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Abstract Westudyaverageddecay estimates forFourier transformsofmeasureswhen
the averages are taken over space curves with non-vanishing torsion. We extend the
previously known results to higher dimensions and discuss sharpness of the estimates.
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1 Introduction

Let μ be a positive Borel measure with compact support in R
d . For 0 < α < d, the

α-dimensional energy of μ is given by
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Iα(μ) =
∫∫

|x − y|−αdμ(x)dμ(y).

Theenergy Iα has beenwidely used in various studies, especially geometricmeasure
theory problems, to describe regularity property of measure. In fact, it is well known
that finiteness of energy determines the Hausdorff dimension of the support of μ.
Finiteness of Iα(μ) and L2 averaged decay estimates of μ̂ over the ball B(0, 1) are
closely related. Here B(x, r) denotes the ball which is centered at x and of radius r .
Indeed, by the identity

∫∫
|x − y|−αdμ(x)dμ(y) = Cα,d

∫
|μ̂(ξ)|2|ξ |α−ddξ

it follows that Iα(μ) < ∞ for α < δ provided that
∫
B(0,1) |μ̂(λξ)|2dξ ≤ Cλ−δ for a

positive constant δ. Conversely, if Iα(μ) < ∞, it follows that
∫
B(0,1) |μ̂(λξ)|2dξ �

λ−α Iα(μ). (See Chapter 8 in [22] and Chapter 12 in [18] for further details.)
If B(0, 1) is replaced by a smooth submanifold of lower dimension, it is expected

that the decay rate gets worse. In connection with problems in geometric measure
theory there have been attempts to characterize averaged decay over smoothmanifolds.
As is well understood in problems such as Fourier restriction problems, the curvature
properties of the underlying submanifolds become important.

Let � be a smooth compact submanifold with measure dν. Let us consider the
estimate, for λ > 1, ∫

�

|μ̂(λξ)|2dν(ξ) ≤ Cλ−ζ Iα(μ). (1)

In addition to Iα(μ) < ∞ the estimate (1) has been studied under the assumption
that

|̂ν(ξ)| � |ξ |−a, ν(B(x, ρ)) � ρb.

The following can be found in [12]: If 0 < a, b < d and a compactly sup-
ported probability measure ν satisfies the above condition, then (1) holds with
ζ = max(min(α, a), α − d + b).

In particular, in relation to theFalconer distance set problem (cf. [12,18,22]) the case
that� is the unit sphereS

d−1 and ν is the usual surfacemeasurewas studied extensively
after Mattila’s contribution [17] to the Falconer distance set problem. An extension of
Mattila’s estimate in [17] was later obtained by Sjölin [19]. The results in [17,19] were
based on a rather straightforward L2 argument. Their results were further improved
subsequently by Bourgain, Wolff and Erdoğan [5,13,14,21]. These improvements
were based on sophisticated methods which were developed in the study of the Fourier
restriction problem (and Bochner–Riesz conjecture). Especially inR

2, for� = S
1 the

sharp estimates were established by Mattila [17] and Wolff [21]. (See also Erdoğan
[12–14].) In fact, it is proved in [17,19] that (1) holds with ζ ≤ max(min(α, 1/2), α−
1) and ζ should be smaller than or equal tomax(min(α, 1/2), α/2). LaterWolff proved
that (1) holds with ζ < α/2 for 0 < α < 2. Recently a related result was obtained
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by replacing the circle with a certain class of general curves in R
2 by Erdoğan and

Oberlin [15].
In this paper, we are concerned with the average of μ̂ over space curves in R

d ,
d ≥ 3. Let γ : I = [0, 1] → R

d be of a Cd+1 curve satisfying

det(γ ′(t), γ ′′(t), . . . , γ (d)(t)) �= 0 for t ∈ I. (2)

As is to seen later, the averaged estimate over curves are closely related to the
restriction estimates for the curves which have been studied by various authors. We
refer the reader to [1–4,7–11,16,20] and references therein.

For a nonnegative number x , let us denote by [x], 〈x〉 the integer part and the
fractional part of x , respectively. The following is our first result.

Theorem 1.1 Let 0 < α < d, and let μ be a positive Borel measure supported in
B(0, 1), and γ ∈ Cd+1([0, 1]) be a space curve satisfying (2). Suppose Iα(μ) = 1,
then for λ > 1 there exists a constant C > 0 such that, for δ < δ(α),

∫ 1

0
|μ̂(λγ (t))|2dt ≤ Cλ−δ, (3)

where δ(α) = α−d+2
2 if d − 1 ≤ α < d, and δ(α) = max

(
1−〈d−α〉
[d−α]+1 ,

2−〈d−α〉
([d−α]+1)(2−〈d−α〉)+1

)
otherwise.

For the case d − 1 ≤ α < d the estimate is sharp except for the issue of the
endpoint. But for the other case there is a gap between the bound (3) and the upper
bounds which are obtained by considering specific test examples. When 0 < α ≤ 1
we see from Theorem 1 in [12] that (3) holds with δ ≤ δ(α) = min(α, 1/d) and this
is optimal. (See Proposition 4.1 for the upper bounds of δ.)

In order to prove (3), instead of finiteness of α-dimensional energy Iα(μ), it is
convenient to work with a growth condition on μ. We assume that there exists a
constant Cμ, independent of x and r , such that

μ(B(x, r)) ≤ Cμr
α for all x ∈ R

d and r > 0. (4)

It is clear that (4) implies that Iα−ε(μ) < ∞ for any ε > 0. The converse is
essentially true up to a logarithmic loss (for example, see Lemma 3.4). Forμ satisfying
(4) we set

〈μ〉α = sup
(x,r)∈Rd×R+

r−αμ(B(x, r)). (5)

For the integral in the left hand side of (3) it doesn’t seem easy to make use of the
geometric feature of the curve γ . So we consider a dual form which looks like Fourier
restriction estimate. In fact, (3) is equivalent to the estimate

|
∫

ĝdμ| ≤ Cλ
1
2 (1−δ)‖g‖2
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when g is supported in λγ + O(1), the O(1)-neighborhood of the curve λγ . This
can also be generalized by allowing different orders of integrability. We investigate
κ = κ(q) for which

‖ĝ‖Lq (dμ) ≤ Cλκ‖g‖L2 (6)

holds for some C > 0. This also has its own interest and for the case of the circle the
optimal results were obtained by Erdoğan [12].

Now, to facilitate the statements of our results, we define some notations. For
j = 1, . . . , d and 0 < α ≤ j we set

β j (α) = ([ j − α] + 1)α + ( j − 1 − [ j − α])( j − [ j − α])
2

.

For a fixed 0 < α ≤ d, we define the closed intervals J (�), � = −1, 0, 1, . . . , d −
1 − [d − α], by setting

J (�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ 2βd(α), ∞], if � = −1,

[ 2βd−�−1(α − � − 1), 2βd−�(α − �) ], if 0 ≤ � ≤ d − 3 − [d − α],
[ 2([d − α] + 1), 2βd−�(α − �) ], if � = d − 2 − [d − α],
[ 1, 2([d − α] + 1) ], if � = d − 1 − [d − α].

Note that βd−�(α − �) decreases as � increases. For each � = −1, 0, 1, . . . , d −
1 − [d − α] and q ∈ J (�), we also set

κ(α, q, �) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 − α

q , if � = −1,
1
2 − α−�

q + 1
d−�

(βd−�(α−�)
q − 1

2

)
, if 0 ≤ � ≤ d − 3 − [d − α],

1
2 − α−�

q + 1
J�

(βd−�(α−�)
q − 1

2

)
, if � = d − 2 − [d − α],

min
( d−α

4 , d−α
2([d−α]+1)

)
, if � = d − 1 − [d − α],

where J� = d−� = 2 if [d−α] = 0, and J� = |J (d−2−[d−α])|/2 if [d−α] ≥ 1.
Here |J (�)| denotes the length of J (�). It should be noted that, for given α and �,
κ(α, q, �) is defined only for q ∈ J (�). (See Fig. 1.)

Our second result reads as the following from which Theorem 1.1 is to be deduced
later.

Theorem 1.2 Let 0 < α ≤ d, and let γ be given as in Theorem 1.1. Suppose that μ

is supported in B(0, 1) and satisfies (4). Then

‖ĝ‖Lq (dμ) ≤ C〈μ〉
1
q

α λκ(α,q,�)+ε‖g‖L2

holds for any ε > 0 and for q ∈ J (�), � = −1, 0, 1, . . . , d − 1 − [d − α].
For a given α, the results of Theorem 1.2 are sharp for q ∈ J (�), � ≤ d − 3 −

[d − α] in that the value κ can not generally be made smaller except ε. For q ∈ J (�),
� ≥ d − 2 − [d − α], the results are sharp only when [d − α] = 0. In this case
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Fig. 1 The solid lines represent the value of κ(α, q, �) as a function of 1/q for specific values of α, namely,
α = d, d − 1, d − j, d − j − 1 while j is an integer, 1 ≤ j < d − 1. For integer α, κ(α, q, �) decreases
as so does q. The dotted graphs L1, L2 give the cases of non-integer α satisfying d − j − 1 < α < d − j
and 1 ≤ j = [d − α]. If α < d − j − 1 + ( j + 1)/( j + 2), κ(α, q, �) may increase. So, κ(α, q, �) may
exceed κ(d − j − 1, q, �) at A1. (See L1.) However, if α is close enough to d − j , the line of the shape like
L2 appears. The dotted graph L3 shows the case of non-integer for α ∈ (d − 1, d). In this case, κ(α, q, �)

always decreases in q. Except for A1, A2, B, . . . , F , every marked dot is given by ( 1q , κ(α, q, �)) =
( 1
2βd−�(α−�)

, 1
2 − α−�

2βd−�(α−�)
).

κ(α, q, d − 2) = 1
4 + d−α−1

2q for q ∈ J (d − 2), which is obtained by adapting the
bilinear argument due to Erdoğan [13]. (See Theorem 3.2.) It follows by Hölder’s
inequality that κ(α, q, d − 1) = d−α

4 for q ∈ J (d − 1). When [d −α] ≥ 1 and α is an
integer i.e. α = d − [d − α], we have J� = |J (d − 2− [d − α])|/2 = d − �. For this
case, κ(α, q, d−2−[d−α]) are sharp. In general, J� = |J (d−2−[d−α])|/2 ≤ d−�

for [d − α] ≥ 1. (See Proposition 4.2.)

Remark 1.3 If � ≤ d − 3 − [d − α], κ(α, q, �) decreases as so does q. However
κ(α, q, d−2−[d−α])may increase thoughq decreases except for the case [d−α] = 0.

As shown in Section 3, the decay rate δ in Theorem 1.1 is determined
by the minimum of κ(α, q, �), which is given by d−α

4 if [d − α] = 0, or
minq∈J (d−2−[d−α]) κ(α, q, �) if [d − α] ≥ 1. (See Fig. 1.)

Although those notations seem to be complicated, most of them are naturally asso-
ciated with the scaling structure of curves. For example, β j (α) generalizes the number
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βd(d) = d(d + 1)/2 which appears in the studies on restriction estimates for space
curves (e.g. [1–4,7,8,10,11]). We need to use the intervals J (�) in order to extend the
estimate (7) beyond the known range given by (9) with p = 2. Except for the case
� = d − 1 − [d − α] the number κ(α, q, �) is actually obtained by interpolating the
estimates for q at the endpoints of J (�).

