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Abstract In this paper, we are going to describe the first and second complex inter-
polations of closed subspaces of Morrey spaces, based on our previous results in [11].
Our results will be general enough because we are going to deal with abstract linear
subspaces satisfying the lattice condition only. We also consider the closure in Morrey
spaces on bounded domains of the set of smooth functions with compact support.
Here, we do not require the smoothness condition on domains.
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1 Introduction

For 1 ≤ q ≤ p < ∞, the Morrey space Mp
q = Mp

q (Rn) is defined to be the set of
all q-locally integrable functions f on R

n such that

‖ f ‖Mp
q

:= sup
x∈Rn ,r>0

|B(x, r)| 1p − 1
q

(∫
B(x,r)

| f (y)|q dy

) 1
q

< ∞. (1.1)
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Here, B(x, r) denotes the ball centered at x ∈ R
n with radius r . The interpolations

of Morrey spaces date back to the papers around 1960s. Campanato and Murthy [5],
Spanne [31], and Peetre [24] obtained some results on the boundedness of operators
on Morrey spaces and the interpolation spaces.

Based on the definition of the complex interpolation functors (X0, X1) �→
[X0, X1]θ and (X0, X1) �→ [X0, X1]θ , introduced by Calderón in [4], whose defi-
nition we recall in Sect. 2, the following results are known:

Theorem 1.1 [14,16] Suppose that θ ∈ (0, 1), 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 <

∞, and p0
q0

= p1
q1
. Assume q0 �= q1. Define

1

p
:= 1 − θ

p0
+ θ

p1
and

1

q
:= 1 − θ

q0
+ θ

q1
.

Then

(i) (Lu et al. [16])
[Mp0

q0 ,Mp1
q1

]
θ

= Mp0
q0 ∩ Mp1

q1

Mp
q

(ii) (Lemarié-Rieusset [14])
[Mp0

q0 ,Mp1
q1

]θ = Mp
q .

One of our main results in this note refines Theorem 1.1 (i):

Theorem 1.2 Keep the same assumption as in Theorem 1.1. Then we have

[Mp0
q0 ,Mp1

q1

]
θ

=
{
f ∈ Mp

q : lim
a→0+ ‖χ{| f |<a} f ‖Mp

q
= 0

}
. (1.2)

Note that the right-hand side is independent of p0, p1, q0, and q1. We shall prove
(1.2) in a more general framework.

The aim of this paper is to investigate the effect of the first and second complex
interpolation functors through closed subspaces.

We use the following notation for closed subspaces of the Morrey space Mp
q :

Definition 1.3 Assume that a linear subspace U ⊂ L0 enjoys the lattice property:
g ∈ U whenever f ∈ U and |g| ≤ | f |. For 1 ≤ q < p < ∞, define

UMp
q := U ∩ Mp

q
Mp

q
(1.3)

U �� Mp
q := { f ∈ Mp

q : χ{a≤| f |≤b} f ∈ UMp
q for all 0 < a < b < ∞} . (1.4)

To investigate further the role of the closed subspace U in the second complex
interpolation, we prove the following theorem:

Theorem 1.4 Suppose that θ ∈ (0, 1), 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 < ∞, and
p0
q0

= p1
q1
. Assume q0 �= q1. Define

1

p
:= 1 − θ

p0
+ θ

p1
and

1

q
:= 1 − θ

q0
+ θ

q1
.
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Then we have

[
UMp0

q0 ,UMp1
q1

]
θ

= UMp
q ∩ [Mp0

q0 ,Mp1
q1

]
θ

=
{
f ∈ UMp

q ∩ Mp
q : lim

a→0+ ‖χ{| f |<a} f ‖Mp
q

= 0

}
. (1.5)

and

[
UMp0

q0 ,UMp1
q1

]θ = U �� Mp
q . (1.6)

We will prove (1.5) in a more general framework.
More and more attention has been paid for the closed subspaces of the Morrey

space Mp
q with 1 ≤ q < p < ∞ [29,40]. Some of them are realized as UMp

q for
some U in Definition 1.3.

Definition 1.5 Let 1 ≤ q ≤ p < ∞.

1. [11, p. 5] The space˜Mp
q is defined to be the closure of L∞

c inMp
q .

2. [29, Definition 4.5] A function f in Mp
q is said to have “absolutely continu-

ous norm” in Mp
q if ‖ f χEk‖Mp

q
→ 0 for every sequence {Ek}∞k=1 satisfying

χEk (x) → 0 a.e. The set of all functions inMp
q of absolutely continuous norm is

denoted by M̂p
q .

3. [40, Definition 2.23]

Mp

q denotes the closure with respect toMp
q of the set of all

smooth functions f such that ∂α f ∈ Mp
q for all multi-indexes α.

4. [40, Definition 2.23]
◦
Mp

q denotes the closure with respect to Mp
q of C∞

c , or
equivalently, the closure of S inMp

q .

5. [40, Sect. 2]
∗
Mp

q denotes the closure with respect toMp
q of the set of all compactly

supported functions L0 inMp
q .

6. [6, p. 1] Mp
q denotes the closure with respect to Mp

q of the set of all essentially
bounded functions inMp

q .

From the definition, it is easy to see that M̃p
q = ◦

Mp
q and that M̃p

q ,
∗
Mp

q , and Mp
q

are realized asUMp
q for some linear spaceU enjoying the lattice property;U = L∞

c ,
L0, and L∞ do the job, respectively.

The closed subspaces M̂p
q and


Mp

q arise naturally. We refer to [40, Theorem 2.29]

for

Mp

q and to [29, Theorem 4.3] for M̂p
q .

Let θ ∈ (0, 1), 1 < q ≤ p < ∞, 1 < q0 ≤ p0 < ∞, and 1 < q1 ≤ p1 < ∞
satisfy p0 < p < p1 and

1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
,

q0
p0

= q1
p1

.
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Then we have the following relations:

◦
Mp

q � M̃p
q = M̂p

q �

∗
Mp

q , (1.7)
◦
Mp

q �


Mp

q , (1.8)

M̃p
q � Mp0

q0 ∩ Mp1
q1

Mp
q
, (1.9)

M̃p
q � [M̃p0

q0 ,M̃p1
q1 ]θ , (1.10)

[ ◦
Mp0

q0 ,
◦
Mp1

q1 ]θ = ◦
Mp

q . (1.11)

according to [40, Lemma 2.33], [40, Remark 2.36], [40, Lemma 2.37, Corollary 2.38],
[40, Remark 2.36], [29, Theorem 4.3] and [37, Corollary 1.4], respectively. We have
no further inclusion; see [11, Sect. 9].

In this paper we also consider the complex interpolations of generalized Morrey
spaces, introduced by Nakai [19]. The thrust is that generalized Morrey spaces can be
contained in the space L∞. In fact, in many results the indicator function of the level
set of f comes into play as is the case with many results presented in this paper. Recall
that for 1 ≤ q < ∞ and a function ϕ : (0,∞) → (0,∞), the generalized Morrey
space Mϕ

q is defined to be the set of all functions f ∈ Lq
loc such that

‖ f ‖Mϕ
q

:= sup
x∈Rn ,r>0

ϕ(r)

(
1

|B(x, r)|
∫
B(x,r)

| f (y)|q dy

) 1
q

is finite.We assume that ϕ belongs toGq , that is, ϕ is increasing but that t �→ t−n/qϕ(t)
is decreasing; see the work [20, p. 446] which justifies this assumption. Note that, for
ϕ(t) := tn/p, where 1 ≤ q ≤ p < ∞, we have Mϕ

q = Mp
q . See Sect. 2.3 for

more examples of ϕ. Our previous results on the complex interpolation of generalized
Morrey spaces are given as follows:

Theorem 1.6 [11, Theorem 2] Let θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤ q1 < ∞, ϕ0 ∈ Gq0 ,
ϕ1 ∈ Gq1 , and ϕ

q0
0 = ϕ

q1
1 . Define ϕ := ϕ1−θ

0 ϕθ
1 and 1

q := 1−θ
q0

+ θ
q1
. Then we have

[
Mϕ0

q0 ,Mϕ1
q1

]
θ

= Mϕ0
q0 ∩ Mϕ1

q1

Mϕ
q
and
[
Mϕ0

q0 ,Mϕ1
q1

]θ = Mϕ
q .

The following is our interpolation result which includes (1.2).

Theorem 1.7 Let θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤ q1 < ∞, ϕ0 ∈ Gq0 , ϕ1 ∈ Gq1 , and
ϕ
q0
0 = ϕ

q1
1 . Define ϕ := ϕ1−θ

0 ϕθ
1 and 1

q := 1−θ
q0

+ θ
q1
. Then we have

[
Mϕ0

q0 ,Mϕ1
q1

]
θ

=
{
f ∈ Mϕ

q : lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0

}
. (1.12)

Note again that the right-hand side is independent of ϕ0, ϕ1, q0, and q1.
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We remark that (1.12) refines the general result asserting that [Mϕ0
q0 ,Mϕ1

q1 ]θ is the
closure of Mϕ0

q0 ∩ Mϕ1
q1 inMϕ

q .
We use the following notation for closed subspaces of generalized Morrey spaces:

Definition 1.8 Let U be the same as in Definition 1.3, 1 ≤ q < ∞, and ϕ ∈ Gq .
Define UMϕ

q := U ∩ Mϕ
q
Mϕ

q
and

U �� Mϕ
q :=
{
f ∈ Mϕ

q : χ{a≤| f |≤b} f ∈ UMϕ
q for all 0 < a < b < ∞

}
.

