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Abstract We study averaged decay estimates for Fourier transforms of measures when
the averages are taken over space curves with non-vanishing torsion. We extend the
previously known results to higher dimensions and discuss sharpness of the estimates.
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1 Introduction

Let i be a positive Borel measure with compact support in R?. For 0 < o < d, the
a-dimensional energy of u is given by
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lo(w) = / I — ¥ dp(du ().

The energy I, has been widely used in various studies, especially geometric measure
theory problems, to describe regularity property of measure. In fact, it is well known
that finiteness of energy determines the Hausdorff dimension of the support of w.
Finiteness of I, (1) and L2 averaged decay estimates of & over the ball B(0, 1) are
closely related. Here B(x, r) denotes the ball which is centered at x and of radius r.
Indeed, by the identity

/ / = Y[ dp()du(y) = Cad / REPIE e

it follows that I, (1) < oo for a < & provided that [y, |, [Z(:£)1*d§ < CA7° fora
positive constant 8. Conversely, if I, () < oo, it follows that |, BO.1) [Z(AE)1PdE <
A7%I, (). (See Chapter 8 in [22] and Chapter 12 in [18] for further details.)

If B(0, 1) is replaced by a smooth submanifold of lower dimension, it is expected
that the decay rate gets worse. In connection with problems in geometric measure
theory there have been attempts to characterize averaged decay over smooth manifolds.
As is well understood in problems such as Fourier restriction problems, the curvature
properties of the underlying submanifolds become important.

Let ¥ be a smooth compact submanifold with measure dv. Let us consider the
estimate, for A > 1,

/Z ROE) Pdv(E) < CF (o). 1

In addition to I, (u) < oo the estimate (1) has been studied under the assumption
that

DE) S I1ET, v(Bx, p) S pb

The following can be found in [12]: If 0 < a,b < d and a compactly sup-
ported probability measure v satisfies the above condition, then (1) holds with
¢ = max(min(e, a), « —d + b).

In particular, in relation to the Falconer distance set problem (cf. [12, 18,22]) the case
that ¥ is the unit sphere SY~! and v is the usual surface measure was studied extensively
after Mattila’s contribution [17] to the Falconer distance set problem. An extension of
Mattila’s estimate in [17] was later obtained by Sjolin [19]. The results in [17,19] were
based on a rather straightforward L? argument. Their results were further improved
subsequently by Bourgain, Wolff and Erdogan [5,13,14,21]. These improvements
were based on sophisticated methods which were developed in the study of the Fourier
restriction problem (and Bochner—Riesz conjecture). Especially in R?, for © = S! the
sharp estimates were established by Mattila [17] and Wolff [21]. (See also Erdogan
[12—-14].) In fact, it is proved in [17,19] that (1) holds with { < max(min(«, 1/2), @ —
1) and ¢ should be smaller than or equal to max (min(e, 1/2), «/2). Later Wolff proved
that (1) holds with ¢ < «/2 for 0 < o < 2. Recently a related result was obtained
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by replacing the circle with a certain class of general curves in R? by Erdogan and
Oberlin [15].

In this paper, we are concerned with the average of i over space curves in R?,
d>3.Lety:I=1[0,1] > R9 be of a C4*! curve satisfying

det(y' (), y"(®), ...y D) #0for t € I. )

As is to seen later, the averaged estimate over curves are closely related to the
restriction estimates for the curves which have been studied by various authors. We
refer the reader to [1-4,7-11,16,20] and references therein.

For a nonnegative number x, let us denote by [x], (x) the integer part and the
fractional part of x, respectively. The following is our first result.

Theorem 1.1 Let 0 < o < d, and let u be a positive Borel measure supported in
B0, 1), and y € Cca+t! ([0, 11) be a space curve satisfying (2). Suppose Iy (1) = 1,
then for & > 1 there exists a constant C > 0 such that, for § < (),

1
/ [y ())2dt < CA7°, 3)
0
where §(a) = # ifd —1 < a < d, and 8(a) = max(%,
2—(d—a) .
([d—ot]+l)(2—((xd—a))+l) otherwise.

For the case d — 1 < o < d the estimate is sharp except for the issue of the
endpoint. But for the other case there is a gap between the bound (3) and the upper
bounds which are obtained by considering specific test examples. When 0 < o < 1
we see from Theorem 1 in [12] that (3) holds with § < §(«) = min(c«, 1/d) and this
is optimal. (See Proposition 4.1 for the upper bounds of §.)

In order to prove (3), instead of finiteness of a-dimensional energy I, (w), it is
convenient to work with a growth condition on u. We assume that there exists a
constant C,,, independent of x and r, such that

w(B(x,r)) < C,r* forallx € R and r > 0. 4)
It is clear that (4) implies that I,_.(u) < oo for any € > 0. The converse is

essentially true up to a logarithmic loss (for example, see Lemma 3.4). For u satisfying
(4) we set

(U)o = sup Y u(B(x,r)). Q)
(x,r)eRY xR

For the integral in the left hand side of (3) it doesn’t seem easy to make use of the
geometric feature of the curve y. So we consider a dual form which looks like Fourier
restriction estimate. In fact, (3) is equivalent to the estimate

—~ 1
I/gdul < 219,
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when g is supported in Ay + O(1), the O(1)-neighborhood of the curve Ay. This
can also be generalized by allowing different orders of integrability. We investigate
k = k(q) for which

I8lle@uy < CA"liglly2 (6)

holds for some C > 0. This also has its own interest and for the case of the circle the
optimal results were obtained by Erdogan [12].

Now, to facilitate the statements of our results, we define some notations. For
j=1,...,dand 0 < o < j we set

G=1-L—=aD( -l —a)
3 .

Bj(@) = ([j —a]l+ Da +

For a fixed 0 < @ < d, we define the closed intervals J(£), £ = —1,0,1,...,d —
1 — [d — «], by setting

[284(a), 00], if £ =—1,
J(0) = [2Bd—¢—1(a—L—1), 2B5 ¢(a—¢)], f 0<L=<d-3-[d—a],
| 2(d —al+ 1), 2B4—e(@ — 0], if t=d—2—1[d—al,
[1, 2([d —a]l+ 1) ], iflb=d—-1—-[d—«a].
Note that 87_¢(o — £) decreases as £ increases. For each £ = —1,0,1,...,d —

1 —[d —«aland g € J(£), we also set

%_%’ ]fﬁ:—l’
1 —¢ 1 (Ba—ela—0 1y -
(e, q, 0) = ?_aszle_i;(_fe%o; 1—5), if 0<t<d—3—1[d—al,
s Y _ (o ) B
E_O[Td_’_a(dl [q _7)’ if t=d—-2—1[d—al],
1 —a —o .
min (%, y=airn): if t=d—1-[d—al,

where Jy =d—¢ =2if[d—a] =0,and Jy = |J(d—2—[d —a])|/2if [d —a] = 1.
Here |J(£)| denotes the length of J(£). It should be noted that, for given « and ¢,
k(a, g, £) is defined only for g € J(£). (See Fig. 1.)

