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1 Introduction and Main Results

Let T be a linear pseudodifferential operator defined for functions on R
n, let a be a

function on R
n , and consider the commutator [T, a] defined by

[T, a]( f ) := T (a f ) − aT ( f ).

Given 1 < p < ∞, estimates of the form

‖[T, a]( f )‖L p � ‖a‖Lip1 ‖ f ‖L p ∀ f ∈ L p(Rn), (1.1)

have been extensively studied. In particular, Calderón proved in [9] that (1.1) holds
when T is a pseudodifferential operator whose kernel is homogeneous of degree
−n − 1; in [11,12], Coifman and Meyer showed (1.1) when T = Tσ and σ is a
symbol in the Hörmander class S1

1,0; this latter result was later extended by Auscher

and Taylor in [1] to operators T = Tσ with σ ∈ BS1
1,1, where the class BS1

1,1, which

contains S1
1,0 modulo symbols associated to smoothing operators, consists of sym-

bols whose Fourier transforms in the first n-dimensional variable are appropriately
compactly supported.

The result from [11,12] mentioned above was obtained by proving that, for each
Lipschitz continuous function a on R

n , the operator f �→ [T, a]( f ) is a Calderón–
Zygmund singular integral whose kernel constants are controlled by ‖a‖Lip1 . The size
and regularity estimates for the kernel are easily obtained after integration by parts
while the L2-boundedness follows from a local L4−L2 estimate (see [11, pp. 113–114
and Proposition 6 on p. 105]).

On the other hand, Auscher and Taylor proved (1.1) in two different ways: one
method is based on the use of paraproducts (see the proof of [1, Theorem 4.1]) while
the other is based on the Calderón–Zygmund singular integral approach that relies on
the T (1) theorem (see the proof of [1, Theorem 4.4]). Theorem 4.4 in [1] actually
extends [1, Theorem 4.1] to the larger class S̃1

1,1 consisting of all symbols σ ∈ S1
1,1

such that the symbol of T ∗
σ , the transpose of Tσ , belongs to S1

1,1 as well. For a host
of related commutator estimates, we refer the reader to the articles [24,25] by Taylor
and references therein.

Given a bilinear operator T defined for functions on R
n and a function a on R

n,

the following commutator operators are considered:

[T, a]1( f, g) := T (a f, g) − aT ( f, g),

[T, a]2( f, g) := T ( f, ag) − aT ( f, g).

Recently, Bényi and Oh [3] extended the results from [11,12] previously mentioned
to this bilinear setting. More precisely, given a bilinear pseudodifferential operator Tσ

with σ in the bilinear Hörmander class BS1
1,0 and a Lipschitz function a on R

n, it
was proved in [3, Theorem 1] that [T, a]1 and [T, a]2 are bilinear Calderón–Zygmund
operators; as a consequence these commutators enjoy boundedness properties of the
form
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∥
∥[T, a] j ( f, g)

∥
∥

Z � ‖a‖Lip1 ‖ f ‖X ‖g‖Y , j = 1, 2,

for a variety of functional spaces X, Y, Z . For instance, one can take X = L p1(Rn),

Y = L p2(Rn) and Z = L p(Rn) where 1 < p1, p2 < ∞, 1
2 < p < ∞ and

1
p = 1

p1
+ 1

p2
; X = Y = L∞(Rn) and Z = B M O; or X = Y = L1(Rn) and

Z = L
1
2 ,∞(Rn), among other possibilities. It is only natural to wonder whether the

bilinear setting admits counterparts to the results from [1] mentioned above.
In this article, we first introduce the bilinear versions of the linear classes BS1

1,1

and S̃1
1,1 and show that, modulo smoothing operators, they strictly contain the bilinear

Hörmander classes BS1
1,δ for every 0 ≤ δ < 1 (see Lemmas 2.1 and 2.2 in Sect. 2).

The main theorem (Theorem 1.1) represents a bilinear counterpart of results in the
spirit of [1, Theorems 4.1 and 4.4], which, in view of Lemmas 2.1 and 2.2, improves
[3, Theorem 1] by enlarging the classes of symbols used from BS1

1,δ, 0 ≤ δ < 1,

to BBS1
1,1 (notice that the proof of [3, Theorem 1], which is stated for BS1

1,0, works

without changes for the classes BS1
1,δ when 0 ≤ δ < 1).

Theorem 1.1 If σ ∈ BBS1
1,1 and a is a Lipschitz function in R

n, then the commu-
tators [Tσ , a] j , j = 1, 2, are bilinear Calderón–Zygmund operators. In particular,
[Tσ , a] j , j = 1, 2,are bounded from L p1(Rn)×L p2(Rn) into L p(Rn) for 1

p = 1
p1

+ 1
p2

and 1 < p1, p2 < ∞ and verify appropriate end-point boundedness properties. More-
over, the corresponding norms of the operators are controlled by ‖a‖Lip1 .

In Sect. 2 we present some definitions, the statements of Lemmas 2.1 and 2.2, and
some remarks that emphasize the importance of the estimates obtained in Lemma 2.2
for the proof of Theorem 1.1. These lemmas are then proved in Sect. 3. The proof of
Theorem 1.1 is presented in Sect. 4.

2 Definitions and Preliminaries

Throughout the paper, the notation�means≤ C , where C is a constant that may only
depend on some of the parameters used and not on the functions or symbols involved.
For f in the Schwartz class S(Rn), its Fourier transform in R

n is defined as

f̂ (ξ) :=
∫

Rn
f (x)e−2π i x ·ξ dx ∀ξ ∈ R

n .

Given a Lipschitz continuous function a defined on R
n, set

‖a‖Lip1 := sup

{ |a(x) − a(y)|
|x − y| : x, y ∈ R

n
}

.

Let K (x, y, z) be defined in R
3n \ �, where � := {(x, x, x) : x ∈ R

n}; K is said
to be a bilinear Calderón–Zygmund kernel if there is a constant CK such that for all
(x, y, z) ∈ R

3n \ � and α ∈ N0 with |α| ≤ 1,
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|∂α K (x, y, z)| ≤ CK

(|x − y| + |x − z| + |y − z|)2n+|α| .

A bilinear operator T defined on S(Rn) × S(Rn) into S ′(Rn) is called a bilinear
Calderón–Zygmund operator if it is associated to a distributional kernel that coincides
with aCalderón–Zygmundkernel onR

3n\� and canbe extended to a boundedoperator
from L2(Rn)×L2(Rn) into L1(Rn).We refer the reader to [13] regarding a systematic
treatment of the theory of multilinear Calderón–Zygmund operators. We recall that if
T is a bilinear Calderón–Zygmund operator, T can be extended to a bounded operator
form L p1(Rn)× L p2(Rn) into L p(Rn) for all 1 < p1, p2 < ∞ and 1

2 < p < ∞ such

that 1
p = 1

p1
+ 1

p2
, from L1(Rn) × L

p
1−p (Rn) into L p,∞(Rn) and from L

p
1−p (Rn) ×

L1(Rn) into L p,∞(Rn) for 1
2 ≤ p < 1, and from L∞(R) × L∞(Rn) into B M O. The

corresponding norms of the operator are controlled by CK + ‖T ‖L2×L2→L1 .
Consider δ ≥ 0, ρ > 0 and m ∈ R. An infinitely differentiable function σ :

R
n × R

n × R
n → C belongs to the bilinear Hörmander class BSm

ρ,δ if for all multi-
indices α, β, γ ∈ N

n
0 there exists a positive constant Cα,β,γ such that

|∂α
x ∂

β
ξ ∂γ

η σ (x, ξ, η)| ≤ Cα,β,γ (1 + |ξ | + |η|)m+δ|α|−ρ(|β+γ |) ∀x, ξ, η ∈ R
n . (2.2)

Given σ ∈ BSm
ρ,δ, the bilinear pseudodifferential operator associated to σ is defined

by

Tσ ( f, g)(x) :=
∫

R2n
σ(x, ξ, η) f̂ (ξ)ĝ(η)e2π i x ·(ξ+η) dξ dη ∀x ∈ R

n, f, g ∈ S(Rn).

