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Abstract This article presents new results concerning the recovery of a signal from the
magnitude only measurements where the signal is not sparse in an orthonormal basis
but in a redundant dictionary, which we call it phase retrieval with redundant dictionary
for short. To solve this phaseless problem, we analyze the £1-analysis model. Firstly we
investigate the noiseless case with presenting a null space property of the measurement
matrix under which the £1-analysis model provides an exact recovery. Secondly we
introduce a new property (S-DRIP) of the measurement matrix. By solving the ¢;-
analysis model, we prove that this property can guarantee a stable recovery of real
signals that are nearly sparse in overcomplete dictionaries.

Keywords Compressed sensing - Phase retrieval - Sparse recovery - £1-analysis

Mathematics Subject Classification 94A12

1 Introduction
1.1 Phase Retrieval

Phase retrieval is the process of recovering signals from phaseless measurements. It
is of fundamental importance in numerous areas of applied physics and engineering
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[11,14]. In general form, phase retrieval problem is to estimate the original signal
xp € H'" (H = C or R) from
|[Ax| = [Axo| +e, (1.1)

where A = [ay, ..., a,]" € H"*" isthe measurement matrixande = [ey, - - - , e;,] €
H™ is an error term. While only the magnitude of Axg is available, it is important to
note that the setup naturally leads to ambiguous solutions. For example, if X € H" is
a solution to (1.1), then any multiplication of X and a scalar ¢ € H (|c| = 1) is also
a solution to (1.1). Hence, these global ambiguities are considered acceptable for this
problem. In this paper, we recover the signal x( actually means that we reconstruct xg
up to a unimodular constant.

It is known that, when H = R, at least 2n — 1 measurements are needed to recover
asignal x € R” [3]. For the complex case, the minimum number of measurements are
proved to be atleast4n —4 when n isin the form of n = 2k 41 , k € Z4 [9]. However, for
a general dimension n, the same question is still open. About the minimum number
of observations, more details can be found in [4,20]. To reduce the measurement
number, priori information must be given, such as sparsity, which means that only
few elements in the target signal x( is nonzero. In view of such sparse signals, phase
retrieval is also known as compressive phase retrieval, which have many applications
in data acquisition [15,18]. The compressive phase retrieval problem is in fact the
magnitude-only compressive sensing problem. For compressive phase retrieval, Wang
and Xu explored the minimum number of measurements and extended the null space
property in compressed sensing to compressive phase retrieval [20]. In [19], Voroniski
and Xu gave the definition of strong restricted isometry property (Definition 2.2) and
then many conclusions in compressed sensing can be extended to compressive phase
retrieval, such as instance optimality [12].

1.2 Phase Retrieval with Redundant Dictionary

The above conclusions in compressive phase retrieval hold just for signals which are
sparse in the standard coordinate basis. However, there are many examples in which a
signal of interest is not sparse in an orthonormal basis but sparse in an overcomplete dic-
tionary, such as radar images [ 13]. We refer to such signals as dictionary-sparse signals.
In recent years, many researchers laid special stress on analysing these dictionary-
sparse signals in compressed sensing [1,7,16]. However, the phase retrieval literature
is lacking on this subject. Motivated by the wide application of redundant dictionaries
and frames in signal processing and data analysis, we aim to build up a framework
for the recovery of dictionary-sparse signals in phase retrieval, which we call it phase
retrieval with redundant dictionary.

Suppose D € H"*V is an overcomplete dictionary (n < N) or a redundant dic-
tionary. When n <« N, we say the dictionary D is highly overcomplete or highly
redundant. Suppose the signal xo € H" is sparse in the overcomplete dictionary
D e H"™N  Te., there exists a sparse vector zg € HY, such that xo = Dzg. Thus
the phase retrieval with redundant dictionary can be interpreted as recovering a signal
xo = Dz from the measurements |A Dzg|, where z is sparse. That is to recover Dz
from

Birkhduser



J Fourier Anal Appl (2017) 23:1097-1117 1099

|[ADz| = |ADzg]. (1.2)

1.3 The £1-Analysis Model

Suppose the signal xo € H" can be expressed as xo = Dzg, where D € H"V is
a redundant dictionary and zo € HY is a sparse vector. When H = C, we use D*
to represent the adjoint conjugate of D. When H = R, we use D* to represent the
transpose of D. In compressed sensing, to reconstruct the signal x, the most commonly
used model is the £-analysis model

min |[D*x|l;  subjectto  [[Ax — Axol3 < €2, (1.3)

where € is the upper bound of the noise. Due to the smaller dimension of the unknown,
£1-analysis leads to a simple optimization problem, which is considerably easier to
solve. That’s why the £;-analysis model is widely used. We refer interested readers
to [1,7,10] for more superiorities of £1-analysis model. In [7], Candes et al. proved
that when D is a tight frame and D*x( is almost k-sparse, the ¢;-analysis (1.3) can
guarantee a stable recovery provided that the measurement matrix is Gaussian random
matrix with m = O(k log(n/k)).

