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Abstract In this paper, we are going to describe the first and second complex inter-
polations of closed subspaces of Morrey spaces, based on our previous results in [11].
Our results will be general enough because we are going to deal with abstract linear
subspaces satisfying the lattice condition only. We also consider the closure in Morrey
spaces on bounded domains of the set of smooth functions with compact support.
Here, we do not require the smoothness condition on domains.
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1 Introduction

For 1 < g < p < oo, the Morrey space MP = M,’;(R”) is defined to be the set of
all g-locally integrable functions f on R” such that

_1 q
Iflae = sup  |BGr)| (/ If(y)l"dy) oo (LD
a xeR" r>0 B(x,r)

=
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Here, B(x, r) denotes the ball centered at x € R" with radius r. The interpolations
of Morrey spaces date back to the papers around 1960s. Campanato and Murthy [5],
Spanne [31], and Peetre [24] obtained some results on the boundedness of operators
on Morrey spaces and the interpolation spaces.

Based on the definition of the complex interpolation functors (Xo, X1) >
[Xo, X11s and (Xo, X1) — [Xo, X11?, introduced by Calderén in [4], whose defi-
nition we recall in Sect. 2, the following results are known:

Theorem 1.1 [14,16] Suppose that 6 € (0,1), 1 <gg < po < oo, 1 <q1 < p1 <
oo, and % = %. Assume qo # q1. Define

1 1-6 6 1 1—-60 6
— = + — and —:= + —.
p Po P1 q q0 q1

Then

—MI’
(i) (Luetal. [16]) [Mfs, MEI], = Mg A MG
(ii) (Lemarié-Rieusset [14]) [M20, MP1]" = MD.

One of our main results in this note refines Theorem 1.1 (i):

Theorem 1.2 Keep the same assumption as in Theorem 1.1. Then we have
(Mg, MG, = [f e MY lim |lxqp1<a) fll e = o] . (1.2)
a—0t q

Note that the right-hand side is independent of po, p1, go, and g;. We shall prove
(1.2) in a more general framework.

The aim of this paper is to investigate the effect of the first and second complex
interpolation functors through closed subspaces.

We use the following notation for closed subspaces of the Morrey space Mf;:

Definition 1.3 Assume that a linear subspace U C LY enjoys the lattice property:
g € U whenever f € U and |g| < |f]. For 1 < g < p < 0o, define

— M
UMy =unml ™ (1.3)
Usa M§ :={f € M} : xazifi=p) f € UM forall0 <a <b < oo}. (1.4)

To investigate further the role of the closed subspace U in the second complex
interpolation, we prove the following theorem:

Theorem 1.4 Suppose that 6 € (0,1), 1 < gg < po < 00, 1 < g1 < p1 < 00, and

% = % Assume qo # q1. Define

1 1-60 6 1 1-6 6
— = 4+ — and —:= + —.
p Po P1 q q0 q1
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Then we have
[UMG. UM, = UMG 0 Mg, M,

= [f e UME A MY - Tim |lxqf1<a) fllpgr = 0] . (15)
a—0t 4
and
[UME, UMD = U e MD. (1.6)

We will prove (1.5) in a more general framework.

More and more attention has been paid for the closed subspaces of the Morrey
space M with 1 < g < p < 00 [29,40]. Some of them are realized as UM} for
some U in Definition 1.3.

Definition 1.5 Let1 < g < p < o0.

1. [11, p. 5] The space M} is defined to be the closure of L in M}.

2. [29, Definition 4.5] A function f in /\/lg is said to have “absolutely continu-
ous norm” in ./\/tg7 if |fxell ML 0 for every sequence {Ey}72, satisfying
XE (x) — Oae. The set of all functions in /\/lflJ of absolutely continuous norm is
denoted by M.

&
3. [40, Definition 2.23] M/ denotes the closure with respect to M} of the set of all
smooth functions f such that 9% f € /\/lé7 for all multi-indexes o.

4. [40, Definition 2.23] /\/lf; denotes the closure with respect to ./\/l,I; of CS°, or
equivalently, the closure of S in M} .

%
5. [40, Sect. 2] M f; denotes the closure with respect to Mf; of the set of all compactly
supported functions L in MJ.

6. [6,p. 1] /\/lé7 denotes the closure with respect to ./\/lé7 of the set of all essentially
bounded functions in M,[; .

— o —_— ES _

From the definition, it is easy to see that M} = M,’; and that M{;, M,’;, and M,[;

are realized as U Mg for some linear space U enjoying the lattice property; U = LZ°,
L, and L> do the job, respectively.

o o
The closed subspaces Mg and /\/lf; arise naturally. We refer to [40, Theorem 2.29]
o —~
for /\/l('; and to [29, Theorem 4.3] for /\/l;;

Let6 € (0,1),l <g<p<oo,1l <gp<py<oo,and1l < g1 < p; < 00
satisfy pp < p < p1 and

1-6 6 1 _1-6 6 q q

1
P Po Pq q0 g1 po P
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Then we have the following relations:

o — — *
MG C MY =M§ C MY, (1.7)

o <
My C My, (1.8)

_ M

MG MM (1.9)
MG ME, M, (1.10)
[MqosMgll]ezMg- (111)

according to [40, Lemma 2.33], [40, Remark 2.36], [40, Lemma 2.37, Corollary 2.38],
[40, Remark 2.36], [29, Theorem 4.3] and [37, Corollary 1.4], respectively. We have
no further inclusion; see [11, Sect. 9].

In this paper we also consider the complex interpolations of generalized Morrey
spaces, introduced by Nakai [19]. The thrust is that generalized Morrey spaces can be
contained in the space L°°. In fact, in many results the indicator function of the level
setof f comes into play as is the case with many results presented in this paper. Recall
that for 1 < ¢ < oo and a function ¢ : (0, c0) — (0, 00), the generalized Morrey
space /\/127 is defined to be the set of all functions f € L?OC such that

Iflag = sup o) oK dy)q

xeR” r>0 (|B( r)' B(x,r)

is finite. We assume that ¢ belongs to G, that is, ¢ is increasing but that f — T g(1)
is decreasing; see the work [20, p. 446] which justifies this assumption. Note that, for
p(t) = /P where 1 < q < p < oo, we have M = M(’;. See Sect. 2.3 for
more examples of ¢. Our previous results on the complex interpolation of generalized
Morrey spaces are given as follows:

Theorem 1.6 [11, Theorem 2] Let® € (0,1), 1 <gp <00, 1 < g1 <00, 9o € Gy,

@1 € Gy, and gogo = (pl Define ¢ := gol -9 9 and L.— 1q—09 + qi]. Then we have

M
(Mg ;] =M oM ana [y ] = v,
The following is our interpolation result which includes (1.2).

