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Abstract We study sparse spikes super-resolution over the space of Radon measures
on R or T when the input measure is a finite sum of positive Dirac masses using the
BLASSO convex program. We focus on the recovery properties of the support and the
amplitudes of the initial measure in the presence of noise as a function of the minimum
separation t of the inputmeasure (theminimumdistance between two spikes).We show
that whenw/λ,w/t2N−1 and λ/t2N−1 are small enough (where λ is the regularization
parameter, w the noise and N the number of spikes), which corresponds roughly to a
sufficient signal-to-noise ratio and a noise level small enough with respect to the min-
imum separation, there exists a unique solution to the BLASSO program with exactly
the same number of spikes as the original measure. We show that the amplitudes and
positions of the spikes of the solution both converge toward those of the input measure
when the noise and the regularization parameter drops to zero faster than t2N−1.
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1 Introduction

1.1 Super-Resolution and Sparse Spikes Deconvolution

Super-resolution consists in retrieving fine scale details of a possibly noisy signal
from coarse scale information. The importance of recovering the high frequencies of a
signal comes from the fact that there is often a physical blur in the acquisition process,
such as diffraction in optical systems, wave reflection in seismic imaging or spikes
recording from neuronal activity.

In resolution theory, the two-point resolution criterion defines the ability of a system
to resolve two points of equal intensities. As a point source produces a diffraction pat-
tern which is centered about the geometrical image point of the point source, it is often
admitted that two points are resolved by a system if the central maximum of the inten-
sity diffraction of one point source coincides with the first zero of the intensity diffrac-
tion pattern of the other point. This defines a distance that only depends on the system
and which is called the Rayleigh Length. In the case of the ideal low-pass filter (mean-
ing that the input signal is convolvedwith theDirichlet kernel, see (9) for the exact defi-
nition) with cutoff frequency fc, the Rayleigh Length is 1/ fc.We refer to [11] for more
details about resolution theory. Super-resolution in signal processing thus consists in
developing techniques that enable to retrieve information below the Rayleigh Length.

Let us introduce in a more formal way the problem which will be the core of this
article. Let X be the real line R or the 1-D torus T = R/Z and M(X) the Banach
space of bounded Radon measures on X , which can be seen as the topological dual of
the space CX where CX is either the space of continuous functions on R that vanish
at infinity when X = R or the space of continuous functions on T when X = T. We
consider a given integral operator � : M(X) → H, where H is a separable Hilbert
space, whose kernel ϕ is supposed to be a smooth function (see Definition 1 for the
technical assumptions made on ϕ), i.e.

∀m ∈ M(X), �m =
∫
X

ϕ(x)dm(x). (1)

� represents the acquisition operator and can for instance account for a blur in the
measurements. In the special case of ϕ(x) = ϕ̃(·− x),� is a convolution operator. We
denote by ma0,t z0 =∑N

i=1 a0,iδt z0,i our input sparse spikes train where the a0,i ∈ R
∗+

are the amplitudes of the Dirac masses at positions t z0,i ∈ X . Let yt = �ma0,t z0
be the noiseless observation. The parameter t > 0 controls the minimum separation
distance between the spikes, and this paper aims at studying the recovery of ma0,t z0
from yt + w (where w ∈ H is some noise) when t is small.

1.2 From the LASSO to the BLASSO

1.2.1 LASSO

�1 regularization techniques were first introduced in geophysics (see [6,18,21]) for
seismic prospecting. Indeed, the density changes in the underground can be modeled
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as a sparse spikes train. �1 reconstruction property provides solutionswith few nonzero
coefficients and can be solved efficiently with convex optimization methods. Donoho
theoretically studied and justified these techniques in [12]. In statistics, the �1 norm is
used in the Lasso method [23] which consists in minimizing a quadratic error subject
to a �1 penalization. As the authors remarked it, it retains both the features of subset
selection (by setting to zero some coefficients, thanks to the property of the �1 norm
to favor sparse solutions) and ridge regression (by shrinking the other coefficients).
In signal processing, the basis pursuit method [13] uses the �1 norm to decompose
signals into overcomplete dictionaries.

1.2.2 BLASSO

Following recent works (see for instance [1,3,5,8,14]), the sparse deconvolution
method that we consider in this article operates over a continuous domain, i.e. without
resorting to some sort of discretization on a grid. The inverse problem is solved over
the space of Radon measures which is a non-reflexive Banach space. This continu-
ous “grid free” setting makes the mathematical analysis easier and allows us to make
precise statement about the location of the recovered spikes locations.

The technique that we study in this paper consists in solving a convex optimization
problem that uses the total variation norm which is the equivalent of the �1 norm for
measures. The �1 norm is known to be particularly well fitted for the recovery of sparse
signals. Thus the use of the total variation norm favors the emergence of spikes in the
solution.

The total variation norm is defined by

∀m ∈ M(X), |m|(X)
def.= sup

ψ∈CX

{∫
X

ψdm ; ‖ψ‖L∞(X) � 1

}
.

In particular,

|ma0,t z0 |(X) = ‖a0‖1 ,

which shows in a way that the total variation norm generalizes the �1 norm to the
continuous setting of measures (i.e. no discretization grid is required).

The first method that we are interested in is the classical basis pursuit, defined
originally in [13] in a finite dimensional setting, and written here over the space of
Radon measures

min
m∈M(X)

{|m|(X) ; �m = yt } . (P0(yt ))

This is the problem studied in [5], in the case where � is an ideal low-pass filter on
the torus (i.e. X = T).

When the signal is noisy, i.e. when we observe yt + w instead, with w ∈ H, we
may rather consider the problem
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min
m∈M(X)

1

2
‖�m − (yt + w)‖2H + λ|m|(X). (Pλ(yt + w))

Here λ > 0 is a parameter that should adapted to the noise level ‖w‖H. This problem
is coined “BLASSO” in [8].

While this is not the focus of this article, we note that there exist algorithms to
solve the infinite dimensional convex problems (P0(yt )) and (Pλ(yt + w)), see for
instance [3,5].

1.3 Previous Works

1.3.1 LASSO/BLASSO Performance Analysis

In order to quantify the recovery performance of the methods P0(yt ) and Pλ(yt +w),
the following two questions arise:

1. Does the solutions of P0(yt ) recover the input measure ma0,t z0?
2. How close is the solution of Pλ(yt + w) to the solution of P0(yt )?

When the amplitudes of the spikes are arbitrary complex numbers, the answers
to the above questions require a large enough minimum separation distance �(t z0)
between the spikes where

�(t z0)
def.= min

i �= j
dX (t z0,i , t z0, j ). (2)

where dX is either the canonical distance on R i.e.

∀x, y ∈ R, dX (x, y) = |x − y|, (3)

when X = R, or the canonical induced distance on T i.e.

∀x, y ∈ R, dX (x + Z, y + Z) = min
k∈Z

|x − y + k|, (4)

when X = T. The first question is addressed in [5] where the authors showed, in the
case of � being the ideal low-pass filter on the torus [see (9)], i.e. when H = T, that
ma0,t z0 is the unique solution of P0(yt ) provided that �(t z0) � C

fc
where C > 0 is a

universal constant and fc the cutoff frequency of the ideal low-pass filter. In the same
paper, it is shown that C � 2 when a0 ∈ C

N and C � 1.87 when a0 ∈ R
N . In [14],

the authors show that necessarily C � 1
2 .

The second question receives partial answers in [3,4,9,15]. In [3], it is shown that if
the solution of P0(yt ) is unique then the measures recovered by Pλ(yt + w) converge
in the weak-* sense to the solution of P0(yt ) when λ → 0 and ‖w‖H /λ → 0. In [4],
the authors measure the reconstruction error using the L2 norm of an ideal low-pass
filtered version of the recovered measures. In [9,15], error bounds are given on the
locations of the recovered spikes with respect to those of the input measure ma0,t z0 .
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However, those works provide little information about the structure of the measures
recovered by Pλ(yt + w). That point is addressed in [14] where the authors show that
under theNon Degenerate Source Condition (see Sect. 2 for more details), there exists
a unique solution to Pλ(yt + w) with the exact same number of spikes as the original
measure provided that λ and ‖w‖H /λ are small enough. Moreover in that regime, this
solution converges to the original measure when the noise drops to zero.

1.3.2 LASSO/BLASSO for Positive Spikes

For positive spikes (i.e. a0,i > 0), the picture is radically different, since exact recovery
of ma0,t z0 without noise (i.e. (w, λ) = (0, 0)) holds for all t > 0, see for instance [8].
Stability constants however explode as t → 0. A recent work [20] shows however that
stable recovery is obtained if the signal-to-noise ratio grows faster than O(1/t2N ),
closely matching optimal lower bounds of O(1/t2N−1) obtained by combinatorial
methods, as also proved recently [10]. Our main contribution is to show that the same
O(1/t2N−1) signal-to-noise scaling in fact guarantees a perfect support recovery of
the spikes under a certain non-degeneracy condition on the filter. This extends, for
positive measures, the initial results of [14] by providing an asymptotic analysis when
t → 0.

1.3.3 MUSIC and Related Methods

There is a large body of literature in signal processing on spectral methods to perform
spikes location from low frequency measurements. One of the most popular methods
is MUSIC (for multiple signal classification) [22] and we refer to [16] for an overview
of its use in signal processing for line spectral estimation. In the noiseless case, exact
reconstruction of the initial signal is guaranteed as long as there are enough observa-
tions compared to the number of distinct frequencies [19]. Stability to noise is known
to hold under a minimum separation distance similar to the one of the BLASSO [19].
However, on sharp contrast with the behavior of the BLASSO, numerical observations
(see for instance [7]), as well as a recent work of Demanet and Nguyen, show that
this stability continues to hold regardless of the sign of the amplitudes a0,i , as soon
as the signal-to-noise ratio scales like O(1/t2N−1). Note that this matches (when w

is a Gaussian white noise) the Cramer-Rao lower bound achievable by any unbiased
estimator [2]. This class of methods are thus more efficient than BLASSO for arbitrary
measures, but they are restricted to operators � that are convolution with a low-pass
filter, which is not the case of our analysis for the BLASSO.

1.4 Contributions

1.4.1 Main Results

From these previous works, one can askwhether exact support estimation byBLASSO
for positive spikes is achievable when t tends to 0. Our main result, Theorem 2, shows
that this is indeed the case. It states, under some non-degeneracy condition on �,
that there exists a unique solution to Pλ(yt + w) with the exact same number of



1158 J Fourier Anal Appl (2017) 23:1153–1194

spikes as the original measure provided that ‖w‖H /λ, ‖w‖H /t2N−1 and λ/t2N−1

are small enough. Moreover we give an upper bound, in that regime, on the error of
the recovered measure with respect to the initial measure. As a by-product, we show
that the amplitudes and positions of the spikes of the solution both converge towards
those of the input measure when the noise and the regularization parameter tend to
zero faster than t2N−1.

1.4.2 Extensions

We consider in this article the case where all the spikes locations t z0 cluster near
zero. Following for instance [20], it is possible to consider a more general model with
several cluster points, where the sign of the Diracs is the same around each of these
points. Our analysis, although more difficult to perform, could be extended to this
setting, at the price of modifying the definition of ηW (see Definition 3) to account for
several cluster points.

Lastly, if the kernel � under consideration has some specific scale σ (such as the
standard deviation of a Gaussian kernel, or σ = 1/ fc for the ideal low-pass filter in
the case of the deconvolution on the torus), then it is possible to state our contribution

by replacing t by the dimensionless quantity SRF
def.= t/σ (called “super-resolution

factor” in [20]). It is then possible to extend our proof so show that the signal-to-noise
ratio should obey the scaling 1/SRF2N−1.

1.4.3 Roadmap

The exact statement of Theorem 2 (our main contribution), and in particular the defi-
nition of the non-degeneracy condition, requires some more background, which is the
subject of Sect. 2. The proof of this result can be found in Sects. 3, 4 and 5. It relies
on an independent study of the asymptotic behavior of quantities depending on the
operator �t z0 (such as its pseudo-inverse) when t tends to zero. This takes place in
Sect. 3. Note that a sketch of proof of the main result can be found in Sect. 2.3.