The paper is organized as follows. In Section 2, we prove various L p → Lq

estimates for the related oscillatory integral operators (Theorem 2.1). In Section 3,
Theorem 1.2 will be deduced from the estimates in Section 2 and we prove Theorem
1.1. In Section 4, we discuss the upper bounds of δ and the lower bounds of κ which
appear in Theorems 1.1 and 1.2, respectively. In Section 5, we provide proofs of the
estimates in Section 2 by making use of multilinear argument in [16]. Also Theorem
3.2 will be proved in Section 6 by adapting the bilinear argument due to Erdoğan [12].

Throughout the paper the constant C may vary from line to line and in addition to
̂we also use F to denote the Fourier transform.

2 Oscillatory Integral Operators

For λ ≥ 1 let us consider an oscillatory integral operator defined by

Eγ
λ f (x) = a(x)

∫
I
eiλx ·γ (t) f (t)dt,

where a is a bounded function supported in B(0, 1) with ‖a‖∞ ≤ 1. The estimate (6)
can be deduced from the estimate

‖Eγ
λ f ‖Lq (dμ) � λ−ϑ‖ f ‖L2(I ). (7)

In fact, λγ (t)+O(1) can be foliated into a set of O(1)-translations of the curve λγ .
Then, a simple change of variables, Minkowski’s inequality, and Plancherel’s theorem
together with (7) give (6) with κ = 1

2 −ϑ . The converse also can be shown by making
use of the uncertainty principle. See Lemma 3.1 for the details.

In the recent paper [16], two of the authors proved that if μ and γ satisfy (4) and
(2), respectively, then

‖Eγ
λ f ‖Lq (dμ) � λ

− α
q ‖ f ‖L p(I ) (8)

holds for 1 ≤ p, q ≤ ∞ satisfying d/q ≤ 1 − 1/p, q ≥ 2d and

βd(α)

q
+ 1

p
< 1, q > βd(α) + 1. (9)

We refer to [16] and references therein for further discussions about this estimate
and related results. Then from Lemma 3.1 it follows that (6) holds with κ = 1

2 − α
q

if q > max(2βd(α), 2d) and λ > 1. However this is not enough in order to obtain
the estimate (6) for the other q. Hence we are led to investigate the estimates with
(p, q) which does not satisfy (9). It is natural to expect that the decay gets worse
as (1/p, 1/q) gets away from the range (9). If α = d, then by the Lebesgue-Radon-
Nikodym theoremwehave dμ = f (x)dx and by theLebesgue differentiation theorem
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and (4) it follows that f is a bounded function. Hence, by projection argument, it is
not difficult to see that, for k = 0, . . . , d,

‖Eγ
λ f ‖Lq (dμ) ≤ Cλ

− k
q ‖ f ‖p

whenever βk (k)
q + 1

p ≤ 1. But this argument readily fails with a general measure μ. To
get around this difficulty we make use of the induction argument based on multilinear
estimates (see [16] and [6]).

The following is an extension of the earlier result in [16].

Theorem 2.1 Let γ and μ be given as in Theorem 1.2. For each integer � =
0, 1, . . . , d − 1 − [d − α], there exists a constant C� such that

‖Eγ
λ f ‖Lq (dμ) ≤ C� 〈μ〉

1
q

α λ
− α−�

q ‖ f ‖L p(I ) (10)

holds for f ∈ L p(I ) and λ ≥ 1 whenever (d − �)/q + 1/p ≤ 1, q ≥ 2(d − �) and

βd−�(α − �)

q
+ 1

p
< 1, q > βd−�(α − �) + 1. (11)

Theorem 2.1 is proved by routine adaptation of the argument in [16]. Compared
to [16] the main difference here is to utilize various multilinear estimates of different
degrees of multilinearity. For completeness we provide a proof of Theorem 2.1 in
Section 5.

Remark 2.2 It is easy to check that among the four conditions on (p, q) above, the
first two conditions become redundant for some �. In fact, since βd−�(α − �) > d − �

if and only if α − � > 1, and βd−�(α − �) + 1 > 2(d − �) if and only if α − � > 2,
the estimate (10) holds whenever

⎧⎪⎨
⎪⎩

βd−�(α−�)
q + 1

p < 1, q > βd−�(α − �) + 1, if 2 < α − � (i.e. � ≤ d − 3 − [d − α]),
βd−�(α−�)

q + 1
p < 1, q ≥ 2(d − �), if 1 < α − � ≤ 2 (i.e. � = d − 2 − [d − α]),

d−�
q + 1

p ≤ 1, q ≥ 2(d − �), if 0 < α − � ≤ 1 (i.e. � = d − 1 − [d − α]).

If [d−α] ≥ 1, we also have estimates for p, q satisfying ([d−α]+1)/q+1/p > 1
and q < 2([d − α] + 1), which are given as follows.

Theorem 2.3 Suppose that γ, μ are given as in Theorem 2.1. Then, there exists a
positive constant C such that

‖Eγ
λ f ‖Lq (dμ) ≤ C〈μ〉

1
q

α λ
−
(

α−d
q +1− 1

p

)
‖ f ‖L p(I ),

whenever ([d−α]+1)−1(1− 1
p ) ≤ 1

q ≤ 1− 1
p , q ≥ [d−α]+1 and β[d−α]+1(1−〈d−α〉)

q +
1
p < 1.
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There is no reason to believe these estimates are sharp. Particularly, if [d − α] = 0
(this gives the condition that 1/p + 1/q ≤ 1 and q ≥ 2), Theorem 2.3 coincides
with Theorem 2.1 for � = d − 1. See Section 5 for a proof, which is based on the
generalized Hausdorff-Young inequality.

By interpolating the estimates (10) for which (1/p, 1/q) is near the critical line
one can improve the bound. To state this, we define some notations. In addition, let us
assume that p ≤ 2 for simplicity. For each α let A (�) be the set of ( 1p , 1

q ) such that
1 ≤ p ≤ 2 and

⎧⎪⎨
⎪⎩

βd (α)
q + 1

p < 1, if � = −1,
βd−�−1(α−�−1)

q + 1
p < 1 ≤ βd−�(α−�)

q + 1
p , if � = 0, . . . , d − 3 − [d − α],

[d−α]+1
q + 1

p ≤ 1 ≤ β[d−α]+2(2−〈d−α〉)
q + 1

p , if � = d − 2 − [d − α].

Let us also denote byA (d − 1−[d −α]) the set of (p, q) satisfying the condition
given in Theorem 2.3 and 1 ≤ p ≤ 2. Note thatA (d−1)when [d−α] = 0 represents
the line segment 1/q + 1/p = 1 and 1 ≤ p ≤ 2.

By interpolating the estimates in Theorem 2.1 and Theorem 2.3, we obtain the
following.

Corollary 2.4 Let γ and μ be defined as in Theorem 2.1. Suppose (10) holds. Then,
for 1 ≤ p ≤ 2, there exists a constant C > 0 such that, for any ε > 0,

‖Eγ
λ f ‖Lq (dμ) ≤ C〈μ〉

1
q

α λ−η(α,p,q,�)+ε‖ f ‖L p(I ), (12)

where

η(α, p, q, �) =

⎧⎪⎪⎨
⎪⎪⎩

α
q , if ( 1

p , 1
q ) ∈ A (−1),

α−�
q − 2

|J (�)|
(

βd−�(α−�)
q + 1

p − 1
)

, if ( 1
p , 1

q ) ∈ A (�), 0 ≤ � ≤ d − 2 − [d − α],
α−d
q + 1 − 1

p , if ( 1
p , 1

q ) ∈ A (d − 1 − [d − α]).

Note that if 0 < α ≤ 1, we have only � = 0. In this case, there is nothing to
interpolate. The results in Corollary 2.4 are sharp for −1 ≤ � ≤ d − 3 − [d − α]
except ε-loss. This can be shown by the same examples which are used for the proof
of Proposition 4.2.

3 Proof of Theorem 1.1 and 1.2

As mentioned in the previous section, we will apply the decay estimate for the related
oscillatory integral operator to obtain (6). In this section we may assume that γ is
close to γ d◦ so that ‖γ − γ d◦ ‖Cd+1(I ) ≤ ε for any given ε > 0. Here γ d◦ is defined by
(27). This can be justified easily by decomposing the curve γ into a finite union of
(sub)curves, rescaling and using Lemma 5.1.

We start with observing that (7) is equivalent to the estimate (6).
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Lemma 3.1 Let d ≥ 2 and 0 < α ≤ d. Suppose that γ ∈ Cd+1(I ) satisfies (2) and
μ is a positive Borel measure supported in B(0, 1) satisfying (4). The estimate (7)
holds with ϑ = 1

2 − κ if and only if the estimate (6) holds whenever g is supported in
λγ (I ) + O(1).

Proof First we show that (7) implies (6). Let g be a function which is supported in
λγ (I ) + O(1). By the change of variables ξ → λξ , we may write

ĝ(x) =
∫

γ (I )+O(λ−1)

eiλx ·ξ λdg(λξ)dξ.

Let us consider a nondegenerate curve γ∗ which is given by extending γ to the
interval I∗ := [−C

λ
, 1 + C

λ
] such that γ∗ = γ on I and ‖γ∗ − γ d◦ ‖Cd+1(I∗) ≤ ε for a

sufficiently small ε > 0. Then it follows that, for a sufficiently large constant C ,

γ (I ) + O(λ−1) ⊂ {γ∗(s) + (0, v) : s ∈ I∗, v ∈ R
d−1 satisfying |v| ≤ Cλ−1}.

Let us define a map � : I∗ × R
d−1 → R

d by �(s, v) = γ∗(s) + (0, v). Then
| det ∂�

∂(s,v) | ≥ c > 0. Thus we have

ĝ(x) = C
∫

|v|�λ−1

∫
I∗
eiλx ·(γ∗(s)+(0,v))λd g̃(λ(γ∗(s) + (0, v)))dsdv

with |̃g| � |g|. By setting γ̃ (t) = γ∗((1 + 2C/λ)t − C/λ), we have a nondegenerate
curve γ̃ defined on I which is still close to γ d◦ . Then, it follows that

|̂g(x)| ≤ C
∫

|v|�λ−1

∣∣∣
∫
I
eiλx ·γ̃ (t)λd g̃(λ(γ̃ (t) + (0, v)))dt

∣∣∣dv.

After Minkowski’s inequality, we apply (7) by freezing v to see that

‖ĝ‖Lq (dμ) ≤ C
∫

|v|�λ−1
λ−ϑ‖ fv‖L2(I )dv,

where fv(t) := λd g̃(λ(γ̃ (t) + (0, v))). By the Cauchy–Schwarz inequality, we get

‖ĝ‖Lq (dμ) ≤ Cλ−ϑ− d−1
2

( ∫
|v|�λ−1

∫
I
| fv(t)|2dtdv

) 1
2

≤ Cλ
1
2−ϑ
( ∫

λγ (I )+O(1)
|g(ξ)|2dξ

) 1
2
,

which implies (6).
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Conversely, let us show that (6) implies (7). For v = (v2, · · · , vd) ∈ R
d−1 as

above, one easily sees that

∣∣∣
∫
I
eiλx ·γ (t)a(x) f (t)dt

∣∣∣ = λd−1
∣∣∣
∫

|v|�λ−1

∫
I
eiλx ·(γ (t)+(0,v))a(x) f (t)dt e−iλx ·(0,v)dv

∣∣∣.
(13)

By expanding into power series we write e−iλx ·(0,v) = ∑
η,η′ cη,η′xη(0, λv)η

′
,

where η, η′ denote multi-indices. Then it is easy to see
∑

η,η′ |cη,η′ |R|η|+|η′| � edR
2
.