Theorem 1.7 Let 6 € (0,1), 1 < go < 00, I < g1 < 00, 9o € Gy, 91 € Gg,, and
9l" = ¢]'. Define ¢ := (pé_g(pf and % = 1[1;09 + qe—l. Then we have

(M M| = [fewialin(}+||)({f|<a}f||/v{g=0~ (1.12)

Note again that the right-hand side is independent of ¢g, ¢1, go, and g .
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We remark that (1.12) refines the general result asserting that [M?g , M?} ]o is the
closure of M) N MY} in Mj.
We use the following notation for closed subspaces of generalized Morrey spaces:

Definition 1.8 Let U be the same as in Definition 1.3, 1 < g < oo, and ¢ € Qq.
(4

[ (qu
Define UMy := U N Mg and
Usa M = [ f € M8 Hasifizn f € UM forall 0 <a < b < oo} .

The complex interpolation result for U ./\/lg is given in the following theorem:

Theorem 1.9 Suppose that 6 € (0,1), 1 < gp < 00, 1 < g < 00, and ¢f° = ¢'.
Define

_ 1 1—-6 0

go::(pé Q(ple and — = + —

q q0 q1

Then we have
[ump umg ] =vmgn s Mo ] (1.13)
= [erMgﬂM?: im 1 xq f1<ay Sl aqe =O], (1.14)
a—07t 9

[ M, UM‘/”] = U s M. (1.15)

As a special case for these examples, we have the following results:

Corollary 1.10 [11, Theorems 5.2 and 5. 12] Suppose that9 € (0, 1) 1 <go < o0,

1<q1<ooand<p <p Deﬁne(p—fﬂo wla”d i +q_1'

. The description of the first interpolation functor of these closed subspaces is as
follows.‘

(MG MG = MG [Mgg,/vw'} =M, [Mig MG ] = Mj.

2. The description of the second interpolation functor of these closed subspaces is
as follows:

[MqO,M,‘ﬁl‘] [M‘/’O M“”T = {f € M7 Xta=ifi<b)f GW]

q0°
O<a<b<oo

(1.16)

— ——70
(M MTT] = M. (1.17)
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To investigate the effect of the finiteness of the ambient spaces, we consider Morrey
spaces on bounded connected open set 2 € R". For 1 < g < oo and ¢ € G, the
space /\/lif(Q) is defined to be the set of all functions f € L4(£2) such that

() dy)" <.

1 fll g2 () == sup @(r) (—
Ma(€ x€Q,0<r <diam(R) |B(x, )| JBx,mna

Here, we do not require that 2 is smooth. Let Mﬁ(Q) be the closure of CZ°(2) in
ME(Q). In the special case of ¢ := 1, one defines L>(Q) := M (Q). Via the

mollification, we shall show that M?(Q) is the closure of C.(£2) in ./\/lg(Q). We
remark that, for U := L%(2), we have UM¢ = Mg(Q).
The interpolation result for these spaces is presented in the following theorem:

Theorem 1.11 Let 6 € (0,1), 1 < go <00, 1 < g1 < 00, o € Gy, and @1 € G,.

Assume ¢l° = ¢'. Define é = lq;oe + (19—| and ¢ := ¢y~ ¢?. Then we have

[/f/lgg(sz), M (Q)] = MO
0

The related result in R” can be seen in [37, Corollary 1.4].

Let us explain why the interpolations of Morrey spaces are complicated unlike
Lebesgue spaces. Noteworthy is the fact that the first complex interpolation functor
behaves differently from Lebesgue spaces. This problem comes basically from the
fact that the Morrey norm /\/lfl7 involves the supremum over all balls B(a, r). Due to
this fact, we have many difficulties when 1 < ¢ < p < 0o, namely:

1. The Morrey space /\/lg7 is not reflexive; see [29, Example 5.2] and [36, Theorem
1.3].

2. The Morrey space Mf; does not have C° as a dense closed subspace; see [33,

Proposition 2.16].

The Morrey space Mf; is not separable; see [33, Proposition 2.16].

4. The Morrey space /\/lg is not included in L' + L>; see Sect. 6 for the proof.

W

The non-density of C2° and the failure of reflexivity and separability influence
many other related function spaces such as Besov—Morrey spaces, Triebel-Lizorkin—
Morrey spaces, Besov-type spaces, and Triebel-Lizorkin type spaces. These spaces
are nowadays called smoothness Morrey spaces. We remark that these spaces cover
Morrey spaces as a special case as is shown in [17, Proposition 4.1]. We refer to
[15, Theorem 9.6] and [23, Corollary 6.2] for the counterpart of generalized Morrey
spaces. We refer to [37,38,40] for the results of this direction. Since we do not deal
with smoothness Morrey spaces in this paper, we content ourselves with listing the
papers containing the definition of the function spaces [12,17,18,27,32,34,35] as
well as the textbooks [33,39] without stating the precise definitions. As is pointed out
in [37, Remark 1.9], the second author made a careless claim in [28, Theorem 5.4]
that (homogeneous) Besov—Morrey spaces are closed under taking the first complex
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interpolation. However, this mistake comes essentially from the misunderstanding that
[Mé’g, Mgll lo = MII;'

Despite a counterexample by Blasco et al. [2,26], the interpolation theory of Morrey
spaces progressed so much. As for the real interpolation results, Burenkov and Nursul-
tanov obtained an interpolation result in local Morrey spaces [3]. Nakai and Sobukawa
generalized their results to B setting [22], where B,/ denotes the weighted B, -space.
We made a significant progress in the complex interpolation theory of Morrey spaces.
Denote by [ X, X1]p the first complex interpolation; see Definition 2.1. In [8, p. 35]
Cobos, Peetre and Persson pointed out that

[Més, Mg ]y € Mg
aslongas1 <gop < pp<o00,1 <q1 <p1<oo,and 1l < g < p < oo satisfy

1 1-60 0 1 1-6 0
- = 4+ —, —= + —. (1.18)
P Po P1 q q0 q1

As is shown in [13, Theorem 3(ii)], when an interpolation functor F satisfies
F[Mig, Mgl] = My
under the condition (1.18), then

g _ 9
Po pP1

(1.19)

holds. Lemarié-Rieusset showed this assertion by using the counterexample, given by
Ruiz and Vega in [26]. Lemarié-Rieusset also proved that we can choose the second
complex interpolation functor, introduced by Calderén [4]. Meanwhile, as for the
interpolation result under (1.18) and (1.19) by the first complex interpolation functor,
also introduced by Calderén [4], Lu et al. [16, Theorem 1.2] obtained Theorem 1.1 (i).
They also extended this result by placing themselves in the setting of a metric measure
space. Their technique is to calculate the Calderén product; see [16].

We organize the remaining part of this paper as follows: Sect. 2 collects some fun-
damental facts on complex interpolation functors. Section 3 is dedicated to Morrey
spaces and Sect. 4 generalizes what we obtained to generalized Morrey spaces. Gener-
alized Morrey spaces can be a proper subspace of L°°. This result forces the result in
[11] to be decomposed into two cases. Here we can unify them. In Sect. 5 we consider
the function spaces on bounded domains.