1.5 Notations

1.5.1 Measures

We consider X = R or X = T as the space of Dirac masses positions. X equipped
with the distance dX [see (3) and (4)] is a locally compact metric space (compact in the
case X = T). We denote byM(X) the space of bounded Radon measures on X . It is
the topological dual of the Banach space CX (endowed with ‖·‖L∞(X)) of continuous
functions defined on X , that furthermore are imposed to vanish at infinity in the case
X = R. The two problems that we study, i.e. the Basis Pursuit for measures P0(yt )
and the BLASSO Pλ(yt + w), are two convex optimization problems on the space
M(X).

Let us consider a0 ∈ (R∗+)N and z0 ∈ R
N . When X = T, we make the assumption

that z0 ∈ (− 1
4 ,

1
4 )

N . We define
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�0
def.= �(z0), (5)

where �(z0) is introduced in (2). We denote by B(x̄, r) (resp. B(x̄, r)) the closed
(resp. open) �∞ ball in R

N with center x̄ and radius r . We define neighborhoods of
respectively z0 and a0 as

Bz0
def.= B

(
z0,

�0

4

)
and Ba0

def.= B

(
a0,

mini (a0,i )

4

)
. (6)

Note that when X = T, if z ∈ Bz0 then z ∈ (− 1
2 ,

1
2 )

N and for all t ∈ (0, 1],
t z ∈ (− 1

2 ,
1
2 )

N . As a result, depending on the context, we consider t z0 and t z as
elements of T

N by identifying them with their equivalent classes.
Then, the initial measure we want to recover is of the form

ma0,t z0
def.=

N∑
i=1

a0,iδt z0,i .

Note that for example, in the case X = T, when we write δt z0,i , t z0,i is considered as
an element of T.

We use the parameter t ∈ (0, 1] to make the spikes locations tend to 0 in X , so that
the minimum separation distance of ma0,t z0 : �(t z0) → 0 when t → 0.

1.5.2 Kernels

The admissible kernels ϕ : X → H defining the integral operators � (modeling the
blur of acquisition) are functions, defined on X and taking values in a separable Hilbert
space H, satisfying some regularity properties listed in the following Definition.

Definition 1 (Admissible kernels) We denote by KERk , the set of admissible kernels
of order k. A function ϕ : X → H belongs to KERk if ϕ ∈ C k(X,H). When X = R,
ϕ must also satisfies the following requirements:

• For all p ∈ H, 〈ϕ(x), p〉H → 0 when |x | → +∞.
• For all 0 � i � k, sup

x∈H

∥∥ϕ(i)(x)
∥∥H < +∞.

1.5.3 Linear Operators

We consider a linear operator � : M(X) → H of the form

∀m ∈ M(X), �m
def.=
∫
X

ϕ(x)dm(x), (7)

where ϕ : X → H belongs to KER0. � is weak-* to weak continuous. Its adjoint
�∗ : H → CX is given by

∀p ∈ H, ∀x ∈ X, (�∗ p)(x) = 〈ϕ(x), p〉H .
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A typical example is a convolution operator, where ϕ(x) = ϕ̃(· − x), for some
continuous function ϕ̃ : X → R, ϕ̃ ∈ L2(X) ∩ CX , so that (�m)(v) = ∫X ϕ̃(v −
x)dm(x). In particular, in the case X = R, the Gaussian filter is defined as

∀x ∈ R, ϕ̃(x) = ϕ̃G(x)
def.= e−x2/2, (8)

where ϕ̃G is the Gaussian kernel. In the case X = T, a typical example of convolution
operator is the ideal low pass filter which is defined as

∀x ∈ T, ϕ̃(x) = ϕ̃D(x)
def.=

fc∑
k=− fc

e2iπkx , (9)

for some fc ∈ N
∗ called the cutoff frequency. ϕ̃D is the Dirichlet kernel with cutoff

frequency fc.

Remark 1 This last example is equivalently obtained (as considered for instance in [5])
by using H = C

2 fc+1 (endowed with its canonical inner product) in place of H =
L2(T), and definingϕ asϕ(x) = (e2iπkx )− fc�k� fc . Note that, to simplify the notation,
we consider in this paper real Hilbert spaces H, but our analysis readily extends to
complex Hilbert spaces.

Given general ϕ and � as in (7), and given x̄ = (x1, . . . , xN ) ∈ XN , we denote by
�x̄ : R

N → H the linear operator such that

∀a ∈ R
N , �x̄ (a)

def.=
N∑
i=1

aiϕ(xi ),

and by �x̄ : (RN × R
N ) → H the linear operator defined by

�x̄

(
a
b

)
def.=

N∑
i=1

(
aiϕ(xi ) + biϕ

′(xi )
)
.

For ϕ ∈ KERk , operators involving the derivatives are defined similarly,

∀0 � i � k, (�x̄ )
(k) : a ∈ R

N −→ (�x̄ )
(k)(a) =

N∑
i=1

aiϕ
(i)(xi ).

We occasionally write �′̄
x (resp. �

′′̄
x ) for (�x̄ )

(1) (resp. for (�x̄ )
(2)), and we adopt

the following matricial notation

�x̄ = (ϕ(x1) . . . ϕ(xN )) and �x̄ = (�x̄ �′̄
x ),
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where the “columns” of those “matrices” are elements ofH. In particular, the adjoint
operator �∗̄

x : H → R
N is given by

∀p ∈ H, �∗̄
x p = ((�∗ p)(xi )

)
1�i�N .

We denote by ϕk ∈ H the kth derivative of ϕ at 0, i.e.

ϕk
def.= ϕ(k)(0). (10)

In particular, ϕ0 = ϕ(0).
Given k ∈ N, we define

k
def.= (ϕ0 ϕ1 . . . ϕk

)
. (11)

If k : R
k+1 → H has full column rank, we define its pseudo-inverse as

+
k

def.= (∗
k k)

−1∗
k . Similarly, we denote �+

x̄
def.= (�∗̄

x�x̄ )
−1�∗̄

x provided �x̄ has full
column rank.

1.5.4 Linear Algebra

For z ∈ R
N , we let

Hz
def.=

⎛
⎜⎜⎜⎝

1 . . . 1 0 . . . 0
z1 . . . zN 1 . . . 1
...

...
...

...
(z1)2N−1

(2N−1)! . . .
(zN )2N−1

(2N−1)!
(z1)2N−2

(2N−2)! . . .
(zN )2N−2

(2N−2)!

⎞
⎟⎟⎟⎠ ∈ R

2N×2N , (12)

so that H∗,−1
z is the matrix of the Hermite interpolation at points z1, . . . zN when

R2N−1[X ] is equiped with the basis
(
1, X, . . . , X2N−1

(2N−1)!
)
.

For each N ∈ N, we define

δN
def.= (1, 0, . . . , 0)T ∈ R

N , (13)

1N
def.= (1, 1, . . . , 1)T ∈ R

N . (14)

We use the �∞ norm, |·|∞, for vectors ofR
N orR

2N , whereas the notation ‖·‖ refers
to an operator norm (on matrices, or bounded linear operators). ‖·‖H is the norm on
H associated to the inner product 〈·, ·〉H. ‖·‖L∞(X) denotes the L

∞ norm for functions
defined on X .
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2 Asymptotic Analysis of Support Recovery

This section exposes our main contribution (Theorem 2). The hypotheses of this result
require an injectivity condition and a non-degeneracy condition, that are explained in
Sects. 2.1 and 2.2.

2.1 Injectivity Hypotheses

We introduce here an injectivity hypothesis which ensures the invertibility of �∗
t z�t z

and �∗
t z�t z for t > 0 small enough.

In the case of the ideal low-pass filter [defined in (9)], �x̄ has full column rank
provided that x̄ = (x1, . . . , xN ) ∈ XN has pairwise distinct coordinates (see [14,
Sect. 3.6, Proposition 6]). That property is not true for a general operator�. However,
in this paper we focus on sums of Dirac masses that are clustered around the point
0 ∈ X , i.e. x̄ = t z for t > 0 and z ∈ R

N with pairwise distinct components. The
following assumption, which is crucial to our analysis, shall ensure that �t z has full
rank at least for small t .

Definition 2 Let ϕ : X → H. For all k ∈ N, we say that the hypothesis Ik holds if
and only if

ϕ ∈ KERk and (ϕ0, . . . , ϕk) are linearly independent in H. Ik

See Definition 1 for the definition of the space KERk and Eq. (10) for the definition
of ϕk .

If Ik holds, then ∗
k k is a symmetric positive definitematrix, where k is defined

in (11).
To exemplify the meaning of this injectivity hypothesis, Proposition 1 below con-

siders the case X = T with � a convolution operator.

Proposition 1 Let ϕ̃ ∈ C k(T, R) (where ϕ(x) = ϕ̃(· − x)), then Ik holds if and only
if ϕ0 has at least k + 1 non-zeros Fourier coefficients. In particular if � is the ideal
low-pass filter with cutoff frequency fc ∈ N

∗, Ik holds if and only if k � 2 fc.

The proof of this proposition is given in Sect. 1.
As we shall see in Sect. 3, the conditions IN−1 and I2N−1 imply respectively

the invertibility of �∗
t z�t z and �∗

t z�t z , provided that t is small enough. According to
Proposition 1, in the special case of an ideal low-pass filter, these conditions holds if
and only if fc is large enough with respect to the number N of spikes.

2.2 Vanishing Derivatives Precertificate

Following [14, Sect. 4.1, Definition 6], we introduce below the so called “vanishing
derivatives pre-certificate” ηV,t , which is a function defined on X that interpolates the
spikes positions and signs (here +1). Note that ηV,t can be computed in closed form
by solving the linear system (15).
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Proposition 2 (Vanishing derivatives precertificate, [14]) If�t z0 has full column rank,
there is a unique solution to the problem

inf
{‖p‖H ; ∀i = 1, . . . , N , (�∗ p)(t z0,i ) = 1, (�∗ p)′(t z0,i ) = 0

}
.

Its solution pV,t is given by

pV,t = �
+,∗
t z0

(
1N

0

)
, (15)

and we define the vanishing derivatives precertificate as ηV,t
def.= �∗ pV,t .

As shown in [14] (see Sect. 4.2), ηV,t governs the support recovery properties of
the BLASSO Pλ(yt + w). More precisely, if ηV,t is non-degenerate, i.e.

{
∀ x ∈ X \ {t z0,1, . . . , t z0,N }, ∣∣ηV,t (x)

∣∣ < 1,

∀ i ∈ {1, . . . , N }, η′′
V,t (t z0,i ) �= 0,

(16)

then there exists a low noise regime in which the BLASSO recovers exactly the correct
number N of spikes, and the error on the locations and amplitudes is proportional to
the noise level.

The constants involved in the main result of [14] (Theorem 2) depend on the value
of t > 0. The goal of this paper is to precisely determine this dependency, and to show
that this support recovery result extends to the setting where t → 0, provided that
(λ,w) obey some precise scaling with respect to t .

Since our focus is actually on the support recovery properties of the BLASSO
when t → 0, it is natural to look at the limit of pV,t as t → 0. This leads us to the
(2N − 1)-vanishing derivatives precertificate defined below.

Proposition 3 ((2N − 1)-vanishing derivatives precertificate) If I2N−1 holds, there
is a unique solution to the problem

inf
{
‖p‖H ; (�∗ p)(0) = 1, (�∗ p)′(0) = 0, . . . , (�∗ p)(2N−1)(0) = 0

}
.

We denote by pW its solution, given by

pW = 
+,∗
2N−1δ2N (17)

and we define the (2N − 1)-vanishing derivatives precertificate as ηW
def.= �∗ pW .

The following Proposition, which is a direct consequence of Lemma 1 in the next
section, shows that indeed ηV,t converges toward ηW .
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1 1 1

t = 0.4 t = 0.2 t = 0.01

Fig. 1 Top row ηV,t for several values of t , showing the convergence toward ηW . The operator � is an
ideal low-pass filter with a cutoff frequency fc = 10 [see (9)]

1 1 1

N = 1 (ηV,t = ηW ) N = 2 N = 3

Fig. 2 ηW for several values of N . The operator � is an ideal low-pass filter with a cutoff frequency
fc = 10 [see (9)]
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Fig. 3 ηW for the Gaussian filter
(
x ∈ R, ϕ(x) = e

− x2

2σ2
)
for several numbers of spikes and σ = 1. ηW

is (2N − 1)-non-degenerate. It gets flatter at 0 when the number of spikes increases

Proposition 4 If I2N−1 holds and ϕ ∈ KERK (for K � 2N − 1), then for t > 0
small enough �t z0 has full column rank. Moreover

lim
t→0+ pV,t = pW strongly in H,

lim
t→0+ η

(k)
V,t = η

(k)
W in the sense of the uniform convergence on X,

for all 0 � k � K.