Our second result reads as the following from which Theorem 1.1 is to be deduced
later.

Theorem 1.2 Let 0 < o < d, and let y be given as in Theorem 1.1. Suppose that |4
is supported in B(0, 1) and satisfies (4). Then

1
181 Lo < C{wha’ A @O gl 2
holds for any € > 0 and forq € J(£), £ =—-1,0,1,...,d —1—[d — «].
For a given «, the results of Theorem 1.2 are sharp forg € J({),¢ <d —3 —

[d — «] in that the value « can not generally be made smaller except €. For g € J (£),
£ > d—2 —[d — «], the results are sharp only when [d — «] = 0. In this case
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Fig.1 The solid lines represent the value of x (¢, ¢, £) as a function of 1/¢g for specific values of «, namely,
a=d,d—1,d—j,d— j—1while jisaninteger, | < j <d — 1. For integer «, « (o, g, £) decreases
as so does g. The dotted graphs L1, L, give the cases of non-integer « satisfyingd — j — 1 <o <d — j
andl < j=[d—-a]llfa<d—-j—-1+{+1)/(j+2),«(a,q, ) may increase. So, «(«, g, £) may
exceedk(d —j—1,q,¢) at Ay. (See L1.) However, if « is close enough to d — j, the line of the shape like
L, appears. The dotted graph L3 shows the case of non-integer for « € (d — 1, d). In this case, « («, g, £)
always decreases in g. Except for A1, Ay, B, ..., F, every marked dot is given by (é, k(a,q,0) =

( 1 1 _ a—t )
2Bg—ga=0 2 2Bg_pla=0)""

k(o,q,d —2) = % + d_zo(‘]_l for g € J(d — 2), which is obtained by adapting the

bilinear argument due to Erdogan [13]. (See Theorem 3.2.) It follows by Holder’s
inequality thatk (o, g, d — 1) = ‘f%“ forg € J(d—1). When [d —«a] > 1 and ¢ is an
integeri.e.o« =d — [d — o], wehave Jy = |J(d —2 — [d — «])|/2 = d — £. For this
case, k (¢, g, d—2—[d —«]) are sharp. In general, J¢ = |J(d—2—[d—«])|/2 <d—¢
for [d — o] > 1. (See Proposition 4.2.)

Remark 1.3 If £ < d —3 —[d — «], k(a, g, £) decreases as so does g. However
k (o, g, d—2—[d—a]) may increase though g decreases except for the case [d —«] = 0.

As shown in Section 3, the decay rate § in Theorem 1.1 is determined
by the minimum of «(«,q,¢), which is given by d%“ if [d —a] = 0, or
mianJ(d_z_[d_a]) k(a, g, ) if[d —a] > 1. (See Fig. 1)

Although those notations seem to be complicated, most of them are naturally asso-
ciated with the scaling structure of curves. For example, 8, («) generalizes the number
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Ba(d) = d(d + 1)/2 which appears in the studies on restriction estimates for space
curves (e.g. [1-4,7,8,10,11]). We need to use the intervals J (£) in order to extend the
estimate (7) beyond the known range given by (9) with p = 2. Except for the case
£ =d —1—[d— «] the number « («, g, £) is actually obtained by interpolating the
estimates for ¢ at the endpoints of J (£).

The paper is organized as follows. In Section 2, we prove various L? — L4
estimates for the related oscillatory integral operators (Theorem 2.1). In Section 3,
Theorem 1.2 will be deduced from the estimates in Section 2 and we prove Theorem
1.1. In Section 4, we discuss the upper bounds of § and the lower bounds of ¥ which
appear in Theorems 1.1 and 1.2, respectively. In Section 5, we provide proofs of the
estimates in Section 2 by making use of multilinear argument in [16]. Also Theorem
3.2 will be proved in Section 6 by adapting the bilinear argument due to Erdogan [12].

Throughout the paper the constant C may vary from line to line and in addition to
~ we also use F to denote the Fourier transform.

2 Oscillatory Integral Operators

For A > 1 let us consider an oscillatory integral operator defined by

€ F(x) = a(x) /, 7O f (1),

where a is a bounded function supported in B(0, 1) with ||a|loc < 1. The estimate (6)
can be deduced from the estimate

1EY fllza@w S A2Nf N2 (7)

In fact, Ay (t) + O(1) can be foliated into a set of O (1)-translations of the curve Ly
Then, a simple change of variables, Minkowski’s inequality, and Plancherel’s theorem
together with (7) give (6) withx = % — v. The converse also can be shown by making
use of the uncertainty principle. See Lemma 3.1 for the details.

In the recent paper [16], two of the authors proved that if x and y satisfy (4) and

(2), respectively, then

I1E) fllLa@aw S Al fllea ®)
holds for 1 < p, g < oo satisfyingd/q <1—1/p,q > 2d and
o 1
ﬁdq()+;<1, q > Bale) + 1. )

We refer to [16] and references therein for further discussions about this estimate
and related results. Then from Lemma 3.1 it follows that (6) holds with x = % — %
if ¢ > max(284(«), 2d) and A > 1. However this is not enough in order to obtain
the estimate (6) for the other ¢. Hence we are led to investigate the estimates with
(p, g) which does not satisfy (9). It is natural to expect that the decay gets worse
as (1/p, 1/q) gets away from the range (9). If « = d, then by the Lebesgue-Radon-

Nikodym theorem we have dju = f(x)dx and by the Lebesgue differentiation theorem
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and (4) it follows that f is a bounded function. Hence, by projection argument, it is
not difficult to see that, fork =0, ...,d,

_k
I1E] flliLa@n < CAallfll,

whenever 248 4 L < 1 But this argument readily fails with a general measure w. To
get around this difficulty we make use of the induction argument based on multilinear
estimates (see [16] and [6]).

The following is an extension of the earlier result in [16].