Boundedness properties in the setting of Lebesgue spaces, Hardy spaces and BMO of
bilinear operators with symbols in the bilinear Hörmander classes have been exten-
sively studied; we refer the reader to [5,7,15,18,19,21,23] and the references therein.
Boundedness properties in the context of Triebel-Lizorkin andBesov spaces have been
proved in [2,4,20].

In this article, we will focus on classes of symbols related to BSm
1,1, i.e. δ = ρ = 1.

For σ ∈ BSm
1,1 and N , M ∈ N0 define

‖σ‖N ,M := sup
|α|≤N

|β|,|γ |≤M

sup
x,ξ,η∈Rn

|∂α
x ∂

β
ξ ∂γ

η σ (x, ξ, η)|(1 + |ξ | + |η|)−m−|α|+|β+γ |.

The family of norms {‖σ‖N ,M }N ,M∈N0 defines a topology on BSm
1,1 that makes BSm

1,1
into a Fréchet space. For each α ∈ N

n
0 and M ∈ N we also set

‖σ‖α,M := sup
|β|,|γ |≤M

sup
x,ξ,η∈Rn

|∂α
x ∂

β
ξ ∂γ

η σ (x, ξ, η)|(1 + |ξ | + |η|)−m−|α|+|β+γ |.

Givenm ∈ R and r > 0, an infinitely differentiable functionσ : Rn × R
n × R

n →C

belongs to Br BSm
1,1 if
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σ ∈ BSm
1,1 and supp(̂σ 1) ⊂ {(τ, ξ, η) ∈ R

3n : |τ | ≤ r(|ξ | + |η|)},

where σ̂ 1 denotes the Fourier transform of σ with respect to its first variable inR
n , that

is, σ̂ 1(τ, ξ, η) = ̂σ(·, ξ, η)(τ ) for all τ, ξ, η ∈ R
n . The classes Br BSm

1,δ are defined
analogously; they are now subsets of BSm

1,δ with the support of σ̂
1 as above. The linear

counterparts to these classes were introduced in [17]. The class BBSm
1,1 is defined as

BBSm
1,1 :=

⋃

r∈(0, 17 )

Br BSm
1,1.

If T is a bilinear operator, the transposes T ∗1 and T ∗2 are defined by

〈T ( f, g), h〉 = 〈T ∗1(h, g), f 〉 = 〈T ∗2( f, h), g〉 ∀ f, g, h ∈ S(Rn),

where 〈·, ·〉 denotes the dual pairing. Given a bilinear pseudodifferential operator Tσ

we denote by σ ∗1 and σ ∗2 the symbols of its first and second transposes, respectively,
and we introduce the class

B̃S
m
1,1 := {σ ∈ BSm

1,1 : σ ∗1, σ ∗2 ∈ BSm
1,1}.

For later use, we recall that the class of symbols BS0
1,1 give rise to operators with

bilinear Calderón–Zygmund kernels and, by [13, Corollary 1], the operators with
symbols in B̃S

0
1,1 are bilinear Calderón–Zygmund operators. The linear counterparts

to B̃S
m
1,1 have been studied in [8,16].

We have the following inclusions between the bilinear classes of symbols defined
above.

Lemma 2.1 If 0 ≤ δ < 1 and r > 0 then

BSm
1,δ � Br BSm

1,δ + BS−∞
1,δ ⊂ BSm

1,1, (2.3)

where BS−∞
1,δ := ⋂

ν∈R BSν
1,δ.

Lemma 2.2 If 0 < r < 1
3 and m ∈ R then

Br BSm
1,1 ⊂ B̃S

m
1,1. (2.4)

Moreover, suppose that σ ∈ Br BSm
1,1 is inS(R3n) or is supported in {(x, ξ, η) ∈ R

3n :
|ξ | + |η| > c} for some 0 < c < 1. Then σ ∗ j ∈ B 2r

1−r
BSm

1,1 for j = 1, 2 and given

α, β, γ ∈ N
n
0, there exists M ∈ N0 such that

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σ ∗ j (x, ξ, η)

∣
∣
∣ � ‖σ‖α,M (1+|ξ |+|η|)m+|α|−|β+γ | ∀x, ξ, η ∈ R

n, j = 1, 2,

(2.5)
where M and the implicit constant are independent of σ.
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Remark 2.1 Here we comment on a point that will be crucial in the proof of Theo-
rem1.1. It concerns the symbols of the transposes of operatorswith symbols inBr BSm

1,1
that are a priori dilated in the spatial direction. Let t > 0, σ ∈ Br BSm

1,1 for some r > 0,
m ∈ R and set σ t (x, ξ, η) := σ(t x, ξ, η) for all x, ξ, η ∈ R

n . It easily follows that
σ t ∈ Btr BSm

1,1; moreover, if α ∈ N
n
0 and M ∈ N then

∥
∥σ t

∥
∥

α,M ≤ t |α| ‖σ‖α,M . In the

case 0 < r < 1
3 , and for σ supported in {(x, ξ, η) ∈ R

3n : |ξ | + |η| > 1}, the latter
and (2.5) imply that given α, β, γ ∈ N

n
0 there exists M ∈ N0 such that, for j = 1, 2,

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η (σ t )∗ j (x, ξ, η)

∣
∣
∣

� t |α| ‖σ‖α,M (1 + |ξ | + |η|)m+|α|−|β+γ | ∀x, ξ, η ∈ R
n, t ∈ (0, 1]. (2.6)

Remark 2.2 It is natural to consider what happens when transposition is applied
to symbols that are dilated in the frequency variables. Setting σ (t)(x, ξ, η) :=
σ(x, tξ, tη) for t ∈ (0, 1], the inequality t

(

1 + t (|ξ | + |η|))−1 � (1 + |ξ | + |η|)−1

yields right away that σ (t) ∈ Br BSm
1,1 (with uniform in t derivatives estimates) as long

as σ ∈ Br BSm
1,1 for some r > 0 and m ≥ 0. A straightforward calculation also shows

that

(σ t )∗1(x, ξ, η) = (σ (t))∗1(t x, t−1ξ, t−1η).

While these considerations are of interest in their own right, they will play no role in
the remainder of the paper.