The complex interpolation result for UMϕ
q is given in the following theorem:

Theorem 1.9 Suppose that θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤ q1 < ∞, and ϕ
q0
0 = ϕ

q1
1 .

Define

ϕ := ϕ1−θ
0 ϕθ

1 and
1

q
:= 1 − θ

q0
+ θ

q1
.

Then we have

[
UMϕ0

q0 ,UMϕ1
q1

]
θ

= UMϕ
q ∩
[
Mϕ0

q0 ,Mϕ1
q1

]
θ

(1.13)

=
{
f ∈ UMϕ

q ∩ Mϕ
q : lim

a→0+ ‖χ{| f |<a} f ‖Mϕ
q

= 0

}
, (1.14)

[
UMϕ0

q0 ,UMϕ1
q1

]θ = U �� Mϕ
q . (1.15)

As a special case for these examples, we have the following results:

Corollary 1.10 [11, Theorems 5.2 and 5.12] Suppose that θ ∈ (0, 1), 1 ≤ q0 < ∞,
1 ≤ q1 < ∞, and ϕ

q0
0 = ϕ

q1
1 . Define ϕ := ϕ1−θ

0 ϕθ
1 and 1

q := 1−θ
q0

+ θ
q1
.

1. The description of the first interpolation functor of these closed subspaces is as
follows:

[
˜Mϕ0

q0 ,
˜Mϕ1

q1

]
θ

= ˜Mϕ
q ,

[ ∗
Mϕ0

q0 ,
∗

Mϕ1
q1

]
θ

= ˜Mϕ
q ,
[
Mϕ0

q0 ,Mϕ1
q1

]
θ

= Mϕ
q .

2. The description of the second interpolation functor of these closed subspaces is
as follows:

[
˜Mϕ0

q0 ,
˜Mϕ1

q1

]θ =
[ ∗
Mϕ0

q0 ,
∗

Mϕ1
q1

]θ
=
⋂

0<a<b<∞

{
f ∈ Mϕ

q : χ{a≤| f |≤b} f ∈ ˜Mϕ
q

}
,

(1.16)[
Mϕ0

q0 ,Mϕ1
q1

]θ = Mϕ
q . (1.17)
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To investigate the effect of the finiteness of the ambient spaces, we considerMorrey
spaces on bounded connected open set � ⊆ R

n . For 1 ≤ q < ∞ and ϕ ∈ Gq , the
space Mϕ

q (�) is defined to be the set of all functions f ∈ Lq(�) such that

‖ f ‖Mϕ
q (�) := sup

x∈�,0<r<diam(�)

ϕ(r)

(
1

|B(x, r)|
∫
B(x,r)∩�

| f (y)|q dy

) 1
q

< ∞.

Here, we do not require that � is smooth. Let
◦
Mϕ

q (�) be the closure of C∞
c (�) in

Mϕ
q (�). In the special case of ϕ := 1, one defines

◦
L∞(�) := ◦

Mϕ
q (�). Via the

mollification, we shall show that
◦
Mϕ

q (�) is the closure of Cc(�) in Mϕ
q (�). We

remark that, for U := L0(�), we have UMϕ
q = Mϕ

q (�).
The interpolation result for these spaces is presented in the following theorem:

Theorem 1.11 Let θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤ q1 < ∞, ϕ0 ∈ Gq0 , and ϕ1 ∈ Gq1 .
Assume ϕ

q0
0 = ϕ

q1
1 . Define 1

q := 1−θ
q0

+ θ
q1

and ϕ := ϕ1−θ
0 ϕθ

1 . Then we have

[ ◦
Mϕ0

q0 (�),
◦
Mϕ1

q1 (�)

]
θ

= ◦
Mϕ

q (�).

The related result in R
n can be seen in [37, Corollary 1.4].

Let us explain why the interpolations of Morrey spaces are complicated unlike
Lebesgue spaces. Noteworthy is the fact that the first complex interpolation functor
behaves differently from Lebesgue spaces. This problem comes basically from the
fact that the Morrey norm Mp

q involves the supremum over all balls B(a, r). Due to
this fact, we have many difficulties when 1 < q < p < ∞, namely:

1. The Morrey space Mp
q is not reflexive; see [29, Example 5.2] and [36, Theorem

1.3].
2. The Morrey space Mp

q does not have C∞
c as a dense closed subspace; see [33,

Proposition 2.16].
3. The Morrey space Mp

q is not separable; see [33, Proposition 2.16].
4. The Morrey space Mp

q is not included in L1 + L∞; see Sect. 6 for the proof.

The non-density of C∞
c and the failure of reflexivity and separability influence

many other related function spaces such as Besov–Morrey spaces, Triebel–Lizorkin–
Morrey spaces, Besov-type spaces, and Triebel–Lizorkin type spaces. These spaces
are nowadays called smoothness Morrey spaces. We remark that these spaces cover
Morrey spaces as a special case as is shown in [17, Proposition 4.1]. We refer to
[15, Theorem 9.6] and [23, Corollary 6.2] for the counterpart of generalized Morrey
spaces. We refer to [37,38,40] for the results of this direction. Since we do not deal
with smoothness Morrey spaces in this paper, we content ourselves with listing the
papers containing the definition of the function spaces [12,17,18,27,32,34,35] as
well as the textbooks [33,39] without stating the precise definitions. As is pointed out
in [37, Remark 1.9], the second author made a careless claim in [28, Theorem 5.4]
that (homogeneous) Besov–Morrey spaces are closed under taking the first complex
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interpolation. However, this mistake comes essentially from themisunderstanding that
[Mp0

q0 ,Mp1
q1 ]θ = Mp

q .
Despite a counterexample byBlasco et al. [2,26], the interpolation theory ofMorrey

spaces progressed somuch. As for the real interpolation results, Burenkov andNursul-
tanov obtained an interpolation result in local Morrey spaces [3]. Nakai and Sobukawa
generalized their results to Bw

u setting [22], where Bw
u denotes the weighted Bσ -space.

We made a significant progress in the complex interpolation theory of Morrey spaces.
Denote by [X0, X1]θ the first complex interpolation; see Definition 2.1. In [8, p. 35]
Cobos, Peetre and Persson pointed out that

[Mp0
q0 ,Mp1

q1

]
θ

⊂ Mp
q

as long as 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 < ∞, and 1 ≤ q ≤ p < ∞ satisfy

1

p
= 1 − θ

p0
+ θ

p1
,

1

q
= 1 − θ

q0
+ θ

q1
. (1.18)

As is shown in [13, Theorem 3(ii)], when an interpolation functor F satisfies

F
[Mp0

q0 ,Mp1
q1

] = Mp
q

under the condition (1.18), then
q0
p0

= q1
p1

(1.19)

holds. Lemarié-Rieusset showed this assertion by using the counterexample, given by
Ruiz and Vega in [26]. Lemarié-Rieusset also proved that we can choose the second
complex interpolation functor, introduced by Calderón [4]. Meanwhile, as for the
interpolation result under (1.18) and (1.19) by the first complex interpolation functor,
also introduced by Calderón [4], Lu et al. [16, Theorem 1.2] obtained Theorem 1.1 (i).
They also extended this result by placing themselves in the setting of a metric measure
space. Their technique is to calculate the Calderón product; see [16].

We organize the remaining part of this paper as follows: Sect. 2 collects some fun-
damental facts on complex interpolation functors. Section 3 is dedicated to Morrey
spaces and Sect. 4 generalizes what we obtained to generalizedMorrey spaces. Gener-
alized Morrey spaces can be a proper subspace of L∞. This result forces the result in
[11] to be decomposed into two cases. Here we can unify them. In Sect. 5 we consider
the function spaces on bounded domains.

2 Preliminaries

2.1 Complex Interpolation Functors

We recall the definition of the complex interpolation functors (see [1,4]). We write
S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and let S be its interior.
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Definition 2.1 [Calderón’s first complex interpolation space] Let (X0, X1) be a com-
patible couple of Banach spaces.

1. The space F(X0, X1) is defined as the set of all functions F : S → X0 + X1 such
that
(a) F is continuous on S̄ and sup

z∈S̄
‖F(z)‖X0+X1 < ∞,

(b) F is holomorphic on S,
(c) the functions t ∈ R �→ F( j + i t) ∈ X j are bounded and continuous on R for

j = 0, 1.
The space F(X0, X1) is equipped with the norm

‖F‖F(X0,X1) := max

{
sup
t∈R

‖F(i t)‖X0 , sup
t∈R

‖F(1 + i t)‖X1

}
.

2. Let θ ∈ (0, 1). Define the complex interpolation space [X0, X1]θ with respect to
(X0, X1) to be the set of all functions f ∈ X0 + X1 such that f = F(θ) for some
F ∈ F(X0, X1). The norm on [X0, X1]θ is defined by

‖ f ‖[X0,X1]θ := inf
{‖F‖F(X0,X1) : f = F(θ) for some F ∈ F(X0, X1)

}
.