2 Preliminaries
2.1 Complex Interpolation Functors

lVe recall the definition of the complex interpolation functors (see [1,4]). We write
S:={z€C:0<Re(z) <1}andletS be its interior.

Birkhauser
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Definition 2.1 [Calder6n’s first complex interpolation space] Let (X, X ) be acom-
patible couple of Banach spaces.

1. The space F(Xo, X1) is defined as the set of all functions F : S — Xo+ X such
that B
(a) F iscontinuous on S and sup || F(2) || xo+x, < 00,
z€§

(b) F is holomorphic on S,

(c) the functions t € R +— F(j +it) € X are bounded and continuous on R for
j=0,1.

The space F(Xo, X1) is equipped with the norm

| Fll 7(xo.x,) := max [sup | F@t)llx,, sup |l F(1 +it)I|x1]-
teR teR

2. Let 6 € (0, 1). Define the complex interpolation space [ X, X1]y with respect to
(X0, X1) to be the set of all functions f € X+ X such that f = F(0) for some
F € F(Xo, X1). The norm on [X¢, X1]p is defined by

|FllFxoxy) © f = F(0) for some F € F(Xo, X1)}.

”f”[X(),Xl]g = lnf{

Let X be aBanach space. The space Lip(R, X) is defined to be the set of all functions
F : R — X for which the quantity

. | F(1) — F(s)llx
| FllLipr,x) ==  su —_— " <
—00<S§<I<00 [t —s|

Definition 2.2 (Calder6n’s second complex interpolation space) Let (Xo, X1) be a
compatible couple of Banach spaces.
1. Define G(Xo, X1) as the set of all functions G : S — X + X such that

G(2)
1+]z]

b}

(a) G is continuous on § and sup H
ze8 Xo+X1

(b) G is holomorphic on S,
(c) the functions

teR— G(j+it) —G(j) € X;

are Lipschitz continuous on R for j =0, 1.
The space G(Xo, X1) is equipped with the norm

IGllg(xo,x1) == max {IIG ) ILip®,x0)» 1G4+ i) lILip@® x)} - 2.1
2. Let 6 € (0, 1). Define the complex interpolation space [X¢, X1]? with respect to
(Xo, X1) to be the set of all functions f € X+ X such that f = G’(0) for some

G € G(Xy, X1). The norm on [Xo, X;1? is defined by

1 llixy x,p == inf {I1Gllgcxy.x1) : f = G'(6) for some G € G(Xo, X1)} .
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The key tool used for proving our results is the three-lines lemma for Banach
space-valued function which we invoke as follows:

Lemma 2.3 [41, Corollary 2.3] Let X be a Banach space. Suppose that F : S — X
is continuous and bounded and also F|s : S — X is holomorphic. Then we have

1-0 0
sup [F(0 +it)|lx < (sup IIF(it)IIx) (sup I F(1 +it)||x)
teR teR teR

forall & € (0, 1).

The following lemma can be seen as a tool to relate the first and the second complex
interpolations:

Lemma 2.4 Let (Xo, X1) be a compatible couple. Suppose that G € G(Xo, X1) and
0 € (0,1). Forz e Sandk € N, define
Gz+2%)-G()

Hi(z) == =T

2.2)

Then H(0) € [Xo, X1].

Proof Note that, Hy inherits continuity and holomorphicity from G. By Lipschitz-
continuity of t € R+— G(it) — G(0) € Xopand?t € R+— G +ir) — G(1) € X1,
we have

< NGllgxo.xn
Xo

sup || Hx (i1) | xo+x, < sup
teR teR

G2 % +ni) = GGr)
2-kj

and likewise sup || Hy (1 +it)||xy+x, < IGllgx,.x,)- By Lemma 2.3, we have
teR

)1—Re(z) (| )RC(

I Hi (@) x0+x, < (IGllg(xo.x1) IGllgxo,x1) J < IGllgxe.x- (2.3)

This shows that Hi(z) € F(Xo, X1). Thus, H,(0) € [ X0, X1]p- O

2.2 Some Elementary Facts on Closed Subspaces
Lemma 2.5 Let 1 < g < ocoand ¢ € G,. Define
A= [f € M? : lim ||X{|f|<a}f||M‘/’ =0t. 2.4)
a—07t 9

Then, A is a closed subset of M?.

Proof Let { f j}?oz1 C A such that f; converges to f in Mg. Fix j € N. For every
a > 0, we have

Ixusi<a) g < ILf = Fill g + i i<ansiiz=2a) Fill mg + 10 s51<2a1 Fill pag -

Birkhauser
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On the set {| f| < a} N{|fj| > 2a}, we have

il =1fi = FI+1fl<1fj = fl+as< |fj_f|+%|fj|,
hence | f;| < 2| f — f;I. Consequently,
Ixuri<ay fllavg < 31F = Fill mg + 1xusi1<2a1 Fillag -
Since f; € A, we have

limsup [[x11<ay Sl pme < 31 = Fill pg-

a—0t

By taking j — oo, we have alinol+ Ixt151<a) f | pqe = 0. hence, f € A. ]
We prove the following lemma:
Lemma 2.6 Let1 < g < ocoand ¢ € G,. If f € M}, then
Rll_lgo Ixuri>r fllag = 0. (2.5)

Proof Here, we do not assume that inf ¢ = 0. For every ¢ > 0, choose g = g, €
L*®N /\/lg such that || f — g”M,“,’ < &. Observe that, for each R > 0, we have

xuri=ryf1 < Ixurisrinugl<r2y 1+ 1 — gl + 1 xq161>r/2) 8-

Ontheset {| f| > R}N{lgl < R/2}, wesee that | f| < |f — g+ & < |f—g|+@,
so | x{ 71> Rinllgl<rk/2) | < 2| f — gl. Consequently, for R > 2||g|| ., we have

Ixgrsry f1 <3f — gl

Hence, |lx( 1>k fllpmg < 311 — gllag < 3e. Thus, we have showed that (2.5)
holds. =

Under the conditions in Theorem 1.7, we have the following approximation formula:

Lemma 2.7 Maintain the same conditions as Theorem 1.7. Let f € My N MGl
Then, we have [ € Mg and f = lim+ X{a<|fl<a—1} [ in Mg.
a—0 -

Proof Without any loss of generality, we may assume g1 < go. The proof is immediate
0 _q 0 -4 a1
from | f — X< flza-y f1 Sa "|f14 +a T|f]9. O

Birkhduser



J Fourier Anal Appl (2017) 23:1195-1226 1205

2.3 Example of ¢ in Mg

As we mentioned in the introduction, the case when ¢(r) = "/ boils down to ./\/lé' .
However, considering generalized Morrey spaces is not a mere quest to generalization
for its own sake. This applies to the point of applications of generalized Morrey spaces
and to the context of interpolations. First, we give an example showing that generalized
Morrey spaces are useful.