Theorem 2.1 Let y and n be given as in Theorem 1.2. For each integer { =
0,1,...,d — 1 —[d — «], there exists a constant Cy such that

1 St
IE) fllLa@n < Celmw)e’ 2~ ¢ I fllLea) (10)
holds for f € LP(I) and » > 1 whenever (d — €)/q +1/p <1, q > 2(d — £) and

Ba—e(a —0)
q

1
+— <1, g>Bacl@—O+1. (1n

Theorem 2.1 is proved by routine adaptation of the argument in [16]. Compared
to [16] the main difference here is to utilize various multilinear estimates of different
degrees of multilinearity. For completeness we provide a proof of Theorem 2.1 in
Section 5.

Remark 2.2 Tt is easy to check that among the four conditions on (p, ¢) above, the
first two conditions become redundant for some £. In fact, since Bg_¢(0 — €) > d — ¢
ifandonly ifa — € > 1,and Bg_¢(o¢x —€) + 1 > 2(d — ¢) ifand only if « — £ > 2,
the estimate (10) holds whenever

f‘““‘ famre=l) 4 1 L <l g>Baile—0+1, if2<a—t (e t<d—-3—[d—al,
f’“(“ “+ <1, g>2a-0, ifl<a—0<2 (el=d—2—1[d—al),
T+p§1 g >2d-20), ifO<a—0<1 (el=d—1-[d—al.

If [d — o] > 1, we also have estimates for p, ¢ satisfying ([d —«]+1)/g+1/p > 1
and g < 2([d — o] + 1), which are given as follows.

Theorem 2.3 Suppose that y, u are given as in Theorem 2.1. Then, there exists a
positive constant C such that

by-(esteg)
IE) fllLa@p < Cli)a e P flizeay,

whenever ([d —a]+1)~1(1— %) <

1
- < 1.
p

D<ot g > [d—al+1and iz O=ldze |
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There is no reason to believe these estimates are sharp. Particularly, if [d — «] = 0
(this gives the condition that 1/p + 1/g < 1 and ¢ > 2), Theorem 2.3 coincides
with Theorem 2.1 for £ = d — 1. See Section 5 for a proof, which is based on the
generalized Hausdorff-Young inequality.

By interpolating the estimates (10) for which (1/p, 1/q) is near the critical line
one can improve the bound. To state this, we define some notations. In addition, let us
assume that p < 2 for simplicity. For each « let <7 (£) be the set of (%, [ll) such that
1<p<2and

@+%<1, ife =—1,
WJr%diJr%, if¢=0,....,d —3—1[d—al,
[d—l:;]-f'l +%§1§ ﬂ[d—a]JrZ(;_(d_a))_l_%’ 1f€=d—2—[d—a]

Let us also denote by .7 (d — 1 — [d — «]) the set of (p, q) satisfying the condition
givenin Theorem 2.3 and 1 < p < 2. Note that <7 (d — 1) when [d —«] = O represents
the line segment 1 /g + 1/p=1and 1 < p < 2.

By interpolating the estimates in Theorem 2.1 and Theorem 2.3, we obtain the
following.

Corollary 2.4 Let y and ju be defined as in Theorem 2.1. Suppose (10) holds. Then,
for 1 < p <2, there exists a constant C > 0 such that, for any € > 0,

1
IEY fllLa@u < Clm)a AT PLOYEY £l oy, (12)
where
+ if (o) € (=),
ne pg. = %t 2y (At L) r A h e, 0st=d-2-1d-al,
“q;"+1—%, if(%,é)ed(d—l—[d—a]).

Note that if 0 < o < 1, we have only £ = 0. In this case, there is nothing to
interpolate. The results in Corollary 2.4 are sharp for —1 < ¢ < d —3 — [d — «]
except €-loss. This can be shown by the same examples which are used for the proof
of Proposition 4.2.

3 Proof of Theorem 1.1 and 1.2

As mentioned in the previous section, we will apply the decay estimate for the related
oscillatory integral operator to obtain (6). In this section we may assume that y is
close to yod so that ||y — yf||cd+1(,) < € for any given € > (. Here yf is defined by
(27). This can be justified easily by decomposing the curve y into a finite union of
(sub)curves, rescaling and using Lemma 5.1.

We start with observing that (7) is equivalent to the estimate (6).
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Lemma 3.1 Letd > 2 and 0 < « < d. Suppose that y € C*T(I) satisfies (2) and
W is a positive Borel measure supported in B(0, 1) satisfying (4). The estimate (7)
holds with ¥ = % — k if and only if the estimate (6) holds whenever g is supported in
Ay + O().

Proof First we show that (7) implies (6). Let g be a function which is supported in
Ay (I) + O(1). By the change of variables § — A&, we may write

70 = / g (18)dE.
(H+o(=h

Let us consider a nondegenerate curve y, which is given by extending y to the
interval [, := [—%, 14+ %] such that y, = y on I and ||y, — yodl|cd+1(,*) <efora
sufficiently small € > 0. Then it follows that, for a sufficiently large constant C,

y(l)+ 0()»_1) C{ys(s)+0,v):5€l,ve RY! satisfying |v| < CA_I}.

Let us defineamap I' : I, x RI™! — R4 by I'(s, v) = yx(s) + (0, v). Then

| det 3G, V)| > ¢ > 0. Thus we have

§(x>=c/ - 1/ I OTON ATy, (5) + (0, v)))dsdy
[v[SA I

*

with |g| < |g|. By setting ¥ () = y.((1 +2C/A)t — C /1), we have a nondegenerate
curve Y defined on I which is still close to ygi. Then, it follows that

Bl < C /
[v|<a—l

After Minkowski’s inequality, we apply (7) by freezing v to see that

/eiM'W’)Adg(?»(?(t) + (0, v)))dt|dv.
1

gl L@ < C/ AN Al 2y,
v <Sh!

where fy (1) := A?g(A(¥ (1) + (0, v))). By the Cauchy—Schwarz inequality, we get

C)L*I’*L /||<x l/|fv(r)|2dmrv)

(| e
Ay ()+0(1)

IA

I8l 24

IA

which implies (6).
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Conversely, let us show that (6) implies (7). For v = (va,---,vy4) € RA-1 a5
above, one easily sees that

‘/ei*x"’(’)a(x)f(t)dt‘ _ kd—l‘/ /eikx~(y(t)+(0,v))a(x)f(t)dte—ikx~(0,v)dv.
I v <At
(13)

By expanding into power series we write e~ (0-V) — zn w Cnp X0, V)7,

.. . oy o / 2

where 1, n’ denote multi-indices. Then it is easy to see Zn o [cn, | RN+ < eIk
Since w is supported in B(0, 1), setting G, (¢, v) := f(£)(0, )LV)”, gives

!