3 Proofs of Lemma 2.1 and Lemma 2.2

Proof of Lemma 2.1. The second inclusion in (2.3) is straightforward. Given m ∈ R,

0 ≤ δ < 1 and r > 0, we next prove that

BSm
1,δ ⊂ Br BSm

1,δ + BS−∞
1,δ (3.7)

and then provide an example which shows that such inclusion is proper.
The proof of (3.7) is modeled after arguments from [16, Proposition 3]. Let ϕ and

ψ be infinitely differentiable functions defined on R
n and such that

supp(ϕ) ⊂ {τ ∈ R
n : |τ | ≤ r}, supp(ψ) ⊂ {τ ∈ R

n : r
4 ≤ |τ | ≤ r}

and

ϕ(τ) +
∞
∑

k=1

ψ(2−kτ) = 1 ∀τ ∈ R
n .

Fix σ ∈ BSm
1,δ; if χ(ξ, η) is a smooth function supported in {(ξ, η) ∈ R

2n :
|(ξ, η)| ≤ 2} and equal to 1 in {(ξ, η) ∈ R

2n : |(ξ, η)| ≤ 1} then it easily follows that
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χσ ∈ BS−∞
1,δ . Therefore, without loss of generality we can assume that supp(σ ) ⊂

{(x, ξ, η) ∈ R
3n : |(ξ, η)| > 1}. We have that

σ(x, ξ, η) = σ1(x, ξ, η) + σ2(x, ξ, η),

where

σ̂1
1(τ, ξ, η) = ϕ

(
τ

|(ξ,η)|
)

σ̂ 1(τ, ξ, η), σ̂2
1(τ, ξ, η) =

(

1 − ϕ
(

τ
|(ξ,η)|

))

σ̂ 1(τ, ξ, η).

We will prove that σ1 ∈ Br BSm
1,δ and that σ2 ∈ BS−∞

1,δ . In order to prepare for this,

we first make some observations. Let k ∈ N0, t := 2k |(ξ, η)| for ξ, η ∈ R
n and H be

a smooth function defined on R. Note that

∂ξ j (H(t)) = 2k ξ j
|(ξ,η)| ∂t H(t) = ξ j

|(ξ,η)|2 t∂t H(t)

where ξ j denotes the j th component of ξ ; there is an analogous formula if a derivative
with respect to a component of η is taken. Moreover,

∂
β
ξ ∂γ

η (H(t)) = |(ξ, η)|−|β+γ |
|β+γ |
∑

�=1

H�,β,γ (ξ, η) (t∂t )
� H(t), (3.8)

where H�,β,γ are continuous homogeneous functions of degree zero defined on R
2n \

{(0, 0)}. In the particular case when H(t) = tnh(t y), for a smooth function h defined
on R

n and fixed y ∈ R
n, we have that there exists a smooth function h� defined on

R
n, independent of k, (ξ, η) and y, such that

(t∂t )
�(tnh(t y)) = tnh�(t y). (3.9)

Indeed, note that the Fourier transform with respect to y of (t∂t )
�(tnh(t y)), evaluated

at τ, is (t∂t )
�(̂h( τ

t )). For � = 1, (t∂t )(̂h( τ
t )) = −∇ ĥ( τ

t ) · τ
t .Define h1 so that ĥ1(z) =

−∇ ĥ(z) · z; then (t∂t )(̂h( τ
t )) = ĥ1(

τ
t ) and taking the inverse Fourier transform with

respect to τ and evaluating at y it follows that t∂t (tnh(t y)) = tnh1(t y). In general,
define ĥ�(z) := −∇ĥ�−1(z) · z for � ≥ 2.

We next prove that σ1 ∈ Br BSm
1,δ. In view of the support of ϕ, supp(σ̂11) ⊂

{(τ, ξ, η) ∈ R
3n : |τ | ≤ r |(ξ, η)|} ⊂ {(τ, ξ, η) ∈ R

3n : |τ | ≤ r(|ξ | + |η|)}. Set
t := |(ξ, η)| (i.e. k = 0 above) and note that

σ1(x, ξ, η) =
∫

Rn
tnϕ̌(t y)σ (x − y, ξ, η) dy.
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Applying (3.8) with H(t) = tnϕ̌(t y) and (3.9) with h = ϕ̌, it follows that

∂α
x ∂

β
ξ ∂γ

η σ1(x, ξ, η) =
∑

β1+β2=β

γ1+γ2=γ

∫

Rn
∂

β1
ξ ∂γ1

η (tnϕ̌(t y))∂α
x ∂

β2
ξ ∂γ2

η σ (x − y, ξ, η) dy

=
∑

β1+β2=β

γ1+γ2=γ

|(ξ, η)|−|β1+γ1|
|β1+γ1|∑

�=1

H�,β1,γ1(ξ, η)

×
∫

Rn
tnh�(t y)∂α

x ∂
β2
ξ ∂γ2

η σ (x − y, ξ, η) dy. (3.10)

Using that |(ξ, η)| ∼ 1 + |ξ | + |η| for (ξ, η) in the support of σ, that H�,β,γ are
bounded functions (since they are homogeneous of degree zero and continuous), that
σ ∈ BSm

1,δ, and that
∣
∣
∫

Rn tnh�(t y) dy
∣
∣ ≤ ‖h�‖L1 , (3.10) gives

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σ1(x, ξ, η)

∣
∣
∣ � (1 + |ξ | + |η|)m+δ|α|−|β+γ |,

as desired.
We now proceed to show that σ2 ∈ BS−∞

1,δ . We have

σ̂2
1(τ, ξ, η) =

(

1 − ϕ
(

τ
|(ξ,η)|

))

σ̂ 1(τ, ξ, η) =
∞
∑

k=1

ψ
(

τ
2k |(ξ,η)|

)

σ̂ 1(τ, ξ, η).

For k ∈ N define σ (k)(x, ξ, η) so that̂σ (k)
1
(τ, ξ, η) = ψ

(
τ

2k |(ξ,η)|
)

σ̂ 1(τ, ξ, η). Set-

ting t = 2k |(ξ, η)| , we have

σ (k)(x, ξ, η) =
∫

Rn
tnψ̌(t y)σ (x − y, ξ, η) dy;

using (3.8) with H(t) = tnψ̌(t y) and (3.9) with h = ψ̌, we obtain

∂α
x ∂

β
ξ ∂γ

η σ
(k)
2 (x, ξ, η) =

∑

β1+β2=β

γ1+γ2=γ

|(ξ, η)|−|β1+γ1|
|β1+γ1|∑

�=1

H�,β1,γ1(ξ, η)

×
∫

Rn
tnh�(t y)∂α

x ∂
β2
ξ ∂γ2

η σ (x − y, ξ, η) dy.

We will show that given ν ∈ R there exists L ∈ N such that

∣
∣
∣
∣

∫

Rn
tnh�(t y)∂α

x ∂
β2
ξ ∂γ2

η σ (x − y, ξ, η) dy

∣
∣
∣
∣
� 2−kL(1 + |ξ | + |η|)ν+δ|α|−|β2+γ2|

(3.11)
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for all k ∈ N and x, ξ, η ∈ R
n andwhere the implicit constants may depend on ν, α, β,

γ, δ and σ. Since |(ξ, η)| ∼ 1+|ξ |+ |η| in the support of σ and H�,β1,γ1 are bounded

functions, (3.11) gives that
∣
∣
∣∂α

x ∂
β
ξ ∂

γ
η σ

(k)
2 (x, ξ, η)

∣
∣
∣ � 2−kL(1+ |ξ | + |η|)ν+δ|α|−|β+γ |

for all k ∈ N, x, ξ, η ∈ R
n . Adding over all k ∈ N it follows that σ2 ∈ BSν

1,δ and,

because ν is arbitrary, one then concludes that σ2 ∈ BS−∞
1,δ .