Example 2.8 In this example, we claim that generalized Morrey spaces are useful. In
[30, Theorem 5.1] the following estimate is shown:

1= 277 fllage < CllFllpgr-

when 1 < g < p < ooand ¢(t) = (1 4+ 1)"/?/1log(3 + 1) for t > 0. We know
that log here can not be removed. See [9, Sect. 5] and [23, Proposition 7.3] for more
generalizations.

Generalized Morrey spaces seem to reflect the interpolation property as the follow-
ing two examples show.

Example 2.9 Let 1 < g < oo and ¢g, ¢1 € G,. Define ¢ = ¢o + ¢;. Then M? =
Mgo N /\/lg1 with norm equivalence.

Example 2.10 As is seen from Sect. 1, it seems that the first and second complex
interpolation functors seem to control the modulus of the function. From this point, it
is important to pay attention to the following proposition for 1 < g < coand ¢ € G,.
L™ C M,f holds if and only if inf ¢ > 0. See [21, Proposition 3.3].

3 The Interpolations of Closed Subspaces of Morrey Space

First, we prove the following lemma:

Lemma 3.1 Suppose that 6 € (0,1), 1 < gy < po <00, 1 <¢q1 < p1 < 00, and

% = %. Assume qo # q1. Define

1 1-6 0 1 1—-0 6
— = 4+ — and —:= + —.
p Po p1 q q0 q1

Let E be a measurable set such that xg € U./\/lg. Then xg € U./\/lgg N U./\/lf;ll.

Proof Let xg € UMY and & > 0. Choose g, € U N M such that

lxe — gsllMg <e.

Define h; := x(g,20ine- Then
IXE — hel = XE — he < IXE — el

Birkhauser
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Consequently, for j = 0, 1, we have

_ o _n? _ al4;
lxe hz?”MgJ( = |Ixe hs”Mg <é .

This shows that xg € UM N UMD o

Lemma 3.2 Keep the assumption in Lemma 3.1. Then we have

Usa M) < [UMP, UMET .
Proof Without loss of generality, assume that gg > ¢;. Let f € U < M,’; . Since
Xla<|fl<b} = %X{a5‘~,«-|5b}|f|, we have x(a<|fj<p) € U/\/lg. From Lemma 3.1, we

have x(a<|f|<b) € UME NUMY! . For z € S, define

g(1—2)

F(z) = Sgn(f)lflqO i and G(2) = (1—9)/ FO+(z—-0)r)dt. (3.1)

Decompose G(z) = Go(z) + G1(z) where Go(z) := x{f1<1}G(2). Let 0 < ¢ < 1.
Since x(e<|f<1y € UML) and

Xie=i£1=1)|Go@| < (1 + [2DU 19790 + | 1971 ye<i p1=1y < 21 + |2D X(e<1f1<1)

(3.2)
we have x(e<|1<1)Go(z) € UMLY. Observe that
F(z) — F(©)
1Go(z) — X{si\flil}GO(Z)”Mgg = | X(fl<e) 77—~
(£-2)1oelifl]
M‘IO
q/90
- 2| f]
(£ - L)roeen]
251555
-0 (3.3)

=
4 _ 49 1
(5 e

as ¢ — 0T. Hence Go(z) € UML). Similarly, Gi(z) € UML!. Thus G(z) €
UME +UMP! . Lett € Rand R > 1. Since X(R-1<|f|<R} € UMZ and

[(G(it) — GO x(r-1<|fj<r) < Q@+ [EDRYC + RU )y o1 pi<py (BA)

) Birkhduser
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we have [G(it) — G(0)]xg-1<| f<r) € UMig. Note that

2||f||‘”"°

NG @) — GONxre\r-1<if1<m | M0 = (— -0 (35

4 _a
= ) oe R

as R — oo. Thus G(it) — G(0) € U./\/lgg. Similarly, G(1 4+ it) — G(1) € U./\/lf?l1
Since G € g(Mf,’g,Mﬁ,’;), we have G € GUME, UMY, From f = G'(0), it
follows that f € [UM}, UM o

Lemma 3.3 Let G € Q(UMqO, g,‘) and 0 € (0, 1). Forz € Sand k € N, define
MI’
Hy(2) by (2.2). Then we have Hi() € UML nUMI™ "
Proof Lete > 0.ByLemma?2.4, wehave Hy(0) € [U./\/lqo, UMgf]g.Since UMggﬂ
UM?B! is dense in [UMES, UMY g, we can find Jx(0) € UME NUMY! such that

1H©) = SOy pgp ypagy] <
6

Since [UM), UMl g € M), M§11g € MY, we have

| () = Sk @)l gy S 1HE©) = SOl pato yaggty, < &

: TP A oM
This shows that Hy(0) € UMy) N UMy, . ]
Lemma 3.4 Assume the same conditions on the paramaters as in Lemma 3.1. Then
UM nUMY cuM].

Proof Without loss of generality assume that g9 > ¢1. Let f € U /\/lgg NnU ./\/lf;ll.
In view of Lemma 2.7, we may assume f = X(,<| <41} for some a > 0. By the

lattice property of the spaces UMY, UMY/, and UMY, we may assume f = xg
for some measurable set E. Choose a sequence {g j}‘,’.‘;l cUun /\/lf;l1 such that

lim —g; =0.
Jim 17— 5

Define F; = {g; # O} N E. Hence |f — xr;| < 2 and |f — x| < |f — gjl-
Consequently,

-4 a1
1= xr g = |17 = T =T =2 - gjuMm

»
This shows that f € UMJ. o
Lemma 3.5 Under the assumption of Lemma 3.1,

PO 4 A1
——— Mgy + Mg,

MEnumMp CUpaMf.

Birkhauser



1208 J Fourier Anal Appl (2017) 23:1195-1226

P
Proof Let f € My NnUM] ' We may assume that 0 < a < 1 < b < 00
for the purpose of showing x(.<| f|<p) f € UMY forall 0 < a < b < ooc.

Choose { f; };?O:l - U./\/lf,7 such that

M+ M

I T = Il waggepy =0
Let ®(¢) be a piecewise linear function such that ® (1) = 1 and that

2 1
Q') == ;X(a/Z,a)(t) - EX(b,Zb)(t) (3.6)
exceptatt = %, a,b,2b. According to [11, Lemma 3.3], we have

Im | xa< 1<y (S5 — Xta<1£1<0y @ US DIl pgr = 0.
j—o0 q

Since x(a<| 1<) fj]) < a”!|fjl, we have x(a<|f1<p)O (| f]) € UML. From the
inequality x(a<|f1<5) /| < bXiazi1<0)©(If]). it follows that x(a<|i<b) f € UMg.
[m}

Now, the proof of (1.6) is given as follows:

Proof of (1.6) In view of Lemma 3.2, we only need to show [UM, UMI'T® <
U < ./\/lg. Let f € [U./\/lgg, U./\/lgl1 17. Then there exists G € Q(U./\/lgg, U./\/lgll)
such that G’(9) = f. Define Hy(z) by (2.2) for z € S and k € N. By Lemmas 3.3 and
3.4, we have Hy () € UM}. Since Hi(0) converges to G'(9) = f in M) + MY,
it follows from Lemma 3.5 that f € U b MJ. o

4 The Interpolations of Closed Subspaces of Generalized Morrey Spaces

We remark that the inclusion UMY N UM} € UMY is the important part for the
first and second complex interpolations of closed subspaces of Morrey spaces.