For the phase retrieval with redundant dictionary (1.2), we also consider the corre-
sponding ¢1-analysis model

min | D*x||;  subjectto |||Ax| — |Axol||3 < €2, (1.4)

where € is the upper bound of the noise level. In this paper, we aim to explore the
conditions under which the ¢;-analysis model (1.4) can generate an accurate or a
stable solution to (1.2). First for the noiseless case, we analyze the null space of the
measurement matrix and give the conditions for exact recovery. Then for the noise
case, we give a new property on the measurement matrix and prove that this property
can guarantee a stable recovery.

Note that when D = I, the phase retrieval with redundant dictionary is reduced to
the traditional phase retrieval and the £1-analysis model is reduced to

min [[x|;  subjectto  |[|Ax| — |Axo||3 < €. (1.5)
For this case, when H = R, Gao et al. provided a detailed analysis of (1.5) in [12] and
had the conclusion that a k-sparse signal can be stably recovered by O(k log(n/k))

Gaussian random measurements. Then a natural question that comes to mind is whether
this conclusion still holds for a general frame D.

1.4 Organization
The rest of the paper is organized as follows. In Sect. 2, we give notations and recall

some previous conclusions. In Sect. 3, for noiseless case (¢ = 0), we analyze the
null space of the measurement matrix and give sufficient and necessary conditions
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for (1.4) to achieve an exact solution, which will be discussed in real and complex
case separately. In general, it’s hard to check whether a matrix satisfies the null space
property or not. So in Sect. 4, we introduce a new property (S-DRIP) (Definition 4.1)
on the measurement matrix, which is a natural generalization of the DRIP (see [7]
for more details). Using this property, we prove that when the measurement matrix
is real Gaussian random matrix with m > O(klog(n/k)), the £;-analysis (1.4) can
guarantee a stable recovery of real signals which are k-sparse in a redundant dictionary.
In Sect. 5, we discuss the drawbacks of our results and file out some proper directions
for the coming study. Lastly, some proofs are given in the Appendix.

2 Notations and Previous Results

We use £p-norm to measure the cardinality of non-zeros of a vector z. We call a signal
z is k-sparse, if there are at most k non-zero elements in the signal, i.e., ||z]lo < k. A set
of vectors {dy, - - - , dy} in H" is a frame of H" if there exist constants 0 < s < < 00
such that for any f € H",

N
sIFIE < D 1fdp 1> < el £15-
j=1

If s = ¢, the frame is a tight frame. We call D € H"*N a frame in the sense that the
columns of D form a frame. Let

V= {x cHY - |x|o < k}
and

Dx)Y = {er”:EIzeZ,ﬁv,xzDz}.

Suppose the target signal x is in the set DX, which means that xq can be represented
as xo = Dzg, where zg € E,ﬁv.
The best k-term approximation error is defined as

ok (x)1 := min [|x — z||1.
ZEX

For positive integers p, g with p < g, we use [p : ¢] to represent the set {p, p +
1,...,9g —1,q}. Suppose T' C [1 : m] is a subset of [1 : m]. We use T° to represent
the complement set of 7" and |T'| to denote the cardinal number of 7. Let Ay =
[aj, j € T]* denote the sub-matrix of A where only rows with indices in T are kept.
Denote A (A) as the null space of A.

Definition 2.1 (DRIP) [7] Fix a dictionary D € R"*" and a matrix A € R"™*". The
matrix A satisfies the DRIP with parameters é and k if
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(1—8)Dz|} < |1ADz|3 < (1 + 8)| Dz|I3

holds for all k-sparse vectors z € RV,
The paper [7] have shown that Gaussian random matrices and other random com-
pressed sensing matrices satisfy the DRIP of order k provided the number of

measurements m on the order of O(k log(n/k)).