Figure 1 shows graphically this convergence of ηV,t toward ηW in the case of the
deconvolution problem over the 1-D torus with the Dirichlet kernel. Figures 2 and 3
show ηW for several values of N . Notice how it becomes flatter at 0 as N increases. This
implies that ηV,t for small t gets closer to degeneracy as N increases. This is reflected
in our main contribution (Theorem 2) where the signal-to-noise ratio is required to
scale with t2N−1.

The behavior of ηV,t is therefore governed by specific properties of ηW for small
values of t > 0. In particular, as stated by Theorem 1 below, the non-degeneracy of
ηW (as defined in Definition 3 below) implies the non-degeneracy of ηV,t (as defined
in (16)).

Definition 3 Assume that I2N−1 holds and ϕ ∈ KER2N . We say that ηW is (2N −1)-
non-degenerate if η

(2N )
W (0) �= 0 and for all x ∈ X \ {0}, |ηW (x)| < 1.
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Theorem 1 Suppose that ηW is (2N−1)-non-degenerate (Definition 3). Let RW > 0.
Then, there exist CW > 0, tW > 0 such that for all t ∈ (0, tW ), all z ∈ R

N with
pairwise distinct coordinates and |z|∞ � RW , and all η ∈ C 2N (X) ∩ W2N ,∞(X)

satisfying for 1 � i � N, η(t zi ) = 1 and η′(t zi ) = 0,

(
∀� ∈ {0, . . . 2N },

∥∥∥η(�) − η
(�)
W

∥∥∥
L∞(X)

� CW

)

�⇒
(

∀x ∈ X \
⋃
i

{t zi }, |η(x)| < 1 and ∀1 � i � N , η′′(t zi ) < 0

)
.

The proof of this theorem can be found in Sect. 1.

Remark 2 An important consequence of Theorem 1 is that if ηW is (2N − 1)-non-
degenerate, then, by Proposition 4, ηV,t is also non-degenerate for t > 0 small enough.
The function ηV,t is then the minimal norm certificate for the measurema0,t z0 , and the
Non-Degenerate Source Condition (see [14]) holds. As a result, for fixed small t > 0,
the BLASSO admits a unique solution in a certain low noise regime corresponding
to a large enough signal to noise ratio, with exactly the same number of spikes as the
original measure ma0,t z0 . For more details on that matter, see [14].

A natural question is whether ηW is indeed (2N −1)-non-degenerate. Proposition 5
below (proved in Sect. 1) gives a partial answer in the case of the deconvolution over X .

Proposition 5 Assume that � is a convolution operator (i.e. for all x ∈ X, ϕ(x) =
ϕ̃(· − x) andH = L2(X)) and I2N holds. Suppose also, only in the case X = R, that
for all 0 � i � 2N − 1, ϕ̃(i)(x) → 0 when |x | → +∞. Then η

(2N )
W (0) < 0.

Remark 3 Thanks to Proposition 5 and the first part of the proof of Theorem 1 (which
is given in Sect. 1), note that the following is true: there exist CW > 0, tW > 0 such
that for all t ∈ (0, tW ), z ∈ R

N with pairwise distinct coordinates and |z|∞ � RW ,
there exists r+ > 0 with r+ > max

1�i�N
tW zi and r− < 0 with r− < min

1�i�N
tW zi such

that for all η ∈ C 2N (X) ∩ W2N ,∞(X) satisfying for all 1 � i � N , η(t zi ) = 1 and
η′(t zi ) = 0:

(
∀� ∈ {0, . . . , 2N },

∥∥∥η(�) − η
(�)
W

∥∥∥
L∞(X)

� CW

)

�⇒
(

∀x ∈ (r−, r+) \
⋃
i

{t zi }, |η(x)| < 1 and ∀i ∈ {1, . . . , N }, η′′(t zi ) < 0

)
.

Whether the other condition in the definition of the (2N − 1)-non-degeneracy of
ηW holds (i.e. whether |ηW | < 1 on X \ {0}) should be checked on a case-by-case
basis. Since ηW depends only on the kernel ϕ and can be computed by simply inverting
a linear system, it is easy to check numerically if ηW is (2N − 1)-non-degenerate.
Proposition 6 shows that in the special case of X = R and the Gaussian kernel, ηW
can be computed in closed form and is indeed (2N − 1)-non-degenerate.
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degenerate and in red when it is degenerate

Proposition 6 Assume that X = R,H = L2(R) and � is a convolution operator, i.e.
for all x ∈ R, ϕ(x) = ϕ̃(· − x), where ϕ̃ : x ∈ R → e−x2/2 is a Gaussian. Then the
associated (2N − 1)-vanishing derivatives precertificate is

∀ x ∈ R, ηW (x) = e− x2
4

N∑
k=1

x2k

22kk! . (18)

In particular, ηW is (2N − 1)-non-degenerate.

The proof of this result can be found in the Appendix 1.4. If we denote by ηW,σ , the
(2N − 1) vanishing derivatives precertificate associated to the filter ϕσ : x ∈ R →
e− x2

2σ2 , then ηW,σ = ηW,1(
·
σ
). That is why we only consider the case of σ = 1 in

Proposition 6. Figure 3 shows ηW for the Gaussian filter with an increasing number
N of spikes.

For the deconvolution over the 1-D torus, we observed numerically (as illustrated
in Fig. 2) that ηW is (2N −1)-non degenerate for the ideal low pass filter for any value
N such that N � fc (Fig. 4 represents the complementary case where N is fixed but fc
increases). However, for some filters, the associated ηW might be degenerate. This is
illustrated in Fig. 5whereηW is illustrated for several filterswith increasing complexity
i.e. we consider low pass filters with a fixed cutoff frequency, with increasing extreme
Fourier coefficients (starting with a slowly varying filter). Remark that the last two ηW
(in red) are degenerate, as they correspond to the filters with the higher complexity
(the Fourier coefficients increase the most with the frequency).
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2.3 Main Contribution

We now state our main contribution.

Theorem 2 Suppose that ϕ ∈ KER2N+1 and that ηW is (2N − 1)-non-degenerate.
Then there exist constants (t1, tW ,C,CR, M) (depending only on ϕ, a0 and z0) such
that for all 0 < t < min (t1, tW ), for all (λ,w) ∈ B

(
0,CRt2N−1

)
with
∥∥w

λ

∥∥H � C,

• the problem Pλ(yt + w) admits a unique solution,
• that solutionhas exactly N spikes, and it is of the formma,t z , with (a, z) = g∗

t (λ,w)

(where g∗
t is a C 2N function defined on B

(
0,CRt2N−1

) ⊂ R × H),
• the following inequality holds

|(a, z) − (a0, z0)|∞ � M

( |λ|
t2N−1 + ‖w‖H

t2N−1

)
.

Note that the value of constants involved can be found in the proof of the theorem,
more precisely, (t1,C) are defined in (46),CR is defined in Proposition 9, tW is defined
in Theorem 1 and M is given in Corollary 1.

The proof of Theorem 2 uses results spanning Sects. 3, 4 and 5. Below, we give a
sketch of proof to guide the reader through the remaining of the paper. The elements
of the proof are divided in three main steps.

Step 1 (Sections 4.1 and 4.2) We start with the first order optimality equation that any
solution ma,t z , for fixed t > 0, of Pλ(yt + w) must satisfy i.e.

�∗
t z

(
�t za − �t z0a0 − w

)+ λ

(
1N

0

)
= 0.

It is obtainedby applyingFermat’s rule to the problemPλ(yt+w). Since the parameters
(a, z, λ,w) = (a0, z0, 0R, 0H) are a solutionof the equation, the idea is to parametrize,
in a neighborhood of (λ,w) = (0R, 0H), the amplitudes and positions (a, z) in terms
of (λ,w) by applying the implicit function theorem so that (a, z, λ,w) is a solution of
the first order equation. This process is detailed in Sects. 4.1 and 4.2. The rest of the
proof consists in proving that the measure ma,t z is the unique solution of the problem
Pλ(yt + w). But before we have to deal with the domain of existence of the above
parametrization.

Step 2 (Section 4.3) The implicit function theorem only provides the existence of a
neighborhood in (λ,w) of (0R, 0H) where the parametrization holds, but we do not
know how it size depends on the parameter t . This issue is important because one of
our aims is to determine the constraints on t (corresponding roughly to the minimum
distance between the spikes of the original measure), on the noise level and on the
regularization parameter λ so that the recovery of the support is possible. Section 4.3
is devoted to show that the parametrization, which writes (a, z) = g∗

t (λ,w) (see
Eq. (38) for the definition of the implicit function g∗

t ), of the solutions of the first order
optimality equation holds in a neighborhood of (0R, 0H) and of size proportional to
t2N−1. This result corresponds to Proposition 9. The proof uses an upper bound of
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dg∗
t which is stated in Corollary 1. Proposition 9 relies on asymptotic expansions (of

�t z for example), when t → 0, gathered and used in the proof of Lemma 5. Section 3
is devoted to these asymptotic expansions and it may be skipped at first reading.

Step 3 (Section 5) Up to now, we have constructed a candidate solution ma,t z (com-
posed of N spikes) where (a, z) = g∗

t (λ,w) is built by parametrizing the solutions of
the first order optimality equation. Moreover this parametrization holds for all (λ,w)

in a ball of radius proportional to t2N−1. It remains to prove that ma,t z is indeed the
unique solution of Pλ(yt + w). To prove that ma,t z is a solution, it is equivalent to
check that

0 ∈ ∂

(
m → 1

2
‖�m − yt − w‖2H + λ|m|(X)

)
(ma,t z),

which reformulates into ηλ,t
def.= 1

λ
�∗(yt + w − �ma,t z) ∈ ∂|ma,t z|(X). This is done

by first showing the convergence of ηλ,t towards ηW when (t, λ,w) → 0 in a well
chosen domain, see Proposition 11, and then using Theorem 1 and the fact that ηW is
ensured to be (2N −1)-non-degenerate (which is one of the hypotheses of Theorem 2)
to get the non-degeneracy of ηλ,t and the conclusion.

2.3.1 Putting All Together

After this sketch, we nowgive the detailed proof. It uses Proposition 9 (parametrization
of the solution of the first order optimality equation on a ball, for the parameter (λ,w),
of radius proportional to t2N−1), Proposition 11 (convergence of ηλ,t towards ηW ),
Theorem 1 (use of the (2N − 1)-non-degeneracy of ηW to transfer it to ηλ,t ), and
Proposition 10 (upper bound on the error of ma,t z with respect to ma0,t z0 ).

Proof of Theorem 2 Let us take t, λ,w as in the hypotheses of the Theorem 2. Let
(a, z) = g∗

t (λ,w), where g∗
t is the function constructed in Sect. 4. Let us define

pλ,t
def.= 1

λ

(
�t z0a0 + w − �t za

)
and ηλ,t

def.= �∗ pλ,t .

By Proposition 11 combined with Theorem 1 where we take

RW
def.= sup{|z|∞ ; z ∈ Bz0}, (19)

we have for 0 < t < min(tW , t1),

∀x ∈ X \
⋃
i

{t zi }, |ηλ,t (x)| < 1 and ∀1 � i � N , η′′
λ,t (t zi ) < 0, (20)

while ηλ,t (t zi ) = 1 = sign(ai ) by definition.
We deduce that ηλ,t is in the subdifferential of the total variation at ma,t z because

• ηλ,t ∈ CX ,
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• ∥∥ηλ,t
∥∥
L∞(X)

� 1 thanks to Eq. (20),
• ∀1 � i � N , ηλ,t (t zi ) = 1 = sign(ai ) by definition of ηλ,t (recall that (a, z) =

g∗
t (λ,w)).

As a resultma,t z is a solution to Pλ(yt +w) and pλ,t is the unique solution to the dual
problem associated to Pλ(yt + w) (see [14, Sect. 2.4] for details on dual certificates
and optimality conditions for Pλ(yt + w)).