Since μ is supported in B(0, 1), setting Gη′(t, v) := f (t)(0, λv)η
′
gives

(13) �
∑
η,η′

|cη,η′ |λd−1
∣∣∣
∫
I

∫
|v|�λ−1

eiλx ·(γ (t)+(0,v))Gη′(t, v)dvdt
∣∣∣.

By the change of variables ξ = γ (t) + (0, v), we obtain

∣∣∣
∫
I

∫
|v|�λ−1

eiλx ·(γ (t)+(0,v))Gη′(t, v)dvdt
∣∣∣ = λ−d

∣∣∣
∫

λγ (I )+O(1)
eix ·ξ gη′(λ−1ξ)dξ

∣∣∣

where gη′(ξ) = Gη′(t (ξ), v(ξ)). Hence, using (6) and Minkowski’s inequality and
reversing the change of variables we see

∥∥∥
∫
I
eiλx ·γ (t)a(x) f (t)dt

∥∥∥
Lq (dμ)

� λ−1+κ
∑
η,η′

|cη,η′ | ‖gη′(λ−1·)‖L2(Rd )

� λ−1+ d
2 +κ
∑
η,η′

|cη,η′ |
( ∫

|v|�λ−1

∫
I
| f (t)(0, λv)η′ |2dtdv

) 1
2

� λ− 1
2+κ
∑
η,η′

|cη,η′ |C |η′|‖ f ‖L2(I ) � λκ− 1
2 ‖ f ‖L2(I ).

The third inequality follows from |(0, λv)| � 1. This completes the proof.

Now we prove Theorem 1.2.

Proof of Theorem 1.2 By Lemma 3.1 and Corollary 2.4 with p = 2, it follows that
the estimate (6) holds with

κ = 1

2
− η(α, 2, q, �) + ε (14)

for ε > 0 and −1 ≤ � ≤ d − 2 − [d − α]. For these �, ( 12 ,
1
q ) ∈ A (�) if and only if

q ∈ J (�).
Now we consider the case q ∈ J (d − 1 − [d − α]) (� = d − 1 − [d − α]). By

the same argument as in the above, using Lemma 3.1 and Corollary 2.4 with p = 2,
we get (6) with κ = (d − α)/q + ε ≥ (d − α)/2([d − α] + 1) + ε for ε > 0 and
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[d − α] + 1 ≤ q ≤ 2([d − α] + 1) (which coincides with A (d − 1 − [d − α])
for p = 2). Since μ is a finite measure, the range of q can be extended by Hölder
inequality. Thus we obtain (6) with

κ = d − α

2([d − α] + 1)
+ ε (15)

for q ∈ J (d − 1− [d − α]) = [1, 2([d − α] + 1)]. Hence (14) and (15) correspond to
κ(α, q, �) + ε for [d − α] ≥ 1 because |J (�)| = 2(d − �) for � ≤ d − 3 − [d − α].

As mentioned above, for [d −α] = 0 (and � = d −2−[d −α], d −1−[d −α]), a
better estimate is possible by making use of the bilinear approach (see Erdoğan [12]).
The following is proved in Section 6.

Theorem 3.2 Suppose that d ≥ 2 and d − 1 ≤ α ≤ d. Let γ , μ, and g be given as in
Theorem 1.2. Then, for λ > 1, q ≥ 2 and ε > 0, there exists a constant C > 0 such
that

‖ĝ‖Lq (dμ) ≤ C〈μ〉
1
q

α λκ+ε‖g‖L2

for κ = max( 14 + d−α−1
2q , 1

2 + d−α−2
q ).

This gives

κ >

{
1
4 + d−α−1

2q , if 2 ≤ q ≤ 2(α − d + 3),
1
2 + d−α−2

q , if 2(α − d + 3) ≤ q.

Since [2, 2(α−d+3)] = J (d−2) if [d−α] = 0, (6) holds with κ = 1
4 + d−α−1

2q +
ε = κ(α, q, d − 2) + ε for q ∈ J (d − 2), ε > 0. By taking q = 2 and using Hölder’s
inequality, we get κ = d−α

4 + ε = κ(α, q, d − 1) + ε for q ∈ J (d − 1) = [1, 2]. This
completes the proof. ��

Now we turn to the proof of Theorem 1.1 for which we need the following lemma.

Lemma 3.3 Let μ be a finite measure which is supported in B(0, 1). Suppose that the
estimate ∣∣∣

∫
ĝ(x)dμ(x)

∣∣∣ � √Iα(μ)λκ‖g‖2 (16)

holds whenever g is supported in λγ (I ) + O(1). Then (3) holds with δ = 1 − 2κ .

Proof The proof is a simple modification of the argument in [21] (see also [15]). By
the assumption (16) and duality, we have

∫
λγ (I )+O(1)

|μ̂(ξ)|2dξ � Iα(μ)λ2κ . (17)

Let ψ be a Schwartz function which is equal to 1 on the support of μ. Then

∫
I
|μ̂(λγ (t))|2dt =

∫
I
|ψ̂ ∗ μ̂(λγ (t))|2dt �

∫
Rd

∫
I
|ψ̂(λγ (t) − ξ)|dt |μ̂(ξ)|2dξ.
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By rapid decay of ψ̂ ,
∫
I |ψ̂(λγ (t) − ξ)|dt � λ−1(1 + dist(λγ (I ), ξ))−N for a

sufficiently large N ≥ d. Hence, it follows that

∫
I
|μ̂(λγ (t))|2dt � 1

λ

∫ |μ̂(ξ)|2
(1 + dist(λγ (I ), ξ))N

dξ. (18)

By dyadic decomposition along the distance between ξ and λγ (I ), we see

∫ |μ̂(ξ)|2
(1 + dist(λγ (I ), ξ))N

dξ �
∫

λγ (I )+O(1)
|μ̂(ξ)|2dξ

+
∞∑
j=1

2−N j
∫

λγ (I )+O(2 j )

|μ̂(ξ)|2dξ

� Iα(μ)λ2κ+Iα(μ)

∞∑
j=1

2−N j2(d−1) jλ2κ�Iα(μ)λ2κ .

The second inequality follows from the fact that λγ (I ) + O(2 j ) is a union of
translations of λγ (I ) + O(1). Consequently, by combining this and (18) we obtain
(3) with δ = 1 − 2κ .

We also need the following lemma due to Wolff [21, Lemma 1.5]. In [21] the proof
of this lemma is given only for d = 2 but the argument works for any dimension.

Lemma 3.4 Letμ be a positive Borel measure supported in B(0, 1). Then, for R > 1,
μ can be written as μ =∑1≤ j≤O(log R) μ j such that μ j is a positive Borel measure
supported in B(0, 1) and, for each j ,

μ j (R
d) sup

(x,r)∈Rd×[R−1,∞)

r−αμ j (B(x, r)) � Iα(μ). (19)

Proof of Theorem 1.1 By Lemma 3.3, for (3) we need to show (16). Now, by Lemma
3.4 with R = λ there are as many as O(log λ) measures. Ignoring logarithmic loss we
may consider only one of such measures μ which satisfies (19), and we need to show
that, for κ > (1 − δ(α))/2,

∣∣∣
∫

ĝ(x)dμ(x)
∣∣∣ ≤ Cμ(Rd)

1
2 〈μ〉

1
2

α λκ‖g‖2 (20)

holds whenever g is supported in λγ (I ) + O(1) and μ is a positive Borel measure
supported in B(0, 1) satisfying (19). However, we may assume a stronger condition
μ(Rd)〈μ〉α ≤ Iα(μ) holds. In fact, since g is supported in λγ (I )+O(1), the estimate
we need to show is equivalent to

∣∣∣
∫

F(ψ(·/λ)g)(x)dμ(x)
∣∣∣ ≤ Cμ(Rd)

1
2 〈μ〉

1
2

α λκ‖g‖2,
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where ψ is a Schwartz function with ψ ∼ 1 on the ball B(0,Cd) and with ψ̂ sup-
ported in B(0, 1). Since F(ψ(·/λ)g) = λd ψ̂(λ ·) ∗ ĝ, we may replace dμ with
λddμ ∗ |ψ̂ |(λ ·). Then it is easy to see that λddμ ∗ |ψ̂ |(λ ·)(Rd) � μ(Rd) and
λddμ ∗ |ψ̂ |(λ ·)(B(x, r)) � sup(x,r)∈Rd×[λ−1,∞) r

−αμ(B(x, r)) for r > 0.
Since μ is supported in B(0, 1) with μ(Rd)〈μ〉α ≤ Iα(μ) and q ≥ 2, by Hölder’s

inequality and Theorem 1.2 we get, for κ > κ(α, q, �),

∫
|̂g(x)|dμ(x) ≤ ‖ĝ‖Lq (dμ)μ(Rd)

1− 1
q � μ(Rd)

1− 1
q 〈μ〉

1
q

α λκ‖g‖2.

Clearly, μ(Rd) � 〈μ〉α because μ is supported in B(0, 1). Hence we have (20)
whenever κ > κ(α, q, �) with q ≥ 2. Therefore we only have to check the minimum
of κ(α, q, �), q ∈ J (�) which depends on α.

First we consider the case d−1 ≤ α < d. It is easy to see that min� minq∈J (�)∩[2,∞)

κ(α, q, �) = κ(α, 2, d − 2) = d−α
4 . Thus we obtain the first part of Theorem 1.1.

For the case [d − α] ≥ 1, finding the minimum of minq∈J (�)∩[2,∞) κ(α, q, �) is
less obvious. As mentioned in Remark 1.3, the minimum occurs when q ∈ J (d − 2−
[d − α]). In fact, minq∈J (d−2−[d−α]) κ(α, q, �) is given by

1

2
− α − d + 2 + [d − α]

2β[d−α]+2(α − d + 2 + [d − α]) = 1

2
− 2 − 〈d − α〉

2([d − α] + 1)(2 − 〈d − α〉) + 2

with q = 2β[d−α]+2(2−〈d −α〉), or d−α
2([d−α]+1) with q = 2([d −α]+ 1). Combining

these two gives the other part of Theorem 1.1. This completes the proof.

4 Upper Bound for δ and Lower Bound for κ

In this section we consider the upper bound for δ and the lower bound for κ which limit
the values δ, and κ in the estimates (3) and (6). As mentioned before, for the former
there is a gap between our result and the plausible upper bound stated in Proposition
4.1. For the latter, the bounds we obtain here turn out to be sharp in various cases.

Proposition 4.1 Let 0 < α < d and γ be given as in Theorem 1.1. Suppose (3) holds
uniformly whenever Iα(μ) = 1. Then, for [d − α] = 1, · · · , d − 2,

δ ≤

⎧⎪⎪⎨
⎪⎪⎩

1 − d−α
2 , if α ∈ (d − 1, d), (21a)

min
(
1 − d−α

[d−α]+2 , 1
[d−α]+1

)
, if α ∈ (d − [d − α] − 1, d − [d − α]], (21b)

min
(
α, 1

d

)
, if α ∈ (0, 1]. (21c)

Thus we see that (3) is sharp when d − 1 ≤ α < d. As mentioned before, Theorem
1 in [12] shows that (21c) is sufficient for (3) to hold when α ∈ (0, 1].
Proof of Proposition 4.1 For a given [d − α], let us fix an integer � such that 0 ≤ � ≤
d − [d − α] − 1.
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Let ψ be a Schwartz function supported in B(0, 2) with ‖ψ‖L1 = 1. We also set

ψλ,�(x) = λ− 1−d+�
2 ψ(λ1−

1
d−� x1, . . . , λ

1− d−�
d−� xd−�, xd−�+1, . . . , xd),

so that ‖ψλ,�‖L1 = 1. Then there exists a rectangle S� such that |ψ̂λ,�| ∼ 1 on S�,
where S� is a d-dimensional rectangle defined by

S� =
{
x ∈ R

d : |x1| � λ1−
1

d−� , |x2| � λ1−
2

d−� , · · · ,

|xd−�| � λ1−
d−�
d−� = 1, · · · , |xd | � 1

}
.