OOV G () v)dvdt‘.
N7 '

By the change of variables & = y (¢) + (0, v), we obtain

‘ / / OO G v)dvdt’ —rd‘ / 'x'fgm(r“g)dé)
1Jv|<! Ay (D)+0(1)

where g, (§) = G, (¢(§), v(§)). Hence, using (6) and Minkowski’s inequality and
reversing the change of variables we see

ST Z e HIgy A" L2 ey

SIS eyl / A Paray)’

n.n'

A ey I Py S A gqy-
n.a’

H /e"“'ﬂ”a(x)f(r)dt
I L4

The third inequality follows from |(0, Av)| < 1. This completes the proof.
Now we prove Theorem 1.2.

Proof of Theorem 1.2 By Lemma 3.1 and Corollary 2.4 with p = 2, it follows that
the estimate (6) holds with

1
K:E—n(a,Z,q,E)-i—e (14)

fore >0and —1 < ¢ <d — 2 — [d — «]. For these £, (%, %) € o/ () if and only if
q e J@).

Now we consider the case g € J(d — 1 —[d —a])  =d — 1 —[d — «]). By
the same argument as in the above, using Lemma 3.1 and Corollary 2.4 with p = 2,
we get (6) withk = (d —a)/qg+€ > (d —a)/2([d —a] + 1) + € fore > 0 and
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[d —a]l+1 < q < 2(d — a] + 1) (which coincides with &/(d — 1 — [d — «])
for p = 2). Since u is a finite measure, the range of g can be extended by Holder
inequality. Thus we obtain (6) with

d—a

—2([d_a]+1)+e (15)

K =

forg e J(d—1—[d—«a]) =[1,2([d —a]+ 1)]. Hence (14) and (15) correspond to
k(a,q,t) + € for[d —a] > 1 because |J(£)| =2(d — ) for{ <d —3 —[d —«a].

As mentioned above, for [d —a] =0(and ¢l =d —2—[d —«a],d—1—[d —«a]),a
better estimate is possible by making use of the bilinear approach (see Erdogan [12]).
The following is proved in Section 6.

Theorem 3.2 Suppose thatd > 2andd — 1 < o < d. Let y, u, and g be given as in
Theorem 1.2. Then, for A > 1, g > 2 and € > 0, there exists a constant C > 0 such
that

1
18l La@u) < Clmde A€ llgll L2

fork = max(z—lL + d=e=1 % + dﬁg’*z).

2q
This gives

1 d—a—1 :
‘- 1+ S5, if2<g<2a-d+3),
J+42 2@ —d+3) <q.

Since [2, 2(a—d+3)] = J(d—2) if [d—a] = 0, (6) holds withxx = }+4=2=1 4
€ =«(a,q,d—2)+¢€eforq e J(d —2),e > 0. By taking g = 2 and using Hd?der’s
inequality, we get k = d%“ +e=«(a,q,d—1)+eforqg € J(d—1) =[1,2]. This
completes the proof. O

Now we turn to the proof of Theorem 1.1 for which we need the following lemma.

Lemma 3.3 Let i be a finite measure which is supported in B(0, 1). Suppose that the
estimate

| [ 0ano| 5 Vi tels (16)

holds whenever g is supported in Ly (I) + O (1). Then (3) holds with § = 1 — 2«k.

Proof The proof is a simple modification of the argument in [21] (see also [15]). By
the assumption (16) and duality, we have

/ ) PdE S L. a7
ry(DH+0(1)
Let ¥ be a Schwartz function which is equal to 1 on the support of . Then

/1 Gy (1) Pdr = /1 [+ Ay () Pdr S /R , /1 IV Oy (0) = )lde |2 ) Pdé.
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By rapid decay of ¥/, [, [¥(Ay (1) — &)|dt < A~ (1 +dist(hy (1), £)~N for a
sufficiently large N > d. Hence, it follows that

. 1 &)
20, < 2
/Im(xy(zm dt < A/ (1+dist(ky(1),$))’\’d§' (18)

By dyadic decomposition along the distance between & and Ay (1), we see

Sl / o
d¢ < d
/(1+dist(ky(1),§))N §5 (0D l(§)1°dé§

R 76 Pds
j=1

y(1+0(2))

o
S LA 1 () Y- 27 M2V S L (2%
j=1

The second inequality follows from the fact that Ay (1) + O(2/) is a union of
translations of Ay (1) + O(1). Consequently, by combining this and (18) we obtain
(B)withé =1 — 2«.

We also need the following lemma due to Wolff [21, Lemma 1.5]. In [21] the proof
of this lemma is given only for d = 2 but the argument works for any dimension.

Lemma 3.4 Let u be a positive Borel measure supportedin B(0, 1). Then, for R > 1,
W can be written as | = Zlgjgoaog Ry Mj such that uj is a positive Borel measure
supported in B(0, 1) and, for each j,

1 (RY) sup (B ) S L), (19)
(x,r)eRIx[R~1,00)

Proof of Theorem 1.1 By Lemma 3.3, for (3) we need to show (16). Now, by Lemma
3.4 with R = A there are as many as O (log ) measures. Ignoring logarithmic loss we
may consider only one of such measures v which satisfies (19), and we need to show
that, for k > (1 — §(@))/2,

1 1
| [ 0anto] = cu®ii i gl 0)

holds whenever g is supported in Ay (/) + O(1) and w is a positive Borel measure
supported in B(0, 1) satisfying (19). However, we may assume a stronger condition
w(RY) (e < Iy(1) holds. In fact, since g is supported in Ly (1) + O(1), the estimate
we need to show is equivalent to

1
| [ Fwemawdne| < cumit i el
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where ¢ is a Schwartz function with ¥ ~ 1 on the ball B(0, Cd) and with 1} sup-
ported in B(0, 1). Since F(¥(-/A)g) = )Ldlj/;()x-) * g, we may replace du with
Addp * |§|(1-). Then it is easy to see that A%dp * ||(% )R < w(RY) and
Adw s || () (B(x, 1)) < SUP(x )R x[1—1.00) I “H(B(x,r)) forr > 0.