Let X be aBanach space. The spaceLip(R, X) is defined to be the set of all functions
F : R → X for which the quantity

‖F‖Lip(R,X) := sup
−∞<s<t<∞

‖F(t) − F(s)‖X
|t − s| < ∞.

Definition 2.2 (Calderón’s second complex interpolation space) Let (X0, X1) be a
compatible couple of Banach spaces.

1. Define G(X0, X1) as the set of all functions G : S̄ → X0 + X1 such that

(a) G is continuous on S̄ and sup
z∈S̄

∥∥∥ G(z)
1+|z|
∥∥∥
X0+X1

< ∞,

(b) G is holomorphic on S,
(c) the functions

t ∈ R �→ G( j + i t) − G( j) ∈ X j

are Lipschitz continuous on R for j = 0, 1.
The space G(X0, X1) is equipped with the norm

‖G‖G(X0,X1) := max
{‖G(i ·)‖Lip(R,X0), ‖G(1 + i ·)‖Lip(R,X1)

}
. (2.1)

2. Let θ ∈ (0, 1). Define the complex interpolation space [X0, X1]θ with respect to
(X0, X1) to be the set of all functions f ∈ X0 + X1 such that f = G ′(θ) for some
G ∈ G(X0, X1). The norm on [X0, X1]θ is defined by

‖ f ‖[X0,X1]θ := inf
{‖G‖G(X0,X1) : f = G ′(θ) for some G ∈ G(X0, X1)

}
.
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The key tool used for proving our results is the three-lines lemma for Banach
space-valued function which we invoke as follows:

Lemma 2.3 [41, Corollary 2.3] Let X be a Banach space. Suppose that F : S → X
is continuous and bounded and also F |S : S → X is holomorphic. Then we have

sup
t∈R

‖F(θ + i t)‖X ≤
(
sup
t∈R

‖F(i t)‖X
)1−θ (

sup
t∈R

‖F(1 + i t)‖X
)θ

for all θ ∈ (0, 1).

The following lemma can be seen as a tool to relate the first and the second complex
interpolations:

Lemma 2.4 Let (X0, X1) be a compatible couple. Suppose that G ∈ G(X0, X1) and
θ ∈ (0, 1). For z ∈ S and k ∈ N, define

Hk(z) := G(z + 2−ki) − G(z)

2−ki
. (2.2)

Then Hk(θ) ∈ [X0, X1]θ .
Proof Note that, Hk inherits continuity and holomorphicity from G. By Lipschitz-
continuity of t ∈ R �→ G(i t) − G(0) ∈ X0 and t ∈ R �→ G(1 + i t) − G(1) ∈ X1,
we have

sup
t∈R

‖Hk(i t)‖X0+X1 ≤ sup
t∈R

∥∥∥∥G((2−k + t)i) − G(i t)

2−ki

∥∥∥∥
X0

≤ ‖G‖G(X0,X1)

and likewise sup
t∈R

‖Hk(1 + i t)‖X0+X1 ≤ ‖G‖G(X0,X1). By Lemma 2.3, we have

‖Hk(z)‖X0+X1 ≤ (‖G‖G(X0,X1)

)1−Re(z) (‖G‖G(X0,X1)

)Re(z) ≤ ‖G‖G(X0,X1). (2.3)

This shows that Hk(z) ∈ F(X0, X1). Thus, Hk(θ) ∈ [X0, X1]θ . ��

2.2 Some Elementary Facts on Closed Subspaces

Lemma 2.5 Let 1 ≤ q < ∞ and ϕ ∈ Gq . Define

A :=
{
f ∈ Mϕ

q : lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0

}
. (2.4)

Then, A is a closed subset of Mϕ
q .

Proof Let { f j }∞j=1 ⊂ A such that f j converges to f in Mϕ
q . Fix j ∈ N. For every

a > 0, we have

‖χ{| f |<a} f ‖Mϕ
q

≤ ‖ f − f j‖Mϕ
q

+ ‖χ{| f |<a}∩{| f j |≥2a} f j‖Mϕ
q

+ ‖χ{| f j |<2a} f j‖Mϕ
q
.
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On the set {| f | < a} ∩ {| f j | ≥ 2a}, we have

| f j | ≤ | f j − f | + | f | < | f j − f | + a ≤ | f j − f | + 1

2
| f j |,

hence | f j | ≤ 2| f − f j |. Consequently,

‖χ{| f |<a} f ‖Mϕ
q

≤ 3‖ f − f j‖Mϕ
q

+ ‖χ{| f j |<2a} f j‖Mϕ
q
.

Since f j ∈ A, we have

lim sup
a→0+

‖χ{| f |<a} f ‖Mϕ
q

≤ 3‖ f − f j‖Mϕ
q
.

By taking j → ∞, we have lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0, hence, f ∈ A. ��

We prove the following lemma:

Lemma 2.6 Let 1 ≤ q < ∞ and ϕ ∈ Gq . If f ∈ Mϕ
q , then

lim
R→∞ ‖χ{| f |>R} f ‖Mϕ

q
= 0. (2.5)

Proof Here, we do not assume that inf ϕ = 0. For every ε > 0, choose g = gε ∈
L∞ ∩ Mϕ

q such that ‖ f − g‖Mϕ
q

< ε. Observe that, for each R > 0, we have

|χ{| f |>R} f | ≤ |χ{| f |>R}∩{|g|≤R/2} f | + | f − g| + |χ{|g|>R/2}g|.

On the set {| f | > R} ∩ {|g| ≤ R/2}, we see that | f | ≤ | f − g| + R
2 ≤ | f − g| + | f |

2 ,
so |χ{| f |>R}∩{|g|≤R/2} f | ≤ 2| f − g|. Consequently, for R > 2‖g‖L∞ , we have

|χ{| f |>R} f | ≤ 3| f − g|.

Hence, ‖χ{| f |>R} f ‖Mϕ
q

≤ 3‖ f − g‖Mϕ
q

< 3ε. Thus, we have showed that (2.5)
holds. ��

Under the conditions inTheorem1.7,wehave the following approximation formula:

Lemma 2.7 Maintain the same conditions as Theorem 1.7. Let f ∈ Mϕ0
q0 ∩ Mϕ1

q1 .
Then, we have f ∈ Mϕ

q and f = lim
a→0+ χ{a≤| f |≤a−1} f inMϕ

q .

Proof Without any loss of generality, wemay assume q1 < q0. The proof is immediate

from | f − χ{a≤| f |≤a−1} f | ≤ a
q0
q −1| f | q0q + a1−

q1
q | f | q1q . ��
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2.3 Example of ϕ in Mϕ
q

As we mentioned in the introduction, the case when ϕ(t) = tn/p boils down to Mp
q .

However, considering generalized Morrey spaces is not a mere quest to generalization
for its own sake. This applies to the point of applications of generalizedMorrey spaces
and to the context of interpolations. First, we give an example showing that generalized
Morrey spaces are useful.

Example 2.8 In this example, we claim that generalized Morrey spaces are useful. In
[30, Theorem 5.1] the following estimate is shown:

‖(1 − 
)
− n

p f ‖Mϕ
1

≤ C‖ f ‖Mp
q
.

when 1 < q ≤ p < ∞ and ϕ(t) = (1 + t)n/p/ log(3 + t) for t > 0. We know
that log here can not be removed. See [9, Sect. 5] and [23, Proposition 7.3] for more
generalizations.

Generalized Morrey spaces seem to reflect the interpolation property as the follow-
ing two examples show.

Example 2.9 Let 1 ≤ q < ∞ and ϕ0, ϕ1 ∈ Gq . Define ϕ = ϕ0 + ϕ1. Then Mϕ
q =

Mϕ0
q ∩ Mϕ1

q with norm equivalence.

Example 2.10 As is seen from Sect. 1, it seems that the first and second complex
interpolation functors seem to control the modulus of the function. From this point, it
is important to pay attention to the following proposition for 1 ≤ q < ∞ and ϕ ∈ Gq .
L∞ ⊂ Mϕ

q holds if and only if inf ϕ > 0. See [21, Proposition 3.3].

3 The Interpolations of Closed Subspaces of Morrey Space

First, we prove the following lemma:

Lemma 3.1 Suppose that θ ∈ (0, 1), 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 < ∞, and
p0
q0

= p1
q1
. Assume q0 �= q1. Define

1

p
:= 1 − θ

p0
+ θ

p1
and

1

q
:= 1 − θ

q0
+ θ

q1
.

Let E be a measurable set such that χE ∈ UMp
q . Then χE ∈ UMp0

q0 ∩UMp1
q1 .

Proof Let χE ∈ UMp
q and ε > 0. Choose gε ∈ U ∩ Mp

q such that

‖χE − gε‖Mp
q

< ε.

Define hε := χ{gε �=0}∩E . Then

|χE − hε| = χE − hε ≤ |χE − gε|.
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Consequently, for j = 0, 1, we have

‖χE − hε‖Mp j
q j

= ‖χE − hε‖q/q j

Mp
q

< εq/q j .

This shows that χE ∈ UMp0
q0 ∩UMp1

q1 . ��

Lemma 3.2 Keep the assumption in Lemma 3.1. Then we have

U �� Mp
q ⊆ [UMp0

q0 ,UMp1
q1

]θ
.

