and are co-prime numbers, then the sequence {sk,�(m)}m∈N only lands on
{0, φ′

�,1(t)/b, . . . , (b − 1)φ′
�,1(t)/b} uniformly on [0, φ′

�,1(t)) since the integer a has
a multiplicative inverse modulo b; that is, there exists n0 such that an0 (mod b) = 1.
Thus the claim holds with the worst bound

#Sk(t)

Nk
≤

k−1∑

�=1

4�

φ′
�,1(t)

. (83)

When φ′
k,1(t)/φ

′
�,1(t) is an irrational number, the sequence {sk,�(m)} is equidis-

tributed on [0, φ′
�,1(t)] by Weyl’s criterion. We apply the following well-known

Erdös–Turán inequality [41, Corollary 1.1] to bound #Sk,�(t)
Nk

:

∣∣∣
#Sk,�(t)

Nk
− 4�

φ′
�,1(t)

∣∣∣ ≤ 1

J + 1
+ 3

Nk

J∑

n=1

1

n

∣∣∣∣∣∣

Nk∑

m=0

ei2πnsk,�(m)

∣∣∣∣∣∣
(84)

for all positive J . Denote E (�)
J (Nk) to be the right hand side of (84). Then the best

upper bound we could obtain from Erdös–Turán inequality is

E (�)(Nk) := min
J∈N

E (�)
J (Nk), (85)

which goes to zero when Nk → ∞; that is, when Nk → ∞, the chance that sk,�(m)

would land inZk,� is 4�
φ′

�,1(t)
. Thus, in general we know that for the pair (k, �), we have

#Sk,�(t)

Nk
≤ 4�

φ′
�,1(t)

+ E (�)(Nk)
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and hence

#Sk,�(t) ≤ Nk

[ 4�

φ′
�,1(t)

+ E (�)(Nk)
]
, (86)

which is the number of multiples of φ′
k,1(t) that are close to some multiples of φ′

�,1(t).
In conclusion, we have

#Sk(t)

Nk
≤

k−1∑

�=1

[ 4�

φ′
�,1(t)

+ E (�)(Nk)
]
. (87)

��
By putting the above Lemmas together, we can prove Theorem 3.4, which shows

that the STCT does provide the necessary information for the fundamental IF of the
ANH function, even when there are more than one component.

Proof of Theorem 3.4 Note that in general |V (h)
f (t, ·)|γ is a tempered distribution, so

we can define the Fourier transform in the distribution sense. Define a �1 sequence
bk , where bk(�) = Bγ

k,�(t) for all � ∈ {0, . . . , Nk}, bk(�) = 0 for all � > Nk , and
bk(−�) = bk(�) for all � ∈ N ∪ {0}. By a direct calculation, for q > 0, we have

F(

Nk∑

�=−Nk

Bγ

k,�(t)δ�φ′
k,1(t)

� |ĥ|γ )(q) = ̂|ĥ|γ (q)

Nk∑

�=−Nk

bk(�)e
i2π�φ′

k,1(t)q

= ̂|ĥ|γ (q)

∞∑

�=−∞
bk(�)e

i2π�φ′
k,1(t)q = ̂|ĥ|γ (q)b̂k(q), (88)

where b̂k is the discrete-time Fourier transform of the �1 sequence bk , which is a
continuous and real.

For the term δ3, since δ3(t, ·) is compactly supported, continuous by (78) and is
bounded by (79), δ3(t, ·) ∈ L1 and its Fourier transform could be well defined as a
function. Since the support of δ3, which is determined by the overlapped multiples of
different ANH functions, could not be controlled, we apply the Riemann-Lebesgue
theorem to evaluate a simple bound:

|
∫

δ3(t, ξ)e−i2πξqdξ | ≤ I γ
0

2γ

K∑

k=2

∑

�∈Sk (t)
Bγ

k,�(t)
∫

χZk,� (ξ)dξ

≤ 2�I γ
0

K∑

k=2

∑

�∈Sk (t)
Bγ

k,�(t) ≤ 2�I γ
0

K∑

k=2

Bγ

k,1(t)
∑

�∈Sk (t)
cγ

k (�) (89)

since |Zk,�| = 2�. To control
∑

�∈Sk(t) c
γ

k (�), we apply the simple bound ck(�) ≤
‖ck‖�∞ for all � = 0, 1, . . . , Nk . This leads to
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∑