Let m be an other solution of Pλ(yt + w). Then the support of m is included
in the saturation points of ηλ,t = �∗ pλ,t i.e. in {t z1, . . . , t zN }. As a result
m = ma′,t z for some a′ ∈ R

N and m satisfies the first order optimality equation

�∗
t z

(
�t za′ − �t z0a0 − w

) + λ

(
1N

0

)
= 0. Hence �∗

t z�t za′ = �∗
t z�t za and since

�t z has full rank (by assumption t is chosen sufficiently small, see Lemma 1 for the
proof),�∗

t z�t z is invertible and a′ = a. Som = ma,t z andPλ(yt +w) admits a unique
solution: ma,t z .

The bound on the error between (a, z) and the amplitudes and positions of the initial
measure (a0, z0) is a direct consequence of Proposition 10. ��

2.4 Necessary Condition for the Recovery in the Limit t → 0

Our main contribution, Theorem 2, states that under a non-degeneracy property which
involves ηW , it is possible to perform the recovery of the support of a measure ma0,t z0
in the limit t → 0 when the data are contaminated by some noise, provided that
max(|λ|/t2N−1, ‖w‖H /t2N−1, ‖w‖H /λ) � C for some constant C > 0 depending
only on the filter ϕ and (a0, z0). It is natural to ask whether the non-degeneracy
condition on ηW , in order to get the recovery of the support in some low noise regime,
is sharp.

The following Theorem shows that the (2N − 1)-non-degeneracy assumption on
ηW is almost sharp in the sense that the recovery of the support in a low noise regime
leads to ‖ηW‖L∞(X) � 1.

Theorem 3 Suppose that I2N−1 holds and ϕ ∈ KER2N+1. Suppose also that there
exists a sequence (tn)n∈N such that tn → 0 and satisfying

∀n ∈ N, ∃(λn, wn), ∃(an, zn) ∈ R
N × R

N ,man ,tn zn is solution of Pλn (ytn + wn),

where (λn, wn) → 0 with ‖wn‖H
λn

→ 0. Then

‖ηW‖L∞(X) � 1. (21)

The proof of this result can be found in Appendix 1.5.
The remaining sections of the paper, namely Sects. 3, 4 and 5 are devoted to the

proof of Theorem 2.
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3 Preliminaries

Our study relies to a large extent on the asymptotic behavior of quantities built upon
�t z and �t z for t > 0 small, such as (�∗

t z�t z)
−1 or (�∗

t z�t z)
−1. In this section, we

gather several preliminary results that enable us to control that behavior.

3.1 Approximate Factorizations

Our asymptotic estimates are basedon an approximate factorization of�x̄ and�x̄ using
Vandermonde and Hermite matrices. It enables us to study the asymptotic behavior of
the optimality conditions of Pλ(yt + w) when t → 0+. In the following, we consider
z ∈ Bz0 [see (6)] and t ∈ (0, 1], so that Htz is always invertible. Moreover, we shall
always assume that ϕ ∈ KER2N .

Proposition 7 The following expansion holds

�t z = 2N−1Htz + �t,z Dt , (22)

where 2N−1 is defined in (11), Htz is defined in (12), and where

�t,z
def.=
((∫ 1

0
(zi )

2Nϕ(2N )(st zi )
(1 − s)2N−1

(2N − 1)! ds
)
1�i�N

,

( ∫ 1

0
(zi )

2N−1ϕ(2N )(st zi )
(1 − s)2N−2

(2N − 2)! ds
)
1�i�N

)

Dt
def.= diag(t2N , . . . , t2N , t2N−1, . . . , t2N−1).

Proof This expansion is nothing but the Taylor expansions for ϕ and ϕ′:

ϕ(t zi ) = ϕ0 + (t zi )ϕ1 + . . . + (t zi )2N−1

(2N − 1)!ϕ2N−1

+ (t zi )
2N
∫ 1

0
ϕ(2N )(st zi )

(1 − s)2N−1

(2N − 1)! ds, (23)

ϕ′(t zi ) = ϕ1 + (t zi )ϕ2 + . . . + (t zi )2N−2

(2N − 2)!ϕ2N−1

+ (t zi )
2N−1
∫ 1

0
ϕ(2N )(st zi )

(1 − s)2N−2

(2N − 2)! ds. (24)

��
The above expansion yields a useful factorization for �t z ,

�t z = t z Htz where t z
def.= 2N−1 + �t,z Dt H

−1
t z .

The rest of this section is devoted to the consequence of that factorization for the
asymptotic behavior of �t z and its related quantities. The main ingredient of this
analysis is the factorization of Htz as
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Htz = diag(1, t, . . . , t2N−1)Hz diag

(
1, . . . , 1,

1

t
, . . . ,

1

t

)
. (25)

Let us emphasize that our Taylor expansions are uniform in z ∈ Bz0 .More precisely,
given two quantities f (z, t), g(z, t), we say that f (z, t) = g(z, t) + O

(
tk
)
if

lim sup
t→0+

sup
z∈Bz0

∣∣∣∣ f (z, t) − g(z, t)

tk

∣∣∣∣ < +∞.

Lemma 1 The following expansion holds for t → 0+,

t z = 2N−1 + O(t) . (26)

Moreover, if I2N−1 holds then t z and �t z have full column rank for t > 0 small
enough and

(∗
t zt z)

−1 = (∗
2N−12N−1)

−1 + O(t) (27)

�
+,∗
t z

(
1N

0

)
= 

+,∗
2N−1δ2N + O(t) . (28)

Proof We begin by noticing that

�t,z Dt H
−1
t z = t2N�t,z H

−1
z diag(1, 1/t, . . . , 1/t2N−1)

= �t,z H
−1
z diag(t2N , t2N−1, . . . , t).

The function z → H−1
z is C∞ and uniformly bounded on Bz0 , and (z, t) → �t,z

is C 0 on the compact set Bz0 × [0, 1] hence uniformly bounded too. As a result, we
get (26).

Assume now that I2N−1 holds. Since∗
2N−12N−1 is invertible, there is some R >

0 such that for every A in the closed ball B
(
∗

2N−12N−1, R
) ⊂ R

(2N−1)×(2N−1), A
is invertible. By the mean value inequality

∥∥∥(∗
2N−12N−1)

−1−A−1
∥∥∥ � sup

B∈B(∗
2N−12N−1,R

)
∥∥∥B−1(A − ∗

2N−12N−1)B
−1
∥∥∥

�

⎛
⎝ sup

B∈B(∗
2N−12N−1,R

)
∥∥∥B−1
∥∥∥
⎞
⎠

2 ∥∥A−∗
2N−12N−1

∥∥ .

Applying that to A = ∗
t zt z = ∗

2N−12N−1+O(t) (since each term in the product
is uniformly bounded), we get (27).

Now, for the last point, we infer from�t z = t z Htz and the fact that Htz is invertible
that �+,∗

t z = 
+,∗
t z H−1,∗

t z . Hence
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�
+,∗
t z

(
1N

0

)
= 

+,∗
t z δ2N = t z(

∗
t zt z)

−1δ2N

where δ2N is defined in (13).
Each factor below being uniformly bounded in Bz0 × [0, 1], we get

�
+,∗
t z

(
1N

0

)
= (2N−1 + O(t))

(
(∗

2N−12N−1)
−1 + O(t)

)
δ2N

= 2N−1(
∗
2N−12N−1)

−1δ2N + O(t) .

��

3.2 Projectors

In this paragraph, we shall always suppose that I2N−1 holds. Another important
quantity in our study is the orthogonal projector P(Im �t z)⊥ (resp. P(Im2N−1)

⊥) onto
(Im �t z)

⊥ (resp. (Im2N−1)
⊥). We define

�t z
def.= P(Im �t z)⊥ = IdH − �t z(�

∗
t z�t z)

−1�∗
t z,

�2N−1
def.= P(Im2N−1)

⊥ = IdH − 2N−1(
∗
2N−12N−1)

−1∗
2N−1.

Observing that P(Im �t z)⊥ = P(Imt z)⊥ , we immediately obtain from the previous
Lemma that �t z = �2N−1 + O(t).

By construction, �t z�t z = �t z�
′
t z = 0, but the following proposition shows that

this quantity is also small if we replace �t z with �′′
t z .

Lemma 2 There exists a constant L1 > 0 (which only depends on ϕ, a0 and z0) such
that

∥∥�t z�
′′
t z

∥∥H � L1t
2N−2

uniformly in z ∈ Bz0 .

Proof Applying a Taylor expansion to ϕ(2), we write

�′′
t z = 2N−1Ṽtz + t2N−2�̃t,z

where

Ṽtz =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0
0 . . . 0
1 . . . 1
...

...
(t z1)2N−3

(2N−3)! . . .
(t zN )2N−3

(2N−3)!

⎞
⎟⎟⎟⎟⎟⎠

, (29)
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�̃t,z =
(
(zi )2N−2

∫ 1
0 ϕ(2N )(st zi )

(1−s)2N−3

(2N−3)! ds
)
1�i�N

.

Hence

�t z�
′′
t z = �t z(t z Ṽt z + (N−1 − t z)Ṽtz + t2N−2�̃t,z)

= �t z(−�t,z Dt H
−1
t z Ṽt z + t2N−2�̃t,z) since �t zt z = 0.

Using (25), we see that

Dt H
−1
t z Ṽt z = H−1

z diag(t2N , t2N−1, . . . , t)Ṽtz

= t2N−2H−1
z Ṽz, hence

�t z�
′′
t z = t2N−2�t z(−�t,z H

−1
z Ṽz + �̃t,z).

Since ‖�t z‖ � 1 and the continuous function (z, t) → −�t,z H−1
z Ṽz + �̃t,z is

uniformly bounded on the compact set Bz0 × [0, 1], we obtain

∥∥�t z�
′′
t z

∥∥H �

⎛
⎝ sup

(z′,t ′)∈Bz0×[0,1]

∥∥∥�t ′,z′ H
−1
z′ Ṽz′ + �̃t ′,z′

∥∥∥H
⎞
⎠ t2N−2

��
We study further the projector �t z when it is not evaluated at the same z as �t z .

Lemma 3 If ϕ ∈ KER2N+1, then there is a constant L2 > 0 (which only depends on
ϕ, a0 and z0) such that for all z ∈ Bz0 , all t ∈ (0, 1],

∥∥∥∥�t z�t z0

(
a0
0

)∥∥∥∥H � L2t
2N |z − z0|∞ .

Proof Let us observe that

�t z�t z0 = �t z(2N−1Htz0 + �t,z0Dt )

= �t z(t z Htz0 + (2N−1 − t z)Htz0 + �t,z0Dt )

= �t z(−�t,z Dt H
−1
t z Htz0 + �t,z0Dt ) since�t zt z = 0.

Observing that

Dt H
−1
t z Htz0 = t2N H−1

z Hz0 diag (1, . . . , 1, 1/t, . . . , 1/t) = H−1
z Hz0Dt ,

we get

�t z�t z0 = �t z

(
�t,z0(Id2N − H−1

z Hz0) + (�t,z0 − �t,z)H
−1
z Hz0

)
Dt .
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For k ∈ {2N − 1, 2N }, the function (u, s, t) → ukϕ(2N )(stu) is defined and C 1

on the compact sets (since ϕ ∈ KER2N+1)

∀ 1 � i � N ,

[
z0i − �0

4
, z0i + �0

4

]
× [0, 1] × [0, 1],

where �0 is defined in (5). Thus there is a constant C > 0 (which does not depend on
t nor z ∈ Bz0 ) such that

∣∣∣∣
∫ 1

0

(
(zi )

kϕ(2N )(st zi ) − (z0i )
kϕ(2N )(st z0i )

) (1 − s)k−1

(k − 1)! ds

∣∣∣∣ � C |zi − z0i | ,
hence

∥∥�t,z0 − �t,z
∥∥ � C |z − z0|∞ .

As a result, since ‖�t z‖ � 1 and z → H−1
z Hz0 is bounded on Bz0 ,

∥∥∥�t z(�t z0 − �t,z)H
−1
z Hz0

∥∥∥H � C sup
z′∈Bz0

∥∥∥H−1
z′ Hz0

∥∥∥ |z − z0|∞ .

As for the left term, �t z0 is bounded uniformly in t ∈ [0, 1], and the mapping z →
H−1
z Hz0 is C

1 on Bz0 . As a result, there is a constant C̃ > 0 such that

∀z ∈ Bz0 ,

∥∥∥IdN − H−1
z Hz0

∥∥∥ � C̃ |z − z0|∞ .