Proof Without loss of generality, assume that q0 > q1. Let f ∈ U �� Mp
q . Since

χ{a≤| f |≤b} ≤ 1
aχ{a≤| f |≤b}| f |, we have χ{a≤| f |≤b} ∈ UMp

q . From Lemma 3.1, we
have χ{a≤| f |≤b} ∈ UMp0

q0 ∩UMp1
q1 . For z ∈ S, define

F(z) := sgn( f )| f | qzq0 + q(1−z)
q1 and G(z) := (z − θ)

∫ 1

0
F(θ + (z − θ)t) dt. (3.1)

Decompose G(z) = G0(z) + G1(z) where G0(z) := χ{| f |≤1}G(z). Let 0 < ε < 1.
Since χ{ε≤| f |≤1} ∈ UMp0

q0 and

χ{ε≤| f |≤1}|G0(z)| ≤ (1 + |z|)(| f |q/q0 + | f |q/q1)χ{ε≤| f |≤1} ≤ 2(1 + |z|)χ{ε≤| f |≤1},
(3.2)

we have χ{ε≤| f |≤1}G0(z) ∈ UMp0
q0 . Observe that

‖G0(z) − χ{ε≤| f |≤1}G0(z)‖Mp0
q0

=
∥∥∥∥∥∥χ{| f |<ε}

F(z) − F(θ)(
q
q1

− q
q0

)
log | f |

∥∥∥∥∥∥
Mp0

q0

≤
∥∥∥∥∥∥

2| f |q/q0(
q
q1

− q
q0

)
log(ε−1)

∥∥∥∥∥∥
Mp0

q0

≤
2‖ f ‖q/q0

Mp
q(

q
q1

− q
q0

)
log ε−1

→ 0 (3.3)

as ε → 0+. Hence G0(z) ∈ UMp0
q0 . Similarly, G1(z) ∈ UMp1

q1 . Thus G(z) ∈
UMp0

q0 +UMp1
q1 . Let t ∈ R and R > 1. Since χ{R−1≤| f |≤R} ∈ UMp0

q0 and

|(G(i t) − G(0))|χ{R−1≤| f |≤R} ≤ (2 + |t |)(Rq/q0 + Rq/q1)χ{R−1≤| f |≤R}, (3.4)
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we have [G(i t) − G(0)]χ{R−1≤| f |≤R} ∈ UMp0
q0 . Note that

‖[G(i t) − G(0)]χRn\{R−1≤| f |≤R}‖Mp0
q0

≤
2‖ f ‖q/q0

Mp
q(

q
q1

− q
q0

)
log R

→ 0 (3.5)

as R → ∞. Thus G(i t) − G(0) ∈ UMp0
q0 . Similarly, G(1 + i t) − G(1) ∈ UMp1

q1 .
Since G ∈ G(Mp0

q0 ,Mp1
q1 ), we have G ∈ G(UMp0

q0 ,UMp1
q1 ). From f = G ′(θ), it

follows that f ∈ [UMp0
q0 ,UMp1

q1 ]θ . ��
Lemma 3.3 Let G ∈ G(UMp0

q0 ,UMp1
q1 ) and θ ∈ (0, 1). For z ∈ S and k ∈ N, define

Hk(z) by (2.2). Then we have Hk(θ) ∈ UMp0
q0 ∩UMp1

q1

Mp
q
.

Proof Let ε > 0.ByLemma2.4,we have Hk(θ) ∈ [UMp0
q0 ,UMp1

q1 ]θ . SinceUMp0
q0 ∩

UMp1
q1 is dense in [UMp0

q0 ,UMp1
q1 ]θ , we can find Jk(θ) ∈ UMp0

q0 ∩UMp1
q1 such that

‖Hk(θ) − Jk(θ)‖[
UMp0

q0 ,UMp1
q1

]
θ

< ε.

Since [UMp0
q0 ,UMp1

q1 ]θ ⊆ [Mp0
q0 ,Mp1

q1 ]θ ⊆ Mp
q , we have

‖Hk(θ) − Jk(θ)‖Mp
q

� ‖Hk(θ) − Jk(θ)‖[UMp0
q0 ,UMp1

q1 ]θ < ε.

This shows that Hk(θ) ∈ UMp0
q0 ∩UMp1

q1

Mp
q
. ��

Lemma 3.4 Assume the same conditions on the paramaters as in Lemma 3.1. Then
UMp0

q0 ∩UMp1
q1 ⊆ UMp

q .

Proof Without loss of generality assume that q0 > q1. Let f ∈ UMp0
q0 ∩ UMp1

q1 .
In view of Lemma 2.7, we may assume f = χ{a≤| f |≤a−1} f for some a > 0. By the
lattice property of the spaces UMp0

q0 , UMp1
q1 , and UMp

q , we may assume f = χE

for some measurable set E . Choose a sequence {g j }∞j=1 ⊆ U ∩ Mp1
q1 such that

lim
j→∞ ‖ f − g j‖Mp1

q1
= 0.

Define Fj = {g j �= 0} ∩ E . Hence | f − χFj | ≤ 2 and | f − χFj | ≤ | f − g j |.
Consequently,

‖ f − χFj ‖Mp
q

=
∥∥∥ | f − χFj |1−

q1
q | f − χFj |

q1
q

∥∥∥Mp
q

≤ 21−
q1
q ‖ f − g j‖

q1
q

Mp1
q1

.

This shows that f ∈ UMp
q . ��

Lemma 3.5 Under the assumption of Lemma 3.1,

Mp
q ∩UMp

q
Mp0

q0 +Mp1
q1 ⊆ U �� Mp

q .
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Proof Let f ∈ Mp
q ∩ UMp

q
Mp0

q0 +Mp1
q1 . We may assume that 0 < a < 1 < b < ∞

for the purpose of showing χ{a≤| f |≤b} f ∈ UMp
q for all 0 < a < b < ∞.

Choose { f j }∞j=1 ⊆ UMp
q such that

lim
j→∞ ‖ f − f j‖Mp0

q0 +Mp1
q1

= 0.

Let �(t) be a piecewise linear function such that �(1) = 1 and that

�′(t) := 2

a
χ(a/2,a)(t) − 1

b
χ(b,2b)(t) (3.6)

except at t = a
2 , a, b, 2b. According to [11, Lemma 3.3], we have

lim
j→∞ ‖χ{a≤| f |≤b}�(| f j |) − χ{a≤| f |≤b}�(| f |)‖Mp

q
= 0.

Since χ{a≤| f |≤b}�(| f j |) ≤ a−1| f j |, we have χ{a≤| f |≤b}�(| f |) ∈ UMp
q . From the

inequality χ{a≤| f |≤b}| f | ≤ bχ{a≤| f |≤b}�(| f |), it follows that χ{a≤| f |≤b} f ∈ UMp
q .
��

Now, the proof of (1.6) is given as follows:

Proof of (1.6) In view of Lemma 3.2, we only need to show [UMp0
q0 ,UMp1

q1 ]θ ⊆
U �� Mp

q . Let f ∈ [UMp0
q0 ,UMp1

q1 ]θ . Then there exists G ∈ G(UMp0
q0 ,UMp1

q1 )

such that G ′(θ) = f . Define Hk(z) by (2.2) for z ∈ S and k ∈ N. By Lemmas 3.3 and
3.4, we have Hk(θ) ∈ UMp

q . Since Hk(θ) converges to G ′(θ) = f in Mp0
q0 + Mp1

q1 ,
it follows from Lemma 3.5 that f ∈ U �� Mp

q . ��

4 The Interpolations of Closed Subspaces of Generalized Morrey Spaces

We remark that the inclusion UMϕ0
q0 ∩ UMϕ1

q1 ⊆ UMϕ
q is the important part for the

first and second complex interpolations of closed subspaces of Morrey spaces.

Lemma 4.1 Suppose that θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤ q1 < ∞, and ϕ
q0
0 = ϕ

q1
1 .

Define

ϕ := ϕ1−θ
0 ϕθ

1 and
1

q
:= 1 − θ

q0
+ θ

q1
.

Then UMϕ0
q0 ∩UMϕ1

q1 ⊆ UMϕ
q .

Proof The proof is similar to the proof of Lemma 3.4. ��
We prove the generalization of Lemma 3.1 as follows:
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Lemma 4.2 Keep the same assumption as in Lemma 4.1. Let E be a measurable set
such that χE ∈ UMϕ

q . Then we have

χE ∈ UMϕ0
q0 ∩UMϕ1

q1 .

Proof Let χE ∈ UMϕ
q and choose {gk}∞k=1 ⊆ U ∩ Mϕ

q for which

lim
k→∞ ‖χE − gk‖Mϕ

q
= 0.

Define hk := χ{gk �=0}∩E . Then, for each k = 0, 1, we have

‖χE − hk‖Mϕ j
q j

= ‖χE − hk‖q/q j

Mϕ
q

≤ ‖χE − gk‖q/q j

Mϕ
q

→ 0

as k → ∞. Thus, χE ∈ UMϕ0
q0 ∩UMϕ1

q1 . ��

4.1 The First Complex Interpolation Method

We prove Theorem 1.7, which includes Theorem 1.2 as a special case.