Lemma 4.1 Suppose that 6 € (0,1), 1 < gy < 00, 1 < g1 < 00, and ¢g° = ¢".
Define

- 1 1-6 6
w::(pé ecple and — = + —
q q0 q1
Then UMY N UMY € UMY
Proof The proof is similar to the proof of Lemma 3.4. O

We prove the generalization of Lemma 3.1 as follows:
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Lemma 4.2 Keep the same assumption as in Lemma 4.1. Let E be a measurable set
such that xg € UM?. Then we have

XE € U/\/lgg n U./\/tﬁll.

Proof Let xg € UMY and choose {g¢}3>, € U N M for which
kli)n;o Ixe — gkllpmgg =0

Define hy := x{g,£0)nE- Then, for each k = 0, 1, we have

/4; q/4;
—hell o5 = lxe — hil ¥4 < lIxe — I 0

as k — oo. Thus, xg € UM NUMJ!. O

4.1 The First Complex Interpolation Method
We prove Theorem 1.7, which includes Theorem 1.2 as a special case.

Proof Without loss of generality, assume that go > ¢1. Define A by (2.4). Suppose
that f € Mz satisfies

al_l)ll(f)1+ Ixur1<ay fllpmg =0 4.1

Note that, for every a > 0, we have

L
() a1—q q "
Ixta=t e fll g = B=ZL£M> [IBII/" (/Bm{aﬂf}a Lf QI dx

a1-9 %
<a || fllj, < oo 4.2)

Given ¢ > 0, choose g, € L™ N Mg such that

If = gellage <. (43)
Since g, € L, we have
a0-4 4
el pqgo = lgell ;o8 IIgSIIj\O/[g < 00. (4.4)
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Define

_ [X{Ifza}fs gl > £, ws)

X{lf1=a)8e» 18l 1.

Since |ge,al < I8¢l and |ge.al < Xx{f1=a)| f|, by (4.2) and (4.4), it follows that g. , €
Mﬁ{; N /\/lgl1 . Using the following inequality:

If — 8e.al = 1f = Xta=<ify S+ 1f — 8els (4.6)
we have
hm ||f gaa”M“’ =0. 4.7
&,a—0
This shows that f € M{0 N Mgf [Mqo, o1y

Conversely, let g € ./\/1558 N MZ: Then g € M(p thanks to Lemma 2.7. Since

=
||X{\g|<a}g||Mg <a 9 ||g||Mg} -0 (4.8)

as a — 01, we conclude that

MG MG < ’f e Mj P lm g si<a) fllvg = 0] :
Using [11, Theorem 4.5], we get
q0°

—M(ﬂ - )
[ Mz M“"] = Mg Mg~ " [f € Mg+ Tim lxqfi<a) /g =0}
a—

as desired. O
Next, we prove (1.13).

Proof of (1.13) Without loss of generality, assume that go > ¢g1. By Theorem 1.7, we
have

q0° q0°

(oM UM‘”‘] [ s M‘“] {fe/\TZ:alin(r;+ 1<) gz =0

Letg € [U/\/lqo, U/\/l 11p and & > 0. Choose g, € U/\/l n U/\/lgl1 such that

”g - gSH[UMngUM(f} le <E&. (49)
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Since UM N UM € UMY, we have g. € UMY From [UME, UMl 1o <
MG, Mgl lo S My, it follows that

g — gellagz <& (4.10)

and hence, g € UM,‘f.
Conversely, let f € M{ N UM} such that

aliHOL Ixus1<ay fllpmg =0
From Lemma 2.6, we have
al_i>r{)1+ ||X{|f\>a*1}f||/\/[g =0.
Thus,
If— X{ag\f|§a*1}f||/\/1§ = ||X{|f|<u}f||M§ + ||X{|f|>a*1}f||./\/[$ -0

as a — 0F. Observe also that x(,<| rj<o-1f € MG N UMY thanks to the lattice
property of U. As aresult, we may assume that f = x(,<|s<o—1)f forsome 0 < a <

1. Forevery z € S, define

Fz) = sen(p)) £ ).

Decompose F(z) as Fy(z) := F(2) x{r|<1) and F1(z) := F(2) x{|f|>1;- Note that, for
any 0 < b < ¢ < 0o, we have a pointwise estimate:

@.11)

1 [f]
Xib<|fl<c) = 5X{bs|f|5c}|f| =5

SO X{b<|f|<c} € U./\/lg. From Lemma 4.2, it follows that x(s<| f|<¢} € UM?gﬁUMgll .
Since

_4q _4q
[Fo(2)| < Xia<ifi<1y and |[F1(2)] < (a W +a ql)X{1§|f|§a*1}’
we have F(z) = Fy(z) + F1(z) € U/\/lgg + U/\/lgl‘. Moreover, we also have
ilelrg IF @My pgorome = Ixtazipi=nliy g

_4q -4
—|—(a 90 +a ‘”)”X{ls\flia_l}”Ulel'
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Next, we shall check that F|s : § — UM + UMY is a holomorphic function.

Forevery z € S, set H(z) i= (qq—1 - ;—0) (log | f)F(z). Then H (z) € UMY +UM!
with

q

q _
HH @l a0 M) = (Z - q—o) (loga™")

(Ixtasis=nlloagy + @+ 02120 loagy )

Foreach0 < ¢ « 1,define S, :={z € S:¢ <Re(z) < 1—¢}. Let z € S, be fixed
and letw € S, be suchthatz4+w € S,. As a consequence of the following inequalities

) 1y (£ - 2)10elfl

F - F
Fetw-F@ H(Z)’ = |F(2)]

w

9 q o |wlog | f||*~!
Z _ 1) z Z Ve W F
(611 qe) og|f|‘(k:2 k! )| @

< (i - 1) log(a™") (el — 1) |F(2)
q1 4o

IA

and ”F(Z)”UM%’JFUM?]‘ < 00, we have

HF(z—i-w)—F(z) CHG)
w

UMB+UM;]!