Definition 2.2 (SRIP)[19] We say the matrix A = [ay, - ,a,]' € R™*" has the
Strong Restricted Isometry Property of order k and constants 6_, 64 € (0, 2) if

o_|x|? < min Ax|? < max Arx|)? < 64 ||x|?
I3 <, omin  BAIEs ) omax Az < 6ol

holds for all k-sparse signals x € R”".

This property was first introduced in [19]. Voroninski and Xu also proved that the
Gaussian random matrices satisfy SRIP with high probability.

Theorem 2.1 [19] Suppose thatt > 1 and A € R™*" is a Gaussian random matrix
with m = O(tklog(n/k)). Then there exist 0_, 6, with0 < 0_ < 04 < 2, such that

A satisfies SRIP of order tk and constants 6_, 6., with probability 1 — exp(—cm/2),
where ¢ > 0 is an absolute constant and 0_, 6 are independent of t.

3 The Null Space Property
In this section, for any xo € DX ,ﬁv , we consider the noiseless case of (1.4),

min |D*x|;  subjectto  |Ax| = |Axg]. (3.6)
Similarly as the traditional compressed sensing problem, we analyze the null space

of the measurement matrix A to explore conditions under which (3.6) can obtain cxg

(el =1).

3.1 The Real Case

We first restrict the signals and measurements to the field of real numbers. The next
theorem provides a sufficient and necessary condition for the exact recovery of (3.6).

Theorem 3.1 For a given matrix A € R™ " and a dictionary D € R"™N | we claim
that the following properties are equivalent.

(A) Forany xq € DxV,

argmin, cpn {||D*x||1 : |Ax| = |Axo|} = {£x0}.
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(B) Forany T C [1 : m), it holds
ID*(u +v)lly < ID*(u — v)|h
for all
u e N(AT)\{0}, v e N(Are)\{0}
satisfying
u+veDE).

Proof (B)=(A). Assume (A) is false, namely, there exists a solution X # +x¢ to
(3.6). As x is a solution, we have

|AX| = |Axol (3.7

and
[D*%[l1 < [D*xoll1- (3.8)
Denote a;r,j = 1,...,m as the rows of A. Then (3.7) implies that there exists a

subset T C [1 : m] satisfying

JjeT, (aj,xo+%)=0,

jeT’, (aj,xo—Xx)=0,
ie.,
Ar(xog+x) =0, Arc(xg—x)=0.

Define

As X # £xg, we have u € N(A7)\{0}, v € N(Ar)\{0} and u + v = 2x( € DZ,?’.
Then from (B), we know

D*xo0ll1 < [ID*% [,
which contradicts with (3.8).
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(A)=(B). Assume (B) is false, which means that there exists a subset 7 C [1 : m],

u € N(Ar)\(0}, v e N(Arc)\{0}, (3.9
such that
u+veDE)
and
ID*(u 4+ v)lli = |1D*(u = v)|l1. (3.10)

Letxo :=u+v e DZ,ZCV be the signal we want to recover. Set X := u — v and we
have X # £xg. Then from (3.10) we have

D%y < [ID*xoll1. (3.11)

Let a}r, j =1,..., mdenote the rows of A. Then from the definition of x¢ and X, we
have

2{aj,u) = {(aj, xo + ),
2(aj,v) = (aj, xo — X).

By (3.9), the subset T satisfies

jeT, {aj, xo0)=—(aj,x)
and

JeT, (aj. x0) = (aj, %),

which implies
|Axg| = |AX]. (3.12)

Putting (3.11) and (3.12) together, we know X is a solution to model (3.6). However,
X # +x¢ contradicts with (A). O

3.2 The Complex Case

We now consider the same problem in complex case which means that the signals
and measurements are all in the complex number field. Let S = {S;,...,S,} be a
partition of [1 : m]. The next theorem is a generalization of Theorem 3.1.

Theorem 3.2 For a given matrix A € C"*" and a dictionary D € C"VN, we claim
that the following two properties are equivalent.
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(A) For any given xo € DXV,
argmin, cc {||D*x|1 : |Ax| = |Axo|} = {cx0, ¢ € S}.

(B) Suppose S = {S1, ..., Sp}isapartitionof [1 : m]. Foranyn; € ./\/(Asj)\{O},

if
nm —n m—nj . .
= LeDIY\(0), jle2:p), j#I  (3.13)
Ccl1 — (] Cl—Cj

holds for some pairwise distinct cy, ..., cp € S, we have

ID*(nj —nDlli < ID*(eimj — cjn)ll1.