Proof Without loss of generality, assume that q0 > q1. Define A by (2.4). Suppose
that f ∈ Mϕ

q satisfies

lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0. (4.1)

Note that, for every a > 0, we have

‖χ{a≤| f |} f ‖Mϕ1
q1

≤ sup
B=B(x0,r)

[
ϕ(r)

|B|1/q
(∫

B∩{a≤| f |}
aq1−q | f (x)|q dx

) 1
q
] q

q1

≤ a
q1−q
q1 ‖ f ‖

q
q1

Mϕ
q

< ∞. (4.2)

Given ε > 0, choose gε ∈ L∞ ∩ Mϕ
q such that

‖ f − gε‖Mϕ
q

< ε. (4.3)

Since gε ∈ L∞, we have

‖gε‖Mϕ0
q0

≤ ‖gε‖
q0−q
q0

L∞ ‖gε‖
q
q0

Mϕ
q

< ∞. (4.4)
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Define

gε,a :=
{

χ{| f |≥a} f, |gε| > | f |,
χ{| f |≥a}gε, |gε| ≤ | f |. (4.5)

Since |gε,a | ≤ |gε| and |gε,a | ≤ χ{| f |≥a}| f |, by (4.2) and (4.4), it follows that gε,a ∈
Mϕ0

q0 ∩ Mϕ1
q1 . Using the following inequality:

| f − gε,a | ≤ | f − χ{a≤| f |} f | + | f − gε|, (4.6)

we have

lim
ε,a→0+ ‖ f − gε,a‖Mϕ

q
= 0. (4.7)

This shows that f ∈ Mϕ0
q0 ∩ Mϕ1

q1

Mϕ
q = [Mϕ0

q0 ,Mϕ1
q1

]
θ
.

Conversely, let g ∈ Mϕ0
q0 ∩ Mϕ1

q1 . Then g ∈ Mϕ
q thanks to Lemma 2.7. Since

‖χ{|g|<a}g‖Mϕ
q

≤ a
q−q1
q ‖g‖Mϕ1

q1
→ 0 (4.8)

as a → 0+, we conclude that

Mϕ0
q0 ∩ Mϕ1

q1 ⊆
{
f ∈ Mϕ

q : lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0

}
.

Using [11, Theorem 4.5], we get

[
Mϕ0

q0 ,Mϕ1
q1

]
θ

= Mϕ0
q0 ∩ Mϕ1

q1

Mϕ
q ⊆
{
f ∈ Mϕ

q : lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0

}

as desired. ��
Next, we prove (1.13).

Proof of (1.13) Without loss of generality, assume that q0 > q1. By Theorem 1.7, we
have

[
UMϕ0

q0 ,UMϕ1
q1

]
θ

⊆
[
Mϕ0

q0 ,Mϕ1
q1

]
θ

=
{
f ∈ Mϕ

q : lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0

}
.

Let g ∈ [UMϕ0
q0 ,UMϕ1

q1 ]θ and ε > 0. Choose gε ∈ UMϕ0
q0 ∩UMϕ1

q1 such that

‖g − gε‖[UMϕ0
q0 ,UMϕ1

q1 ]θ < ε. (4.9)
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Since UMϕ0
q0 ∩ UMϕ1

q1 ⊆ UMϕ
q , we have gε ∈ UMϕ

q . From [UMϕ0
q0 ,UMϕ1

q1 ]θ ⊆
[Mϕ0

q0 ,Mϕ1
q1 ]θ ⊆ Mϕ

q , it follows that

‖g − gε‖Mϕ
q

� ε, (4.10)

and hence, g ∈ UMϕ
q .

Conversely, let f ∈ Mϕ
q ∩UMϕ

q such that

lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q
= 0.

From Lemma 2.6, we have

lim
a→0+ ‖χ{| f |>a−1} f ‖Mϕ

q
= 0.

Thus,

‖ f − χ{a≤| f |≤a−1} f ‖Mϕ
q

≤ ‖χ{| f |<a} f ‖Mϕ
q

+ ‖χ{| f |>a−1} f ‖Mϕ
q

→ 0

as a → 0+. Observe also that χ{a≤| f |≤a−1} f ∈ Mϕ
q ∩ UMϕ

q thanks to the lattice
property ofU . As a result, we may assume that f = χ{a≤| f |≤a−1} f for some 0 < a <

1. For every z ∈ S, define

F(z) := sgn( f )| f |q
(
1−z
q0

+ z
q1

)
.

Decompose F(z) as F0(z) := F(z)χ{| f |≤1} and F1(z) := F(z)χ{| f |>1}. Note that, for
any 0 < b < c < ∞, we have a pointwise estimate:

χ{b≤| f |≤c} ≤ 1

b
χ{b≤| f |≤c}| f | ≤ | f |

b
, (4.11)

soχ{b≤| f |≤c} ∈ UMϕ
q . FromLemma4.2, it follows thatχ{b≤| f |≤c} ∈ UMϕ0

q0 ∩UMϕ1
q1 .

Since

|F0(z)| ≤ χ{a≤| f |≤1} and |F1(z)| ≤
(
a

− q
q0 + a

− q
q1

)
χ{1≤| f |≤a−1},

we have F(z) = F0(z) + F1(z) ∈ UMϕ0
q0 +UMϕ1

q1 . Moreover, we also have

sup
z∈S

‖F(z)‖UMϕ0
q0 +UMϕ1

q1
≤ ‖χ{a≤| f |≤1}‖UMϕ0

q0

+
(
a

− q
q0 + a

− q
q1

)
‖χ{1≤| f |≤a−1}‖UMϕ1

q1
.



1212 J Fourier Anal Appl (2017) 23:1195–1226

Next, we shall check that F |S : S → UMϕ0
q0 +UMϕ1

q1 is a holomorphic function.

For every z ∈ S, set H(z) :=
(

q
q1

− q
q0

)
(log | f |)F(z). Then H(z) ∈ UMϕ0

q0 +UMϕ1
q1

with

‖H(z)‖UMϕ0
q0 +UMϕ1

q1
≤
(
q

q1
− q

q0

)
(log a−1)

(
‖χ{a≤| f |≤1}‖UMϕ0

q0
+ (a−q/q0 + a−q/q1)‖χ{1≤| f |≤a−1}‖UMϕ1

q1

)
.

For each 0 < ε � 1, define Sε := {z ∈ S : ε < Re(z) < 1 − ε}. Let z ∈ Sε be fixed
and letw ∈ Sε be such that z+w ∈ Sε. As a consequence of the following inequalities

∣∣∣∣ F(z + w) − F(z)

w
− H(z)

∣∣∣∣ =
∣∣∣∣∣∣∣
| f |w
(

q
q1

− q
q0

)
− 1 − w

(
q
q1

− q
q0

)
log | f |

w

∣∣∣∣∣∣∣
|F(z)|

≤
∣∣∣∣
(
q

q1
− q

q0

)
log | f |
∣∣∣∣
( ∞∑
k=2

|w log | f ||k−1

k!

)
|F(z)|

≤
(
q

q1
− q

q0

)
log(a−1)

(
e|w| log(a−1) − 1

)
|F(z)|

and ‖F(z)‖UMϕ0
q0 +UMϕ1

q1
< ∞, we have

∥∥∥∥ F(z + w) − F(z)

w
− H(z)

∥∥∥∥
UMϕ0

q0 +UMϕ1
q1

�
(
e|w| log(a−1) − 1

)
‖F(z)‖UMϕ0

q0 +UMϕ1
q1

→ 0

as w → 0. Hence, F : Sε → UMϕ0
q0 + UMϕ1

q1 is holomorphic. Since ε > 0 is
arbitrary, we conclude that F : S → UMϕ0

q0 +UMϕ1
q1 is holomorphic.

Observe that for every w ∈ S, we have

|F ′(w)| ≤
(
q

q1
− q

q0

)
max
(
a

− q
q0 , a

− q
q1

)
log

1

a
× χ{a≤| f |≤a−1}. (4.12)
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Then we have

‖F(z) − F(z′)‖UMϕ0
q0 +UMϕ1

q1

=
∥∥∥∥
∫ z

z′
F ′(w) dw

∥∥∥∥
UMϕ0

q0 +UMϕ1
q1

≤ max

(
q

q0
,
q

q1

)
max
(
a

− q
q0 , a

− q
q1

)
log

1

a

×
(
‖χ{a≤| f |≤1} + χ{1<| f |≤a−1}‖UMϕ0

q0 +UMϕ1
q1

)
|z − z′|

≤ max

(
q

q0
,
q

q1

)
max
(
a

− q
q0 , a

− q
q1

)
log

1

a

×
(
‖χ{a≤| f |≤1}‖UMϕ0

q0
+ ‖χ{1<| f |≤a−1}‖UMϕ1

q1

)
|z − z′|

for all z, z′ ∈ S. Thus, F : S → UMϕ0
q0 +UMϕ1

q1 is a continuous function.
Note that, for all t ∈ R and j = 0, 1, we have

|F( j + i t)| = | f |
q
q j ≤ a

− q
q j χ{a≤| f |≤a−1},

so, F( j + i t) ∈ UMϕ j
q j . Furthermore, using (4.12), we get

‖F( j + i t) − F( j + i t ′)‖
UMϕ j

q j
=
∥∥∥∥
∫ j+i t

j+i t ′
F ′(w)dw

∥∥∥∥
UMϕ j

q j

≤
(
q

q1
− q

q0

)
max(a

− q
q0 , a

− q
q1 ) log

1

a

× ‖χ{a≤| f |≤a−1}‖UMϕ j
q j

|t − t ′|

for all t, t ′ ∈ R. This shows that t ∈ R �→ F( j + i t) ∈ UMϕ j
q j , j = 0, 1 are

continuous functions. In total, we have showed that F ∈ F(UMϕ0
q0 ,UMϕ1

q1 ). Since
F(θ) = f , we have f ∈ [UMϕ0

q0 ,UMϕ1
q1 ]θ as desired. ��

4.2 The Second Complex Interpolation Method

From now on, we shall always use the assumption of Theorem 1.9. To prove Theorem
1.9, we shall invoke and prove several lemmas:

Lemma 4.3 Keep the assumption in Theorem 1.9. Then we have

U �� Mϕ
q ⊆
[
UMϕ0

q0 ,UMϕ1
q1

]θ
. (4.13)
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Proof Assume that q0 > q1. We go through a similar argument as in the proof of
Lemma 3.2 to obtain (4.13). ��
Lemma 4.4 Let G ∈ G(Mϕ0

q0 ,Mϕ1
q1 ) and θ ∈ (0, 1). For z ∈ S and k ∈ N, define

Hk(z) by (2.2). Then Hk(θ) ∈ UMϕ0
q0 ∩UMϕ1

q1

Mϕ
q
.