�∈Sk (t)
cγ

k (�) ≤ #Sk(t)‖cγ

k ‖�∞ ≤ ‖cγ

k ‖�∞Nk

k−1∑

�=1

[ 4�

φ′
�,1(t)

+ E (�)(Nk)
]
,

where the last inequality holds by Lemma 7.7. Thus, the first term

E1 := F[δ3(t, ·)] (90)

is bounded by

|E1| ≤ 2�I γ
0

K∑

k=2

Bγ

k,1(t)‖cγ

k ‖�∞Nk

k−1∑

�=1

[ 4�

φ′
�,1(t)

+ E (�)(Nk)
]
.

Note that K = 1, since δ3(t, ξ) = 0, we know that E1 = 0 and the bound holds
trivially.

The error term ε3(t, ξ) is of order εγ but in general it decays at the rate of |ξ |−γ

as |ξ | → ∞, so its Fourier transform is evaluated in the distribution sense. Denote
E2 := F[ε3(t, ·)]. We have

|E2(ψ)| = ∣∣
∫

ε3(t, ξ)ψ̂(ξ)dξ
∣∣ ≤ ‖ε3(t, ·)‖L∞‖ψ̂‖L1 (91)

for all ψ ∈ S. We have thus obtained the claim. ��
Remark 1 Note that the bound for E1, which is the Fourier transform of δ3, is the
worst bound, since we could not control the locations of the overlaps between those
multiples of different ANH components in the STFT. The problemwe encounter could
be simplified to the following analytic number theory problem: given an irrational
number α. Denote βn = nα −[nα], where n ∈ N ∪ {0} and [x] means the integer part
of x . Denote the set I = {n,−n|n ∈ N ∪ {0}, 0 ≤ βn < ζ } ∪ {n,−n|βn > 1 − ζ },
where ζ > 0 is a small number. Then, what is the spectral distribution of

∑
n∈I δn � g,

where g is a smooth and compact function supported on [−ζ/2, ζ/2]?
Proof of Corollary 3.5 By (37), bk(�) is non-zero for � ∈ {−Nk, . . . , 0, . . . , Nk}.
Thus b̂k is a continuous, real, and periodic function with the period equal to 1/φ′

k,1(t).
By (57), (59), and (64), ε2(t, ξ) is bounded by Qε, where

Q :=
K∑

k=1

[(‖ck‖�1 [φ′
k,1(t)I1 + 1

2
εMk I2]

+ πCk

√√√√1

4
B2
k,0(t) + 1

2

∞∑

�=1

B2
k,�(t)(φ

′
k,1(t)I2 + 1

3
εMk I3)

)

+ I0

√√√√1

4
B2
k,0(t) + 1

2

∞∑

�=1

B2
k,�(t) + 2π I1φ

′
k,1(t)

Nk∑

�=−Nk

Bk,�(t)χZ̃k,�

]
.
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Thus, when
√

1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t) is sufficiently large and ε is sufficiently

small, 1
2γ

∑K
k=1
∑Nk

�=−Nk
Bγ

k,�(t)|ĥ(ξ − �φ′
k,1(t))|γ dominantes |ε2(t, ξ)|γ , since

Bγ

k,�(t) > εγ/2
( 1
4 B

2
k,0(t) + 1

2

∑∞
�=1 B

2
k,�(t)

)γ /2 and ε3(t, ξ) is bounded by Qγ εγ .

Moreover,when�Nk is sufficiently small, 1
2γ

∑K
k=1
∑Nk

�=−Nk
Bγ

k,�(t)|ĥ(ξ−�φ′
k,1(t))|γ

also dominates δ3(t, ξ), and hence we finish the proof. ��
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