In order to prove (3.11) and for ease of notation, set θ := ∂α
x ∂

β2
ξ ∂

γ2
η σ. Let L ∈ N

be such that m − (1 − δ)L ≤ ν (recall that 0 ≤ δ < 1) and write

θ(x − y, ξ, η) =
∑

|μ|≤L−1

(−1)|μ|

μ! ∂μ
x θ(x, ξ, η)yμ

+
∑

|μ|=L

(−1)|μ|

μ! ∂μ
z θ(z, ξ, η)|z=zx,y yμ,

for some appropriate zx,y ∈ R
n . From the definition of h� we have that supp(ĥ�) ⊂

supp(̂h) = supp(ψ). Taking into account that ψ is supported in an annulus, we have
that

∑

|μ|≤L−1

(−1)|μ|

μ! ∂μ
x θ(x, ξ, η)

∫

Rn
tnh�(t y)yμ dy = 0. (3.12)

In addition, using the definition of θ, that σ ∈ BSm
1,δ, that t = 2k |(ξ, η)| and that

|(ξ, η)| > 1 in the support of σ, it follows that

∣
∣
∣
∣
∣
∣

∑

|μ|=L

(−1)|μ|

μ!
∫

Rn
tnh�(t y)∂μ

z θ(z, ξ, η)|z=zx,y yμ dy

∣
∣
∣
∣
∣
∣

�
∑

|μ|=L

1

μ! (1 + |ξ | + |η|)m+δ|μ+α|−|β2+γ2|t−|μ|

×
∥
∥
∥h�(·) |·||μ|

∥
∥
∥

L1

∼ (1 + |ξ | + |η|)m−(1−δ)L+δ|α|−|β2+γ2|2−kL

� 2−kL(1 + |ξ | + |η|)ν+δ|α|−|β2+γ2|, (3.13)

where in the last inequality it was used that m − (1 − δ)L ≤ ν. The estimates (3.12)
and (3.13) imply (3.11).

Given r > 0 and m ∈ R, we next present an example of symbol σ such that

σ ∈ Br BSm
1,1 \

⋃

δ∈[0,1)
BSm

1,δ.
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Let � ∈ S(R2n) be such that supp(�) ⊂ {(ξ, η) ∈ R
2n : 1 < |ξ | + |η| < 2} and

{gk}k∈N0 be a family of infinitely differentiable functions defined in R
n that satisfy

∣
∣∂αgk(x)

∣
∣ � 2k(m+|α|) ∀x ∈ R

n, k ∈ N0.

Consider � ∈ S(Rn) such that supp(�̂) ⊂ {τ ∈ R
n : |τ | < r} and set �2−k (x) :=

2nk�(2k x) for x ∈ R
n . It easily follows that the symbol σ defined by

σ(x, ξ, η) :=
∑

k∈N0

(gk ∗ �2−k )(x)�(2−kξ, 2−kη), x, ξ, η ∈ R
n,

belongs toBr BSm
1,1. Indeed, notice first that if 2

k ≤ |ξ |+|η| < 2k+1 for some k ∈ N0,

supp(̂σ 1(·, ξ, η)) ⊂ supp(�̂(2−k ·)) ⊂ {τ ∈ R
n : |τ | < 2kr}.

Since |ξ | + |η| ≥ 2k , we get the support condition for σ̂ 1(·, ξ, η). Secondly, we

have for 2k ≤ |ξ | + |η| < 2k+1 that
∣
∣
∣∂α

x ∂
β
ξ ∂

γ
η σ (x, ξ, η)

∣
∣
∣ � 2k(m+|α|)2−k(|β+γ |) �

(1 + |ξ | + |η|)m+|α|−|β+γ |. If |ξ | + |η| < 1 then σ(·, ξ, η) = 0 and therefore the
support condition and the estimate follow trivially.

Next we choose {gk}k∈N0 so that σ /∈ BSm
1,δ for any 0 ≤ δ < 1. For instance,

consider gk(x) = 2kme2π i2k x0·x for a fixed point x0 ∈ R
n with all its component

different from zero and �̂(x0) �= 0. If ξ, η ∈ R
n are such that 2k < |ξ | + |η| < 2k+1

then σ(x, ξ, η) = (gk ∗ �2−k )(x)�(2−kξ, 2−kη) and

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σ (x, ξ, η)

∣
∣
∣ = 2k(m+|α|−|β|−|γ |) ∣

∣(2πx0)
α �̂(x0)

∣
∣

∣
∣
∣(∂

β
ξ ∂γ

η �)(2−kξ, 2−kη)

∣
∣
∣ .

If σ ∈ BSm
1,δ then

∣
∣
∣(∂

β
ξ ∂

γ
η �)(2−kξ, 2−kη)

∣
∣
∣ ≤ Cα,β,γ 2−k(1−δ)|α| for all ξ, η ∈ R

n and

all k ∈ N0, which is impossible for 0 ≤ δ < 1. ��
Proof of Lemma 2.2. We first assume that the symbol σ is in the Schwartz class so
that the corresponding calculations are properly justified. We then use an approxima-
tion argument to obtain the results for symbols that are not rapidly decreasing and
are supported away from the origin in the frequency variables. Finally, we show the
inclusion (2.4).

Given σ ∈ Br BSm
1,1 ∩ S(R3n) for some 0 < r < 1

3 and m ∈ R, we have to prove
that σ ∗1 and σ ∗2 belong to B 2r

1−r
BSm

1,1 and satisfy (2.5). We will work with σ ∗1; an
analogous reasoning is valid for the symbol σ ∗2.

The ideas below, which exploit the fact that σ̂ 1 is supported in {(τ, ξ, η) ∈ R
3n :

|τ | ≤ r(|ξ | + |η|)}, are inspired by those in the proof of [6, Theorem 2.1] about the
fact that BSν

ρ,δ is closed under transposition for ν ∈ R, 0 ≤ δ ≤ ρ ≤ 1 and δ < 1.
It holds that

Tσ ∗1( f, g)(x) =
∫

R3n
σ̄ (y, ξ, η) f (y)ĝ(η)e−2π i(y−x)·ξ e2π i x ·ηdξdηdy,
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where σ̄ (y, ξ, η) = σ(y,−ξ − η, η). The fact that σ ∈ BSm
1,1 easily implies that

σ̄ ∈ BSm
1,1 and that if α ∈ N

n
0 and M ∈ N0 then ‖σ̄‖α,M � ‖σ‖α,2M . Indeed, this

follows from the formula

∂α
x ∂

β
ξ ∂γ

η σ̄ (x, ξ, η) =
∑

γ1+γ2=γ

(−1)|β+γ1|(∂α
x ∂

β+γ1
ξ ∂γ2

η σ )(x,−ξ − η, η).

Moreover,

σ ∗1(x, ξ, η) =
∫

R2n
σ̄ (x + y, z + ξ, η)e−2π i z·y dydz.