To conclude, we observe that Dt

(
a0
0

)
= t2N

(
a0
0

)
, and we combine the above

inequalities to obtain

∥∥∥∥�t z�t z0

(
a0
0

)∥∥∥∥H �

⎛
⎝C sup

z′∈Bz0

∥∥∥H−1
z′ Hz0

∥∥∥+ C̃ sup
t∈[0,1]
∥∥�t z0

∥∥
⎞
⎠ t2N |z − z0|∞ .

��

3.3 Asymptotics of the Vanishing Derivatives Precertificate

We end this section devoted to the asymptotic behavior of quantities related to �t z

by studying the second derivative of the vanishing derivatives precertificate ηV,t (see
Definition 2, and [14] for more details). Theorem 1 ensures that the second derivatives
of ηV,t do not vanish at z0,i , 1 � i � N . However, it does not provide any estimation
of those second derivatives. That is the purpose of the next proposition.

In view of Sect. 4, it will be useful to study those second derivatives not only for
the precertificates that are defined by interpolating the sign at t z0 but more generally
for the precertificates that are defined to interpolate the sign at t z for any z ∈ Bz0 .
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Proposition 8 Assume that ϕ ∈ KER2N+1 and that I2N−1 holds. Then

�′′
t z

∗
�

+,∗
t z

(
1N

0

)
= t2N−2η

(2N )
W (0)dz + O

(
t2N−1
)

, (30)

where dz ∈ R
N , dz,i

def.= 2

(2N )!
∏
j �=i

(zi − z j )
2 for 1 � i � N . (31)

Proof Weproceed as in the proof ofLemma2bywriting�′′
t z = 2N−1Ṽtz+t2N−2�̃t,z

[see (29)] and t z = �t z H
−1
t z . We obtain

�′′
t z = t z Ṽt z + t2N−2�̃t,z − t2N−2�t,z H

−1
z Ṽz .

The first term yields

Ṽtz
∗∗

t z�
+,∗
t z

(
1N

0

)
= Ṽtz

∗∗
t zt z(

∗
t zt z)

−1H−1,∗
t z

(
1N

0

)
= Ṽtz

∗δ2N = 0. (32)

As for the second term, we take the Taylor expansion a little further (using integration
by parts),

∫ 1

0
ϕ(2N )(st zi )

(1 − s)2N−3

(2N − 3)! ds = ϕ2N

(2N − 2)!
+ t zi

∫ 1

0
ϕ(2N+1)(st zi )

(1 − s)2N−2

(2N − 2)! ds,

so as to obtain

�̃t,z = (ϕ2N , . . . , ϕ2N ) diag(ez) + O(t) , where ez
def.=
(

(zi )2N−2

(2N − 2)!
)
1�i�N

∈ R
N

and, as usual, O(t) is uniform in z ∈ Bz0 . From Lemma 1, we also know that

�
+,∗
t z

(
1N

0

)
= pW + O(t), hence

�̃∗
t,z�

+,∗
t z

(
1N

0

)
= diag(ez)

⎛
⎜⎝

〈ϕ2N , pW 〉H
...

〈ϕ2N , pW 〉H

⎞
⎟⎠+ O(t) = η

(2N )
W (0)ez + O(t) . (33)

Now, we proceed with the last term. Similarly, by integration by parts,

�t,z = (ϕ2N . . . ϕ2N
)
diag( fz) + O(t).
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where fz is defined by

fz
def.=
(

(z1)2N

(2N )! , . . . ,
(zN )2N

(2N )! ,
(z1)2N−1

(2N − 1)! , . . . ,
(zN )2N−1

(2N − 1)!
)

∈ R
2N . (34)

Hence,

�∗
t,z�

+,∗
t z

(
1N

0

)
= diag( fz)

⎛
⎜⎝

〈ϕ2N , pW 〉H
...

〈ϕ2N , pW 〉H

⎞
⎟⎠+ O(t) = η

(2N )
W (0) fz + O(t).

To conclude, we study Ṽz∗H−1,∗
z (which is uniformly bounded on Bz0 ). In

R2N−1[X ] endowed with the basis
(
1, X, . . . , X2N−1

(2N−1)!
)
, H∗

z is the matrix of the linear

map which evaluates a polynomial and its derivatives at {z1, . . . , zN }. On the other
hand Ṽz∗ represents the evaluation of the second derivative at {z1, . . . , zN }. Thus,

Ṽz
∗H−1,∗

z fz = (P ′′(zi ))1�i�N ,

where P is the unique polynomial in R2N−1[X ] which satisfies

∀ i = 1, . . . , N , P(zi ) = (zi )2N

(2N )! and P ′(zi ) = (zi )2N−1

(2N − 1)! .

One may check that

P(X) = X2N

(2N )! − 1

(2N )!
N∏
i=1

(X − zi )
2

and P ′′(zi ) = z2N−2
i

(2N − 2)! − 2

(2N )!
∏
j �=i

(zi − z j )
2.

As a result,

− Ṽz
∗H−1,∗

z �∗
t,z�

+,∗
t z

(
1N

0

)
= η

(2N )
W (0)(dz − ez) + O(t) , (35)

where O(t) is uniform in z ∈ Bz0 . We obtain the claimed result by summing (32),
(33) and (35). ��

4 Building a Candidate Solution

Now that the technical issues regarding the asymptotic behavior of �t z have been
settled, we are ready to tackle the study of the BLASSO. In this section, we build a
candidate solution for Pλ(yt + w) by relying on its optimality conditions.
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4.1 First Order Optimality Conditions

The optimality conditions forPλ(yt +w) (see [14]) state that any measure of the form
ma,t z =∑N

i=1 aiδt zi is a solution to Pλ(yt + w) if and only if the function defined by

ηλ,t
def.= �∗ pλ,t with pλ,t

def.= 1
λ

(
�t z0a0 + w − �t za

)
satisfies

∥∥ηλ,t
∥∥
L∞(X)

� 1 and
ηλ,t (t zi ) = sign(ai ) for all 1 � i � N .

Observe that we must have η′
λ,t (t zi ) = 0 for all 1 � i � N . Moreover, in our case,

since we assume that a0,i > 0 we have in fact ηλ,t (t zi ) = 1.
In order to build such a function ηλ,t , let us consider the function ft defined for

some fixed t > 0 on
(
R

N
)2 × R × H by

ft (u, v)
def.= �∗

t z

(
�t za − �t z0a0 − w

)+ λ

(
1N

0

)
(36)

where u = (a, z) and v = (λ,w). (37)

Now, let us write u0
def.= (a0, z0). Notice that ma,t z is a solution to Pλ(yt + w) if and

only if ft (u, v) = 0 and
∥∥ηλ,t
∥∥
L∞(X)

� 1. Our strategy is therefore to construct

solutions of ft (u, v) = 0 and to prove that
∥∥ηλ,t
∥∥
L∞(X)

� 1 provided (λ,w) and ηW
satisfy certain properties. More precisely we start by parametrizing the solutions of
ft (u, v) = 0, in a neighborhood of (u0, 0), using the Implicit Function Theorem.
The following Lemma 4 (whose proof is omitted and corresponds to simple com-

putations) shows that ft is smooth and gives its derivatives.

Lemma 4 If ϕ ∈ KERk+1 for some k ∈ N
∗ then ft is of class C k and for all

(u, v) ∈ (RN
)2 × (R × H)

∂u ft (u, v) = �∗
t z�t z Jta + t

(
0 diag(�′∗

t z(�t za − �t z0a0 − w))

0 diag(�′′∗
t z (�t za − �t z0a0 − w))

)

∂v ft (u, v) =
((

1N

0

)
,−�∗

t z

)

where Jta
def.=
(
IdN 0
0 t diag(a)

)
.

4.2 Implicit Function Theorem

Suppose that I2N−1 holds and ϕ ∈ KER2N+1. By the results of Sect. 3, there exists
0 < t0 < 1 such that for 0 < t < t0 and all z ∈ Bz0 , �∗

t z�t z is invertible. In the
following we shall consider a fixed value of such t0 provided by Lemma 5 below
which also ensures additional properties.

Now, let t ∈ (0, t0) be fixed. By Lemma 4, ft is C 2N , ∂u ft (u0, 0) = �∗
t z0�t z0 Jta0

is invertible and ft (u0, 0) = 0. Hence by the Implicit Function Theorem, there exists

Vt a neighborhood of 0 inR×H,Ut a neighborhood of u0 in
(
R

N
)2

and gt : Vt → Ut
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a C 2N function such that

∀(u, v) ∈ Ut × Vt , ft (u, v) = 0 ⇐⇒ u = gt (v).

Moreover, denoting dgt the differential of gt , we have

∀ v ∈ Vt , dgt (v) = − (∂u ft (gt (v), v))−1 ∂v ft (gt (v), v).

4.3 Extension of the Implicit Function gt

Our goal is to prove that ma,t z is the solution of the BLASSO, where (a, z) = u =
gt (v). To this end, we shall exhibit additional constraints on v ∈ Vt , such as the scaling
of the noise ‖w‖H or λ with respect to t , in order to ensure that

∥∥ηλ,t
∥∥
L∞(X)

� 1.
However, the size of the neighborhood Vt provided by the Implicit Function Theorem
is a priori unknown, and it might implicitly impose even stronger conditions on λ and
w as t → 0+.

Hence, before studying whether
∥∥ηλ,t
∥∥
L∞(X)

� 1, we show in this section that

we may replace Vt with some ball with radius of order t2N−1 and still have a para-
metrization of the form u = gt (v) satisfying ft (gt (v), v) = 0 where ft is defined
in (36).

Let V ∗
t = ⋃V∈V V , where V is the collection of all open sets V ⊂ R × H such

that

• 0 ∈ V ,
• V is star-shaped with respect to 0,
• V ⊂ B

(
0,CT t2N−2

)
, where CT > 0 is a constant defined by Lemma 5 below,

• there exists aC 2N function g : V → (RN )2 such that g(0) = u0 and ft (g(v), v) =
0 for all v ∈ V ,

• g(V ) ⊂ Ba0 × Bz0 .

Observe that V is nonempty (by the Implicit Function Theorem in Sect. 4.2) and
stable by union, so that V ∗

t ∈ V . Indeed, all the properties defining V are easy to check
except possibly the last two. Let V, Ṽ ∈ V and g, g̃ be corresponding functions. The

set
{
v ∈ V ∩ Ṽ ; g(v) = g̃(v)

}
is nonempty (because g(0) = u0 = g̃(0)) and closed

in V ∩ Ṽ . Moreover, it is open since for any v ∈ V ∩ Ṽ , v ∈ B
(
0,CT t2N−2

)
and,

by Lemma 5 below, the Implicit Function Theorem applies at (g(v), v), yielding an
open neighborhood in which g and g̃ coincide. By connectedness of V ∩ Ṽ , g and g̃
coincide in the whole set V ∩ Ṽ . As a result, the function g∗

t : V ∗
t → (RN )2, defined

by

g∗
t (v)

def.= g(v) ifv ∈ V, V ∈ V, andgis a corresponding function, (38)

is well defined. Moreover, g∗
t is C 2N and g∗

t (V
∗
t ) ⊂ Ba0 × Bz0 .

Before proving that V ∗
t contains a ball of radius of order t2N−1 and studying the

variations of g∗
t , we state Lemma 5 mentioned above.
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Lemma 5 If I2N−1 holds andϕ ∈ KER2N+1 then there exists t0 ∈ (0, 1) andCT > 0
(which only depend on ϕ and u0) such that for all t ∈ (0, t0), if

u = (a, z) ∈ Ba0 × Bz0 and v = (λ,w) ∈ B
(
0,CT t

2N−2
)

, (39)

then the matrix

Gtz(λ,w)
def.= ∗

t zt z + t H∗,−1
t z Ftz J

−1
ta H−1

t z , (40)

where Ftz
def.=
(
0 0
0 − diag

(
�′′∗

t z qtz
)
)

, (41)

and qtz
def.= λ�

∗,+
t z

(
1N

0

)
+ �t zw + �t z�t z0

(
a0
0

)
, (42)

is invertible and the norm of its inverse is less than 3
∥∥(∗

2N−12N−1)
−1
∥∥.

If, moreover, ft (u, v) = 0, then

∂u ft (u, v) = H∗
t zGtz(λ,w)Htz Jta

and this is an invertible matrix.