By Taylor’s expansion, we have

γ (t) − γ (0) = γ ′(0)t + γ ′′(0) t
2

2! + · · · + γ (d)(0)
td

d! + e(t)

=: Mγ,d
0 γ d◦ (t) + e(t), (22)

where Mγ,d
0 is a nonsingular matrix given by (28) and |e(t)| � td+1. Clearly, we may

also assume that γ (0) = 0.
Let dμ(x) = | det(Mγ,d

0 )t | ψλ,�((M
γ,d
0 )t x)dx . Then we have μ̂(λγ (t)) =

ψ̂λ,�(λ(γ d◦ (t) + (Mγ,d
0 )−1e(t))) by (22). If t < c λ−1/(d−�) for a sufficiently small c,

λ(γ d◦ (t) + (Mγ,d
0 )−1e(t)) ∈ S�. Hence, it follows that

∫ 1

0
|μ̂(λγ (t))|2dt ≥

∫ c λ
− 1
d−�

0

∣∣∣ψ̂λ,�

(
λ(γ d◦ (t) + (Mγ,d

0 )−1e(t))
)∣∣∣2dt � λ− 1

d−� .

On the other hand, Iα(μ) = ∫ |ψ̂λ,�((M
γ,d
0 )−1ξ)|2|ξ |α−ddξ �

∫
Mγ,d

0 S�
|ξ |α−ddξ

by the rapid decay of ψ . Hence, we see

Iα(μ) ≤ C
∫

|ξ |�1
|ξ |α−ddξ + C

d−�−2∑
k=0

∫
{λ1− k+2

d−� �|ξ |�λ
1− k+1

d−� }∩Mγ,d
0 S�

|ξ |α−ddξ.
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Using spherical coordinates,

∫
{λ1− k+2

d−� �|ξ |�λ
1− k+1

d−� }∩Mγ,d
0 S�

|ξ |α−ddξ �

⎛
⎝
∫ λ

−1+ k+1
d−�

0
· · ·
∫ λ

−1+ k+1
d−�

0
dθd−1 . . . dθd−�−1

⎞
⎠

×
∫ λ

− d−�−k−2
d−�

0
· · ·
∫ λ

− 2
d−�

0

∫ λ
− 1

d−�

0

(∫ 1

0
· · ·
∫ 1

0

∫ λ
1− k+1

d−�

λ
1− k+2

d−�

rα−1drdθd−�−2 · · · dθd−k−�−1

)
· · · dθ1.

Hence, evaluating the integrals we get

Iα(μ) �
d−�−1∑
k=0

λh(k),

where

h(k) = (α − � − 1) − 1

d − �

(
(k + 1)(α − � − 1) + (d − � − k − 2)(d − � − k − 1)

2

)
.

Clearly, (3) implies λ− 1
d−� � λ−δ

∑d−�−1
k=0 λh(k). Letting λ → ∞ we get

δ ≤ 1

d − �
+ max

0≤k≤d−�−1
h(k).

Since h(x) attains the maximum at x = d − α − 1/2, it is easy to see that
max0≤k≤d−�−1 h(k) = h([d − α]). Since d − � − 1 ≥ [d − α], we now consider the
cases d−�−1 = [d−α] and d−�−1 > [d−α], separately.When d−�−1 = [d−α],
we have

δ ≤ 1

d − �
+ h(d − � − 1) = 1

[d − α] + 1
. (23)

When d − � − 1 > [d − α], we examine the value of (d − �)−1 + h([d − α]) for
� = 0, . . . , d − [d − α] − 2. Since (d − �)−1 + h([d − α]) with � = d − [d − α] − 2
is the minimum, we get

δ ≤ 1

d − (d − [d − α] − 2)
+ h([d − α]) = 1 − d − α

[d − α] + 2
. (24)

Thus we conclude that δ has upper bounds (23) or (24) for d − [d − α] − 1 < α ≤
d − [d − α], which gives (21b). Especially for [d − α] = 0 i.e. d − 1 < α < d, the
minimum value is 1 − d−α

2 , which is (21a).
Finally, we show (21c). In this case, [d−α] = d−1, i.e. 0 < α ≤ 1. Repeating the

same argument, we see that (23) implies δ ≤ 1
d . Hence it suffices to show δ ≤ α for

α ∈ (0, d). To obtain this, let α∗ ∈ (α, d) and consider dμ(x) = |x |−d+ α∗
2 ψ(x)dx
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for a Schwartz function ψ in the above. It is easy to see μ̂(ξ) = C | · |− α∗
2 ∗ ψ̂(ξ) ≈

(1 + |ξ |)− α∗
2 . So we get

∫ 1

0
|μ̂(λγ (t))|2dt � λ−α∗ .

Sinceα < α∗, Iα(μ) = ∫ |μ̂(ξ)|2|ξ |α−ddξ ≤ ∫|ξ |>1 |ξ |α−d−α∗dξ+∫|ξ |<1 |ξ |α−ddξ

� 1. Hence, (3) implies δ ≤ α∗ for any α∗ ∈ (α, d), which gives δ ≤ α as desired.

Now we consider the lower bounds for κ in Theorem 1.2. We define the intervals
J◦(�) ⊂ [1,∞) by

J◦(�) =

⎧⎪⎨
⎪⎩

J (�), for � = −1, 0, · · · , d − 3 − [d − α],
[ 2βd−�−1(α − � − 1), 2βd−�(α − �) ], for � = d − 2 − [d − α],
[ 1, 2β[d−α]+1(1 − 〈d − α〉) ], for � = d − 1 − [d − α].

For each q ∈ J◦(�) we also define κ◦(α, q, �) given by

κ◦(α, q, �) =
{

1
2 − α

q , if q ∈ J◦(−1),
1
2 − α−�

q + 1
d−�

(βd−�(α−�)
q − 1

2

)
, if q ∈ J◦(�),

for 0 ≤ � ≤ d − 1 − [d − α]. Then κ◦(α, q, �) = κ(α, q, �) for q ∈ J (�), −1 ≤ � ≤
d − 3 − [d − α]. Also, for given α and �, κ◦(α, q, �) is defined only for q ∈ J◦(�). It
is easy to see that κ◦(α, q, �) continuously decreases as � increases.

Proposition 4.2 Suppose (6) holds with μ, γ and g which are given as in Theorem
1.2. For q ∈ J◦(�),

κ ≥ κ◦(α, q, �). (25)

In addition, κ ≥ (d − α)/4 when d − 1 ≤ α ≤ d.

Proof of Proposition 4.2 We show (25) first. Fix α and consider the measureμ◦ given
by

dμ◦(x) = ψ(x)
[d−α]∏
j=1

dδ(x j )|x[d−α]+1|−〈d−α〉dx[d−α]+1 · · · dxd , (26)

where ψ is a smooth function supported in B(0, 1) and δ is the delta measure. When
[d − α] = 0, we write dμ◦(x) = ψ(x)|x1|−〈d−α〉dx1dx2 · · · dxd . Then, as can be
easily checked μ◦ satisfies (4).

Let g(y) := λ− 1
2 χλγ (I )+O(1)(y). Then |̂g(x)| = λ− 1

2
∣∣ ∫

λγ (I )+O(1) e
ix ·ydy

∣∣ � λ
1
2

whenever x ∈ B(0, cλ−1) for a sufficiently small c > 0. It follows that

‖ĝ‖Lq (dμ) � λ
1
2 μ(B(0, cλ−1))

1
q ∼ λ

1
2− α

q .
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Since ‖g‖L2(Rd ) ∼ 1, (6) and letting λ → ∞ gives κ ≥ 1/2 − α/q.
Now let � be an integer such that 0 ≤ � ≤ d − 1 − [d − α]. Let us consider

the measure μ defined by
∫
F(x)dμ = ∫ F((Mγ,d

0 )−t x)dμ◦(x). Note that dμ is a

compactly supported positive Borel measure satisfying (4). Let J = [0, λ− 1
d−� ] and

set g(y) = χλγ (J )+O(1)(y). Then ‖ĝ‖qLq (dμ) = ∫ |̂g((Mγ,d
0 )−t x)|qdμ◦(x) and

|̂g((Mγ,d
0 )−t x)| =

∣∣∣
∫

λγ (J )+O(1)
eix ·(M

γ,d
0 )−1(y−λγ (0))dy

∣∣∣.

Using Taylor’s expansion in (22) we see that (Mγ,d
0 )−1(y − λγ (0)) is contained in

λγ d◦ (J ) + O(1). Hence,

|̂g((Mγ,d
0 )−t x)| � λ1−

1
d−� χP�

(x),

where P� = [0, cλ 1
d−�

−1] × [0, cλ 2
d−�

−1] × · · · × [0, cλ d−�
d−�

−1] × [0, c] × · · · × [0, c],
for a small c > 0. Since μ◦(P�) ∼ λ−(α−�)+ βd−�(α−�)

d−� , we get

‖ĝ‖Lq (dμ) � λ1−
1

d−�

( ∫
χP�

(x)dμ◦(x)
) 1

q ∼ λ
1− α−�

q + 1
d−�

(
βd−�(α−�)

q −1)
.

Combined with this and ‖g‖L2 ∼ λ
1
2− 1

2(d−�) , (6) gives, for 0 ≤ � ≤ d−1−[d−α],

κ ≥ 1

2
− α − �

q
+ 1

d − �

(
βd−�(α − �)

q
− 1

2

)
.

Considering the maximum along � and the lower bound κ ≥ 1
2 − α

q , we can see

that κ ≥ 1
2 − α

q for q ∈ J◦(−1), i.e. q ≥ 2βd(α). When 2βd−1(α −1) ≤ q ≤ 2βd(α),

i.e. q ∈ J◦(0), we get κ ≥ 1
2 − α

q + 1
d

(βd (α)
q − 1

2

)
. Similarly for each �, we conclude

that κ ≥ κ◦(α, q, �) for q ∈ J◦(�).
We now show that κ ≥ (d − α)/4 when d − 1 ≤ α ≤ d. For this, we adapt the

argument in [12]. Let G1 be a Schwartz function supported in D := [0, λ 1
2 ]× [0, 1]×

· · · × [0, 1] ⊂ λγ d◦ (I ) + O(1) such that ‖G1‖L2 = 1 and |Ĝ1(x)| > λ
1
4 /100 on a

rectangle D∗ of dimension λ− 1
2 × 1 × · · · × 1.

For a fixed λ ≥ 1, we set T = λ
α−(d−1)

2 and define a Schwartz function G2 by

Ĝ2(x) := T− 1
2

T−1∑
k=0

Ĝ1(x − k

T
e1),

where e1 = (1, 0, . . . , 0) ∈ R
d . Then |Ĝ2| � T− 1

2 λ
1
4 on the set S := ⋃T−1

k=0 (D∗ +
k
T e1) and ‖G2‖22 = T−1∑T−1

k=0 ‖Ĝ1(· − k
T e1)‖22 = 1. Moreover G2 is supported in

D. Hence, if we set
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G3(x) := | det Mγ,d
0 |− 1

2G2((M
γ,d
0 )−1x),

then G3 is supported in Mγ,d
0 D ⊂ λγ (I ) + O(1) and ‖G3‖L2 = 1.

Let us set dμ◦(x) = λ
d−α
2 χS(x)dx . It is not difficult to verify that μ◦ satisfies (4).