We will first proceed to prove (2.5) for the case α = β = γ = 0. We have

σ ∗1(x, ξ, η) =
∫

R2n
σ̄ (x + y, z + ξ, η)e−2π i z·y dydz

=
∫

R2n
σ(x + y,−z − ξ − η, η)e−2π i z·y dydz

=
∫

Rn
σ̂ 1(z,−z − ξ − η, η)e2π i z·x dz (3.14)

=
∫

|z|≤r(|z+ξ+η|+|η|)
σ̂ 1(z,−z − ξ − η, η)e2π i z·x dz,

where we have used that σ ∈ Br BSm
1,1. The condition |z| ≤ r(|z + ξ + η| + |η|)

implies that |z| ≤ 2r
1−r A, where A := 1+|ξ |+ |η|. Therefore, if ψ ∈ C∞

0 (Rn) is such

that ψ ≡ 1 in {z : |z| ≤ 2r
1−r }, we have

σ ∗1(x, ξ, η) =
∫

Rn
ψ(A−1z)̂σ 1(z,−z − ξ − η, η)e2π i z·x dz

=
∫

R2n
ψ(A−1z)σ̄ (x + y, z + ξ, η)e−2π i z·y dydz.

For L ∈ N with 2L > n, write

e−2π i z·y = (1 + (2π A)2 |y|2)−L(1 + A2(−�z))
Le−2π i z·y .

Integration by parts gives

σ ∗1(x, ξ, η) =
∫

R2n
q(x, y, z, ξ, η)e−2π i z·y dydz, (3.15)

where

q(x, y, z, ξ, η) = (1 + A2(−�z))
L

(

ψ(A−1z)σ̄ (x + y, z + ξ, η)
)

(1 + (2π A)2 |y|2)L
.
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We next estimate q. If PL = {γ = (γ1, · · · , γn) : γi even and |γ | = 2 j, j =
0, · · · , L }, then

(1 + A2(−�z))
L

(

ψ(A−1z)σ̄ (x + y, z + ξ, η)
)

=
∑

γ∈PL

Cγ A|γ |∂γ
z

(

ψ(A−1z)σ̄ (x + y, z + ξ, η)
)

=
∑

γ∈PL

A|γ | ∑

γ1+γ2=γ

Cγ1,γ2(∂
γ1
z ψ)(A−1z)A−|γ1|

× ∂
γ2
z (σ̄ (x + y, z + ξ, η)).

Using the fact that σ̄ ∈ BSm
1,1, we get

∣
∣
∣(1 + A2(−�z))

L
(

ψ(A−1z)σ̄ (x + y, z + ξ, η)
)∣
∣
∣

� ‖σ̄‖0,2L

∑

γ∈PL
γ1+γ2=γ

A|γ2|
∣
∣
∣(∂

γ1
z ψ)(A−1z)

∣
∣
∣ (1 + |z + ξ | + |η|)m−|γ2|.

(3.16)

Recall that the support ofψ is compact and thatψ ≡ 1 in {z : |z| ≤ 2r
1−r }.By choosing

ψ such that its support is contained in {z : |z| ≤ 2r
1−r + ε} for some ε = εr > 0 for

which 2r
1−r + ε < 1 (this is possible for 0 < r < 1

3 ), we have that

1 + |z + ξ | + |η| ∼ A, for z such that A−1z ∈ supp(ψ).

This observation and (3.16) give that

|q(x, y, z, ξ, η)| � ‖σ̄‖0,2L
Am

(1 + A2 |y|2)L
.

Since 2L > n,

∣
∣
∣σ

∗1(x, ξ, η)

∣
∣
∣ � ‖σ̄‖0,2L Am

∫

|z|�A

∫

y

1

(1 + A2 |y|2)L
dydz ∼ ‖σ̄‖0,2L Am

� ‖σ‖0,4L Am,

obtaining the desired result with M = 4L in (2.5).
The estimate (2.5) for any α, β, γ ∈ N

n
0 follows from the previous case once a few

observations are made. The formulas

∂α
x ∂

β
ξ ∂γ

η σ ∗1(x, ξ, η) =
∫

R2n
(∂α

x ∂
β
ξ ∂γ

η σ̄ )(x + y, z + ξ, η)e−2π i z·y dydz
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and

∂α
x ∂

β
ξ ∂γ

η σ̄ (x, ξ, η) =
∑

γ1+γ2=γ

(−1)|β+γ1|(∂α
x ∂

β+γ1
ξ ∂γ2

η σ )(x,−ξ − η, η)

imply that

∂α
x ∂

β
ξ ∂γ

η σ ∗1(x, ξ, η) =
∑

γ1+γ2=γ

(−1)|β+γ1|(∂α
x ∂

β+γ1
ξ ∂γ2

η σ )∗1(x, ξ, η).

Moreover, for γ1 and γ2 such that γ1 + γ2 = γ, ∂α
x ∂

β+γ1
ξ ∂

γ2
η σ ∈ Br BSm+|α|−|β+γ |

1,1 .

Then (2.5) follows after applying the previous case to each of these terms and observing
that for each K ∈ N0 there exists M ∈ N0 independent of σ such that the norm in

BSm+|α|−|β+γ |
1,1 given by

∥
∥
∥∂α

x ∂
β+γ1
ξ ∂

γ2
η σ

∥
∥
∥
0,K

is controlled by the norm in BSm
1,1 given

by ‖σ‖α,M .

Finally, note that σ ∗1 belongs to B 2r
1−r

BSm
1,1. Indeed, we have just proved that it

belongs to BSm
1,1; moreover, (3.14) shows that

̂σ ∗11(τ, ξ, η) = σ̂ 1(τ,−τ − ξ − η, η),

whose support is contained in {(τ, ξ, η) ∈ R
3n : |τ | ≤ 2r

1−r (|ξ | + |η|)}.
We next prove the results for a symbol σ ∈ Br BSm

1,1 supported in {(x, ξ, η) ∈ R
3n :

|ξ |+ |η| > c} for some 0 < c < 1. Again, we will just work with σ ∗1 and show that it
satisfies (2.5) and it belongs to B 2r

1−r
BSm

1,1. Let θ ∈ S(Rn) be such that θ(0) = 1 and

supp(θ̂) ⊂ {τ ∈ R
n : |τ | < 1} and consider ϕ ∈ S(R2n) satisfying ϕ(0, 0) = 1. Set

�(x, ξ, η) := θ(x)ϕ(ξ, η) and σε(x, ξ, η) := σ(x, ξ, η)�(εc x, εξ, εη) for ε > 0.
Note that σε ∈ S(R3n) and due to the supports of σ, σ̂ 1 and θ̂ it follows that

supp(σ̂ε
1) ⊂ {(τ, ξ, η) ∈ R

3n : |τ | ≤ (r + ε)(|ξ | + |η|)}.

As a consequence, σε ∈ Br+ε BSm
1,1 and, if r +ε < 1

3 , the previous case applies giving
that σ ∗1

ε ∈ B 2(r+ε)
1−r−ε

and that (2.5) holds for σ ∗1
ε .

We will estimate the norms of σε and σ ∗1
ε as elements of BSm

1,1. For α, β, γ ∈
N

n
0, the Leibniz rule gives that

∣
∣
∣∂α

x ∂
β
ξ ∂

γ
η σε(x, ξ, η)

∣
∣
∣ is pointwise bounded by a linear

combination of terms of the form
∣
∣
∣∂

α1
x ∂

β1
ξ ∂γ1

η σ (x, ξ, η)∂α2
x ∂

β2
ξ ∂γ2

η �(εc x, εξ, εη)

∣
∣
∣ c|α2|ε|α2+β2+γ2|

with α1 +α2 = α, β1 +β2 = β and γ1 +γ2 = γ.Using that σ ∈ BSm
1,1, ϕ ∈ S(R2n),

θ has bounded derivatives, ε(1 + |εξ | + |εη|)−1 � (1 + |ξ | + |η|)−1 for 0 < ε < 1,
and 0 < c < 1, the latter can be pointwise estimated by

‖σ‖α1,max (|β|,|γ |) ε|α2|(1 + |ξ | + |η|)m+|α|−|β+γ |.