Proof From Lemma 2.4, it follows that Hk(θ) ∈ [UMϕ0
q0 ,UMϕ1

q1 ]θ . Let ε > 0. Since
UMϕ0

q0 ∩UMϕ1
q1 is dense in [UMϕ0

q0 ,UMϕ1
q1 ]θ , we can find Jk(θ) ∈ UMϕ0

q0 ∩UMϕ1
q1

such that

‖Hk(θ) − Jk(θ)‖[UMϕ0
q0 ,UMϕ1

q1 ]θ < ε.

Since [UMϕ0
q0 ,UMϕ1

q1 ]θ ⊆ [Mϕ0
q0 ,Mϕ1

q1 ]θ ⊆ Mϕ
q , we have

‖Hk(θ) − Jk(θ)‖Mϕ
q

� ‖Hk(θ) − Jk(θ)‖[UMϕ0
q0 ,UMϕ1

q1 ]θ < ε.

This shows that Hk(θ) ∈ UMϕ0
q0 ∩UMϕ1

q1

Mϕ
q
. ��

Lemma 4.5 We use the assumption of Theorem 4.2. Then we have

Mϕ
q ∩UMϕ

q
Mϕ0

q0 +Mϕ1
q1 ⊆ U �� Mϕ

q .

Proof Let f ∈ Mϕ
q ∩ UMϕ

q
Mϕ0

q0 +Mϕ1
q1 . Assume 0 < a < 1 < b < ∞ as before.

Choose { f j }∞j=1 ⊆ UMϕ
q such that

lim
j→∞ ‖ f − f j‖Mϕ0

q0 +Mϕ1
q1

= 0.

Let �(t) be a function defined by (3.6). By a similar argument as in the proof of [11,
Lemma 3.3], we have

lim
j→∞ ‖χ{a≤| f |≤b}�(| f j |) − χ{a≤| f |≤b}�(| f |)‖Mϕ

q
= 0.

Since χ{a≤| f |≤b}�(| f j |) ≤ a−1| f j |, we have χ{a≤| f |≤b}�(| f |) ∈ UMϕ
q . From the

inequality χ{a≤| f |≤b}| f | ≤ bχ{a≤| f |≤b}�(| f |), it follows that χ{a≤| f |≤b} f ∈ UMϕ
q .
��

Now, we are ready to prove Theorem 1.9.

Proof of (1.15) In view of Lemma 4.3, we only need to show that

[
UMϕ0

q0 ,UMϕ1
q1

]θ ⊆ U �� Mϕ
q .
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Let f ∈ [UMϕ0
q0 ,UMϕ1

q1 ]θ . Then there exists G ∈ G(UMϕ0
q0 ,UMϕ1

q1 ) such that
G ′(θ) = f . For z ∈ S and k ∈ N, define Hk(z) by (2.2). By Lemmas 4.1 and 4.4,
we have Hk(θ) ∈ UMϕ

q . Since Hk(θ) converges to G ′(θ) = f in Mϕ0
q0 + Mϕ1

q1 , by
Lemma 4.5, it follows that f ∈ U �� Mϕ

q . ��
We compare Theorem 1.9 with our previous result.

Remark 4.6 Assume that inf ϕ > 0. According to [11, Theorem 5.12],

[
˜Mϕ0

q0 ,
˜Mϕ1

q1

]θ =
⋂

0<a<b<∞

{
f ∈ Mϕ

q ∩ L̃∞ : χ{a≤| f |≤b} f ∈ ˜Mϕ
q

}
. (4.14)

Meanwhile, in the light of Theorem 1.9, we have

[˜Mϕ0
q0 ,

˜Mϕ1
q1 ]θ =

⋂
0<a<b<∞

{
f ∈ Mϕ

q : χ{a≤| f |≤b} f ∈ ˜Mϕ
q

}
. (4.15)

Thus, the sets in the right-hand side of (4.14) and (4.15) coincide. In fact, this can be
verified directly from the fact that Mϕ

q ⊂ L∞ (see [11, Theorem 5.9]).

5 The Closure of Compactly Supported Functions in Morrey Spaces on
Bounded Connected Open Sets

We recall that we do not require that the domain � is smooth. In view of Theorem 5.1
below and the fact thatMϕ

q ⊃ L∞ if and only if inf ϕ > 0; see [21, Proposition 3.3],
we shall concentrate on the case inf ϕ = 0.

Lemma 5.1 Let 1 ≤ q < ∞, ϕ ∈ Gq , and � be bounded. Then we have L∞(�) ⊆
Mϕ

q (�). In particular, when inf ϕ > 0, we have Mϕ
q (�) = L∞(�).

Proof Let f ∈ L∞(�). For x ∈ � and 0 < r < diam(�), we have

ϕ(r)

(
1

|B(x, r)|
∫
B(x,r)∩�

| f (y)|q dy

) 1
q ≤ ϕ(diam(�))‖ f ‖L∞(�). (5.1)

Consequently, f ∈ Mϕ
q (�) with ‖ f ‖Mϕ

q (�) ≤ ϕ(diam(�))‖ f ‖L∞(�). This shows

that L∞(�) ⊆ Mϕ
q (�). When inf ϕ > 0, we combine L∞(�) ⊆ Mϕ

q (�) with [21,
Proposition 3.3] to obtain Mϕ

q (�) = L∞(�). ��

We shall prove Theorem 1.11. Our proof will use the identification of
◦
Mϕ

q (�) as
the vanishing generalized Morrey spaces. The definition of these spaces is given as
follows (see also [7,10,25]).
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Definition 5.2 Let 1 ≤ q < ∞, ϕ ∈ Gq , and f ∈ Mϕ
q (�). For 0 < r < diam(�),

define

η f,ϕ,q,�(r) := sup
x∈�,0<R<r

ϕ(R)

|B(x, R)| 1q
(∫

B(x,R)∩�

| f (y)|q dy

) 1
q

.

The generalized vanishing Morrey space VMϕ
q (�) is defined to be the subset of

Mϕ
q (�) such that

lim
r→0+ η f,ϕ,q,�(r) = 0.

For the setting in R
n , we also define

η f,ϕ,q,Rn (r) := sup
x∈Rn ,0<R<r

ϕ(R)

|B(x, R)| 1q
(∫

B(x,R)

| f (y)|q dy

) 1
q

(0 < r < ∞)

and V Mϕ
q (Rn) :=

{
f ∈ Mϕ

q (Rn) : lim
r→0+ η f,ϕ,q,Rn (r) = 0

}
.

Before we go further, a helpful remark may be in order.

Remark 5.3 When inf ϕ > 0, VMϕ
q (�) = {0} by the Lebesgue differentiation theo-

rem.

The fact that vanishing Morrey spaces and the closure of test functions in Morrey
spaces coincide can be traced back to [7, Lemma 1.2]. We generalize this fact in the
following lemmas:

Lemma 5.4 Let 1 ≤ q < ∞, ϕ ∈ Gq , inf ϕ = 0, and f ∈ VMϕ
q (�). Define

f̃ (x) :=
{
f (x), x ∈ �,

0, x ∈ R
n \ �.

Then we have lim
|h|→0+ ‖ f̃ (· + h) − f̃ ‖Mϕ

q (Rn) = 0.

Proof Fix r > 0. Since f̃ = 0 outside �, we have

η f̃ ,ϕ,q,Rn (r) = sup
x∈Rn ,0<R<r

ϕ(R)

(
1

|B(x, R)|
∫
B(x,R)∩�

| f (y)|q dy

)1/q
.
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Let �r := ∪z∈�B(z, r). Since ϕ ∈ Gq , we have

η f̃ ,ϕ,q,Rn (r) = sup
x∈�r ,0<R<r

ϕ(R)

(
1

|B(x, R)|
∫
B(x,R)∩�

| f (y)|q dy

)1/q

≤ 3n/q sup
x∈�,0<R<3r

ϕ(R)

(
1

|B(x, R)|
∫
B(x,R)∩�

| f (y)|q dy

)1/q

≤ 3n/qη f,ϕ,q,�(3r).