Since u is supported in B(0, 1) with M(Rd)(u)a < Iy(n) and g > 2, by Holder’s
inequality and Theorem 1.2 we get, for k > k (¢, ¢, £),

1 1 1
/ Bl p(x) < 18 o @®D' ™1 < w@®D' ™ (w)e! A< 1gll2.

Clearly, w(R?) < (u)q because p is supported in B(0, 1). Hence we have (20)
whenever k > «(«, g, £) with g > 2. Therefore we only have to check the minimum
of (e, g, ¢), g € J(£) which depends on «.

First we consider the case d — 1 < a < d.lItis easy to see that miny ming ey (0)n[2,00)
k(o,q,0) =k(a,2,d —2) = 4 . Thus we obtain the first part of Theorem 1.1.

For the case [d — «a] > 1, finding the minimum of mingcj(¢)np2,00) k (¢, q, £) is
less obvious. As mentioned in Remark 1.3, the minimum occurs wheng € J(d —2 —
[d — a]). In fact, minge j(g—2—[d—a]) € (2, g, £) is given by

1 a—d+2+[d— o]

B 1 2—(d—a)
2 2Bd—aii2l@—d+2+[d—al) 2 2([d—al+DQ—(d—a))+2

with g = 2B[4—a1+2(2 — (d —a)), or ﬁ with ¢ = 2([d — «] + 1). Combining
these two gives the other part of Theorem 1.1. This completes the proof.

4 Upper Bound for § and Lower Bound for «

In this section we consider the upper bound for § and the lower bound for « which limit
the values &, and « in the estimates (3) and (6). As mentioned before, for the former
there is a gap between our result and the plausible upper bound stated in Proposition
4.1. For the latter, the bounds we obtain here turn out to be sharp in various cases.

Proposition 4.1 Let O < o < d and y be given as in Theorem 1.1. Suppose (3) holds

uniformly whenever I,() = 1. Then, for|[d —a]=1,--- ,d — 2,
1- 4 ifaed—1,d), (21a)
§ < mm(l [d aJ+2 = a]+1) ifa e (d—[d—a]—l, d—[d—a]], (21b)
min (o, ) ifa € (0, 1]. (21¢)

Thus we see that (3) is sharp whend — 1 < o < d. As mentioned before, Theorem
1 in [12] shows that (21c¢) is sufficient for (3) to hold when « € (0, 1].

Proof of Proposition 4.1 For a given [d — «], let us fix an integer £ such that 0 < ¢ <
d—[d—a]—1.
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Let ¢ be a Schwartz function supported in B(0, 2) with [|{||;1 = 1. We also set

_ d+/l 1 1—d=¢t
Vae(x) = A YTy, A T g X - X)),
so that || ¢ll,1 = 1. Then there exists a rectangle S; such that [y, ¢| ~ 1 on Sy,

where Sy is a d-dimensional rectangle defined by

3

1
Se={x eRY: |ui| S 21777, xol S AT

d—t
el S ATE =1l S 1.

By Taylor’s expansion, we have

2 d
y(©) —y(©0) = ¥ O + y”(m% bt y<d><0)z7 +e(n)
A ) + e, 22)

where Mg “4isa nonsingular matrix given by (28) and |e(¢)| < r4+!. Clearly, we may
also assume that y (0) = 0.

Let du(x) = |det(M]) |9 e(MY*) x)dx. Then we have 0.y (1) =
Yt 020 + MY le())) by (22).1f 1 < ¢ A~1/@=0 for a sufficiently small ¢,
A(yd(t) + (Mg’d)_le(t)) € S¢. Hence, it follows that

1
a—t

1 ch . 2 |
| marerrar= [ T (oo + ey tewn) [ar 2 a7

—_— d _ _ _
On the other hand, Io (1) = [ [¥.e(Mg )T OPIEI™dE 5 [, 817 dE
by the rapid decay of ¥. Hence, we see

d—t-2

law)sc/El E1*~Yds +C Z / " |§1%~ds.

- z<|g|<)hl a= z}mMVdsz
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Using spherical coordinates,

— 14 Kt
A Td—t
a—d
/,7&2 1kl v 1§ df S / /
{x d—‘smSA m}ﬁMO’ S 0 0
k
1- 4L

d—t—k=2 2 EE
» B Aod=t o phd=t 1 1 pa 3
x/ / / (///17m r“‘ld”dgd—l—z"'dgd—k—e_l)-~-d01.
0 0 0 0 0Ja "d-t

Hence, evaluating the integrals we get

okl
M=

doy_ .. .d@d_e_1>

d—(—1

Lw S D w®,

—
k=0

where

1 d—0—k-2)d—t—k—1)
h(k)=(a—£—1)—m((k+l)(a—€—l)+ )

2
Clearly, (3) implies )fﬁ <Ae Zg;gil AR Letting A — 0o we get

1
§< —— h(k).
~d—t +05k21¢?§e—1 )

Since h(x) attains the maximum at x = d — o — 1/2, it is easy to see that
maxg<k<d—¢—1h(k) = h([d —a]). Sinced — £ — 1 > [d — «], we now consider the
casesd—{—1 =[d—«a]andd —€—1 > [d—«], separately. Whend —¢—1 = [d —«],
we have

1

ol 23)

1
§<——4+hd—-1C—-1
< +h( )

Whend — ¢ — 1 > [d — «], we examine the value of (d — £)~! + h([d — «]) for
£=0,...,d—[d—a]—2.Since d =)'+ h([d—a]) withe =d —[d —a] =2
is the minimum, we get

5 < L Chd—a =1 4T
S d—d-[d-a]-2 =TTt

(24)

Thus we conclude that § has upper bounds (23) or (24) ford —[d —a] —1 <« <
d — [d — «], which gives (21b). Especially for [d —a] =0ie.d — 1 < o < d, the
minimum value is 1 — d%“, which is (21a).

Finally, we show (21c¢). In this case, [d —a] =d —1,1.e.0 < « < 1. Repeating the
same argument, we see that (23) implies § < 5 Hence it suffices to show § < « for

o € (0,d). To obtain this, let oy € (a0, d) and consider du(x) = |x|_d+a7*¢(x)dx
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Qe

for a Schwoalu’tz function v in the above. It is easy to see (§) = C| - |~ 2 * 1///\(5) ~
(1+ €)™ 7. So we get

1
/ BOY )Pt 2 1.
0

Sincea < ay, lo () = [IREPIE1°7IdE < oo 51977 dE+ [y, 1€1%7dE
< 1. Hence, (3) implies § < o, for any o € (o, d), which gives § < « as desired.