772 J Fourier Anal Appl (2018) 24:759–779

That is, with Mβ,γ := max (|β| , |γ |) and for all x, ξ, η ∈ R
n, we have

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σε(x, ξ, η)

∣
∣
∣ �

( ‖σ‖α,Mβ,γ
+

∑

α1+α2=α

α2 �=0

‖σ‖α1,Mβ,γ
ε|α2|)

× (1 + |ξ | + |η|)m+|α|−|β+γ |. (3.17)

As a consequence,

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σε(x, ξ, η)

∣
∣
∣ � ‖σ‖|α|,Mβ,γ

(1 + |ξ |+|η|)m+|α|−|β+γ | for 0 < ε < 1
3 − r.

(3.18)

The estimate (2.5) for σ ∗1
ε and (3.18) imply the existence of M ∈ N such that

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σ ∗1
ε (x, ξ, η)

∣
∣
∣ � ‖σε‖α,M (1 + |ξ | + |η|)m+|α|−|β+γ |

� ‖σ‖|α|,M (1 + |ξ | + |η|)m+|α|−|β+γ |, for 0 < ε < 1
3 − r.

(3.19)

By (3.19), it follows that {σ ∗1
ε }0<ε< 1

3−r is a bounded family in the topology of

BSm
1,1; therefore there exist a sequence {σ ∗1

εk
}k∈N, with εk → 0 as k → ∞, and a

symbol � ∈ BSm
1,1 such that σ ∗1

εk
→ �, as k → ∞, in the C∞ topology on compact

sets ofR
n (see, for instance, [22, pp. 245–246], where such fact is shown for the linear

Hörmander classes).
Using (3.18) and (3.19) for α = β = γ = 0, the Dominated Convergence Theorem

implies that for all f, g, h ∈ S(Rn)

〈Tσ ( f, g), h〉 = lim
k→∞〈Tσεk

( f, g), h〉 = lim
k→∞〈Tσ ∗1

εk
(h, g), f 〉 = 〈T�(h, g), f 〉.

We then conclude that T ∗1
σ = T� and therefore σ ∗1 = �. The estimate (3.17) and the

first inequality in (3.19) imply that

∣
∣
∣∂

α
x ∂

β
ξ ∂γ

η σ ∗1
εk

(x, ξ, η)

∣
∣
∣ �

( ‖σ‖α,M+
∑

α1+α2=α

α2 �=0

‖σ‖α1,M ε
|α2|
k

)

(1+|ξ |+|η|)m+|α|−|β+γ |.

As εk → 0, we obtain (2.5) for σ ∗1.
Finally, let us prove that ̂σ ∗11 is supported in {(τ, ξ, η) ∈ R

3n : |τ | ≤ 2r
1−r (|ξ | +

|η|)}. Fix ξ, η ∈ R
n and let φ be an infinitely differentiable function defined on R

n

and with compact support contained in {τ ∈ R
n : |τ | > 2r

1−r (|ξ | + |η|)}. For εk small

enough, we have that supp(φ) ⊂ {τ ∈ R
n : |τ | >

2(r+εk )
1−r−εk

(|ξ | + |η|)}. The Dominated

Convergence Theorem and the fact that ̂σ ∗1
εk

1
is supported in {(τ, ξ, η) ∈ R

3n : |τ | ≤
2(r+εk )
1−r−εk

(|ξ | + |η|)} imply that
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〈̂σ ∗11(·, ξ, η), φ〉 =
∫

Rn
σ ∗1(x, ξ, η)φ̂(x) dx

= lim
k→∞

∫

Rn
σ ∗1

εk
(x, ξ, η)φ̂(x) dx = lim

k→∞〈̂σ ∗1
εk

1
(·, ξ, η), φ〉 = 0.

For the inclusion (2.4), let σ ∈ Br BSm
1,1 for some 0 < r < 1

3 and m ∈ R. Consider
an infinitely differentiable function χ defined on R

2n, supported on {(ξ, η) ∈ R
2n :

|ξ | + |η| ≤ 2} and identically equal to one on {(ξ, η) ∈ R
2n : |ξ | + |η| ≤ 1}; then

σ(x, ξ, η) = χ(ξ, η)σ (x, ξ, η) + (1 − χ(ξ, η))σ (x, ξ, η) for all x, ξ, η ∈ R
n . The

symbol (1−χ)σ belongs to Br BSm
1,1 and is supported on the set where |ξ | + |η| > 1.

The above results then give in particular that ((1 − χ)σ)∗ j ∈ BSm
1,1 for j = 1, 2.

It easily follows that χσ ∈ BSm
1,0; since this class is closed under transposition ([6,

Theorem 2.1]), we have (χσ)∗ j ∈ BSm
1,0 ⊂ BSm

1,1 for j = 1, 2. As a consequence

σ ∗ j ∈ BSm
1,1 for j = 1, 2 and therefore σ ∈ B̃S

m
1,1. ��

4 Proof of Theorem 1.1

Bilinear versions of the T (1) theorem were first studied in [10] and [13]. The proof
of Theorem 1.1 makes use of a bilinear formulation of the T (1) theorem given in [14,
Theorem 1.1], which states that a bilinear operator T associated to a standard kernel
is a Calderón–Zygmund operator if T (1, 1), T ∗1(1, 1) and T ∗2(1, 1) (which can be
properly defined) are in B M O and T satisfies a certain weak boundedness property.

Proof of Theorem 1.1. Theproof is divided into several subsections that followclosely
the argument proving [3, Theorem 1]. The relevant difference between the proofs has
to do with the verification of the B M O condition and the weak boundedness property
for the commutators. The argument requires checking that the symbols σ j and σ̃ j

defined in Sect. 4.2 and their transposes are in BS0
1,δ, 0 ≤ δ < 1, in the case of [3,

Theorem 1] and in the class BS0
1,1 in the present case. The former is straightforward

since the classes BS0
1,δ are closed under transposition for all 0 ≤ δ < 1 ([6, Theorem

2.1]), while the latter needs extra work because the class BS0
1,1 is not closed under

transposition ([4, Corollary 2]). It is here that Remark 2.1 will play an important role.

4.1 Kernels of Commutators

In this section, we check that the kernels of the bilinear commutators [Tσ , a] j , j =
1, 2, are Calderón–Zygmund for any σ ∈ BS1

1,1 and anyLipschitz continuous function
a defined on R

n . Let K j be the kernel of [Tσ , a] j , j = 1, 2. Then, we have

K1(x, y, z) = (

a(y) − a(x)
)

K (x, y, z),

K2(x, y, z) = (

a(z) − a(x)
)

K (x, y, z),
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where K is the kernel of Tσ . Since σ ∈ BS1
1,1 we have that

|K (x, y, z)| �
(|x − y| + |x − z| + |y − z|)−1−2n

,

|∇K (x, y, z)| �
(|x − y| + |x − z| + |y − z|)−2−2n

on R
3n \ � ([6, Theorem 5.1 (last item)], see also [3, Lemma 3]). These estimates

combined with the fact that a is Lipschitz continuous in R
n give that

|K j (x, y, z)| � ‖a‖Lip1
(|x − y| + |x − z| + |y − z|)−2n

,

|∇K j (x, y, z)| � ‖a‖Lip1
(|x − y| + |x − z| + |y − z|)−2n−1

on R
3n \ � and for j = 1, 2.