Since f ∈ VMϕ
q (�), we have lim

r→0+ η f,ϕ,q,�(3r) = 0, and hence

lim
r→0+ η f̃ ,ϕ,q,Rn (r) = 0.

Let h ∈ R
n . Then we have

‖ f̃ (· + h) − f̃ ‖Mϕ
q (Rn)

≤ sup
x∈Rn ,R≥r

ϕ(R)

(
1

|B(x, R)|
∫
B(x,R)

| f̃ (y + h) − f̃ (y)|q dy

)1/q

+ sup
x∈�,0<R<r

ϕ(R)

(
1

|B(x, R)|
∫
B(x,R)

| f̃ (y + h) − f̃ (y)|q dy

)1/q

≤ ϕ(r)

|B(x, r)|1/q ‖ f̃ (· − h) − f̃ ‖Lq (Rn)

+ 2 sup
x∈Rn ,0<R<r

ϕ(R)

|B(x, R)|1/q
(∫

B(x,R)

| f̃ (y)|q dy

)1/q
.

By the Lq -continuity of translation, we get

lim sup
|h|→0+

‖ f̃ (· + h) − f̃ ‖Mϕ
q (Rn) ≤ 2η f̃ ,ϕ,q,Rn (r).

Finally, taking r → 0+, we get lim
|h|→0+ ‖ f̃ (· + h) − f̃ ‖Mϕ

q (Rn) = 0.

Lemma 5.5 Let 1 ≤ q < ∞, ϕ ∈ Gq , and f ∈ Mϕ
q (Rn) be such that f vanishes

almost everywhere outside �. If

lim
|y|→0+ ‖ f (· − y) − f ‖Mϕ

q (�) = 0,

then f ∈ C∞(Rn) ∩ Mϕ
q (Rn)

Mϕ
q (�)

.

Proof By the translation, we may assume that 0 ∈ �. Let r0 > 0 be so small that
B(0, r0) ⊂ �. Let ψ be a smooth function supported on the unit ball B(0, r0), 0 ≤
ψ ≤ 1, and ‖ψ‖L1(�) = 1. For every x ∈ � and j ∈ N, define ψ j (x) := jnψ( j x).
Note that f ∗ ψ j ∈ C∞(Rn), since f is locally integrable.
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Let x0 ∈ � and r > 0 be fixed. By the Minkowski integral inequality, we have

( ∫
B(x0,r)∩�

∣∣ f ∗ ψ j (x) − f (x)
∣∣q dx
) 1

q

=
(∫

B(x0,r)∩�

∣∣∣∣
∫
B(0,1/j)

( f (x − y) − f (x))ψ j (y) dy

∣∣∣∣
q

dx

) 1
q

≤
∫
B(0,1/j)

ψ j (y)

(∫
B(x0,r)∩�

| f (x − y) − f (x)|q dx

)1/q
dy

≤ |B(0, r)|1/q
ϕ(r)

∫
B(0,1/j)

ψ j (y)‖ f (· − y) − f ‖Mϕ
q (�) dy

≤ |B(0, r)|1/q
ϕ(r)

sup
y∈B(0,1/j)

‖ f (· − y) − f ‖Mϕ
q (�).

Consequently, r and x0 being arbitrary, we have

‖ f − f ∗ ψ j‖Mϕ
q (�) ≤ sup

y∈B(0,1/j)
‖ f (· − y) − f ‖Mϕ

q (�).

Finally, by taking j → ∞, we get |y| → 0, and hence lim
j→∞ ‖ f − f ∗ψ j‖Mϕ

q (�) = 0.

This shows that f ∈ C∞(Rn) ∩ Mϕ
q (Rn)

Mϕ
q (�)

as desired. ��

Recall that we are assuming inf ϕ = 0. This assumption is necessary when we
derive (5.3) from (5.2) below.

Lemma 5.6 Let 1 ≤ q < ∞ and ϕ ∈ Gq be such that inf ϕ = 0. Then we have
◦
Mϕ

q (�) = VMϕ
q (�).

Proof As before a translation allows us to assume B(0, r0) ⊂ �. Let f ∈ ◦
Mϕ

q (�).
For any ε > 0, choose g ∈ C∞

c (�) such that

‖ f − g‖Mϕ
q (�) < ε.
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Let 0 < r < diam(�). Note that, for every R ∈ (0, r), we have

ϕ(R)

(
1

|B(x, R)|
∫
B(x,R)∩�

| f (y)|q dy

)1/q

≤ ϕ(R)

|B(x, R)|1/q
[(∫

B(x,R)∩�

| f (y) − g(y)|q dy

)1/q

+
(∫

B(x,R)∩�

|g(y)|q dy

)1/q]

≤ ‖ f − g‖Mϕ
q (�) + ‖g‖qL∞(�)ϕ(r)

≤ ε + ‖g‖L∞(�)ϕ(r).

Consequently,
η f,ϕ,q,�(r) ≤ ‖g‖L∞(�)ϕ(r). (5.2)

By taking r → 0+, we get
lim

r→0+ η f,ϕ,q,�(r) = 0. (5.3)

This shows that f ∈ VMϕ
q (�).

Conversely, by assuming f ∈ VMϕ
q (�), we shall show that f ∈ ◦

Mϕ
q (�). Define

f̃ (x) :=
{
f (x), x ∈ �,

0, x /∈ �.

By Lemmas 5.4 and 5.5, we can find {g̃ j }∞j=1 ⊂ C∞(Rn) ∩ Mϕ
q (Rn) such that

‖ f̃ − g̃ j‖Mϕ
q (�) ≤ 1

j
.

Define g j := χ�g̃ j . Since � is bounded, we have ‖g j‖L∞(�) � 1. Write � =⋃∞
k=1 Kk where {Kk}∞k=1 is a collection of compact sets with property Kk ⊆ intKk+1.

Let g j,k := g jχKk . Note that g j,k ∈ L∞
c (�). Let ψ ∈ C∞

c (�) with supp(ψ) ⊂
B(0, r0), 0 ≤ ψ ≤ 1, and ‖ψ‖L1 = 1. For every l ∈ N, define

ψl(x) := lnψ(lx).

For large l ∈ N, observe that g j,k ∗ ψl ∈ C∞
c (�) in view of the size of the support of

g j,k . Note that

‖ f − g j,k ∗ ψl‖Mϕ
q (�) ≤ ‖ f − g j‖Mϕ

q (�) + ‖g j − g j,k‖Mϕ
q (�)

+‖g j,k − g j,k ∗ ψl‖Mϕ
q (�).
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Since g j,k ∈ L∞
c (�) ⊆ V Mϕ

q (�) and

‖g j,k − g j,k ∗ ψl‖Mϕ
q (�) ≤ sup

y∈B(0, 1l )

‖g j,k − g j,k(· − y)‖Mϕ
q (�),

we have lim
l→∞ ‖g j,k − g j,k ∗ ψl‖Mϕ

q (�) = 0. For any ε > 0, choose δ > 0 such that

ϕ(r) < ε for every 0 < r < δ. Since g j ∈ L∞
c (Rn) ⊆ Lq(Rn) and

‖g j − g j,k‖Mϕ
q (�) ≤ sup

x∈�,0<r<δ

ϕ(r)

(
1

|B(x, r)|
∫
B(x,r)∩�

|g j (y)−g j,k(y)|q dy

)1/q

+ sup
x∈�,r≥δ

ϕ(r)

(
1

|B(x, r)|
∫
B(x,r)∩�

|g j (y) − g j,k(y)|q dy

)1/q

≤ ε‖g j‖L∞(�) + ϕ(δ)

|B(x, δ)|1/q ‖χ�\Kk g j‖Lq (Rn),

by the dominated convergence theorem, we have

lim sup
k→∞

‖g j − g j,k‖Mϕ
q (�) ≤ ε‖g j‖L∞(�).

Since ε > 0 is arbitrary, we have lim
k→∞ ‖g j − g j,k‖Mϕ

q (�) = 0. Consequently,

lim sup
k,l→∞

‖ f − g j,k ∗ ψl‖Mϕ
q (�) ≤ ‖ f − g j‖Mϕ

q (�) ≤ ‖ f̃ − g̃ j‖Mϕ
q (Rn) ≤ 1

j
.

By taking j → ∞, we see that f ∈ ◦
Mϕ

q (�). ��
Before proving Theorem 1.11, we shall prove the following lemmas:

Lemma 5.7 For all f ∈ Mϕ
q (�), we have

lim
a→0+ ‖χ{| f |<a} f ‖Mϕ

q (�) = 0.

Proof For every x ∈ � and 0 < r < diam(�), we have

ϕ(r)

(
1

|B(x, r)|
∫
B(x,r)∩�

χ{| f |<a}(y)| f (y)|q dy

) 1
q ≤ ϕ(diam(�))a.

Thus,

‖χ{| f |<a} f ‖Mϕ
q (�) ≤ ϕ(diam(�))a → 0

as a → 0+. ��
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Lemma 5.8 Let g ∈ VMϕ
q (�) and | f | ≤ |g|. Then we have f ∈ VMϕ

q (�).