Let us precise that by (λ,w) ∈ B
(
0,CT t2N−2

)
, we mean that |λ| < CT t2N−2 and

‖w‖H < CT t2N−2.

Proof We consider t0 ∈ (0, 1) small enough so that for 0 < t < t0 and all z ∈ Bz0 ,
�∗
t z�t z is invertible and

∥∥∥(∗
t zt z)

−1
∥∥∥ � 2

∥∥∥(∗
2N−12N−1)

−1
∥∥∥ by Lemma 1, (43)

∣∣∣∣λ�′′∗
t z �

∗,+
t z

(
1N

0

)∣∣∣∣∞ � 4(2RW )2N

(2N )!
∣∣∣λη

(2N )
W (0)

∣∣∣ t2N−2 by Proposition 8. (44)

In the last equation, we have used the fact that
∣∣∣∏ j �=i (zi − z j )2

∣∣∣ � (2RW )2N (where

RW = sup{|z|∞ ; z ∈ Bz0} is defined in Eq. (19)).
We also know that for some constants L1, L2 > 0 which only depend on ϕ and u0,

∣∣�′′∗
t z �t zw

∣∣∞ � ‖w‖H L1t
2N−2 by Lemma 2,

and

∣∣∣∣�′′∗
t z �t z�t z0

(
a0
0

)∣∣∣∣∞ � L1L2
�0

4
t4N−2 by Lemmas 2 and 3,

for all z ∈ Bz0 = B
(
z0,

�0
4

)
, t ∈ (0, t0), where �0 is defined in (5).
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Combining those inequalities with (44), we see that

∣∣�′′∗
t z qtz
∣∣∞ =
∣∣∣∣λ�′′∗

t z �
∗,+
t z

(
1N

0

)
+ �′′∗

t z �t zw + �′′∗
t z �t z�t z0

(
a0
0

)∣∣∣∣∞
� |λ| 4

(2N )!
∣∣∣η(2N )

W (0)
∣∣∣ t2N−2 + ‖w‖H L1t

2N−2 + L1L2
�0

4
t4N−2

On the other hand, since

H∗,−1
t z = diag

(
1, . . . , 1/t2N−1

)
H∗,−1
z diag (1, . . . , 1, t, . . . , t) ,

and Ftz =
(
0 0
0 − diag

(
�′′∗

t z qtz
)
)

,

we get

H∗,−1
t z Ftz J

−1
ta H−1

t z = t diag
(
1,..., 1

t2N−1

)
H∗,−1
z Ftz

J−1
a H−1

z diag
(
1,..., 1

t2N−1

)

so that

∥∥∥t H∗,−1
t z Ftz J

−1
ta H−1

t z

∥∥∥ �
∣∣a−1
∣∣∞

t4N−4

∥∥∥H∗,−1
z

∥∥∥
∥∥∥H−1

z

∥∥∥ ∣∣�′′∗
t z qtz
∣∣∞

� C

( |λ|
t2N−2

4(2R)2N

(2N )!
∣∣∣η(2N )

W (0)
∣∣∣

+ ‖w‖H
t2N−2 L1 + L2L1

�0

4
t2
)

with C = sup
(a,z)∈Ba0×Bz0

∥∥∥H∗,−1
z

∥∥∥ ∥∥H−1
z

∥∥ ∣∣a−1
∣∣∞.

Possibly choosing t0 a bit smaller, we may assume that

0 � CL2L1
�0

4
t20 <

1

8
∥∥(∗

2N−12N−1)−1
∥∥ .

As a consequence, there exists CT > 0 such that for all t ∈ (0, t0), and all (a, z) ∈
Ba0 × Bz0 ,

(
max

( |λ|
t2N−2 ,

‖w‖H
t2N−2

)
� CT

)

�⇒
∥∥∥t H∗,−1

t z Ftz J
−1
ta H−1

t z

∥∥∥ � 1

4
∥∥(∗

2N−12N−1)−1
∥∥ .
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Then, recalling (43) and setting

r
def.=
∥∥∥t (∗

t zt z
)−1

H∗,−1
t z Ftz J

−1
ta H−1

t z

∥∥∥
� 2
∥∥∥(∗

2N−12N−1)
−1
∥∥∥ 1

4
∥∥(∗

2N−12N−1)−1
∥∥ = 1

2
,

we see that the matrix (40) is invertible, and

∥∥∥∥
(
Id2N + t

(
∗

t zt z
)−1

H∗,−1
t z Ftz J

−1
ta H−1

t z

)−1
∥∥∥∥ �

+∞∑
k=0

rk = 1

1 − r
� 3

2
.

Eventually, using (43) again, we obtain that the norm of the inverse of (40) is less
than 3

∥∥(∗
2N−12N−1)

−1
∥∥.

Now, if ft (u, v) = 0, then�′∗
t z(�t za−�t z0a0−w) = 0, so that thanks to Lemma 4

we obtain

∂u ft (u, v) = �∗
t z�t z Jta + t

(
0 0
0 diag(�′′∗

t z (�t za − �t z0a0 − w))

)
.

Moreover,

�t za − �t z0a0 − w = �t z

(
a
0

)
− �t z0

(
a0
0

)
− w

= �
∗,+
t z �∗

t z�t z0

(
a0
0

)
+ �

∗,+
t z �∗

t zw − λ�
∗,+
t z

(
1N

0

)

− �t z0

(
a0
0

)
− w

= −�t z�t z0

(
a0
0

)
− �t zw − λ�

∗,+
t z

(
1N

0

)
= −qtz .

As a result,

∂u ft (u, v) = H∗
t z

∗
t zt z Htz Jta + t

(
0 0
0 − diag

(
�′′∗

t z qtz
)
)

= H∗
t zGtz(λ,w)Htz Jta,

and ∂u ft (u, v) is invertible. ��
We may now study the variations of g∗

t .

Corollary 1 If I2N−1 holds and ϕ ∈ KER2N+1 then there exists M > 0 (which only
depends on ϕ and u0), such that for 0 < t < t0, for all v ∈ V ∗

t

∥∥dg∗
t (v)
∥∥ � M

t2N−1 .
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Proof Let us recall that by construction, V ∗
t ⊂ B

(
0,CT t2N−2

)
. Thus, from Lemma 5,

we know that for all v ∈ V ∗
t , ∂u ft (gt (v), v) = H∗

t zGtz(λ,w)Htz Jta , where (a, z) =
g∗
t (v). Since dg∗

t (v) = − (∂u ft (g∗
t (v), v)

)−1
∂v ft (g∗

t (v), v), we get

dg∗
t (v) = −J−1

ta H−1
t z Gtz(λ,w)−1H∗,−1

t z

((
1N

0

)
,−H∗

t z
∗
t z

)

= J−1
a H−1

z diag
(
1,..., 1

t2N−1

)
Gtz(λ,w)−1 (δ2N , ∗

t z

)
,

Using Lemma 5 and the fact that J−1
a , H−1

z , t z are uniformly bounded on Ba0 ×Bz0 ,
we obtain the claimed upper bound of

∥∥dg∗
t (v)
∥∥ for all v ∈ V ∗

t . ��
We are now in position to prove that V ∗

t contains a ball of radius of order t2N−1.

Proposition 9 If I2N−1 holds and ϕ ∈ KER2N+1, there exists CR > 0 such that for
all t ∈ (0, t0),

B
(
0,CRt

2N−1
)

⊂ V ∗
t with CR � min

(
�0

4M
,
mini (a0,i )

4M
,
CT

t0

)
.

Proof Let v ∈ R × H with unit norm (i.e. max(λ, ‖w‖H) = 1), and define

Rv
def.= sup

{
r � 0 ; rv ∈ V ∗

t

}
.

Clearly 0 < Rv � CT t2N−2. Assume that Rv < CT t2N−2. Then by Corollary 1, g∗
t

is uniformly continuous on V ∗
t , so that the value of g

∗
t (Rvv) can be defined as a limit,

and ft (g∗
t (Rvv), Rvv) = 0.

By contradiction, if g∗
t (Rvv) ∈ Ba0 × Bz0 , then by Lemma 5, we may apply the

Implicit Function Theorem to obtain a neighborhood of (g∗
t (Rvv), Rv) in which g∗

t
may be extended. This enables us to construct an open set V ∈ V (in particular wemay
ensure that V is star-shaped with respect to 0) such that V ∗

t � V , which contradicts
the maximality of V ∗

t .
Hence, g∗

t (Rvv) ∈ ∂(Ba0 × Bz0) = (∂(Ba0) × Bz0

) ∪ (Ba0 × ∂(Bz0)
)
. Assume

for instance that g∗
t (Rvv) ∈ Ba0 × ∂(Bz0) (the other case being similar). Then, for

(a, z) = g∗
t (Rvv),

�0

4
= |z − z0|∞ �

∫ 1

0

∣∣dg∗
t (sRvv) · Rvv

∣∣∞ ds � M

t2N−1 Rv,

which yields Rv � �0
4M t2N−1. Similarly, if g∗

t (Rvv) ∈ ∂(Ba0) × Bz0 , we may prove

that Rv � mini (a0,i )
4M t2N−1.

Eventually, we have proved that for all v ∈ R × H with unit norm,

Rv � min

(
�0

4M
t2N−1,

mini (a0,i )

4M
t2N−1,CT t

2N−2
)

,

and the claimed result follows. ��
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4.4 Continuity of g∗
t at 0

Before moving to Sect. 5 and to the proof of
∥∥ηλ,t
∥∥
L∞(X)

� 1 (which ensures that
ma,t z is a solution to the BLASSO), we give a first order expansion of our candidate
solution u = g∗

t (v) for all v ∈ B(0,CRt2N−1).

Proposition 10 If I2N−1 holds and ϕ ∈ KER2N+1 then for all t ∈ (0, t0), v ∈
B(0,CRt2N−1),

∥∥g∗
t (v) − g∗

t (0)
∥∥ � M

( |λ|
t2N−1 + ‖w‖H

t2N−1

)
. (45)

Proof To show Eq. (45), it suffices to write

g∗
t (v) = g∗

t (0) +
∫ 1

0
dg∗

t (sv) · vds,

and use Corollary 1 to conclude. ��

5 Convergence of ηλ,t to ηW

It remains to prove thatma,t z where (a, z) = g∗
t (v) is indeed a solution toPλ(yt +w).

To show this statement, we prove that ηλ,t converges towards ηW when (t, λ,w) → 0
in a well chosen domain. This section is devoted to this result. The proof of our main
contribution, Theorem 2, which can be found in Sect. 2.3, uses this convergence result
and the assumption that ηW is (2N − 1)-non-degenerate to conclude.

Proposition 11 Assume that ϕ ∈ KER2N+1 and that I2N−1 holds, and let CW > 0
be the constant defined in Theorem 1, g∗

t , t0 > 0 and CR > 0 be the function and
constants defined in Sect. 4.

Then there exist constants t1 ∈ (0, t0) and C > 0 (which depend only on ϕ and u0)
such that for all t ∈ (0, t1) and for all (λ,w) ∈ B

(
0,CRt2N−1

)
with
∥∥w

λ

∥∥H � C, the
following inequalities hold

∀� ∈ {0, . . . , 2N },
∥∥∥η(�)

λ,t − η
(�)
W

∥∥∥
L∞(X)

� CW ,

with ηλ,t = �∗ ( 1
λ

(
�t z0a0 + w − �t za

))
and (a, z) = g∗

t (λ,w).

Proof Let t ∈ (0, t0), v ∈ B
(
0,CRt2N−1

)
, and (a, z) = u = g∗

t (v). Then, using
ft (u, v) = 0 [see (36)], we get
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pλ,t
def.= 1

λ

(
�t z0a0 + w − �t za

)

= 1

λ

(
�t z0

(
a0
0

)
+ w − �t z

(
a
0

))

= �
∗,+
t z

(
1N

0

)
+ �t z

w

λ
+ 1

λ
�t z�t z0

(
a0
0

)
.

Hence,

∥∥pλ,t − pW
∥∥H �

∥∥∥∥�∗,+
t z

(
1N

0

)
− pW

∥∥∥∥H +
∥∥∥�t z

w

λ

∥∥∥
H

+
∥∥∥∥1λ�t z�t z0

(
a0
0

)∥∥∥∥H
From Lemma 1, there exists CV > 0 and tV > 0 (which only depends on ϕ, u0) such
that for all t ∈ (0, tV ) and all z ∈ Bz0 ,

∥∥∥∥�∗,+
t z

(
1N

0

)
− pW

∥∥∥∥H � CV t.