Now we consider the lower bounds for ¥ in Theorem 1.2. We define the intervals
Jo(£) C [1, 00) by

J(0), for { =-1,0,---,d -3 —1[d — o],
Jo(O) = {1 [2Bag—¢—1(@ — L= 1), 2Bg—¢(@ — )], for&=d —2—[d —al,
[1, Zﬁ[d,a]+1(l—<d—a))], fOI‘K:d—l—[d—(x].

For each g € J,(£) we also define k,(«, g, £) given by

g if g € Jo(=1),
o

—t Ba—ele=0 _ 1y
= + m(d[T - 5), if g € J5(0),

D= D=

Ko(at, g, £) = ‘

forO0 <¢ <d—-1-[d—«a]. Then ko(e, q,¢) = k(ct,q, ) forqg e J(£), —1 <€ <
d —3 —[d — «]. Also, for given « and ¢, k,(, g, £) is defined only for g € J,(£). It
is easy to see that «, (o, g, £) continuously decreases as £ increases.

Proposition 4.2 Suppose (6) holds with u, y and g which are given as in Theorem
1.2. For q € J,(£),

K > Koo, q,t). (25)

In addition, k > (d — a)/4whend — 1 <o <d.

Proof of Proposition 4.2 We show (25) first. Fix « and consider the measure ;1 given
by

[d—a]
dpo(x) =y () [ dsCeplxa—arnt| ™ dxig—aypr - -dxa,  (26)
j=1
where v is a smooth function supported in B(0, 1) and § is the delta measure. When
[d —a] = 0, we write diuo,(x) = w(x)|x1|’<d’°‘)dx1dx2 ---dxg. Then, as can be
easily checked ., satisfies (4).
1 —~ _1 i 1
Let g() := 272 oy my+0(1)(»). Then [g(x)] = 272 | ka(,)JrO(l) e Vdy| 2 Az
whenever x € B(0, cA~!) fora sufficiently small ¢ > 0. It follows that

=R

—~ 1 _ 1 1_
I8 Laapy 2 *2 (B, cA™))a ~ a2 a.
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Since ||gll2ray ~ 1, (6) and letting A — oo givesk > 1/2 —a/q.

Now let £ be an integer such that 0 < ¢ < d — 1 — [d — «]. Let us consider
the measure u defined by [ F(x)du = [ F((Mg'd)_tx)duo(x). Note that du is a
compactly supported positive Borel measure satisfying (4). Let J = [0, )\_d%@] and
set g() = xay(h+om (). Then 1€1174 g,y = [ |§((Mg’d)_’X)|qduo(X) and

BUMyH ™)) = ‘/ T MY a0 gy |
Ay ()+0(D)

Using Taylor’s expansion in (22) we see that (M(’)/ ’d)’1 (y — Ay (0)) is contained in
Ayd(J) + O(1). Hence,

—~ dy— __L
G(MY D01 2 27T xp, (1),

1 2 d—t
where Py = [0, cA77 1 x [0, cAT T 1 x - x [0, cAT T ] x [0, ] x -+ % [0, c],
Ba_ela@—0)
for a small ¢ > 0. Since puo(Py) ~ A~ @O+ e , we get

1

—~ __1 7 17@ 1
@l 22777 ([ xrnoduo)” ~ 2=

fa—t@=0
q

Combined with this and [[g|| ;> ~ A2~ 7@, (6) gives, for0 < £ < d — 1 — [d —a],

K>l_0l—€+ 1 (ﬁd—e(a—e)_l)_

-2 q d—1¢ q 2

Considering the maximum along ¢ and the lower bound « > % — %, we can see
that k > % — % forg € Jo(—1),i.e.q > 2B4(a). When28,_1(x — 1) < g < 2B4(),
ie.q € Jo(0), we getk > % — % + %(@ - %) Similarly for each ¢, we conclude
that k > «.(a, g, £) for g € Jo(£).

We now show that k > (d — «)/4 whend — 1 < « < d. For this, we adapt the
argument in [12]. Let G be a Schwartz function supported in D := [0, )Llf] x [0, 1] x

-x [0,1] C Ayf(l) + O(1) such that ||G1];2 = 1 and |(/}\1(x)| > )»i/IOO on a

rectangle D* of dimension AT x I x - x 1.
a—(d—
Forafixed A > 1,wesetT = A G and define a Schwartz function G, by

T—-1
— 1 — k
G =T"2 G — —e1),
2(x) Zglu =)

where e; = (1,0,...,0) € R?. Then |G| > T~2A% on the set § := | JI_} (D* +

kepyand G123 = T [0 I1G1(- — £e)ll3 = 1. Moreover G, is supported in
D. Hence, if we set
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1
G3(x) = |det M |72 Ga (M) ) 1),

then G3 is supported in Mg’dD Ccay()+ O0(1) and ||G3]l 2 = 1.
Letus set dpuo(x) = Xd%a xs(x)dx. It is not difficult to verify that u, satisfies (4).
In fact, if)»_% < p < 1, there exists an integer j such that j/T < p < (j+1)/T by
the definition of S. Hence, for any x € RY, we have
d-a dea . _1 g _e=d=) __ d
Ho(B(x,p)) = A Z |SNBx,p)|SAZ (G+DA 207 SA™ 2 Tp®<p

ST Tl < p < o,

The other cases 0 < p < k_% and p > 1 can be handled similarly. So, by Lemma
5.2 the measure p defined by

[ Foodn = [ Fm - adi

also satisfies (4). Since T < )\a_(g_l) < T + 1, it follows that

G314 gy = / G5 ((MY ) 0 d o (x) ~ / 1G2(x)[9d o (x)

> 15505 s)

qd—a)
4 .

Z A

Hence we see k > (d — o) /4 by letting A — o0.

5 Proof of Theorem 2.1 and 2.3

For a given «, let £ be an integer in [0, d — 1 — [d — «]]. As £ increases, the oscillatory
decay in (10) gets worse while the range (11) gets wider. The case of £ = 0 is already
established in [16]. To show Theorem 2.1 for the other cases, we consider the collection
I"(k, €) of curves which is given by

[k, €)= {y e CND) Ny — yil ek < f}’

where
vk = (r, 272, R0, 0), 1<k<d. 27)

The curves in I'(k, €) are nondegenerate in R¥ when they are projected to R* x {0}.
Viewing these curves as nondegenerate curves in R¥ provides various multilinear
estimates under a separation condition between functions (see Proposition 5.3). From
these multilinear estimates we can obtain the linear estimate by adapting the argument

Birkhauser



1046 J Fourier Anal Appl (2017) 23:1028-1061

in [16]. The difference here is that we run induction on scaling argument on each
k-linear estimates which were not exploited before. This requires control of rescaling
of measures when d — k = £ variables are fixed.