In fact, if λ− 1
2 ≤ ρ < 1, there exists an integer j such that j/T ≤ ρ ≤ ( j + 1)/T by

the definition of S. Hence, for any x ∈ R
d , we have

μ◦(B(x, ρ)) = λ
d−α
2 |S ∩ B(x, ρ)| � λ

d−α
2 ( j + 1)λ− 1

2 ρd−1 � λ− α−(d−1)
2 Tρd ≤ ρd

� λ− α−(d−1)
2 Tρd ≤ ρd ≤ ρα.

The other cases 0 < ρ < λ− 1
2 and ρ ≥ 1 can be handled similarly. So, by Lemma

5.2 the measure μ defined by

∫
F(x)dμ =

∫
F((Mγ,d

0 )−t x)dμ◦(x)

also satisfies (4). Since T ≤ λ
α−(d−1)

2 < T + 1, it follows that

‖Ĝ3‖qLq (dμ) =
∫

|Ĝ3((M
γ,d
0 )−t x)|qdμ◦(x) ∼

∫
|Ĝ2(x)|qdμ◦(x)

� T− q
2 λ

q
4 λ

d−α
2 |S|

� λ
q(d−α)

4 .

Hence we see κ ≥ (d − α)/4 by letting λ → ∞.

5 Proof of Theorem 2.1 and 2.3

For a given α, let � be an integer in [0, d −1−[d −α]]. As � increases, the oscillatory
decay in (10) gets worse while the range (11) gets wider. The case of � = 0 is already
established in [16]. To showTheorem2.1 for the other cases, we consider the collection
�(k, ε) of curves which is given by

�(k, ε) =
{
γ ∈ Cd+1(I ) : ‖γ − γ k◦ ‖Ck+1(I ) ≤ ε

}
,

where
γ k◦ (t) =

(
t, t2/2!, . . . , tk/k!, 0, . . . , 0

)
, 1 ≤ k ≤ d. (27)

The curves in �(k, ε) are nondegenerate in R
k when they are projected to R

k ×{0}.
Viewing these curves as nondegenerate curves in R

k provides various multilinear
estimates under a separation condition between functions (see Proposition 5.3). From
these multilinear estimates we can obtain the linear estimate by adapting the argument
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in [16]. The difference here is that we run induction on scaling argument on each
k-linear estimates which were not exploited before. This requires control of rescaling
of measures when d − k = � variables are fixed.

5.1 Normalization of Curves

In Lemma 5.1 we show that any nondegenerate curve defined in a sufficiently small
interval can be made arbitrarily close to γ k◦ . This can be shown by Talyor expansion of
γ of degree k and rescaling. It is worth noting that the condition (2) does not guarantee
| det Mγ,k

τ | ≥ c > 0 for some c, where

Mγ,k
τ = (γ ′(τ ), γ ′′(τ ), . . . , γ (k)(τ ), ek+1, . . . , ed) (28)

and e j ’s are the unit vectors whose j-th component is 1. However, by Lemma 2.1 in
[16], we may assume that (after a finite number of decompositions and rescaling) any
non-degenerate curve γ is close to γ d◦ in a small interval. Using this we can see that

Mγ,k
τ is invertible and there is a constant B > 0 by which ‖(Mγ,k

τ )−1‖ is uniformly
bounded for τ ∈ I . (Here ‖M‖ denotes the usual matrix norm such that ‖M‖ =
max|x |=1 |Mx |.) In fact, if γ ∈ �(d, ε), we have γ = γ d◦ +ed such that ‖ed‖Cd+1(I ) <

ε. Then det Mγ,k
τ = det(γ ′◦, γ ′′◦ , . . . , γ

(k)◦ , ek+1, . . . , ed)+error terms. For sufficiently

small ε, it follows that det Mγ,k
τ ≥ 1

2 . (Note that det(γ
′◦, γ ′′◦ , . . . , γ

(k)◦ , ek+1, . . . , ed) =
1.)

For a, b ∈ R, a �= b, let us set

|[a, b]| =
{

[a, b] if a < b,

[b, a] if b < a.

We define the normalized curve by setting

γ h
τ (t) = (Mγ,k

τ Dk
h)

−1(γ (ht + τ) − γ (τ)), (29)

where Dk
h is the diagonal matrix given by Dk

h = (he1, h2e2, . . . , hkek, ek+1, . . . , ed).
Then γ h

τ (t) can be close to γ k◦ if h is sufficiently small, as follows.

Lemma 5.1 Let τ ∈ I and γ ∈ �(d, ε) for some ε > 0. Then, there is a constant
δ > 0 such that γ h

τ ∈ �(k, ε) whenever |[τ, τ + h]| ⊂ I , 0 < |h| ≤ δ.

Proof We may assume that h > 0, i.e. |[τ, τ + h]| = [τ, τ + h]. The case that h < 0
can be shown in the same manner. By Taylor’s expansion, we have

γ (ht + τ) − γ (τ) = γ ′(τ )ht + γ ′′(τ )
(ht)2

2! + · · · + γ (k)(τ )
(ht)k

k! + e(τ, h, t)

= Mγ,k
τ Dk

hγ
k◦ (t) + e(τ, h, t),
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where ‖e(τ, h, t)‖Ck+1(I ) ≤ Chk+1 for some constantC > 0 independent of τ . Hence

we obtain ‖γ h
τ − γ k◦ ‖Ck+1(I ) = ‖(Mγ,k

τ Dk
h)

−1e(τ, h, t)‖Ck+1(I ) � h, which implies
that γ h

τ ∈ �(k, ε) if we take δ � ε/2.

5.2 Rescaling of Measure

For M > 0, we denote by M(α, M) the set of compactly supported positive Borel
measures satisfying 0 < 〈μ〉α ≤ M . Let μ ∈ M(α, M), and let A be a non-singular
matrix. Let us now define a measure μk

A,h by setting

∫
F(x)dμk

A,h(x) =
∫

F(Dk
h Ax)dμ(x) (30)

for any compactly supported continuous function F and 0 < |h| < 1. By the Riesz
representation theorem we see that μk

A,h is the unique measure given by (30).

Lemma 5.2 Let μ and A be given as above, � = 0, 1, . . . , d − 1 − [d − α]. Set
k = d − �. Then, μk

A,h is also a Borel measure satisfying

〈μk
A,h〉α ≤ C〈μ〉α‖A−1‖α|h|−βk(α−d+k). (31)

Here C is independent of h, A.

Proof By the proof of Lemma 2.3 in [16], it suffices to show that

μk
h(B(0, ρ)) ≤ C〈μ〉α|h|−βk (α−d+k)ρα,

where μk
h := μk

Id ,h and Id is the d × d identity matrix. It is clear that μk
h(B(0, ρ)) =

μ((Dk
h)

−1B(0, ρ)) ≤ μ(R), where R is a rectangle of dimension |h|−1ρ × · · · ×
|h|−kρ×ρ×· · ·×ρ. If we denote by R̃ a larger rectangle of dimension |h|−1ρ×· · ·×
|h|−kρ ×|h|−([d−α]+1)ρ ×· · ·×|h|−([d−α]+1)ρ which containsR, then it follows that
μ(R̃) ∼ |h|−([d−α]+1)(d−k)μ(R). Since 1 ≤ [d − α] + 1 ≤ k, R̃ is covered by cubes
Q1, . . . , QN of side length |h|−([d−α]+1)ρ with N � |h|−(k−1−[d−α])(k−[d−α])/2.
Since μ(Qi ) ≤ 〈μ〉α|h|−α([d−α]+1)ρα , we get

μk
h(B(0, ρ)) � |h|([d−α]+1)(d−k)μ(R̃)

≤ |h|([d−α]+1)(d−k)
N∑
i=1

μ(Qi )

≤ 〈μ〉α|h|−βk(α−d+k)ρα.

This completes the proof.
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5.3 Multilinear (k-Linear) Estimates

Let us set, for λ ≥ 1,

Eγ
λ f (x) = a(x)

∫
I
eiλx ·γ (t) f (t)dt,

where a is a bounded function supported in B(0, 1) with ‖a‖∞ ≤ 1. As mentioned
above, we need to prove k-linear estimates for Eγ

λ while γ ∈ �(k, ε). This can be
achieved simply by freezing other d − k variables. By applying Lemma 2.5 in [16]
and Plancherel’s theorem, we obtain a k-linear L2 → L2 estimate.

Lemma 5.3 Let γ ∈ �(k, ε) and I1, . . . , Ik be closed intervals contained in I which
satisfy mini �= j dist(Ii , I j ) ≥ L. If ε > 0 is sufficiently small, then there is a constant
C, independent of γ , such that

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
L2(Rd )

≤ CL− k2−k
4 λ− k

2

k∏
i=1

‖ fi‖L2(R) (32)

whenever fi is supported in Ii , i = 1, 2, . . . , k.

Proof For the proof, it suffices to show that for a constant vector c ∈ R
d−k ,

∫ ∣∣∣
k∏

i=1

Eγ
λ fi (x1, . . . , xk, c)

∣∣∣2dx1 · · · dxk ≤ CL− k2−k
2 λ−k

k∏
i=1

‖ fi‖2L2 . (33)

Then (32) follows by integrating along c since a is supported in B(0, 1) and ‖a‖∞ ≤ 1.
To prove this, let us set γ (t) = (γ�(t), γc(t)) where γ�(t) is the first k components of
γ (t) and the rest of the components are denoted by γc(t). Also let us set

F(t) = eiλc·
∑k

i=1 γc(ti )
k∏

i=1

fi (ti )

where t = (t1, . . . , tk). Then we have

k∏
i=1

Eγ
λ fi (x1, . . . , xk, c) =

∫
I k
eiλ(x1,...,xk )·∑k

i=1 γ�(ti )F(t)dt.

Since γ ∈ �(k, ε), we have γ�(t) = (t, t2/2!, . . . , tk/k!)+e such that ‖e‖Ck+1(I ) ≤
ε. Then we can apply Lemma 2.5 in [16], to say k-linear estimates in R

k , or more
directly change of variables and Plancherel’s theorem. Since ‖F‖2

L2 = ∏k
i=1 ‖ fi‖2L2

we get (33).

Now we obtain an L p → Lq(dμ) estimate by interpolating (32) with the trivial
L1 → L∞(dμ) estimate.
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Proposition 5.4 Let I1, . . . , Ik , and γ ∈ �(k, ε) be given as in Lemma 5.3. Suppose
μ ∈ M(α, 1). If ε > 0 is sufficiently small, then for 1/p + 1/q ≤ 1 and q ≥ 2 there
is a constant C, independent of γ , such that

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
Lq (dμ)

≤ C〈μ〉
1
q

α L− k2−k
2q λ

− α−d+k
q

k∏
i=1

‖ fi‖p

whenever fi is supported in Ii , i = 1, 2, . . . , k.

Proof Since we have the trivial estimate ‖∏k
i=1 Eγ

λ fi‖L∞(dμ) ≤ ∏k
i=1 ‖ fi‖L1 , in

view of interpolation it suffices to show that

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
L2(dμ)

≤ C〈μ〉
1
2

α L− k2−k
4 λ− α−d+k

2

k∏
i=1

‖ fi‖L2 .