4.2 The BMO Condition

We now verify that the commutators [Tσ , a]1 and [Tσ , a]2 satisfy the BMO conditions
of the bilinearT (1) theorem for anyσ ∈ BBS1

1,1 and anyLipschitz continuous function
a defined onR

n .Wewill assume without loss of generality that σ(x, 0, 0) = 0; notice
that [Tσ , a] j = [Tσ0 , a] j where σ0 = σ − σ(·, 0, 0) and, moreover, σ0 ∈ BBS1

1,1 as
well.

By the Fundamental Theorem of Calculus we have

σ(x, ξ, η) =
n

∑

j=1

(ξ jσ j (x, ξ, η) + η j σ̃ j (x, ξ, η)),

where ξ = (ξ1, · · · , ξn), η = (η1, · · · , ηn),

σ j (x, ξ, η) =
∫ 1

0
∂ξ ′

j
σ(x, ξ ′, tη)

∣
∣
∣
ξ ′=tξ

dt and

σ̃ j (x, ξ, η) =
∫ 1

0
∂η′

j
σ(x, tξ, η′)

∣
∣
∣
η′=tη

dt. (4.20)

That is,

Tσ ( f, g) = 1

2π i

n
∑

j=1

[

Tσ j (∂ j f, g) + T̃σ j ( f, ∂ j g)
]

.

Lemma 4.1 below gives that σ j , σ̃ j ∈ B̃S
0
1,1 for all j (we state and prove Lemma 4.1

at the end of this section in order to ease the flow of the proof). We then have

[Tσ , a]1(1, 1) = Tσ (a, 1) − aTσ (1, 1) = 1

2π i

n
∑

j=1

[

Tσ j (∂ j a, 1) + T̃σ j (a, ∂ j1)
︸ ︷︷ ︸

=0

]

.
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Recall that the symbols in the class B̃S
0
1,1 give rise to bilinear Calderón–Zygmund

operators ([13, Corollary 1, p. 155]); as a consequence, Tσ j is bounded from L∞(Rn)×
L∞(Rn) into B M O. Since ∂ j a ∈ L∞, we conclude that Tσ j (∂ j a, 1) ∈ B M O and
∥
∥Tσ j (∂ j a, 1)

∥
∥

B M O
�

∥
∥∂ j a

∥
∥

L∞ . Therefore, [Tσ , a]1(1, 1) ∈ B M O and its norm is
controlled by ‖a‖Lip1 . An analogous proof shows the result for [Tσ , a]2(1, 1).

We next prove that
([Tσ , a] j

)∗k
(1, 1) ∈ B M O for j = 1, 2 and k = 1, 2. The

following identities were proved in [3, Lemma 6]:

([Tσ , a]1
)∗1 = −[Tσ ∗1 , a]1,

([Tσ , a]1
)∗2 = [Tσ ∗2 , a]1 − [Tσ ∗2 , a]2,

([Tσ , a]2
)∗1 = [Tσ ∗1 , a]2 − [Tσ ∗1 , a]1,

([Tσ , a]2
)∗2 = −[Tσ ∗2 , a]2.

Now, let χ be an infinitely differentiable function defined on R
2n, supported on

{(ξ, η) ∈ R
2n : |ξ | + |η| ≤ 2} and identically equal to one on {(ξ, η) ∈ R

2n :
|ξ | + |η| ≤ 1}; write σ(x, ξ, η) = χ(ξ, η)σ (x, ξ, η) + (1 − χ(ξ, η))σ (x, ξ, η) for
x, ξ, η ∈ R

n . We have χσ ∈ BS1
1,0 and (1 − χ)σ ∈ Br BS1

1,1 for some 0 < r < 1
7 .

Since BS1
1,0 is closed under transposition, we obtain (χσ)∗k ∈ BS1

1,0 for k = 1, 2;
moreover, by Lemma 2.2 ((1−χ)σ)∗k ∈ B 2r

1−r
BS1

1,1 for k = 1, 2 (note that 2r
1−r < 1

3 ).

Then Lemma 4.1 below can again be applied to σ ∗1 and σ ∗2. As a consequence, the
previous reasoning allows to conclude that [Tσ ∗k , a] j (1, 1) ∈ B M O with norm con-

trolled by ‖a‖Lip1 for j = 1, 2 and k = 1, 2. In view of the formulas for
([Tσ , a] j

)∗k

given above, the desired results follow.

4.3 The Weak Boundedness Property

For x ∈ R
n and t > 0, set Bx (t) := {x ∈ R

n : |x | ≤ t}. Given M ∈ N0, an infinitely
differentiable function φ defined on R

n is called a normalized bump function of order
M if supp(φ) ⊂ B0(1) and ‖∂αφ‖L∞ ≤ 1 for all α ∈ N

n
0 with |α| ≤ M. For such

function φ, x0 ∈ R
n and t > 0, denote φx0,t (x) := φ

( x−x0
t

)

. As proved in [3,
Lemma 9], a bilinear operators T with Calderón–Zygmund kernel satisfies the weak
boundedness property (as stated in [14, Theorem 1.1]) if there exists M ∈ N0 such
that

∣
∣〈T (φ

x0,t
1 , φ

x0,t
2 ), φ

x0,t
3 〉∣∣ � tn,

for all normalized bump functions φ1, φ2, and φ3 of order M , x0 ∈ R
n and t > 0.

We will show that if σ ∈ BBS1
1,1 and a is Lipschitz continuous in R

n then the first
commutator [Tσ , a]1 satisfies the above inequality for normalized bump functions of
order 1 and with a constant controlled by ‖a‖Lip1 . An analogous proof is valid for
the second commutator. Let x0 ∈ R

n, t > 0 and φ1, φ2, φ3 be normalized bump
functions of order 1 defined on R

n . Without loss of generality, we can assume that
a(x0) = 0 (replacing a with a − a(x0) does not change the commutator); we then
have ‖a‖L∞(Bx0 (t)) � t‖a‖Lip1 and
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∣
∣〈[Tσ , a]1(φx0,t

1 , φ
x0,t
2 ), φ

x0,t
3 〉∣∣ ≤ ∣

∣〈Tσ (aφ
x0,t
1 , φ

x0,t
2 ), φ

x0,t
3 〉∣∣

+ ∣
∣〈aTσ (φ

x0,t
1 , φ

x0,t
2 ), φ

x0,t
3 〉∣∣.

We estimate the second expression on the left by

‖aTσ (φ
x0,t
1 , φ

x0,t
2 )‖L2(Bx0 (t))‖φx0,t

3 ‖L2 � t
n
2 ‖a‖L∞(Bx0 (t))‖Tσ (φ

x0,t
1 , φ

x0,t
2 )‖L2(Bx0 (t))

� t
n
2+1‖a‖Lip1

∥
∥
∥
∥

n
∑

j=1

[

Tσ j (∂ jφ
x0,t
1 , φ

x0,t
2 ) + T̃σ j (φ

x0,t
1 , ∂ jφ

x0,t
2 )

]
∥
∥
∥
∥

L2
.