5.1 Normalization of Curves

In Lemma 5.1 we show that any nondegenerate curve defined in a sufficiently small
interval can be made arbitrarily close to yX. This can be shown by Talyor expansion of
y of degree k and rescaling. It is worth noting that the condition (2) does not guarantee
|det MY**| > ¢ > 0 for some ¢, where

MY* = @' @),y @), ....yP @), ery1 ..., eq) (28)

and e;’s are the unit vectors whose j-th component is 1. However, by Lemma 2.1 in
[16], we may assume that (after a finite number of decompositions and rescaling) any
non-degenerate curve y is close to y(fl in a small interval. Using this we can see that
MY* is invertible and there is a constant B > 0 by which ||(MY**)~!|| is uniformly
bounded for T € I. (Here | M| denotes the usual matrix norm such that | M| =
max|y|=1 |Mx|.) Infact,if y € '(d, €), we have y = yod +eg such that |[eg[|ca+1 ¢y <

€. Thendet M%”k =det(y/, v/, ..., yo(k), €k+1, - - - » €q)+error terms. For sufficiently
small €, it follows that det M%”k > % (Note thatdet(y., y7, ..., yo(k), Chilys ..., €4) =
1)

Fora,b € R, a # b, let us set

la.b] = [ [a, b] ?fa < b,
[b,a] ifb < a.

We define the normalized curve by setting
By — cagvek mky—1
Yo (1) = (M7 D)~ (y(ht + 1) — y (7)), (29)

where Dﬁ is the diagonal matrix given by DF = (hey, h2ey, ..., hrey, Chtls---»€d)-
Then yrh (1) can be close to y* if h is sufficiently small, as follows.

LemmaS.1 Lett € [ and y € T'(d, €) for some € > 0. Then, there is a constant
8 > 0 such that yrh € I'(k, €) whenever [t, 7 +h] C 1,0 < |h| <.

Proof We may assume that 7 > 0, i.e. [t, T + k] = [t, T + h]. The case that h < 0
can be shown in the same manner. By Taylor’s expansion, we have

/ " (ht)z (k) (ht)k
vyt +7) —y@ =y @ht+y (D) ——+ - +y (@)~ te@h)

= MIFDEyE@) +e(z, b, 1),
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where |le(z, h, 1)l ckr1p) < Ch**+! for some constant C > 0 independent of 7. Hence
we obtain ||y} — yXllcrs gy = ||(M,V”‘D§)*1e(r, h, Dllcr+1¢py S b, which implies
that ¥/ € T'(k, €) if we take § < €/2.

5.2 Rescaling of Measure

For M > 0, we denote by M(«, M) the set of compactly supported positive Borel

measures satisfying 0 < (u)y < M. Let u € 9M(«, M), and let A be a non-singular
matrix. Let us now define a measure ,u’j‘ ;, by setting

/ F(x)dpy ,(x) = / F(D} Ax)dp(x) (30)

for any compactly supported continuous function F and 0 < |h| < 1. By the Riesz
representation theorem we see that ui ; 1s the unique measure given by (30).

Lemma 5.2 Let i and A be given as above, £ = 0,1,...,d — 1 — [d — «]. Set
k=d — (L. Then, pf;‘ , 1s also a Borel measure satisfying

(U e < Cluall A7 R ~PrE—dH0, 31)

Here C is independent of h, A.

Proof By the proof of Lemma 2.3 in [16], it suffices to show that
I (B(O, p)) < C(p)glh| =PI+ 2,

where /,L];l = /ﬂ;d’ ,, and Iy is the d x d identity matrix. It is clear that /L];l(B(O, p)) =
M((Dﬁ)_lB(O, 0)) < u(R), where R is a rectangle of dimension |h|_1p X o0 X
h|*pxpx---xp.If we denotebyﬁalargerrectangle of dimension |A| " p x - - - x
|h|:k,o x [h|~Md=al+D 5 5o ||~ Ud=2l+D) 5 which contains R, then it follows that
w(R) ~ |h|~Ud=el+D@=0)  (R) Since 1 < [d —a] + 1 < k, R is covered by cubes
Q1,...,Qn of side length |h|~W=¢l+Dp with N < |p|~k-1-ld—abtk=ld=aD/2
Since 1(Q) < {1)qlh =D 5o we get

1 (B0, p)) < |h|1@-HDE=R (R
N
< [p| MDA R 1 00)
i=1
< (W)q|h|Prle=dth) oo

This completes the proof.
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5.3 Multilinear (k-Linear) Estimates

Let us set, for A > 1,
& f(x) = a(x) / MO f(ndt,
I

where a is a bounded function supported in B(0, 1) with ||a||cc < 1. As mentioned
above, we need to prove k-linear estimates for 5;: while y € T'(k, €). This can be
achieved simply by freezing other d — k variables. By applying Lemma 2.5 in [16]
and Plancherel’s theorem, we obtain a k-linear L? — L2 estimate.

Lemma 5.3 Lety € I'(k,€) and 1y, ..., T be closed intervals contained in I which
satisfy min; » ; dist(Z;, Z;) > L. If € > O is sufficiently small, then there is a constant
C, independent of y, such that

u;je;ﬁ

K-k

k
Kk, _k
ey = CLT T2 [l (32)
i=1

whenever f; is supportedinZ;,i = 1,2, ..., k.

Proof For the proof, it suffices to show that for a constant vector ¢ € R?~*,

k k
2 K2k
/)HS{ﬁ(xl,...,xk,c) dxy-dy < CL™ 2 2 [Tl 33
i=1 i=1

Then (32) follows by integrating along ¢ since a is supported in B(0, 1) and ||a|lc < 1.
To prove this, let us set y (f) = (Y« (¢), Yc(t)) where y,(¢) is the first Kk components of
y (t) and the rest of the components are denoted by y,(¢). Also let us set

k
Ft) =X T fin)

i=1

where t = (¢1, ..., t). Then we have
K k
Hg)):fi(xl, ey Xg, €) = / X1 X0 2 1) B (1) dit.
. Ik
i=1

Sincey € I'(k, €), wehave y, (f) = (t,1%/2!, ..., tk/k!)+e such that||e[| ck+1(py <
€. Then we can apply Lemma 2.5 in [16], to say k-linear estimates in R¥, or more
directly change of variables and Plancherel’s theorem. Since || F ||%2 = Hi'(:l Il fi ||i2
we get (33).