Moreover, since �t z is an orthogonal projector,

∥∥∥�t z
w

λ

∥∥∥
H

�
∥∥∥w

λ

∥∥∥
H

,

and by Lemma 3, there exists L2 > 0 (which only depends on ϕ, u0) such that, for all
t ∈ (0, t0)

∥∥∥∥1λ�t z�t z0

(
a0
0

)∥∥∥∥H � L2

|λ| t
2N |z − z0|∞

� L2

|λ| t
2N M

t2N−1 (|λ| + ‖w‖H) by Proposition 10

� L2Mt
(
1 +
∥∥∥w

λ

∥∥∥
H

)
.

Gathering all these upper-bounds, one obtains

∥∥pλ,t − pW
∥∥H � (CV + L2M)t + (1 + L2Mt)

∥∥∥w
λ

∥∥∥
H

� (CV + L2M)t + (1 + L2M)

∥∥∥w
λ

∥∥∥
H

Now, denoting by �(�) : M(X) → H the operator m → ∫X ϕ(�)(x)dm(x) and by

�(�)∗ : H → CX its adjoint (so that η(�)
λ,t = �(�)∗ pλ,t and η

(�)
W = �(�)∗ pW ), we let

K
def.= max

0�l�2N
sup
x∈X

∥∥∥ϕ(�)(x)
∥∥∥H ,
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which satisfies K < +∞ because ϕ ∈ KER2N+1. Then, for all � ∈ {0, . . . , 2N },
∥∥∥η(�)

λ,t − η
(�)
W

∥∥∥
L∞(X)

� K
∥∥pλ,t − pW

∥∥H
� K
(
(CV + L2M)t + (1 + L2M)

∥∥∥w
λ

∥∥∥
H

)
.

As a consequence, by taking t smaller than min(t0, tV ,
CW

2K (CV +L2M)
) and for all

(λ,w) ∈ B(0,CRt2N−1) such that

(1 + L2M)

∥∥∥w
λ

∥∥∥
H

� CW

2K
,

we get

∥∥∥η(�)
λ,t − η

(�)
W

∥∥∥
L∞(X)

� CW .

��

Remark 4 The constants involved in Proposition 11 are

t1
def.= min

(
t0, tV ,

CW

2K (CV + L2M)

)
and C

def.= CW

2K (1 + L2M)
. (46)

They only depend on ϕ and u0.

6 Conclusion

In this paper, we have proposed a detailed analysis of the recovery performance of
the BLASSO for positive measures. We have shown that if the signal-to-noise ratio
is of the order of 1/t2N−1, then the BLASSO achieves perfect support estimation.
This results nicely matches both Cramer-Rao lower-bounds [2], bounds for combina-
torial approaches [10] and practical performances of the MUSIC algorithm [7]. It is
also close to the upper-bound obtained by [20] for stable recovery on a grid by the
LASSO. We have hence shown that these bounds do not only imply stability, they
imply exact support recovery for the BLASSO, if ηW is (2N −1)-non-degenerate. We
have observed numerically that this condition holds for the ideal low-pass filter and
that this is the case for a large class of low-pass filters. We have showed that this is
true for the Gaussian kernel by providing the expression of ηW .
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Appendix 1: Proof of the Results of Sect. 2

Appendix 1.1: Proof of Proposition 1

The functions (ϕ0, . . . , ϕk) are linearly independent in L2(T) if and only if their
respective Fourier coefficients are linearly independent in �2(Z). If (cn[ϕ0])n∈Z
denotes the Fourier coefficients of ϕ0, the Fourier coefficients of ϕ j are given by(
(2iπn) j cn[ϕ0]

)
n∈Z (with the convention that 00 = 1).

If ϕ0 has k + 1 nonzeros Fourier coefficients corresponding to pairwise distinct
frequencies (n0, . . . nk), those Fourier coefficients are given by the matrix product

⎛
⎜⎝
cn0 [ϕ0] 0

. . .

0 cnk [ϕ0]

⎞
⎟⎠

⎛
⎜⎜⎜⎝

1 (2iπn0) (2iπn0)2 . . . (2iπn0)k

1 (2iπn1) (2iπn1)2 . . . (2iπn1))k

...
...

...
. . .

...

1 (2iπnk) (2iπnk)2 . . . (2iπnk)k

⎞
⎟⎟⎟⎠

Both the diagonal and the Vandermonde matrices are invertible, hence the family of
Fourier coefficients of (ϕ0, . . . , ϕk) is linearly independent.

Conversely, if Ik holds, one can find k + 1 Fourier coefficients, corresponding to
some frequencies n0, . . . nk , such that the matrix (cn�

[ϕ j ])0��, j�k is invertible. From
the above factorization, we deduce that each cn�

[ϕ0] must be nonzero for 0 � � � k.

Appendix 1.2: Proof of Theorem 1

The proof proceeds in two steps. First we show the result locally around 0 in X thanks
to η

(2N )
W (0) < 0 (because η

(2N )
W (0) �= 0 and |ηW | < 1 on X \ {0}) and then we extend

the result to all X thanks to |ηW | < 1 on X \ {0}.

Locally

Let us prove that there exist CW > 0, tW > 0 such that for all t ∈ (0, tW ), z ∈ R
N

with pairwise distinct coordinates and |z|∞ � RW , there exist r+ > 0 with r+ >

max
1�i�N

tW zi and r− < 0 with r− < min
1�i�N

tW zi such that for all η ∈ C 2N (X) ∩
W2N ,∞(X) satisfying for all 1 � i � N , η(t zi ) = 1 and η′(t zi ) = 0, the following
implication holds,

(
∀� ∈ {0, . . . , 2N },

∥∥∥η(�) − η
(�)
W

∥∥∥
L∞(X)

� CW

)

�⇒
(

∀x ∈ (r−, r+) \
⋃
i

{t zi }, |η(x)| < 1 and ∀1 � i � N , η′′(t zi ) < 0

)
.

First, we prove that, provided CW > 0, tW > 0 are small enough, η′ has exactly
2N − 1 zeros in (r−, r+).
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Let t > 0 and η ∈ C 2N (X) ∩ W2N ,∞(X) and z ∈ R
N with pairwise distinct

coordinates and |z|∞ � RW such that for all 1 � i � N , η(t zi ) = 1 and η′(t zi ) = 0.
We suppose that z1 < z2 < . . . < zN . By Rolle’s Theorem, for all 1 � i � N − 1,
there exists ci (t) ∈ (t zi , t zi+1) such that η′(ci (t)) = 0. As a result η′ has at least
2N − 1 zeros in all (r−, r+) satisfying the requirements.

Now, let us assume by contradiction that η′ has strictly more than 2N − 1 zeros
for arbitrarily small values of CW , tW and in all (r−, r+) satisfying the requirements.
As a result, there are sequences (tk)k∈N where tk → 0, (zk)k∈N (where each zk ∈ R

N

has pairwise distinct coordinates and |zk |∞ � RW ), (r+
k )k∈N and (r−

k )k∈N where for
all k ∈ N, r+

k > 0, r+
k > max

1�i�N
tk(zk)i , r

+
k → 0 and r−

k < 0, r−
k < min

1�i�N
tk(zk)i

and r−
k → 0. And there exists (ηk)k∈N ∈ (C 2N (X) ∩ W2N ,∞(X)

)N
such that for all

k ∈ N

∀i ∈ {1, . . . , N − 1}, ηk(tk(zk)i ) = 1 and η′
k(tk(zk)i ) = 0,

∀� ∈ {0, . . . , 2N },
∥∥∥η(�)

k − η
(�)
W

∥∥∥
L∞(X)

� 1

k
,

and η′
k has at least 2N zeros in (r−

k , r+
k ) (we already know that η′

k has at least 2N − 1
zeros in (r−

k , r+
k )). Thus, for all k ∈ N, by applying successively Rolle’s Theorem, we

obtain that there exists xk ∈ (r−
k , r+

k ) such that η(2N )
k (xk) = 0. Since xk → 0 (because

r−
k , r+

k → 0) and
∥∥∥η(2N )

k − η
(2N )
W

∥∥∥
L∞(X)

� 1
k , we deduce that η

(2N )
W (0) = 0, which is

a contradiction. Hence η′ has exactly 2N − 1 zeros in some (r−, r+).
Using the same argument, we may also prove that for all i ∈ {1, . . . , N }, η′′(t zi ) �=

0. Let us now observe that, either for all 1 � i � N , η′′(t zi ) > 0 or, for all 1 � i � N ,
η′′(t zi+1) < 0. Indeed, assume for instance by contradiction that for some 1 � i �
N −1, η′′(t zi ) > 0 and η′′(t zi+1) < 0. Then, there exists ci (t) ∈ (t zi , t zi+1) such that
η(ci (t)) = 1. Applying Rolle’s Theorem on respectively (t zi , ci (t)) and (ci (t), t zi+1),
we obtain that η′ vanishes at least twice in (t zi , t zi+1). It is a contradiction with the
fact that η′ has exactly 2N − 1 zeros in (r−, r+) for all 0 < t < tW .

As a result, there are only two possibilities: either η′′(t zi ) < 0 for all i (and
then for all x ∈ (r−, r+) \ ⋃i {t zi } η(x) < 1), or η′′(t zi ) > 0 for all i (and then

for all x ∈ (r−, r+) \ ⋃i {t zi } η(x) > 1). But since η
(2N )
W (0) < 0, there is some

x̃ ∈ (r−, r+) and some ε0 > 0 such that ηW (x̃) < 1 − ε0. Choosing CW small
enough so that CW < ε0/2, we obtain that η(x̃) < 1 − ε0/2. As a consequence, for
all x ∈ (r−, r+) \⋃i {t zi }, η(x) < 1. Finally we can suppose that ηW (x) > −1 on
(r−, r+) by imposing 0 < CW < infX ηW + 1.

To sum up, we have proved the following :

∀x ∈ (r−, r+) \
⋃
i

{t zi }, |η(x)| < 1 and ∀1 � i � N , η′′(t zi ) < 0. (47)
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Globally

As ηW is non-degenerate, we have supX\(r−,r+) |ηW | < 1. We can assume that 0 <

CW < (1 − supX\(r−,r+) |ηW |)/2 and use ‖η − ηW‖L∞(X) � CW so as to obtain

∀x ∈ X \ (r−, r+), |η(x)| < 1. (48)

Gathering Eqs. (47) and (48), we obtain the claimed result.

Appendix 1.3: Proof of Proposition 5

The proof of Proposition 5 relies on the study of the structure of the matrices ∗
k k .

We start by introducing the notion of checkerboard matrices.

Definition 4 Let n ∈ N
∗ and A = (ai, j )i, j ∈ R

n×n . We say that A is a checkerboard
matrix if for all (i, j) such that i + j is odd, ai, j = 0.

For an odd n, such a matrix looks like

⎛
⎜⎜⎜⎜⎜⎝

a1,1 0 a1,3 0 . . . 0 a1,n−2 0 a1,n
0 a2,2 0 a2,4 . . . a2,n−3 0 a2,n−1 0
...

...
...

...
. . .

...
...

...
...

0 an−1,2 0 an−1,4 . . . an−1,n−3 0 an−1,n−1 0
an,1 0 an,3 0 . . . 0 an,n−2 0 an,n

⎞
⎟⎟⎟⎟⎟⎠

.

Lemma 6 The set of checkerboard matrices of size n ∈ N
∗ is an algebra over R. As

a result the inverse of a checkerboard matrix is also a checkerboard matrix.

Proof The only difficulty is to show that the product of two checkerboard matrices is
also a checkerboard matrix. Let A = (ai, j )i, j and B = (bi, j )i, j be two such matrices.
Let (i, j) such that i + j is odd. Then

∑n
k=1 ai,kbk, j = 0 because if i + k is even then

(i + j) − (i + k) = j − k is odd and j − k + 2k = j + k is odd, hence b j,k = 0. On
the contrary, if i + k is odd then ai,k = 0. So AB is a checkerboard matrix. The last
statement holds because the inverse of any matrix is a polynomial in that matrix. ��

Nowwe give a more precise result on the structure of some particular checkerboard
matrices.