Proof (B) = (A). Suppose the statement (A) is false. That is to say, there exists a
solution X ¢ {cxg, ¢ € S} to (3.6) which satisfies

[D*x[l1 < |[D*xo0ll1 (3.14)
and
|Axg| = |AX|. (3.15)
Denote a;‘.‘, j =1,...,m as the rows of A. From (3.15) we have
(aj,cjxo) = (aj, X),
withc; €S, j =1,..., m. We can define an equivalence relation on [1 : m], namely
J ~ I, when ¢; = ¢;. This equivalence relation leads to a partition S = {Sy, ..., S,}

of [1 : m]. For any S;, we have
Asj (CJ'X()) = AS].)?.
Set ; := cjxo — X. Then we have n; € N(As;)\{0} and

M= _ M= xyeDsl, forall jle[2:pl j#L
Cl — (] 1 —¢Cj

According to the condition (B), we can get

ID*(m;j —n)lly < 1D*(eimj — ¢y,
ie.,

[D*(cj —cexollt < ID*(cj — el
That is equivalent to
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[D*xo0ll1 < [ID*% [,
which contradicts with (3.14).

(A) = (B). Assume (B) is false, namely, there exists a partition S = {5, ..., S}
of [l :m],nj e ./\/(AS_/)\{O}, J € [1: p] and some pairwise distinct ¢, ...,c, €S
satisfying (3.13) but

1D*(njy — mp)llt = 1D (ciyn jy — jomig)

holds for some distinct jo, [y € [1 : p]. Set

X 1= ClgNjo — CjoMys Cly # Co>

X0 :=1Nj, — Ny € DZ,ﬁV.
Then we have
X ¢ {cxg, c € S}

and
[D*X]l1 < [ID*xoll1- (3.16)

Let a}'.‘, J =1,..., m denote the rows of A. From n; € N'(Asj)\{O}, we obtain
(ar, njy) =0 and (ax, n;,) =0, k € Sy U Sj,.
The definition of x¢ and X implies
[{ak, xo)| = Hak, X)|, k € S, USj. (3.17)

While fork ¢ S;,US,, we might as well suppose k € S; (¢t # lo, jo),i.e., {ax, ;) = 0.
From

nmo—n M=
cio—c c1—cj

we can obtain

Nj =0 N — T

)

cj—c Cm — Cn
here j, [, m, n are distinct integers. Set

Njo — Nt Ny — Nt
Yo = = :
Cj() — Ct Clp — Ct

) Birkhduser
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Then we have

Njo = (Cjo —¢1)Yo + s,
niy = (cly — c)yo + 1.

So X and x( can be rewritten as

X = ciynjy — Cjoy = ¢t(cjy — c1y)yo + (¢t — ¢y,

X0 = 1njy — My = (Cjy — Clp) Yo-
Then (ax, n;) = 0 implies
l{ak, X)| = [{ak, x0)|, k € S;.

Using a similar argument, we can prove that the claim is also true for other subset S;.
So we have
[{ak, X)| = [{ak, xo)!|, forall k. (3.18)

Combining (3.16) and (3.18), we know X is also a solution to (3.6). However, x ¢
{cxg, c € S} contradicts with (A). O

Remark 3.1 If we choose D = I, the null space property in Theorem 3.1 and Theorem
3.2 is consistent with the null space property which was introduced in paper [20].

According to the Theorems 3.1 and 3.2, if the measurement matrix satisfies the null
space property, we can obtain an exact solution by solving model (3.6). But in general,
condition (B) in Theorems 3.1 or 3.2 is difficult to be checked. So in Sect. 4, we provide
another property (S-DRIP) of the measurement matrix which can also guarantee an
exact recover of model (3.6) in noiseless case. In addition, we prove that this property
can be satisfied by Gaussian random matrix.

4 S-DRIP and Stable Recovery

In compressed sensing, for any tight frame D, [7] had the conclusion that a signal
Xp € DZ}(V can be approximately reconstructed by ¢;-analysis (1.3) provided the
measurement matrix satisfies DRIP and the best k-term approximation error of D*xq
is small. While in phase retrieval, when H = R, Gao et al. proved that if the measure-
ment matrix satisfies SRIP, then the £1-analysis (1.5) can provide a stable solution to
traditional phase retrieval problem [12]. For the phase retrieval with redundant dic-
tionary, we combine the above two results to explore the conditions under which the
£1-analysis model (1.4) can guarantee a stable recovery.