Recalling now that σ j , σ̃ j ∈ B̃S
0
1,1 and using again [13, Corollary 1], we can further

estimate the above by

t
n
2+1‖a‖Lip1

n
∑

j=1

[

‖∂ jφ
x0,t
1 ‖L4‖φx0,t

2 ‖L4 + ‖φx0,t
1 ‖L4‖∂ jφ

x0,t
2 ‖L4

]

� tn‖a‖Lip1 .

The estimate for the first expression
∣
∣〈Tσ (aφ

x0,t
1 , φ

x0,t
2 ), φ

x0,t
3 〉∣∣ follows a similar pat-

tern. It is controlled by

t
n
2

∥
∥
∥
∥

n
∑

j=1

[

Tσ j (∂ j (aφ
x0,t
1 ), φ

x0,t
2 ) + T̃σ j (aφ

x0,t
1 , ∂ jφ

x0,t
2 )

]
∥
∥
∥
∥

L2

� t
n
2

n
∑

j=1

[

‖∂ j (aφ
x0,t
1 )‖L4‖φx0,t

2 ‖L4 + ‖aφ
x0,t
1 ‖L4‖∂ jφ

x0,t
2 ‖L4

]

� t
n
2

n
∑

j=1

[

‖∂ j a φ
x0,t
1 ‖L4‖φx0,t

2 ‖L4 + ‖a ∂ jφ
x0,t
1 ‖L4‖φx0,t

2 ‖L4

+ ‖aφ
x0,t
1 ‖L4‖∂ jφ

x0,t
2 ‖L4

]

� tn‖a‖Lip1 .

4.4 End of Proof

By [14, Theorem 1.1], we conclude that [Tσ , a] j , j = 1, 2, are bilinear Calderón–
Zygmund operators for any σ ∈ BBS1

1,1 and any Lipschitz continuous function a on
R

n . Moreover, the proof of [14, Theorem 1.1] gives that
∥
∥[Tσ , a] j

∥
∥

L2×L2→L1 is con-
trolled by the sum of the constant in the estimates of the kernel of [Tσ , a] j , the constant
in the weak boundedness property condition for [Tσ , a] j and the BMO norms of the
evaluations of [Tσ , a] j and its transposes at (1, 1). Since each of these are controlled
by ‖a‖Lip1 , we have that

∥
∥[Tσ , a] j

∥
∥

L2×L2→L1 � ‖a‖Lip1 . All boundedness prop-
erties satisfied by bilinear Calderón–Zygmund operators then follow for the bilinear
commutators with the corresponding norms bounded by a multiple of ‖a‖Lip1 . ��



J Fourier Anal Appl (2018) 24:759–779 777

Our arguments above made use in an essential way of the fact that the symbols σ j

and σ̃ j defined in (4.20) behave well with respect to transposition. This is the content
of the next result.

Lemma 4.1 If σ ∈ Br BS1
1,1 for some 0 < r < 1

3 or σ ∈ BS1
1,δ for some 0 ≤ δ < 1,

then the symbols σ j and σ̃ j defined in (4.20) belong to B̃S
0
1,1 for all j ∈ {1, . . . , n}.

Proof The facts σ ∈ BS1
1,δ for some 0 ≤ δ ≤ 1 and t

(

1 + t (|ξ | + |η|))−1 �
(1 + |ξ | + |η|)−1 for all t ∈ [0, 1] easily imply that σ j and σ̃ j belong to BS0

1,δ for all

j. With the additional assumption δ < 1, the class BS0
1,δ is closed under transposition

and since BS0
1,δ ⊂ BS0

1,1, the result follows in this case.

Let σ ∈ Br BS1
1,1 for some 0 < r < 1

3 ; assume first that σ is supported on

{(x, ξ, η) ∈ R
3n : |ξ | + |η| > 1}. We will prove that (σ j )

∗k, (̃σ j )
∗k ∈ BS0

1,1 for
k = 1, 2 and all j.Wewill work with (σ j )

∗1; an analogous reasoning holds for (̃σ j )
∗1

and the second transposes of σ j and σ̃ j . Formal computations show that

(σ j )
∗1(x, ξ, η) = −

∫ 1

0
∂ξ ′

j
[(σ t )∗1( x

t , ξ ′, tη)]
∣
∣
∣
ξ ′=tξ

dt,

where we recall that σ t (x, ξ, η) := σ(t x, ξ, η) for all x, ξ, η ∈ R
n . In view of

Remark 2.1, (σ t )∗1 ∈ BS1
1,1 and (2.6) holds; we then obtain

|∂α
x ∂

β
ξ ∂γ

η (σ j )
∗1(x, ξ, η)|

=
∣
∣
∣
∣

∫ 1

0
t−|α|+|β|+|γ |∂α

x ′∂
β

ξ ′∂
γ

η′∂ξ ′
j
(σ t )∗1(x ′, ξ ′, η′)

∣
∣
∣
(x ′,ξ ′,η′)=( x

t ,tξ,tη)
dt

∣
∣
∣
∣

�
∫ 1

0
t |β|+|γ |(1 + t (|ξ | + |η|))1+|α|−(|β|+1+|γ |)

dt

� (1 + |ξ | + |η|)|α|−|β+γ |,

where we used again that t
(

1 + t (|ξ | + |η|))−1 � (1 + |ξ | + |η|)−1 for t ∈ [0, 1].
Therefore (σ j )

∗1 ∈ BS0
1,1.

For a general σ ∈ Br BS1
1,1, let χ be an infinitely differentiable function defined

on R
2n, supported on {(ξ, η) ∈ R

2n : |ξ | + |η| ≤ 2} and identically equal to one
on {(ξ, η) ∈ R

2n : |ξ | + |η| ≤ 1}; write σ(x, ξ, η) = χ(ξ, η)σ (x, ξ, η) + (1 −
χ(ξ, η))σ (x, ξ, η) for x, ξ, η ∈ R

n .Thenσ j = (χσ) j+((1−χ)σ) j for j = 1, · · · , n,

and similarly for σ̃ j . The symbol (1 − χ)σ belongs to Br BS1
1,1 and the symbol χσ

belongs to BS1
1,0. By the previous cases, we conclude that σ j and σ̃ j are in B̃S

0
1,1 for

all j = 1, . . . , n. ��
Remark 4.1 Consider the class of symbols

˜̃BS
1
1,1 := {σ ∈ B̃S

1
1,1 : σ j , σ̃ j ∈ B̃S

0
1,1 for j = 1, . . . , n},
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where σ j and σ̃ j are as in (4.20). Lemma 2.2 and Lemma 4.1 imply that BBS1
1,1 is

contained in such class. The proof of Lemma 4.1 can be used to show that σ ∈ B̃S
1
1,1

is in ˜̃BS
1
1,1 if (2.6) holds for (1−χ)σ with χ as in the proof of Lemma 4.1. Therefore,

if the latter is true for every σ ∈ B̃S
1
1,1, the two classes of symbols coincide and

then the thesis of Theorem 1.1 would be true for every symbol in B̃S
1
1,1 (the proof of

Theorem 1.1 uses that σ and its adjoints are in ˜̃BS
1
1,1).
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