-1
< (elwllog(a ) _ 1) ”F(Z)”UM%)«FUMgll -0

asw — 0. Hence, F : S, — UM + UM}, is holomorphic. Since ¢ > 0 is
arbitrary, we conclude that F : § — UMY + UM}] is holomorphic.
Observe that for every w € S, we have

/ 9 4q A — 1
|F'(w)| < i max(a w0, a ql)log;xx{aﬁﬂsaq}. 4.12)
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Then we have
/7
1F (@) = F@Oly a0 +vm8
Z
= ‘/ F'(w) dw
Z UM +UMy!
_49 _4q 1
< max (i i) max (a 0, q ql)log—
q0 41 a
x (”X{aslflsl} + X{1<|f|§a*1}||UMZ’8+UM$II) lz — 7|

_49 _4q 1
Smax(i,i)max(a 0, q ql)log—
q0 41 a

x (Ittastriznlly g + 1t fizanloag ) 12 = 2

forall z, 7 € S. Thus, F : § — UMy + UMy! is a continuous function.
Note that, forallt € R and j =0, 1, we have

4 _4
[FG+inl=1f1" =a Y Xa<|fi<a-1)»

so, F(j +it) € U/\/lg;. Furthermore, using (4.12), we get

Jit
IFG+in) = FG it 0 = ‘ / F'wydw|
qj jit’ UM;’;
_4  _4 1
< (i — i) max(a % ,a 9)log—
q1 q0 a

X ”X{aglf\ga_]}”UMZ.{' |t - t/l
J

for all ¢,/ € R. This shows that t € R — F(j +it) € U/\/lz.{,j = 0,1 are
continuous functions. In total, we have showed that F € F(U Mgg ,U /\/1311 ). Since

F(0) = f,wehave f € [UM§), UMy as desired. ]
4.2 The Second Complex Interpolation Method

From now on, we shall always use the assumption of Theorem 1.9. To prove Theorem
1.9, we shall invoke and prove several lemmas:

Lemma 4.3 Keep the assumption in Theorem 1.9. Then we have

0
U My < [uMp UME ] (4.13)
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Proof Assume that go > ¢1. We go through a similar argument as in the proof of
Lemma 3.2 to obtain (4.13). O

Lemma 4.4 Let G € GIMY, M3)) and 6 € (0,1). For z € S and k € N, define
M‘P

Hi(2) by (2.2). Then Hi(0) € UM NUMS™ .

Proof From Lemma 2.4, it follows that Hy (6) € [UM{, UMY\ 1g. Lete > 0. Since

UM NUMY! is dense in [UM, UM\ g, we can find Jx(9) € UM NUMS,
such that

| Hi (0) — Jk(g)”[UMﬁg,UMﬁll]e <e.
Since [UMy, UM g € MG, MGl lo S MY, we have

1K) = Tk @)l v S THEO) = Tl aqe0 yageny, < &

14

: 90 (ﬂqu
This shows that H;(6) € UMy NUMg . O

Lemma 4.5 We use the assumption of Theorem 4.2. Then we have

Mo+ M}

q1
MENUMY CUa M.

—— M+ M

Proof Let f € M§ NUM] . Assume 0 < a < 1 < b < 0o as before.
Choose { ;)32 € UM such that

lim — fi =0.
j—o0 ”f fj ”‘A/IZ(())""/VLVIJIl

Let ®(¢) be a function defined by (3.6). By a similar argument as in the proof of [11,
Lemma 3.3], we have

Jlirrgo IXta<1 /1=y S D = Xta=i£1=yO U Dl g = 0

Since x(a<| 1<) fj]) < a~llfjl, we have x(a<|f1<p)©( f]) € UM} . From the
inequality x(a<f1<6) /| < bXiazi1<0)O (| f1). it follows that X(a<|fi<b) f € UMj.
(]

Now, we are ready to prove Theorem 1.9.

Proof of (1.15) In view of Lemma 4.3, we only need to show that

q0°

lums UMg;]g C U b M,
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Let f € [UM{), UMY Then there exists G € GUMYS, UM!) such that
G'(0) = f.Forz € S and k € N, define Hi(z) by (2.2). By Lemmas 4.1 and 4.4,
we have Hi(0) € UMyY. Since Hi(0) converges to G'(0) = f in My + MYl by
Lemma 4.5, it follows that f € U s« /\/lg. O

We compare Theorem 1.9 with our previous result.
Remark 4.6 Assume that inf ¢ > 0. According to [11, Theorem 5.12],
— ——10 —_— e
[MZS,MZ:] - N {f € MO NI : ypasipizn f € Mﬁ}. (4.14)
O<a<b<oo
Meanwhile, in the light of Theorem 1.9, we have

MG, MG = ) {f € MY & Xiasifizb) f GMg}‘ (4.15)

O<a<b<oo

Thus, the sets in the right-hand side of (4.14) and (4.15) coincide. In fact, this can be
verified directly from the fact that ./\/lg C L (see [11, Theorem 5.9]).

5 The Closure of Compactly Supported Functions in Morrey Spaces on
Bounded Connected Open Sets

We recall that we do not require that the domain €2 is smooth. In view of Theorem 5.1
below and the fact that MZ D L if and only if inf ¢ > 0; see [21, Proposition 3.3],
we shall concentrate on the case inf ¢ = 0.

Lemma 5.1 Let 1 < g < oo, ¢ € G, and Q be bounded. Then we have L*°(Q2) C
M?(Q). In particular, when inf ¢ > 0, we have Mg(S'Z) = L>®(Q).

Proof Let f € L®(2). Forx € Q and 0 < r < diam(£2), we have

1 q
@(r) (— [f ()1 dy) < o(diam())|| f ll Lo (x)- 5.1
|B(x, )| Jpx.nne

Consequently, f € M?(Q) with ”f”MZ(Q) < @(diam(2))|| f || (). This shows
that L°°(Q2) C M?(Q). When inf ¢ > 0, we combine L*(Q2) C ./\/lg(SZ) with [21,
Proposition 3.3] to obtain M (Q) = L>(Q). o

We shall prove Theorem 1.11. Our proof will use the identification of MZ(Q) as
the vanishing generalized Morrey spaces. The definition of these spaces is given as
follows (see also [7,10,25]).
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Definition 5.2 Let 1 < ¢ < 00, ¢ € G4, and f € M§(Q). For 0 < r < diam(),
define

1

R q
Nfe.q.r) = sup L)] (/ [ f )4 dy) .
7 \UB@x, p)ne

xeQ,0<R<r |B(x’ R)|

The generalized vanishing Morrey space VMg(Q) is defined to be the subset of
M () such that

lim =0.
et nf,ga,q,Q(r)

For the setting in R", we also define
1

R q
Mipame(r)i= sp —28 ( / (I dy) 0 < r < o0)
B(x,R)

xeR" 0<R<r |B(x, R)| q

and VMy (R") := | f € MIR"): r£r8+ N fp.qRn (1) = 0].

Before we go further, a helpful remark may be in order.

Remark 5.3 When inf ¢ > 0, VM;(Q) = {0} by the Lebesgue differentiation theo-
rem.

The fact that vanishing Morrey spaces and the closure of test functions in Morrey
spaces coincide can be traced back to [7, Lemma 1.2]. We generalize this fact in the
following lemmas:

Lemma 5.4 Let1 <qg <oo, ¢ € Gy, info =0,and f € VM?(Q). Define

~ o f(x)v ers
Jo = Io, X eR"\ Q.