Lemma 7 Let A = (ai, j )1�i, j�2n+1 be a symmetric positive-definite checkerboard
matrix of size 2n + 1 such that

ai, j = (−1)
i− j
2 a i+ j

2 ,
i+ j
2

for all i, j ∈ {1, . . . , 2n + 1} such that i + j is even, and let (bi, j )1�i, j�2n+1 denote
the entries of A−1. Then b2n+1,2n+1 and b1,2n+1 are positive.
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Proof The fact that b2n+1,2n+1 is positive, is a direct consequence of the fact that A−1

is symmetric positive-definite because so is A.
From the expression of the inverse of amatrix using cofactors, we see that b1,2n+1 =

det( Â1,2n+1)/ det(A), where Â1,2n+1 is the matrix obtained from A by removing the
first row and the last column. Since A is symmetric positive-definite, det(A) > 0, and
we need only show that det( Â1,2n+1) > 0. But one can see that Â1,2n+1 is a skew
symmetric matrix of size 2n, hence

det( Â1,2n+1) = pf( Â1,2n+1)
2,

where pf( Â1,2n+1) is the Pfaffian of thematrix Â1,2n+1. Formore details on the Pfaffian
(definition and proof of the result used here), see [17]. As a result, det( Â1,2n+1) � 0.

Moreover, Â1,2n+1 is invertible. Indeed if we denote the colums of A (resp. the
columns Â1,2n+1) byC1, . . . ,C2n+1 (resp. Ĉ1, . . . , Ĉ2n), we observe that for 0 � i �
n − 1, Ĉ2i+1 ∈ E1 and Ĉ2(i+1) ∈ E2 where

E1 = Span{e2 j+1; 0 � j � n − 1},
E2 = Span{e2( j+1); 0 � j � n − 1},

with (ei )1�i�2n is the canonical base of R
2n . Since E1 and E2 are in direct sum, if

Â1,2n+1 is not invertible it means that either (Ĉ2i+1)0�i�n−1 or (Ĉ2(i+1))0�i�n−1 is
linearly dependent. But it cannot be (Ĉ2(i+1))0�i�n−1 because it would imply that
(C2(i+1))0�i�n−1 is also linearly dependent, because

C2(i+1) =
(

0
Ĉ2(i+1)

)
,

which would contradict the invertibility of A.
So it means that (Ĉ2i+1)0�i�n−1 must be linearly dependent. However from the

structure of the matrix A, one can see that for all 0 � i � n − 1

Ĉ2i+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(−1)i+1a2i+1,1

0
−(−1)i+1a2i+3,1

...

0
(−1)i+1a2(i+n)−1,1

0
−(−1)i+1a2(i+n)+1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Ĉ2(i+1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)i+1a2i+1,1
0

−(−1)i+1a2i+3,1
0
...

(−1)i+1a2(i+n)−1,1
0

−(−1)i+1a2(i+n)+1,1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, a linear combination between the elements of (Ĉ2i+1)0�i�n−1 gives the same
linear combination between the elements of (Ĉ2(i+1))0�i�n−1, which contradicts for
the same reason as before the invertibility of A.
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Hence Â1,2n+1 is invertible and b1,2n+1 > 0. ��
Thenext result describes the structure of thematrices∗

k k when� is a convolution
operator (i.e. for all x ∈ R, ϕ(x) = ϕ̃(· − x)) and k ∈ N

∗ is odd.

Lemma 8 Suppose that � is a convolution operator. Then for all k ∈ N
∗, ∗

k k is a
checkerboard matrix. Moreover if I2N holds, then the entries indexed by (1, 2N + 1)
and (2N + 1, 2N + 1) of (∗

2N2N )−1 are positive.

Proof Let (i, j) such that i + j is odd and for example i > j (∗
k k is symmetric so

it does not matter). The entry (i, j) of ∗
k k is equal to

〈
ϕi−1, ϕ j−1

〉
H .

Recall that in the setting of Proposition 5, H = L2(X) and 〈 f, g〉H = ∫X f g. Suc-
cessive integrations by parts (we integrate the left term and derive the right term)
yield

〈
ϕi−1, ϕ j−1

〉
H = (−1)

i− j+1
2

〈
ϕ i+ j−1

2 −1, ϕ i+ j+1
2 −1

〉
H

,

〈
ϕi−1, ϕ j−1

〉
H = (−1)

i− j−1
2

〈
ϕ i+ j+1

2 −1, ϕ i+ j−1
2 −1

〉
H

.

Hence, by the symmetry of the scalar product, we obtain that

〈
ϕi−1, ϕ j−1

〉
H = − 〈ϕi−1, ϕ j−1

〉
H .

This implies that
〈
ϕi−1, ϕ j−1

〉
H = 0 for odd values of i + j , so that ∗

k k is a
checkerboard matrix (see Definition 4).

Moreover, similar computations show that when i + j is even

〈
ϕi−1, ϕ j−1

〉
H = (−1)

i− j
2

〈
ϕ i+ j

2 −1, ϕ i+ j
2 −1

〉
H

.

If I2N holds, ∗
2N2N is symmetric positive-definite. As a result ∗

2N2N satisfies
the assumptions of Lemma 7, so the entries (1, 2N + 1) and (2N + 1, 2N + 1) of
(∗

2N2N )−1 are positive. ��
We can now prove that η

(2N )
W (0) < 0 when � is a convolution operator and I2N

holds.

Proof of Proposition 5 Since ηW = �∗ pW , we deduce that

η
(2N )
W (0) = 〈ϕ2N , pW 〉H =

〈
ϕ2N , 2N−1(

∗
2N−12N−1)

−1δ2N

〉
H .

Consider the symmetric positive definite matrix

∗
2N2N =

(
∗

2N−12N−1 ∗
2N−1ϕ2N

[∗
2N−1ϕ2N ]∗ ‖ϕ2N‖2H

)
∈ R

2N×2N .
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Observe that ∗
2N−12N−1 is invertible, and that

S
def.= ‖ϕ2N‖2H −

〈
ϕ2N , 2N−1(

∗
2N−12N−1)

−1∗
2N−1ϕ2N

〉
H �= 0.

Indeed,

S = ‖(IdH − �2N−1)ϕ2N‖2H > 0

since (ϕ0, . . . ϕ2N ) has full rank.
Thus, we may apply the block inversion formula, and (∗

2N2N )−1 is of the form

(∗
2N2N )−1 = 1

‖(IdH − �2N−1)ϕ2N‖2H
×
( ∗ ∗ ∗ −(∗

2N−12N−1)
−1∗

2N−1ϕ2N

−[(∗
2N−12N−1)

−1∗
2N−1ϕ2N ]∗ 1

)

Lemma 8 ensures that the entry (2N +1, 1) of (∗
2N2N )−1 is (strictly) positive. This

precisely means that

−
〈
ϕ2N , 2N−1(

∗
2N−12N−1)

−1δ2N
〉
H

‖(IdH − �2N−1)ϕ2N‖2H
> 0,

and as a result η(2N )
W (0) = 〈ϕ2N , pW 〉H < 0. ��

Appendix 1.4: Proof of Proposition 6

Let denote (ak)0�k�2N−1 the coefficients of the first column of the matrix
(∗

2N−12N−1)
−1. Then we know that for all x ∈ R,

ηW (x) =
N−1∑
k=0

a2kϕ � ϕ(2k)(x).

Since ϕ � ϕ = x → √
πe−x2/4, we get that for all x ∈ R,

ηW (x) = √
πe−x2/4

N−1∑
k=0

a2k Ĥ2k(x), (49)

where Ĥ2k is the Hermite polynomial of order 2k associated to x → e−x2/4.
Now let us show (18) recursively on N ∈ N

∗. If N = 1, we have that ηW (x) =
e−x2/4 because ∗

2N−12N−1 = (
√

π). Suppose that the property is true for some
N ∈ N

∗, i.e.,
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ηW,N (x) = e−x2/4
N−1∑
k=0

x2k

22kk! , (50)

where we use the notation ηW,N to recall that this is the function ηW for N spikes.
Then form for all x ∈ R,

κ(x)
def.= ex

2/4 (ηW,N+1(x) − ηW,N (x)
)
.

κ is a polynomial of degree 2N [thanks to (49)], it satisfies κ(0) = 0 and for all
1 � i � 2N − 1, κ(i)(0) = 0. As a result for all x ∈ R,

κ(x) = λx2N ,

for some λ ∈ R.
It remains to show that λ = 1

22N N ! . Remark that for all x ∈ R, κ(2N )(x) = λ(2N )!
and on the other hand κ(2N )(0) = −η

(2N )
W,N (0) because η

(2N )
W,N+1(0) = 0 by definition

of ηW,N+1. So it is enough to show that,

η
(2N )
W,N (0) = − (2N )!

22N N ! . (51)

Thanks to the Leibniz formula applied to (50), we have the following formula,

η
(2N )
W,N (0) =

N−1∑
k=0

(
2N

2k

)
Ĥ2N−2k(0)

(2k)!
22kk! .

Since Ĥ2N−2k(0) = (−1)N−k (2N−2k−1)!
22N−2k−1(N−1−k)! , thanks to Lemma 9 below, we obtain,

η
(2N )
W,N (0) =

N−1∑
k=0

(2N )!
(2N − 2k)!(2k)! · (−1)N−k (2N − 2k − 1)!

22N−2k−1(N − 1 − k)! · (2k)!
22kk!

= − (2N )!
22N N !

N−1∑
k=0

N (N − 1)!
(N − 1 − k)!k! · 2 · (−1)N−1−k

(2N − 2k)

= − (2N )!
22N N !N

N−1∑
k=0

(
N − 1

k

)
(−1)N−1−k

∫ 1

0
xN−1−kdx

= − (2N )!
22N N !N

∫ 1

0
(1 − x)N−1dx

︸ ︷︷ ︸
=1/N

.

This ends the recursive proof and thus we have (18).
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To conclude that ηW is (2N − 1)-non-degenerate, it remains to show that for all
x ∈ R

∗, |ηW (x)| < 1, since we already know that η
(2N )
W (0) < 0 thanks to (51). But

we have, thanks to (18), that for all x ∈ R
∗, 0 < ηW (x) < 1 since

∑N−1
k=0

x2k

22kk! is the
truncated power series of ex

2/4.

Lemma 9 One has for all k ∈ N,

Ĥ2k+2(0) = (−1)k+1 (2k + 1)!
22k+1k! . (52)

Proof We know that Hk+2(x) = xHk+1(x) − (k + 1)Hk(x) where Hk is the Hermite
polynomial of order k associated to x → e−x2/2. Thus H2k+2(0) = −(2k + 1)H2k(0)
and then,

H2k+2(0) = (−1)k+1 (2k + 1)!
2kk! . (53)

Now, remark that Ĥk(x) = 2−k/2Hk(x/
√
2), so that together with (53) we get the

expected result (52). ��

Appendix 1.5: Proof of Theorem 3

For all n ∈ N, the solution mn
def.= man ,tn zn of Pλn (ytn + wn) satisfies the following

first order optimality conditions:

�∗
tn zn (�tn zn an − �t z0a0 − wn) + λn

(
1N

0

)
= 0. (54)

Since ηλn ,tn = �∗( 1
λn

(�t z0a0 + wn − �tn zn an)) satisfies
∥∥ηλn ,tn

∥∥
L∞(X)

� 1, ηλn ,tn ∈
Im�∗ and ηλn ,tn (t zn) = sign(an) = 1.

As a result, by taking n large enough if necessary, we know that (an, zn) =
g∗
t (λn, wn) with g∗

t ∈ C 2N (V ∗
t ) so that (an, zn) → (a0, z0). Therefore all the asymp-

totic results that we established are true when applied for (an, zn) for n large enough.
Observe from (54), that we get for all n ∈ N:

pλn ,tn = �
∗,+
tn zn

(
1N

0

)
+ �tn zn

wn

λn
+ 1

λn
�tn zn�t z0

(
a0
0

)
.

As a consequence:

∥∥pλn ,tn − pW
∥∥H → 0 when n → +∞,

so that for all 0 � l � 2N ,
∥∥∥η(l)

λn ,tn
− η

(l)
W

∥∥∥
L∞(X)

→ 0 when n → +∞. (55)
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In particular, since
∥∥ηλn ,tn

∥∥ � 1, we deduce (21):

‖ηW‖L∞(X) � 1.
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