We first impose a natural property on the measurement matrix, which is a combi-
nation of DRIP and SRIP.
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Definition 4.1 (S-DRIP) Let D € R"*¥ be a frame. We say the measurement matrix
A obeys the S-DRIP of order k with constants 6_, 6 € (0, 2) if

0_||Dv|? < min A;Dv|? < max A;Dv|? < 6. Dvl|3
1Dl <, min_ IAIDvIGS o omax ADIE < 641Dl

holds for all k-sparse signals v € RV,

Thus a matrix A € R™*" satisfying S-DRIP means that any m’ x n submatrix of A,
with m’ > m /2 satisfies DRIP with appropriate parameters.
In fact any matrix A € R™*" obeying

P[anun% < mi

2 2 2
n A;Dvl|5 < max ArDvl||5 < c4|Dv
s min AIDUIG < | 14DVl < e[ Dvl

Cllm].[I1zm/2
>1—2e77" (4.19)

(0 < c— < ¢4 < 2 and y is a positive number constant) for fixed Dv € R" will
satisfy the S-DRIP with high probability. This can be seen by a standard covering
argument (see the proof of Theorem 2.1 in [19]). In [19], Voroninski and Xu proved
that Gaussian random matrix satisfies (4.19) in Lemma 4.4. So we have the following
conclusion.

Corollary 4.1 For t > 1, Gaussian random matrix A € R™" with m =
O(tklog(n/k)) satisfies the S-DRIP of order tk and constants 6_, 6, € (0, 2) with
probability 1 —2e™"™, where y is an absolute positive constant and 60—, 01 are inde-
pendent of t.

Forany xg € DX ,ﬁv , we return to consider the solving model
min |[D*x|;  subjectto  |[|Ax| — |Axol|3 < €2, (4.20)

where € is the error bound. Here signals and matrices are all restricted to the real
number field. The next theorem tells under what conditions the solution to (4.20) is
stable.

Theorem 4.1 Assume that D € R"™V is a tight frame and xy € DE,ZCV . The matrix
A € R"™*" satisfies the S-DRIP of order tk and level 6_, 0, € (0, 2), with

1

t > max s .
= maxis- — 027 20, —ei}

Then the solution X to (4.20) satisfies

201 (D*x0)1

N

min{[|X — xoll2, [IX + xoll2} < c1€ +c2
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I3 NN~ . o
wherec| = %, c = ﬁat(«/;(fg/t%; B)S—H.Hereélsaconstantsansﬁ/mg

lt—1
§<max{l —6_,0, —1} < -

We first give a more general lemma, which is the key to prove Theorem 4.1.

Lemma 4.1 Let D € R™N be an arbitrary tight frame, xo € DE,iV and p > 0.
Suppose that A € R™*" is a measurement matrix satisfying the DRIP with § = 8;‘}( <

,/%for some t > 1. Then for any

D*% € {D*x € RY - [ID*x|ly < [D*xolli + p, | Ax — Axoll2 < €},

we have 201(D*x0)
A or(D™x0)1 o
X — xoll2 <cre+cr——F7r—+c2 - —,
Vk Vk
V2049 V251 (=D ]1—8)8
where c1 = T—via—ns 2= TN GSVED) + 1.

We put the proof of this Lemma in the Appendix.

Remark 4.1 When D = I, which corresponds to the case of standard compressive
phase retrieval, Theorem 4.1 and Lemma 4.1 are consistent with Theorem 3.1 and
Lemma 2.1 in [12], respectively.

Remark 4.2 The DRIP constant in Lemma 4.1 is better than the DRIP constants given
in [2] and [7]. In [7], Candes et al. proved that the /1-analysis (1.3) can guarantee
a stable recovery of signals which are k-sparse in the tight frame D provided the
measurement matrix satisfying DRIP with 8y, < 0.08. Then Baker improved the
result by increasing the DRIP constant to dy; < % in [2]. Here we extended Baker’s

approach to get a better bound 6,5 < ,/ % fort > 1. As [6] shows, in the special case

D =1, for any t > 4/3, the condition §;x < ,/ % is sharp for stable recovery in the

noisy case. So it is not difficult to conclude that for any tight frame D, the condition
Sik < ,/% is also sharp when ¢ > 4/3.