Since the Fourier transform of
∏k

i=1 Eγ
λ fi is supported in a ball of radius C

√
2kλ

for some constant C > 0, we observe that
∏k

i=1 Eγ
λ fi = (

∏k
i=1 Eγ

λ fi ) ∗ φλ, where
φλ(x) = λdφ(λx) and φ is a Schwartz function such that φ̂ = 0 if |ξ | ≥ 2C

√
2k, and

φ̂ = 1 if |ξ | ≤ C
√
2k. Note that |φλ| ∗μ(x) ≤ C〈μ〉αλd−α . By Lemma 5.3, it follows

that

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
L2(dμ)

≤
∥∥∥

k∏
i=1

Eγ
λ fi
∥∥∥
L2(Rd )

‖|φλ| ∗ μ‖
1
2∞

≤ C〈μ〉
1
2

α L− k2−k
4 λ− α−d+k

2

k∏
i=1

‖ fi‖L2

as desired.

5.4 The Induction Quantity

For λ ≥ 1, 1 ≤ p, q ≤ ∞, and ε > 0, we define Qλ = Qλ(p, q, ε) by setting

Qλ = sup{ ‖Eγ
λ f ‖Lq (dμ) : μ ∈ M(α, 1), γ ∈ �(k, ε), ‖ f ‖L p(I ) ≤ 1, a ∈ A},

(34)

where A is a set of measurable functions supported in B(0, 1) and ‖a‖∞ ≤ 1. It is
clear that Qλ is finite for any λ > 0.

Lemma 5.5 Let γ ∈ �(k, ε), μ ∈ M(α, 1), and let λ ≥ 1, 0 < |h| < 1. Suppose that
f is supported in the interval |[τ, τ + h]| ⊂ [0, 1]. Then, if ε > 0 is sufficiently small,
there is a constant δ > 0, independent of γ , such that if 0 < |h| ≤ δ

‖Eγ
λ f ‖Lq (dμ) ≤ C〈μ〉

1
q

α |h|1− 1
p − βk (α−d+k)

q Qλ‖ f ‖p. (35)
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Proof Let us denote fh(t) = h f (ht + τ).
Recalling (29) we have

|Eγ
λ f (x)|=

∣∣∣
∫
I
eiλx ·(γ (ht+τ)−γ (τ))a(x) fh(t)dt

∣∣∣=
∣∣∣
∫
I
eiλ(Mγ,k

τ Dk
h)

t x ·γ h
τ (t)a(x) fh(t)dt

∣∣∣.

Let us set μk
τ,h := μk

(Mγ,k
τ )t ,h

which is given by (30).

Assuming that 〈μ〉α �= 0, we set

dμ̃(x) = |h|βk(α−d+k)

C‖(Mγ,k
τ )t‖α〈μ〉α

dμk
τ,h(x).

Then 〈μ̃〉α ≤ 1, i.e. μ̃ ∈ M(α, 1) by Lemma 5.2. Routine changes of variables
gives

‖Eγ
λ f ‖qLq (dμ) ≤

∫ ∣∣∣akτ,h(x)
∫
I
eiλx ·γ h

τ (t) fh(t)dt
∣∣∣qdμk

τ,h(x)

= C‖(Mγ,k
τ )t‖α〈μ〉α

|h|βk (α−d+k)

∫ ∣∣∣akτ,h(x)
∫
I
eiλx ·γ h

τ (t) fh(t)dt
∣∣∣qdμ̃(x),

whereakτ,h(x) = a((Mγ,k
τ Dk

h)
−t x). If ε > 0 is sufficiently small, then‖(Mγ,k

τ )−t‖ ≤ c

uniformly for γ ∈ �(k, ε). Then γ h
τ (t) ∈ �(k, c|h|ε) ⊂ �(k, ε) if 0 < |h| ≤ δ for

small δ = δ(ε). In addition, akτ,h ∈ A since supp akτ,h = Dk
h(M

γ,k
τ )t supp a. By the

definition of Qλ, it follows that

∫
|Eγ

λ f |qdμ(x) � 〈μ〉α|h|−βk (α−d+k)
∫

|Eγ h
τ

λ fh |qdμ̃(x)

≤ C〈μ〉α|h|−βk(α−d+k)(Qλ‖ fh‖p)
q ,

which implies (35) as ‖ fh‖p = h1−1/p‖ f ‖p.

5.5 Proof of Theorem 2.1

Let � be a fixed integer such that 1 ≤ � ≤ d−1−[d−α] and let k = d−�. We choose
a sufficiently small ε > 0 such that det(Mγ,k

τ ) ≥ 1
2 if γ ∈ �(d, ε), and Lemma 5.3 and

5.4 hold whenever γ ∈ �(k, ε). Let us be given a curve γ ∈ Cd+1([0, 1]) satisfying
(2). By Lemma 5.1, there exists δ > 0 such that γ h

τ ∈ �(k, ε) for |h| < δ. Then
Lemma 5.5 also holds for such γ h

τ ∈ �(k, ε). Thus, after decomposing the interval I
into finite union of intervals of length less than δ, by rescaling we may assume that
γ ∈ �(k, ε) and μ ∈ M(α, 1).

In fact, we decompose I = ⋃n−1
j=0[ j

n ,
j+1
n ] =: ⋃n−1

j=1 I j with h := 1/n < δ. Then
we have
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‖Eγ
λ f ‖Lq (dμ) ≤

n−1∑
j=0

‖Eγ
λ f χ[ jh, jh+h]‖Lq (dμ) =

n−1∑
j=0

(Cγ, j,h)
1
q ‖Eγ j

λ f j‖Lq (dμ j ),

where f j (t) = h f (ht + jh)χI (t), γ j = γ h
jh , and μ j = 1

Cγ, j,h
μh

jh with Cγ, j,h =
C‖(Mγ,k

jh )−t‖α〈μ〉α h−βd−�(α−�). Hence, it is enough to obtain the desired estimate

for each ‖Eγ j
λ f j‖Lq (dμ j ). Clearly, fromLemma5.1 and 5.2 it follows that γ j ∈ �(k, ε),

and also μ j ∈ M(α, 1). Therefore we are reduced to showing (10) for γ ∈ �(k, ε),
μ ∈ M(α, 1).

Let q ≥ p ≥ 1 be numbers satisfying the conditions in Theorem 2.1. Note that the
other case 1 ≤ q < p follows by Hölder’s inequality. Also let Qλ = Qλ(p, q, ε) be
defined by (34). Then, for the proof of Theorem 2.1 we need to show

Qλ � λ
− α−�

q . (36)

Let γ ∈ �(k, ε), μ ∈ M(α, 1) be given, and f be a function supported in I with
‖ f ‖L p(I ) = 1 such that

Qλ = Qλ(p, q, ε) ≤ 2‖Eγ
λ f ‖Lq (dμ). (37)

Let A1, . . . , Ak−1 be dyadic numbers such that

1 = A0 � A1 � A2 · · · � Ak−1.

These numbers are to be chosen later. For i = 1, . . . , k − 1, let us denote by {I i }
the collection of closed dyadic intervals of length Ai which are contained in [0, 1].
And we set fIi = χIi f so that, for each i = 1, . . . , k − 1, f = ∑Ii fIi almost
everywhere whenever f is supported in I . Hence, it follows that

Eγ
λ f =

∑
Ii

Eγ
λ fIi , i = 1, . . . , k − 1. (38)

We now recall the multilinear decomposition from [16] (Lemma 2.8).

Lemma 5.6 Let γ : I → R
d be a smooth curve. Let A0, A1, . . . , Ak−1, and {I i },

i = 1, . . . , k − 1 be defined as in the above. Then, for any x ∈ R
d , there is a constant

C, independent of γ, x, A0, A1, . . . , Ak−1, such that

|Eγ
λ f (x)| ≤ C

k−1∑
i=1

A−2(i−1)
i−1 max

Ii
|Eγ

λ fIi (x)|

+ CA−2(k−1)
k−1 max

Ik−1
1 ,Ik−1

2 ,...,Ik−1
k ;

�(Ik−1
1 ,Ik−1

2 ,...,Ik−1
k )≥Ak−1

|
k∏

i=1

Eγ
λ fIk−1

i
(x)| 1k . (39)
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Here I j
i denotes the element in {I i } and �(Ik−1

1 , . . . , Ik−1
k ) = min1≤ j<m≤k

dist(Ik−1
j , Ik−1

m ).

We consider the linear and multi-linear terms in (39), separately. For the linear
term, using Lemma 5.5 we see that

∥∥∥max
Ii

|Eγ
λ fIi |

∥∥∥
Lq (dμ)

≤
(∑

Ii

∥∥∥Eγ
λ fIi

∥∥∥q
Lq (dμ)

) 1
q

≤ Ai
1− 1

p − βd−�(α−�)

q Qλ

(∑
Ii

‖ fIi ‖qp
) 1

q

≤ Ai
1− 1

p − βd−�(α−�)

q Qλ

(∑
Ii

‖ fIi ‖p
p

) 1
p

= Ai
1− 1

p − βd−�(α−�)

q Qλ‖ f ‖p,

because �p ⊂ �q for q ≥ p. Applying Proposition 5.4 to the multilinear term, we
obtain

∥∥∥∥∥∥∥∥∥
max

I1
d−�−1,I2

d−�−1,...,Id−�
d−�−1;

�(I1
d−�−1,I2

d−�−1,...,Id−�
d−�−1)≥Ad−�−1

|
d−�∏
i=1

Eγ
λ fId−�−1

i
(x)| 1

d−�

∥∥∥∥∥∥∥∥∥
Lq (dμ)

≤ CA−C
d−�−1λ

− α−�
q ‖ f ‖p.

By (39), (37) and these two estimates, we get

Qλ ≤ C
d−�−1∑
i=1

A−C
i−1Ai

1− 1
p − βd−�(α−�)

q Qλ + CA−C
d−�−1λ

− α−�
q .

Since 1 − 1
p − βd−�(α−�)

q > 0, we can choose A1, . . . , Ad−�−1, successively, so

that CA−C
i−1 Ai

1− 1
p− βd−�(α−�)

q < 1
2(d−�)

for i = 1, . . . , d − �− 1. Therefore, we obtain

Qλ ≤ 1
2Qλ + λ

− α−�
q , which implies (36).

5.6 Proof of Theorem 2.3

To prove k-linear estimate for p, q satisfying 1
k (1− 1

p ) > 1
q we no longer make use of

Plancherel’s theorem, butwemay still use the linear oscillatory integral estimatewhich
is of 1-dimensional in its nature. The following is basically interpolation between k-
linear and linear estimates.

Proposition 5.7 Let I1, . . . , Ik , γ , and μ be given as in Proposition 5.4. If ε > 0 is
sufficiently small, then for p, q satisfying q ≥ k and 1

k (1− 1
p ) ≤ 1

q ≤ 1− 1
p , there is

a constant C, independent of γ , such that
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‖
k∏

i=1

Eγ
λ fi‖

L
q
k (dμ)

≤ C〈μ〉
k
q

α λ
−k(1− 1

p − d−α
q )

k∏
i=1

‖ fi‖p (40)

whenever fi is supported in Ii , i = 1, 2, . . . , k.

Proof For q ≥ k, Minkowski’s inequality gives

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
L
q
k (dμ)

≤
∥∥∥

k∏
i=1

Eγ
λ fi
∥∥∥
L
q
k (Rd )

‖|φλ| ∗ μ‖
k
q∞

≤ C〈μ〉
k
q

α λ
k(d−α)

q

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
L
q
k (Rd )

.