Proof This is a direct consequence of η f,ϕ,q,�(r) ≤ ηg,ϕ,q,�(r) for every r > 0. ��

Lemma 5.9 Keep using the same assumption as in Theorem 1.11. Let E be a mea-
surable set such that χE ∈ VMϕ

q (�). Then χE belongs to VMϕ0
q0 (�) ∩ VMϕ1

q1 (�).

Proof From our assumption, we have ϕ
q0
0 = ϕ

q1
1 = ϕq . This implies

ηχE ,ϕ0,q0,�(r) = ηχE ,ϕ,q,�(r)q/q0 and ηχE ,ϕ1,q1,�(r) = ηχE ,ϕ,q,�(r)q/q1 .

By taking r → 0+, we see that χE ∈ VMϕ0
q0 (�) ∩ VMϕ1

q1 (�). ��

Finally, we give the proof of Theorem 1.11 as follows.

Proof of Theorem 1.11 Without loss of generality, we may assume that q0 > q1. By
a similar argument as in the proof of Theorem 1.7, we have

[ ◦
Mϕ0

q0 (�),
◦
Mϕ1

q1 (�)

]
θ

⊆
[
Mϕ0

q0 (�),Mϕ1
q1 (�)
]
θ

⊆ L∞(�) ∩ Mϕ
q (�)

Mϕ
q (�) ⊆ VMϕ

q (�).

Conversely let f ∈ ◦
Mϕ

q (�). For every z ∈ S, define

F(z) :=sgn( f )| f |q
(
1−z
q0

+ z
q1

)
, F0(z) :=χ{| f |≤1}F(z), and F1(z) := χ{| f |>1}F(z).

Since C∞
c (�) ⊆ L∞(�), we can combine Lemmas 2.6 and 5.7 to obtain

lim
a→0+ ‖ f − χ{a≤| f |≤a−1} f ‖Mϕ

q (�) = 0.

Therefore, we may assume that

f = χ{a≤| f |≤a−1} f. (5.4)

for some a ∈ (0, 1).
By Lemma 5.6, we have f ∈ VMϕ

q (�). Meanwhile, for any 0 < b < c < ∞, we

have (4.11). From Lemmas 5.6, 5.8, and 5.9, it follows that χ{b≤| f |≤c} ∈ ◦
Mϕ0

q0 (�) ∩
◦
Mϕ1

q1 (�). Since

|F0(z)|=| f |q
(
1−Re(z)

q0
+Re(z)

q1

)
χ{| f |≤1} =| f | q

q0 | f |q Re(z)
(

1
q1

− 1
q0

)
χ{a≤| f |≤1} ≤ χ{a≤| f |≤1}
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and

|F1(z)| =
(
| f | q

q0

)1−Re(z) (| f | q
q1

)Re(z)
χ{1<| f |<a−1}

≤ (| f |q/q0 + | f |q/q1
)
χ{1<| f |<a−1}

≤ (a−q/q0 + a−q/q1
)
χ{1<| f |<a−1},

we have F0(z) ∈ ◦
Mϕ0

q0 (�) and F1(z) ∈ ◦
Mϕ1

q1 (�), and hence F(z) ∈ ◦
Mϕ0

q0 (�) +
◦
Mϕ1

q1 (�). Moreover, we also have

sup
z∈S

‖F(z)‖ ◦
Mϕ0

q0 (�)+
◦
Mϕ1

q1 (�)

≤ sup
z∈S

‖F0(z)‖ ◦
Mϕ0

q0 (�)
+ ‖F1(z)‖ ◦

Mϕ1
q1 (�)

≤ ‖χ{a<| f |≤1}‖ ◦
Mϕ0

q0 (�)
+ (a

− q
q0 + a

− q
q1 )‖χ{1≤| f |≤a−1}‖ ◦

Mϕ1
q1 (�)

< ∞.

Observe that for all w ∈ S, we have

|F ′(w)|≤
(
q

q1
− q

q0

)(
| f | q

q0 +| f | q
q1

)
χ{a≤| f |≤a−1}| log | f ||≤Ca,q,q0,q1χ{a≤| f |≤a−1}

where Ca,q,q0,q1 :=
(

q
q0

− q
q1

) (
a−q/q0 + a−q/q1

)
log 1

a . Consequently, for all

z1, z2 ∈ S, we have

‖F(z2) − F(z1)‖ ◦
Mϕ0

q0 (�)+
◦
Mϕ1

q1 (�)

=
∥∥∥∥
∫ z2

z1
F ′(w) dw

∥∥∥∥ ◦
Mϕ0

q0 (�)+
◦
Mϕ1

q1 (�)

≤ Ca,q,q0,q1

(
‖χ{a≤| f |≤1}‖ ◦

Mϕ0
q0 (�)

+ ‖χ{1≤| f |≤a−1}‖ ◦
Mϕ1

q1 (�)

)
|z2 − z1|.

This shows that F : S → ◦
Mϕ0

q0 (�)+ ◦
Mϕ1

q1 (�) is a continuous function. Likewise, we

also can verify that F |S : S → ◦
Mϕ0

q0 (�) + ◦
Mϕ1

q1 (�) is a holomorphic function by the
same argument as in the proof of (1.13). On the boundary of S, we have

|F( j + i t)| = | f |
q
q j ≤ a

− q
q j χ{a≤| f |≤a−1}

for j = 0, 1 and t ∈ R from (4.11), so F( j + i t) ∈ ◦
Mϕ j

q j (�). By a similar argument
for showing the continuity of F(z), we also have

‖F( j + i t1) − F( j + i t2)‖ ◦
Mϕ j

q j (�)
≤ Ca,q,q0,q1‖χ{a≤| f |≤a−1}‖ ◦

Mϕ j
q j (�)

|t1 − t2|
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for all t1, t2 ∈ R. Hence F ∈ F(
◦
Mϕ0

q0 (�),
◦
Mϕ1

q1 (�)). Since F(θ) = f , we conclude

that f ∈ [ ◦
Mϕ0

q0 (�),
◦
Mϕ1

q1 (�)]θ as desired. ��
Acknowledgements The second author is supported by JSPS Grand-in-Aid for Scientific Research (C)
No. 16K05209.

6 Appendix: a function f ∈ M p
q \ (L1 + L∞)

We aim here to present an example of a function f ∈ Mp
q \ (L1 + L∞). Let n = 1

for simplicity. Define

f = f p :=
∞∑

j=100

[log2 log2 j]1/pχ[ j !, j !+[log2 log2 j]−1]. (6.1)

Lemma 6.1 Let 1 ≤ q < p < ∞. Then f given by (6.1) belongs toMp
q but does not

belong to L1 + L∞.

Proof Let (a, b) be an interval which intersects the support of f .

1. Case 1 : b− a < 2. In this case, there exists uniquely j ∈ N ∩ [100,∞) such that
[a, b] ∩ [ j !, j ! + [log2 log2 j]−1] �= ∅. Thus,

(b − a)
1
p− 1

q

(∫ b

a
f (t)q dt

) 1
q

= (b − a)
1
p − 1

q

(∫ min(b, j !+[log2 log2 j]−1)

max(a, j !)
f (t)q dt

) 1
q

≤ (min(b, j ! + [log2 log2 j]−1) − max(a, j !)) 1
p − 1

q

(∫ min(b, j !+[log2 log2 j]−1)

max(a, j !)
f (t)q dt

) 1
q

= [log2 log2 j] 1
p (min(b, j ! + [log2 log2 j]−1) − max(a, j !)) 1

p

≤ 1.

2. Case 2 : b − a > 2. Set

m := min([a, b] ∩ supp( f )), M := max([a, b] ∩ supp( f )).

Choose jm, jM ∈ N∩[100,∞) so thatm ∈ [ jm !, jm !+ jm−1] andM ∈ [ jM !, jM !+
jM−1]. If jM − jm ≤ 2, then we go through a similar argument as before. Assume
jM − jm ≥ 3. Then we have

b − a ≥ M − m ≥ jM ! − jm ! − jm
−1 ≥ jM ! − jm ! − 1.



1224 J Fourier Anal Appl (2017) 23:1195–1226

Thus,

(b − a)
1
p − 1

q

(∫ b

a
f (t)q dt

) 1
q

≤ ( jM ! − jm ! − 1)
1
p − 1

q

(∫ jM !+1

jm !
f (t)q dt

) 1
q

≤ C jM ! 1p − 1
q

⎛
⎝ jM∑

j= jm

(log2 log2 j)
q−p
p

⎞
⎠

1
q

≤ C.

Thus, f ∈ Mp
q .

Now we disprove f ∈ L1 + L∞. Let R be fixed. Then a geometric observation
shows that

‖ f − min( f, R)‖L1 ≤ ‖ f − h‖L∞

for any h ∈ L∞ with ‖h‖L∞ ≤ R.
Let S > 2R + 2 be an integer. Then

∫
f=S

( f − min( f, R)) = |{ f = S}|(S − R) ≥ S

2
|{ f = S}|

= S

2

22
S+1∑

k=22S

1

k
≥ CS(2S+1 − 2S).

Thus, ‖ f − min( f, R)‖L1 = ∞. Hence, f /∈ L1 + L∞.

Remark 6.2 For the case in R
n with n > 1, we can consider

f (x) = f (x1, . . . , xn) :=
n∏
j=1

f p(x j ),

where f p(x j ) is defined in (6.1).
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