Proof of the Theorem 4.1 As x is the solution to (4.20), we have

ID*%[l1 < ID*xoll1 (4.21)

and
IIAZ] = |Axoll5 < €. (4.22)
Denote a;r, j €f{l,...,m} as the rows of A and divide {1, ..., m} into two groups:

T ={j | sign({a;, %)) = sign({a;, xo))},
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T ={j | sign({a;, X)) = —sign({a;, x0))}.
Then either |T'| > m/2 or |T¢| > m/2. Without loss of generality, we suppose
IT|>m/2.
Then (4.22) implies that
IAT% — Arxoll3 < |A7% — Arxoll3 + |Ared + Arexol3 < €. (423)
Combining (4.21) and (4.23), we have

D*% € {D*x € RY - |[D*x|ly < [D*xoll1, IIA7x — Arxoll2 < €}. (4.24)

Recall that A satisfies S-DRIP of order tk with constants 6_, 6+ € (0, 2). Here

1 1
t > max 5 5 > 1.
20 — 62 20, — 67

So Ar satisfies DRIP of order tk with

t—1

807 <max{l —6_, 6, — 1) < — (4.25)
Combining (4.24), (4.25) and Lemma 4.1, we obtain
. 204 (D*x0)1
X —xoll2 <cre +co———F——,
vk
where ¢ and ¢, are defined as before in the Theorem 4.1.
If |T|] > %, we can get the corresponding result
. 201 (D*x0)1
X + xoll2 < cre + co———7—.
vk
Then we have proved the theorem. O

According to Theorem 4.1, when € = 0 and D*xy is k-sparse, the £ -analysis (4.20)
can provide an exact recovery of the phase retrieval with redundant dictionary (1.2)
provided the measurement matrix satisfies S-DRIP. Meanwhile, from Theorem 4.1 and
Corollary 4.1, we conclude that the ¢1-analysis (4.20) can provide a stable solution to
problem (1.2) if we use as many as O(k log(n/k)) Gaussian random measurements.

5 Discussion
To solve the phase retrieval with redundant dictionary (1.2), we analyze the £1-analysis

model and give two conditions on the measurement matrix that each of them can guar-
antee an exact recovery in noiseless case. Theorems 3.1 and 3.2 give the null space
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property as a sufficient and necessary condition for exact recovery. For the £1-synthesis
model, we can also use the same analysis to give a null space property of the mea-
surement matrix. A more detailed description of the £-synthesis model is provided in
[8]. Theorem 4.1 shows that the £-analysis model is accurate when the measurement
matrix satisfies S-DRIP and || D*x¢ |9 < k. In theory, the ¢ -analysis model has a good
performance on solving the phase retrieval with redundant dictionary (1.2). However,
the £1-analysis is a non-convex optimization for phase retrieval with redundant dictio-
nary due to the non-convex feasible solution set. When D = I, the algorithms of this
model have been studied in [15,17,22]. These algorithms all demonstrate empirical
success, but the convergence issue remains a difficult problem. Extending these algo-
rithms to a redundant dictionary D and giving a convergence analysis is one direction
of our future research. Another key drawback of our results is that Theorem 4.1 only
holds in the real number field. The point is that the phase changes continuously and
there is no proper definition of SRIP in the complex number field. The extension of
this result to complex number field is another direction of our future work.

Acknowledgements My deepest gratitude goes to Professor Zhigiang Xu, my academic supervisor, for
his guidance and many useful discussions.

Appendix

The following two lemmas are useful in the proof of Lemma 4.1.

Lemma 6.1 (Sparse representation of a polytope [6,21]): Suppose o > 0 is a constant
and s > 0 is an integer. Set

T(a,s):={veR": v <a, v <sa}.

For any v € R", set
Ula, s, v) := {u € R" : supp(u) < supp(v), lullo < s, lulli = vl lulleo < .

Then v € T (w, s) if and only if v is in the convex hull of U («, s, v). In particular, any
v € T(a,s) can be expressed as

M M
v:ZAiui and 05)»,-51,2)»;':1,

i=1 i=1

u; € U, s, v).

Lemma 6.2 (Lemma 5.3 in [5]): Suppose m > r, a; > ap > -+ > a, > 0 and
D14 = > ai. Then for all a > 1, we have

m

,
o o
D af =D af.

j=r+1 i=1
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Now we are ready to prove Lemma 4.1.