Thus it suffices to show that for 1
k (1 − 1

p ) ≤ 1
q ≤ 1 − 1

p ,

∥∥∥
k∏

i=1

Eγ
λ fi
∥∥∥
L
q
k (Rd )

≤ λ
−k(1− 1

p )
k∏

i=1

‖ fi‖L p(I ). (41)

For k
q = 1 − 1

p , 1 ≤ p ≤ 2, the estimate (41) follows by interpolation between

the L2 → L2 estimate (32) and the trivial estimate ‖∏k
i=1 Eγ

λ fi‖L∞ ≤∏k
i=1 ‖ fi‖L1 ,

provided fi is supported in Ii , i = 1, 2, . . . , k. On the other hand, since |∂x1∂t (x ·
γ (t))| ∼ 1, using Hörmander’s generalization of Hausdorff-Young’s theorem, we

have ‖Eγ
λ f ‖Lq ≤ Cλ

−(1− 1
p )‖ f ‖p. By Hölder’s inequality we obtain (41) for 1

q =
1 − 1

p , 1 ≤ p ≤ 2. Therefore, by interpolating the estimates for k
q = 1 − 1

p and
1
q = 1 − 1

p we obtain (41) for p, q satisfying q ≥ k and 1
k (1 − 1

p ) ≤ 1
q ≤ 1 − 1

p .

Once Proposition 5.7 is obtained, one can prove Theorem 2.3 by adopting the same
line of argument in the proof of Theorem 2.1. So we shall be brief. We use (40) with
k = [d − α] + 1 to estimates the multilinear terms in (39), and to the linear terms we
apply Lemma 5.5. Thus, we have

Qλ ≤ C〈μ〉
1
q

α

[d−α]∑
i=1

A−C
i−1Ai

1− 1
p − β[d−α]+1(1−〈d−α〉)

q Qλ + C〈μ〉
1
q

α A−C
d−�−1λ

−(1− 1
p − d−α

q )

provided that q ≥ [d−α]+1 and (1−1/p)/([d−α]+1) ≤ 1/q ≤ 1−1/p. Therefore,

we obtain Qλ � 〈μ〉
1
q

α λ
−(1− 1

p − d−α
q ) whenever 1 − 1

p − β[d−α]+1(1−〈d−α〉)
q > 0. This

completes the proof.

6 Proof of Theorem 3.2

Proof of Theorem 3.2 is based on an adaptation of Erdoğan’s argument in [12]. (Also
see [15].) The following is basically a 2-dimensional result in that we only need to



1054 J Fourier Anal Appl (2017) 23:1028–1061

assume γ ′ and γ ′′ are linearly independent. To begin with, by finite decomposition,
translation and scaling we may assume, as before, that γ is close to γ d◦ such that
‖γ − γ d◦ ‖CN (I ) � ε0 for sufficiently large N and small enough ε0.

6.1 Geometric Observations

To estimate the integrals on the right hand side of (48), we begin with some geometric
observations regarding the curves.

Lemma 6.1 Let I = [τ1, τ2] ⊂ [0, 1] be an interval of length L � λ− 1
2 , then

λγ (I) + O(1) is contained in a parallelotope λMγ,d
τ1 RL + λγ (τ1) where RL is a

rectangle of dimension CL × CL2 × · · · × CL2 which is centered at the origin.

Proof To see this it is sufficient to show that γ (I)+O(λ−1) is contained inMγ,d
τ1 RL +

γ (τ1). For any t ∈ [τ1, τ2], by Taylor’s expansion, we have

γ (t) − γ (τ1) = Mγ,d
τ1

Dd
Lγ d◦ (

t − τ1

L
) + e(t, τ1, L)

where e(t, τ1, L) � Ld+1. So γ (I) − γ (τ1) is contained in Mγ,d
τ1 R where R is a

rectangle of dimension ∼ L × L2 × · · · × Ld which is centered at the origin. Since
λ−1 � L2 it is clear that γ (I) + O(λ−1) contained in Mγ,d

τ1 RL + γ (τ1).

The following concerns the size of intersection of tubular neighborhoods of curves.

Lemma 6.2 Let I,J ⊂ [0, 1] be intervals satisfying |I|, |J | ∼ 2−n and

dist(I,J ) ∼ 2−n with 2n ≤ λ
1
2 . Then, for y ∈ R

d ,

∣∣(y + λγ (I) + B(0,C)) ∩ (λγ (J ) + B(0,C))
∣∣ � 2n . (42)

Proof As before, by a change of variables it is sufficient to show that

∣∣(y + γ (I) + B(0,Cλ−1)) ∩ (γ (J ) + B(0,Cλ−1))
∣∣ � 2nλ−d .

Let V be the subspace spanned by γ ′(0) and γ ′′(0), and PV be the projection to
V . Since both sets are contained in O(λ−1)-neighborhood of arcs, it suffices to show
that

∣∣PV (y + γ (I) + B(0,Cλ−1)) ∩ PV (γ (J ) + B(0,Cλ−1))
∣∣ � 2nλ−2.

The sets PV (y + γ (I) + B(0,Cλ−1)), PV (γ (J ) + B(0,Cλ−1)) are contained in
PV (y)+ PV γ (I)+O(λ−1), PV γ (J )+O(λ−1). Since γ is close to γ d◦ , PV γ is close
to (t, t2/2). So, PV (y) + PV γ (I) + O(λ−1) , PV γ (J ) + O(λ−1) are contained in
neighborhoods of curves of the form (t, t2/2)+O(λ−1) for t ∈ I, t ∈ J respectively,
and the angle between them is ∼ 2−n . Hence we get the desired bound.
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Lemma 6.3 Let λ � δ−2. Let I be an interval contained in [τ − δ, τ + δ] and R∗ be
the rectangle R∗ = {x : |〈x, γ ′(τ )

|γ ′(τ )| 〉| ≤ 1/δ, |〈v2, x〉| ≤ 1, . . . , |〈vd , x〉| ≤ 1} where
v2, . . . , vd are an orthonormal basis for the orthogonal complement of span {γ ′(τ )}.
Then, for a sufficiently large C > 0,

λγ (I) + R∗ + O(1) ⊂ λγ (I) + O(C)

Proof The above is equivalent to

γ (I) + λ−1R∗ + O(λ−1) ⊂ γ (I) + O(Cλ−1).

Any member in the left-hand side set can be written as γ (t) + sγ ′(τ ) + O(λ−1)

for some s, |s| � (λδ)−1. Hence we need only to show

|γ (t) + sγ ′(τ ) − γ (t + s)| ≤ Cλ−1

whenever |s| � (λδ)−1. However this is clear because γ (t) + sγ ′(τ ) − γ (t + s) =∫ t
t+s γ ′(u) − γ ′(τ )du = O(λ−1).

Let ϕ be a fixed Schwartz function which is equal to 1 in a unit cube Q centered at
the origin and vanishes outside 2Q. Moreover ϕ̂ satisfies

|ϕ̂(x)| ≤ CM

∞∑
j=1

2−Mjχ2 j Q(x), for each x ∈ R
d , M ∈ Z

+. (43)

For a rectangle R ⊂ R
d , we denote ϕR as ϕ ◦ a−1

R , where aR is an affine mapping
which takes Q onto R. The following lemma is a slight generalization of Lemma 3.1
in [13].

Lemma 6.4 Let λd ≤ · · · ≤ λ2 ≤ λ1 � λ and let μ be a positive Borel measure
supported in B(0, 1) satisfying (4). Let R be a rectangle of dimensions λ1×λ2×· · ·×
λd , R∗ be the dual set of R centered at the origin, and A be a nonsingular matrix.
Then

(i) ‖μ ∗ |F(ϕR ◦ A−1)|‖∞ � 〈μ〉α| det A|‖A−t‖αλd−α
1 ,

(ii)
∫
K A−t R∗ μ ∗ |F(ϕR ◦ A−1)|(x + y)dy � 〈μ〉αK α‖A−t‖αλd−α

1

∏d
k=1 λ−1

k , for
K � 1 and x ∈ R

d .

Proof Fixing a large enough M , by (43) and change of variables we have

|ϕ̂R(x)| ≤ CM

d∏
k=1

λk

∞∑
j=1

2−Mjχ2 j R∗(x),
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which gives

∫
|ϕ̂R(At (x − y))|dμ(y) �

d∏
k=1

λk

∞∑
j=1

2−Mj
∫

χ2 j R∗(At (x − y))dμ(y). (44)

Since 2 j R∗ is covered by as many as ∼ λd1/
∏d

k=1 λk cubes with side-length
2 jλ−1

1 , applying (4) and (5) to each of the cubes gives
∫

χ2 j R∗(At (x − y))dμ(y) �
〈μ〉α(‖A−t‖2 jλ−1

1 )α
λd1∏d
k=1 λk

. Since μ ∗ |F(ϕR ◦ A−1)|(x) = | det A| ∫ |ϕ̂R(At (x −
y))|dμ(y), by combining the inequalities we get

μ ∗ |F(ϕR ◦ A−1)|(x) � | det A|
∞∑
j=1

2−Mj 〈μ〉α(‖A−t‖2 jλ−1
1 )αλd1

� 〈μ〉α| det A|‖A−t‖αλd−α
1 .

This proves (i).
We now turn to (ii). Without loss of generality we may assume x = 0. By (44),

∫
K A−t R∗

μ ∗ |F(ϕR ◦ A−1)|(y)dy

� | det A|
d∏

k=1

λk

∞∑
j=1

2−Mj
∫∫

χK A−t R∗(y)χ2 j A−t R∗(y − u)dμ(u)dy. (45)

Since u − y ∈ 2 j A−t R∗ in the last integrand, χK A−t R∗(y) � χ(K+2 j )A−t R∗(u). So
we have

∫∫
χK A−t R∗(y)χ2 j A−t R∗(y − u)dμ(u)dy

≤ | det A−t | 2 jd

∏d
k=1 λk

∫
χ(K+2 j )A−t R∗(u)dμ(u)

� | det A−t | 2 jd

∏d
k=1 λk

〈μ〉α(‖A−t‖(K + 2 j )λ−1
1 )α

λd1∏d
k=1 λk

.

For the last inequality we cover (K + 2 j )R∗ with O(
λd1∏d
k=1 λk

) cubes of side length

(K + 2 j )λ−1
1 and use (4) and (5). By combining this and (45), we get (ii). ��
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6.2 Whitney Type Decomposition

By a Whitney type decomposition we may write

[0, 1] × [0, 1] =

⎡
⎢⎢⎣
⋃

4≤2n≤λ
1
2

[ ⋃
|I|=|J |=2−n

I∼J

(I × J )
]
⎤
⎥⎥⎦
⋃

D (46)

where I, J are dyadic intervals, D is a union of finitely overlapping boxes of side

length≈ λ− 1
2 , and D is contained in theCλ− 1

2 -neighborhood of the diagonal {(x, x) :
x ∈ [0, 1]}. Here, we say I ∼ J to mean that I, J are not adjacent but have adjacent
parent intervals.