Then we have \h}E}}ﬁ NfC+h)— f”Mg(Rn) =0.

Proof Fix r > 0. Since f = 0 outside €2, we have

1/q
FAGIE dy) .

n 7 W(r) = sup w(R)(—
froa R xR 0<R<r |B(x, R)| Jpx.r)na
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Let Q, := U,eqB(z, r). Since ¢ € G,, we have

1/q
[f ()1 dy)

N7 2(r) = sup co(R)(—
feaR x€Q,,0<R<r |B(x, R)| JBx,R)n2

<31 sup (R (—
xeQ,0<R<3r |B(x, R)| JBx,R)ne

<3t 0.00r).

1/q
lf 4 dy)

Since f € VM?(Q), we have lim+ Nf.0.q,.93r) =0, and hence
r—0

i g p (1) =0

Let 2 € R". Then we have
IFC AR = Fll g gy

1/q
- 1O} v Fy+h)— f(n)|?d )
<xeﬂ§’l’l,€€2r(p( )<|B(X,R)| B(x,R)|f(y )= fITdy
~ ~ g 1/q

* P\ sa i +h) — d

xeszil)lERq(p( )(IB(X,R)l B(x,R)lf(y )= SO y)

@(r) . .

= 1B, a1 ¢ =M = Slsen

P(R) ( [ v
xeR" 0<R<r |B(x, R)|l/q B(x.R)

By the L7-continuity of translation, we get
limsup [| /- + ) = fllnge @y < 207 4 g o (-
|h]—0+

Finally, taking r — 0%, we get lim+ I f(-+h)— f”Mg(Rn) =0.
|h]—0

Lemmas5.5 Letl1 < g <00, ¢ € Gy, and f € J\/lg(R”) be such that f vanishes
almost everywhere outside Q. If

|y}f6+ 1fC = = fllmge =0,

7M@)
then f € C®(R") N Mg (R") .

Proof By the translation, we may assume that 0 € . Let 7o > 0 be so small that
B(0,r9) C Q. Let ¢ be a smooth function supported on the unit ball B(0, ry), 0 <
¥ < L,and ¢l 1q = 1. Forevery x € Qand j € N, define ¢;(x) := j"¥(jx).
Note that f * 1; € C*°(R"), since f is locally integrable.
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Let xp € Q and r > 0 be fixed. By the Minkowski integral inequality, we have

1
([ 1wyt sool ax)”
B(xo,r)N

q q
-(/, )
B(xo,r)NQ

1/q
S/ vi(y) (/ [f(x—y) = fQ0) dx) dy
B(0.1/)) B(xo.r)NQ

- M/ VIS C =) = Fllvg 4y
o(r) B(0,1/)) "

< IBODI Ty
—Y——  sup S—y) = o
o) yeB©.1/) Mq ()

/ (G —y) = FE)VW; () dy
B(0,1/))

Consequently,  and x being arbitrary, we have

||f_f*‘ﬁj||Mg(Q)§ sup ||f('_y)_f||/\/(§(g2)~
yeB(0,1/))

Finally, by taking j — oo, we get |y| — 0, and hence lim || f — f*‘g[/j”Mg(Q) =0.
J—>00

M)

This shows that f € C*®(R") N Mz (R™) as desired. O

Recall that we are assuming inf ¢ = 0. This assumption is necessary when we
derive (5.3) from (5.2) below.

Lemma 5.6 Let 1 < q < oo and ¢ € G, be such that inf ¢ = 0. Then we have
ME(Q) = VME(RQ).

Proof As before a translation allows us to assume B(0, rg) C Q. Let f € ./\/lg(Q).
For any ¢ > 0, choose g € C2°(2) such that

If— gllM?(Q) <é&.
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Let 0 < r < diam(€2). Note that, for every R € (0, r), we have

1 . 1/q
R ——— d
# )(|B(x,R>| srong O y)

_ v’ (/ B ¢y )1/q
= |B(x,R)|1/q|: B(X’R)mlf(y) gt dy

1/q
+ (/ g dy)
B(x,R)NQ

<If- g”/\/lg’(g) + ”g”(im(g)ﬂl)(r)
< e+ lgllLe@er).

Consequently,
Nfpq.2r) < lgllLe@e(r). (5.2)
By taking r — 07, we get
lim nfe4.00) =0. (5.3)
r—0%

This shows that f € VM (Q).
Conversely, by assuming f € VM? (£2), we shall show that f € MZ(Q). Define

s . f(x)v X € Qv
Fe) = {o, ¢ Q.

By Lemmas 5.4 and 5.5, we can find {g}}?‘;l C C*®M@RMHN ./\/l,(f (R™) such that

- 1
Ilf _gj”/vtf;(g) = -

~

Define g; = xqgj. Since Q is bounded, we have ||g;llL~@) < 1. Write Q =

~

U,fil K where {K k},‘zil is a collection of compact sets with property Ky C intKy .
Let gjx = gjXk,. Note that g;x € LF(Q). Let ¥ € CX(2) with supp(y) C
B(0,19),0 <y < 1,and ||¢{/||;1 = 1. For every l € N, define

Yi(x) = " (Ix).

For large | € N, observe that g; x * ¥, € CZ°(R2) in view of the size of the support of
gj.k- Note that

L = gjkx Vil g = 1S = 8illmg @ + 185 = gikllmg o)
Hlgjk — gk * Vil pmea)-
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Since gjx € L°(Q) € VM (Q) and

lgjk =gk *Villpmee) = sup llgjk = 8jkC = Ml ame ()
yeB(©,1)

we have llim lgjk — &jk * Vil pmg @) = 0. Forany & > 0, choose § > 0 such that
—00
@(r) < eforevery 0 <r < 4. Since g; € L°(R") € LY(R") and

/g
lgj = gikllme = sup g (=8I dy)

ol
xeQ,0<r<$ |B(x,r)] B(x,r)NQ

+ sup @)

1/q
—_— lg; () —gjxMI? dy)
xeQr>s (|B(x,r>| Barng /

<ellgjllLe) + I xe\ki &) llLa Ry,

¢(4)
|B(x, 8)|1/4
by the dominated convergence theorem, we have

limsup [lg; — gjkll pmg ) < ellgjlliLe@-
k—00

Since ¢ > 0 is arbitrary, we have lim |g; — gkl pq¢(q) = 0. Consequently,
k— 00 q

) < 1
limsup || f — gk *Wl”/\/[g’(gz) =If _gj”Mg’(Q) =If _gj”/\/(g’(Rn) =~
k,l— 00 J

By taking j — oo, we see that f € M((f(Q). O

Before proving Theorem 1.11, we shall prove the following lemmas:

Lemma 5.7 Forall f € M?(Q), we have
ali%g Xt r1<ay fll g ) = 0

Proof Forevery x € Q and 0 < r < diam(£2), we have

q
—_— 94 < @(di Q)a.
@(r) (|B(x’ A acrne X f1<ay DI DI y) < ¢(diam(£2))a
Thus,
X1 51<a) fllpmg () < ¢(diam(2))a — 0

asa — 0T, O
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Lemma 5.8 Let g € VM?(Q) and | f| < |g|. Then we have f € VM?(Q).
Proof This is a direct consequence of 77,y 4.Q(r) < Ng.4.q.() foreveryr > 0. O

Lemma 5.9 Keep using the same assumption as in Theorem 1.11. Let E be a mea-
surable set such that xg € V./\/lg (R2). Then xg belongs to V./\/lgg ()N V./\/lgll ().