Proof of the Lemma 4.1 We assume that the tight frame D € R"*" is normalized,
ie., DD* = I and ||yl = ||D*y||» forall y € R". Forasubset T C {1,2,..., N},
we denote D7 as the matrix D restricted to the columns indexed by T (replacing other
columns by zero vectors).

Set h := X — x¢. Let Ty denote the index set of the largest k coefficients of D*xg
in magnitude. Then

ID*xo0lli + p = [D*%[l1 = [|D*x0 + D*hll\
> | Dy, xollt = IIDg, klly = 1 DZexoll + | Dpehlls,
which implies
IDTehlle < 1D Al + 20 D7exoll + o
— ID%,hlly + 20k (D*x0)1 + p.

Suppose Sy is the index set of the k largest entries in absolute value of D*h. We get

IDSe k1 < 1D7chlly < D7kl + 20k (D*x0)1 + p

< ID§,hll + 20k (D*x0)1 + p-

Set

ID3 il + 20k (D*x0)1 + p
p :

o =

We divide D h into two parts Dch = D 4+ 1@ where
0 0
WY = Dgeh - Lis iz niilsasa-n). h® = Digh - Lz |z nio)<a/a-1)-
0 0
Then a simple observation is that |2V} < | D%.h||; < ak. Set
0

= |supp(hM)| = [|R Do

Since all non-zero entries of 4! have magnitude larger than /(¢ — 1), we have

ak = KV = > Vo= > %:g.i’

iesupp(hD) iesupp(hD)

which implies £ < (t — 1)k.
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Note that

ROy = D%l — 1AV < ke — € —— = (k(t — 1) — ) ——,
1By = 1Dl — IOl < ke — € = (= 1) = 0
o

h® :
110 < ——

IA

Then in Lemma 6.1, by setting s := k(¢ — 1) — £, we can express ©? as a weighted
mean:

M
WS =",
i=1

where 0 < 2 < 1, 3™ 3 = 1, luillo < k(t = 1) = £, ||ujlloo < o/(t — 1) and
supp(u;) < supp(h®). Thus

luilla < Vlluillo - luilloo = V@ = 1) = £ Jluilloo

<Vk@E—1) - luilleo
<avk/(t—1).

| D% hl1+20%(D*x0)1+p
Recall that o = ——0"! kk 7" Then

luillz < avk/@ —1)
- ”Dféoh”Z 201 (D*x0)1 + p
= /ioT A=Y

_ 105 h+h Dl L 20D o)1 +p
t—1 V(@ —1)

R
_ R (6.26)
=1
where z := | D% h +h V|2, R := —z”k(D:/)g’)1+p.

Now we suppose 0 < u < 1, d > 0 are two constants to be determined. Set
Bj=Dsh+hV+p-uj, j=1,... M.
Then for any fixed i € [1: M],

M
> xjBj—dpi = Dy h+hV + - h® —ap; (6.27)
j=1

=(l-pn- d)(Dngh +h Wy — dpu; + uD*h.

For Zlﬁil Ai = 1, we have the following identity
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@d—1) > arIADB — BPI3

I<i<j<M

M M M
=D MIADO xjB; —dplls — D 11 —d|ADBi]5.  (6.28)
i=1

i=1 j=1
In (6.27),wechosed = 1/2and u = /t(t — 1) — (t — 1) < 1/2. Then (6.28) implies
M

M M
A
0= MlIADCY aiBj —dpi)l3 — D 7 IAD:I3

i=1 j=1 i=1
221 - 1 * My MH NAYPRRLIPY 2
=7 2 MIAD (G = mDfh 4+ 7Dy = Zui - uD*h ) 15 = > T IADS3

i=1 i=1
u 1 * 1) I 2
= 2 MIAD (G = Dgh+hD) = Zui ) 13
i=1
1
+ 2<AD ((5 — W (D h+hD) - %h@)) ,,uADD*h> + u?|ADD*h||3

M
-2 S 1ADBiIS

i=1

M
1 M
=D MlAD ((5 — W(Dgh+ 1) 5“") 13 (6.29)
i=1

| >

1

IADB;113.