For I = [a, b] we set

�λ,I =

⎧⎪⎨
⎪⎩

{x ∈ λγ (I ) + O(1) : γ ′(b) · (x − γ (b)) ≤ 0 ≤ γ ′(a) · (x − γ (a))} if a �= 0, b �= 1,

{x ∈ λγ (I ) + O(1) : γ ′(b) · (x − γ (b)) ≤ 0} if a = 0,

{x ∈ λγ (I ) + O(1) : 0 ≤ γ ′(a) · (x − γ (a))} if b = 1,

and set

gI = g · χ�λ,I . (47)

For distinct dyadic intervals I,J ⊂ [0, 1], the intersection of �λ,I and �λ,J has
Lebesgue measure zero in R

d because 2−n ≥ λ−1/2. This leads to

|̂g(x)|2 ≤
log λ

1
2∑

n≥2

∑
|I|=|J |=2−n

I∼J

|ĝI(x)ĝJ (x)| + 2
∑
I∈IE

|ĝI(x)|2

where IE is a finitely overlapping set of dyadic intervals I with |I| ≈ λ− 1
2 . Using

above inequality, we have for any q ≥ 2,

‖ĝ‖2Lq (dμ) ≤
log λ

1
2∑

n≥2

∑
|I|=|J |=2−n

I∼J

‖ĝI ĝJ ‖
L
q
2 (dμ)

+
∑
I∈IE

‖ĝI‖2Lq (dμ). (48)

6.2.1 Estimate for gI , I ∈ IE

For I = [τ1, τ2] ∈ IE , we have 2−n ≈ λ−1/2. By Lemma 6.1 the support of gI ,
i.e. �λ,I is contained in a parallelotope Mγ,d

τ1 R where R is a rectangle of dimensions

Cλ
1
2 ×C×· · ·×C .Hence ĝI = ĝI∗F(ϕR◦(Mγ,d

τ1 )−1). Since‖F(ϕR◦(Mγ,d
τ1 )−1)‖1 �

C , by Hölder’s inequality we get
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|ĝI | � (|ĝI |q ∗ |F(ϕR ◦ (Mγ,d
τ1

)−1)|) 1
q .

So, we have

‖ĝI‖qLq (dμ) �
∫

(|ĝI |q ∗ |F(ϕR ◦ (Mγ,d
τ1

)−1)|)(x)dμ(x) � 〈μ〉αλ
d−α
2 ‖ĝI‖qq . (49)

The last inequality follows from (i) in Lemma 6.4 and the fact that R has dimensions

Cλ
1
2 × C × · · · × C . Since q ≥ 2, by Hausdorff-Young inequality and Hölder’s

inequality, we have

‖ĝI‖q ≤ ‖gI‖q ′ ≤ ‖gI‖2|�λ,I |( 12− 1
q ) � ‖gI‖2(λ 1

2 )
1
2− 1

q .

Thus, combining this with (49),

∑
I∈IE

‖ĝI‖2Lq (dμ) � 〈μ〉
2
q

α λ
d−α
q λ

1
2− 1

q
∑
I∈IE

‖gI‖22 � 〈μ〉
2
q

α λ
1
2+ (d−1)−α

q ‖g‖22. (50)

6.2.2 Bilinear Term Estimate

Firstly, we assume q = 2. Fix n with 4 ≤ 2n ≤ λ1/2 and a pair I = [τ1, τ2],J =
[τ3, τ4] of dyadic intervals with |I| = |J | = 2−n and I ∼ J . Since I ∼ J , the
support of gI ∗ gJ is contained in a parallelotope Mγ,d

τ1 R where R is a rectangle with
dimensions 2Cλ2−n × 2Cλ2−2n ×· · ·× 2Cλ2−2n . Using gI ∗ gJ = (gI ∗ gJ )(ϕR ◦
(Mγ,d

τ1 )−1), we obtain

∫
|ĝI(x)ĝJ (x)|dμ(x) �

∫
|ĝI(x)ĝJ (x)|(μ ∗ |F(ϕR ◦ (Mγ,d

τ1
)−1)|)(x)dx . (51)

Consider a tiling of R
d with rectangles T of dimensions C2−n ×C ×· · ·×C . Note

that each T is contained in a rectangle xT +Cλ2−2n R∗ for some xT ∈ R
d . Also letφ be

a fixed non-negative Schwartz function satisfying φ > 1/2 on Q, supp φ̂ ⊆ Q and the
inequality of (43). Using the properties of φ, we obtain 1 �

∑
T φ3

T �
∑

T φ2
T � 1,

where φT := φ ◦ a−1
T .

Set ĝI,T := ĝI · (φT ◦ (Mγ,d
τ1 )t ). By 1 �

∑
T φ3

T and Cauchy–Schwarz inequality,
we get

∫
|ĝI(x)ĝJ (x)|(μ ∗ |F(ϕR ◦ (Mγ,d

τ1
)−1)|)(x)dx

�
∑
T

∫
|ĝI,T (x)ĝJ ,T (x)|(μ ∗ |F(ϕR ◦ (Mγ,d

τ1
)−1)|)(x)(φT ◦ (Mγ,d

τ1
)t )(x)dx

�
∑
T

‖ĝI,T ĝJ ,T ‖2 ‖μ ∗ |F(ϕR ◦ (Mγ,d
τ1

)−1)|(φT ◦ (Mγ,d
τ1

)t )‖2. (52)
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By a standard argument

∫
|ĝI,T (x)ĝJ ,T (x)|2dx =

∫
|g̃I,T ∗ gJ ,T (y)|2dy

≤ sup
y

|(y + supp(gI,T )) ∩ supp(gJ ,T )|‖gI,T ‖22‖gJ ,T ‖22.

By Lemma 6.3, y+supp(gI,T ), supp(gJ ,T ) are contained in y+λγ (I)+B(0,C),
λγ (J ) + B(0,C), respectively. Thus, Lemma 6.2 implies supy |(y + supp(gI,T )) ∩
supp(gJ ,T )| � 2n . So, we get

∫
|ĝI,T (x)ĝJ ,T (x)|2dx � 2n‖gI,T ‖22‖gJ ,T ‖22. (53)

Now we show

‖μ ∗ |F(ϕR ◦ (Mγ,d
τ1

)−1)|(φT ◦ (Mγ,d
τ1

)t )‖22 � 〈μ〉 2
α λd−α2−n . (54)

First we note that by (i) in Lemma 6.4,

‖μ ∗ |F(ϕR ◦ (Mγ,d
τ1

)−1)|‖∞ � 〈μ〉αλd−α(2−n)d−α. (55)

Using (43) for φT and (ii) in Lemma 6.4 with recalling that T is contained in
xT + Cλ2−2n R∗ for some xT ∈ R

d , we have

∫
(μ ∗ |F(ϕR ◦ (Mγ,d

τ1
)−1)|)(x)(φT ◦ (Mγ,d

τ1
)t )(x)dx

�
∞∑
j=1

2−Mj
∫
2 jλ2−2n(Mγ,d

τ1 )−t R∗
μ ∗ |F(ϕR ◦ (Mγ,d

τ1
)−1)|(x − 2 j (Mγ,d

τ1
)−t xT )dx

� 〈μ〉α(2n)d−1−α.

Since φT (x) � 1, by combining this and (55), we get (54).
By the inequalities (51), (52), (53), and (54) and using the fact that

∑
T φ2

T � 1

‖ĝI ĝJ ‖L1(dμ) � 〈μ〉αλ
d−α
2
∑
T

‖gI,T ‖2‖gJ ,T ‖2 � 〈μ〉αλ
d−α
2 ‖gI‖2‖gJ ‖2. (56)

For the last inequality, we used the Cauchy–Schwarz inequality and Plancherel’s
theorem.
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By (56), we have

∑
4≤2n≤λ1/2

∑
|I|=|J |=2−n

I∼J

‖ĝI ĝJ ‖L1(dμ) � 〈μ〉αλ
d−α
2

∑
4≤2n≤λ1/2

∑
|I|=2−n

∑
I∼J

‖gI‖2‖gJ ‖2

� 〈μ〉αλ
d−α
2

∑
4≤2n≤λ1/2

( ∑
|I|=2−n

‖gI‖22
) 1

2
( ∑

|I|=2−n

‖gI‖22
) 1

2 � 〈μ〉αλ
d−α
2 log λ‖g‖22.

For the second inequality we use the fact that there are finitely many intervals J
related to I for each dyadic interval I. Thus we get the required bound in the case
q = 2.

Now we assume q ≥ 4. Let I, J with I ∼ J , and R be defined as before. Using
gI ∗ gJ = (gI ∗ gJ )(ϕR ◦ (Mγ,d

τ1 )−1), Hölder’s inequality, and (55), we have

‖ĝI ĝJ ‖
q
2

L
q
2 (dμ)

� 〈μ〉αλd−α(2−n)d−α‖ĝI ĝJ ‖
q
2 −2
∞
∫

|ĝI(x)ĝJ (x)|2dx .

Repeating the argument for (53) and usingLemma6.2,we have
∫ |ĝI(x)ĝJ (x)|2dx

� 2n‖gI‖22‖gJ ‖22. Also, by Young’s inequality and Cauchy–Schwarz inequality,
‖ĝI ĝJ ‖∞ � λ2−n‖gI‖2‖gJ ‖2. Hence, we get

‖ĝI ĝJ ‖
q
2

L
q
2 (dμ)

� 〈μ〉αλd−α+ q
2 −2(2n)−d+α+3− q

2 ‖gI‖
q
2
2 ‖gJ ‖

q
2
2 .

Here, if −d + α + 3 − q
2 ≥ 0, since 2n ≤ λ

1
2 , then λd−α+ q

2 −2(2n)−d+α+3− q
2 ≤

λ
q
4 + (d−1)−α

2 . Otherwise, λd−α+ q
2 −2(2n)−d+α+3− q

2 < λd−α+ q
2 −2. Hence

‖ĝI ĝJ ‖
L
q
2 (dμ)

� 〈μ〉
2
q

α λ
max( 12+ (d−1)−α

q ,1− 2α
q + 2(d−2)

q )‖gI‖2‖gJ ‖2.

Thus by the same argument as before, we sum along n, I, J to get

∑
4≤2n≤λ1/2

∑
|I|=|J |=2−n

I∼J

‖ĝI ĝJ ‖
L
q
2 (dμ)

� 〈μ〉
2
q

α λ
max( 12+ (d−1)−α

q ,1− 2α
q + 2(d−2)

q )+ε‖g‖22.

Since the intermediate cases follow by interpolation, this completes the proof. ��

References

1. Bak, J.-G., Lee, S.: Estimates for an oscillatory integral operator related to restriction to space curves.
Proc. Am. Math. Soc. 132, 1393–1401 (2004)

2. Bak, J.-G., Oberlin, D., Seeger, A.: Restriction of Fourier transforms to curves. II: Some classes with
vanishing torsion. J. Austr. Math. Soc. 85, 1–28 (2008)

3. Bak, J.-G., Oberlin, D., Seeger, A.: Restriction of Fourier transforms to curves and related oscillatory
integrals. Am. J. Math. 131, 277–311 (2009)



J Fourier Anal Appl (2017) 23:1028–1061 1061

4. Bak, J.-G., Oberlin, D., Seeger, A.: Restriction of Fourier transforms to curves: an endpoint estimate
with affine arclength measure. J. Reine Angew. Math. 682, 167–206 (2013)

5. Bourgain, J.: Hausdorff dimension and distance sets. Israel J. Math. 87, 193–201 (1994)
6. Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom.

Funct. Anal. 21(6), 1239–1295 (2011)
7. Dendrinos, S., Müller, D.: Uniform estimates for the local restriction of the Fourier transform to curves.

Trans. Am. Math. Soc. 365, 3477–3492 (2013)
8. Dendrinos, S., Wright, J.: Fourier restriction to polynomial curves I: a geometric inequality. Am. J.

Math. 132(4), 1031–1076 (2010)
9. Drury, S.W.: Restrictions of Fourier transforms to curves. Ann. Inst. Fourier. 35(1), 117–123 (1985)

10. Drury, S.W., Marshall, B.P.: Fourier restriction theorems for curves with affine and Euclidean
arclengths. Math. Proc. Cambridge Philos. Soc. 97(1), 111–125 (1985)

11. Drury, S.W.,Marshall, B.P.: Fourier restriction theorems for degenerate curves.Math. Proc. Cambridge
Philos. Soc. 101(3), 541–553 (1987)
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14. Erdoğan, M.B.: On Falconer’s distance set conjecture. Rev. Mat. Iberoam. 22(2), 649–662 (2006)
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