Proof From our assumption, we have ¢ = ¢' = ¢4. This implies

NxE.90.q0.2() = UXE,W,q,Q(r)q/qO and  1yp.p.q.(0) = nXE»(/’anQ(r)q/ql'
By taking r — 0T, we see that xg € VML () N VMY (Q). O
Finally, we give the proof of Theorem 1.11 as follows.

Proof of Theorem 1.11 Without loss of generality, we may assume that gy > g1. By
a similar argument as in the proof of Theorem 1.7, we have

[/\"430(9), M) (Qﬂ c [Mp@. My @),
0

0

‘P(Q

C L(Q)N M;’(Q)M" s VMERQ).

Conversely let f € Mg’(sz). For every z € S, define

1=z, z
F(z):=Sgn(f)|f|q(‘1°+q1), Fo@):=x(n<n¥F @), and Fi(2) = xq7>1nF@).

Since C°(2) € L™ (£2), we can combine Lemmas 2.6 and 5.7 to obtain
Jim S = Xasipiza Fllmg @) = 0-
Therefore, we may assume that

[ = Xiazif1za1y f- (5.4)

for some a € (0, 1).
By Lemma 5.6, we have f € VM?(Q). Meanwhile, for any 0 < b < ¢ < o0, we

have (4.11). From Lemmas 5.6, 5.8, and 5.9, it follows that x(<|r|<c} € ./\/lgg(Q) N
ME(R). Since

1—Re(z) |, Re(z)

4 Re@) 49 Re(z)( L —L
|Fo(z)|=|f|"( T )X{\f|51}=|f|40IfIq «@ (3 qo)x{agmsusx{asmfu
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and

9 lfRe(z) 9 RG(Z)
[F1(2)| = (lfl‘“’) (|f|‘“) X{1<|fl<a1}
< (1F19790 + 1179 Xg1 <y fea-1)
< (a—q/qo +a—q/q1) X{1<|fl=a-1}

we have Fy(z) € M 0 () and Fi(z) € ./\/l 1 (), and hence F(z) € M o (€2) +

q, ' (). Moreover, we also have

supl| F(2)]l o
€5 Mjg(sz)wvl @
<sup | Fo)| - +IIF1@ -
zeS M‘io( Mg{
_4a _4a
< Ixta<isi=nll ¢ +(@ ©+a Dlxazfizayll

o < o0
MP©@ N

Observe that for all w € §, we have
P (L= L) (1715 +171%) i 108 1= Crggrn iz

where Cy 44091 = (qq—o— 1;11) (a /90 4 g~ Wq‘)log—. Consequently, for all

71,22 € S, we have

F F
1P = F@Dl gy o o g

22
/ F'(w) de i i
21 M@+ MG (@)

= Cag.q0.01 (||X{a§|f|§1}||/\°/l$8(m + I xp< fi<a- l}lqu,1 (Q)) lz2 — z1].

This shows that F : § — Mgg (Q) + /\/lw' (Q) is a continuous function. Likewise, we

also can verify that F|g : § — M o (82) + /\/l | (2) is a holomorphic function by the
same argument as in the proof of (1.13). On the boundary of S, we have

a _a
[FG+inl=1f1" <a Y Xia<|fi<a—1)

for j =0,1andt € R from (4.11), so F(j +it) € ng’f(Q). By a similar argument
for showing the continuity of F(z), we also have

IFG +in) = FG i)l oy

[t — B
My

<C ol e
a.q.q0.01 | Xta<| f1<a '}||ng @
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forall 71,1, € R. Hence F € F (M (), M{} (Q)). Since F () = f, we conclude
that f € [ME(Q), My ()] as desired. ]

Acknowledgements The second author is supported by JSPS Grand-in-Aid for Scientific Research (C)
No. 16K05209.

6 Appendix: a function f € Mg \ (L' + L™)

We aim here to present an example of a function f € /\/lg \ (L' + L%®). Letn = 1
for simplicity. Define

[o/e]
} A1
f=1r= Z [log, log, j1 /pX[j!,j!+[log2long]*l]' (6.1)
=100

Lemma 6.1 Let 1 < g < p < o0o. Then f given by (6.1) belongs to ./\/lé' but does not
belong to L' + L.

Proof Let (a, b) be an interval which intersects the support of f.

1. Case 1 : b —a < 2. In this case, there exists uniquely j € NN [100, co) such that
[a, b1 N [j!, j! + [log, log, j1~'] # @. Thus,

1 1 b é
(b—a)yr™a (/ f(@0)? dt)

1
11 min(b, j!+[log, log, j]*l) q
—e-ar7i( [ £ dr
max(a,j!)

1

1
< (min(b, j! + [log, log, j1~") — max(a, j1))7

1

min(b, j!+[log, logy j1~1) q
/ f®de
max(a,j!)

1 1
= [log, log, j17 (min(b, j! + [log, log, j]_l) — max(a, j!)r
1.

IA

2. Case2:b—a > 2. Set
m := min([a, b] Nsupp(f)), M :=max([a, b] N supp(f)).
Choose j, ju € NN[100, oo) sothatm € [ji!, jm!+jm 1and M € [jy!, jar!+
" If jar — jm < 2, then we go through a similar argument as before. Assume
Jjm — Jm > 3. Then we have

b—az=M-m=jy! = ju! = ju~" = jul = jm! = L.
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Thus,
1 1
11 b 7 11 Jm!+1 q
(b—ayri (/ f(t)th) < (Gl — ! = P4 / F@) di
a j111!
M q
1_1 a-p
< Cju!7" 7 [ D (log,log, j) 7
j=jm
<C.

Thus, f € MJ.
Now we disprove f € L' 4+ L. Let R be fixed. Then a geometric observation
shows that

If =min(f, R)lIpr < IIf = Rllree

for any h € L with ||h||p~ < R.
Let S > 2R + 2 be an integer. Then

S
/ (f —min(f, R)) = |{f = SH(S —R) > §|{f = S}
f=s

2541

S 1
=3 > z2 CS@5t! —2%).
=22%

Thus, || f — min(f, R)||;1 = oo. Hence, f ¢ L' + L.

Remark 6.2 For the case in R" with n > 1, we can consider

O ENICTRNNEREEY | ACH)

j=1

where f,(x;) is defined in (6.1).
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