N

M
Ful = <AD(D§0h + D)y, ADD*h> -y
i=l1

We next estimate the three terms in (6.29). First we give the following useful relation:

<D(D§Oh +ry, Dh<2>>
- <D(D§Oh + 1My, D(D*h — Di,h — h<‘>)>
= <D(D§Oh +hM), h> - <D(D§0h +h D), DD}k + h“)))
- <D§0h + 10, D*h> — DGR +hD)3

= D5,h +h V2 — IDD% R+ 7). (6.30)

Noting that ||D§0h||o <k, ||h(1)||o =0 <(@t—Dkand |uillo <s=k(@t—1)— £, we
obtain

ID5,h+h Vo <e+k<t-k [Billo < D hlo+ 1BV N0+ luillo <1 -k,
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and
1 % ) I
II(E—M)(DSOh—l-h )—Euillo <t-k.

Here we assume 7 - k as an integer first. Since A satisfies the DRIP of order ¢ - k with
constant §, we can obtain

M
1 W
> nillAD ((5 — WDk +hY) - Eui) 13
i=1
M 1 u
<D n1+8)|D ((5 — w(D3h+hV) - Eui) I3

i=1

M
1 w?
= (143) ((5 = W2IDDGh + kD)5 + = > kil Duil3
i=1

1
G =W <D(D§0h +r), Dh<2>>)

M

7.30 11 w?

"2 (14 5)(§<5 — WIDWDgh+h)I + = > i1 Duil}
i=1

1
—n(5 = WID5h+ h“>||§) :

<AD(D§Oh + 1My, ADD*h> - <AD(D§0h +rM), Ah>
< V148 ID(D5h+hD)|y €

and

M
> nillADBil3
i=1
M
= > MlIIADDGh +h™D + - up)3
i=1
M
> (1=8) D 2ilDDgh+hD + - up)l3
i=1

M
= (-5 (||D(D§Oh + D)3+ 12D Ml Dui I3 + 24 <D(D§Oh + 1Dy, Dh<2>>)

i=1

M
(7.30
2 - 6)((1 — 2| DDG R+ h D)3 + 112 D xill Dui )3 + 20| D b + h<”||%).

i=1
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Combining the above results with (6.26) and (6.29), we get

1 1 146 , &
0<-(1+9) (5 - u) IDDS A+ h DY + — = u? 3 kil Duilly
i=1

1
—(1+d)u (5 - M) 1D3,h+h V113
+u(l = WNVT+8IDD5h+h D) -
1 % M2 1=98 5 u 2
= 7= =2 DD 1+ hD)E = ——u® D il Duilly
i=1

1-96
— ——lDgh+ V13

1
= 8(5 = WIDD5h+AD)5 + (A +8) = )| D3+ 15

M
8
+ 51?2 Ml Duil + (= VT8I D5+ h )l - €
i=1
1 § L
< GG =W +rP0+8) =W+ 2?3 kil + p(l = V1482 e
i=1
8§ ,(z+R)?

P (a+oc-w - 122) 24
= 2 M 4 ) Tt T

_ 2 l_ 1 2 2
—((u M)+5(2 u+(1+2(t_1))u ))z

Su*R Su%R?
1= V1436
(- VT e+t_1)z~|—2(t_1)

+(u
—1 )
=—t((2z—1)—2,/z(z—1))( — -0
s |t . Su*R Su*R?
+(/L —t_1v1+5 E+t—1)z+2(f—1)

t—1 ) SR?
—1()—— = DT+ Vit = DU+ e+ Rz + —— ).

which is a quadratic inequality for z. Recall that § < /(t — 1)/t. So by solving the
above inequality, we get

+u(l—wv1+68-z-€

u2
t—1

(VI = DA +8)e + 8R) + (Wit = DU+ 8)e + 6R)? + 2t (/T — D)]i — 6)sR?) "
‘= 2 (ST 170 —6)
_ m6+25+J2r(m—5)aR
S SE=—DJi—0) 26 (ST = D)t —3)
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We know || D%k < ||D§Oh||1 + R+vk.In the Lemma 6.2, if we setm = N, r = k,
0
A= Rk > (0 and o = 2, we can obtain

||D*3h||2 < IDg,hll2 + R.
So

Il = 1D*hll2
= JID% 13+ 1D%h13

< JIDLAI3 + (IDg Rl + R)?

V2ID%hI3+ R < v2z+ R

V2T +8) - V285 +i1(JT = D]i — )8
— i/t —1)é t(J& =Dt —8)

IA

+1])R.

Substituting R into this inequality, we can get the conclusion. For the case where t- k

is not an integer, we set r* := [tk]/k, then t* > t and &+, = S < ,/
We can prove the result by working on ;.

t*
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