Now we obtain an L? — L9(du) estimate by interpolating (32) with the trivial
L' — L®(dp) estimate.
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Proposition 5.4 Let7Z;, ..., Iy, and y € I'(k, €) be given as in Lemma 5.3. Suppose
w € M(a, 1). If € > 0 is sufficiently small, then for 1/p + 1/q < 1 and g > 2 there
is a constant C, independent of y, such that

k
e
i=1

whenever f; is supportedinZ;,i = 1,2,...,k.

k
K=k _ a—d+k
Ciw)o' L™ 2 2~ o [l
i=1

<
Lidp) —

Proof Since we have the trivial estimate || Hle Si’fi Loy =< Hle | fill 1, in
view of interpolation it suffices to show that

k
her
i=1

1 g2

k
—k a—d+k
<C LT AT 2 illg2.
i = CWa ,L! I fill 2

Since the Fourier transform of Hle 5)7: fi is supported in a ball of radius C+/2kX
for some constant C > 0, we observe that Hf-;l & fi = (]_[f-‘=1 E) fi) * ¢5, where
Qx(x) = A9¢(1x) and ¢ is a Schwartz function such that a =0if |&| > 2C+/2k, and

¢ = 1if || < C+/2k. Note that |¢ | * u(x) < C(M)akd_“. By Lemma 5.3, it follows
that

k
1
YV £ 2
| qu fi (LRI £
1=

k
< &Y £
L2dp) ~ HHI i
=

1

k
K=k _a—d+k
sCws L™ 5 2 J]Ifile
i=1

as desired.

5.4 The Induction Quantity
ForA > 1,1 < p,q <o00,and € > 0, we define O, = Q,(p, g, €) by setting

Qs = sup{ 1] fllLagam = b € M, 1), y € Tk, €), | fllieay <1, a €A,
(34)

where 2l is a set of measurable functions supported in B(0, 1) and |ja]lco < 1. It1is
clear that Q, is finite for any A > O.

Lemma 5.5 Lety € I'(k, €), u € M(a, 1), and let A, > 1,0 < |h| < 1. Suppose that
f is supported in the interval [t, v + h] C [0, 1]. Then, if € > 0 is sufficiently small,
there is a constant § > 0, independent of y, such that if 0 < |h| < §

(a—d-+k)

1 1
1E) fllLatu < Cliw)e ' "> Ol fllp- (35)
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Proof Let us denote fj,(¢t) = hf (ht + 7).
Recalling (29) we have

. . Kkt
|g}):f(x)|:)/Iel)hx-(}'(htth)*V(t))a(x)fh(t)dt‘z‘/Iez)»(Mry Db X'th(’)a(x)fh(t)dt .

k
ML n
Assuming that (), # 0, we set

Let us set pL’;h = which is given by (30).

_ |y | Pl —d+k)
du(x) = "~
ClIl Mz ) 1* (e

d,ul;h(x).

Then () < 1,ie. u € M(«, 1) by Lemma 5.2. Routine changes of variables
gives

. h q
17 N ) = / d () /1 IO fu o] au )

_ CIMEY 1 ) /

|| Bela—d-+k)

al (%) / PO (| di o),
1

Whereaf‘h(x) = a((M%/’kDfl)_’x).Ife > 0is sufficiently small, then ||(M%/’k)_’ I<c
uniformly for y € I'(k, €). Then yrh(t) € I'tk,clhle) C T'(k,e) if O < |h| < § for
small § = &(e). In addition, a’r"h € 2 since supp a]r"h = D,lj(M%/’k)’ suppa. By the
definition of Q,,, it follows that

h
/ 17 Fl9dp(x) < (uhalh]PredH / €7 fultdE (o)
< C{)alh| P00, | full )1,

which implies (35) as || fill , = A" =VP || £l -

5.5 Proof of Theorem 2.1

Let £ be a fixed integer such that 1 < ¢ <d—1—[d —«a]andletk = d —£. We choose
a sufficiently small € > 0 such that det (M7} ’k) > % ify € I'(d, €),and Lemma 5.3 and
5.4 hold whenever y € I'(k, €). Let us be given a curve y € C?*1([0, 1]) satisfying
(2). By Lemma 5.1, there exists § > 0 such that yrh € I'(k, ¢) for |h| < §. Then
Lemma 5.5 also holds for such y,h € I'(k, €). Thus, after decomposing the interval /
into finite union of intervals of length less than §, by rescaling we may assume that
y € I'(k,€) and u € M(a, 1). o

In fact, we decompose I = U’};(l)[ﬁ, %] =: U’;;} Ij with h := 1/n < §. Then
we have

Birkhduser



J Fourier Anal Appl (2017) 23:1028-1061 1051

n—1 n—1
1oy
I1EY fllLa@u < E WEY £ xtin, jn+mllLa @ = E (Cy i) & fillLaap)
=0 =0

where f(t) = hf(ht + j)xi(t), vj = v}, and pj = ﬁu’;h with C, ;. =

C ||(M}’,’1k)_t % (u)o h~Pa-t@=0 Hence, it is enough to obtain the desired estimate
foreach ||SZ'/ fillLa(ap - Clearly, from Lemma5.1 and 5.2 it follows that y; € I'(k, €),
and also u; € M(a, 1). Therefore we are reduced to showing (10) for y € I'(k, €),
uw e M, 1).

Letg > p > 1 be numbers satisfying the conditions in Theorem 2.1. Note that the
other case 1 < g < p follows by Holder’s inequality. Also let O, = Q. (p, g, €) be

defined by (34). Then, for the proof of Theorem 2.1 we need to show

a—=t

0, SA 9. (36)

Let y € I'(k, €), u € M(a, 1) be given, and f be a function supported in I with
Il fllLpcry = 1 such that

Q5. = 0i(p.q.€) <20&] fllLatap- 37)
Let Ay, ..., Ax—1 be dyadic numbers such that
1=A> A1 > Ax--- > A

These numbers are to be chosen later. Fori = 1, ...,k — 1, let us denote by {Ii }
the collection of closed dyadic intervals of length A; which are contained in [0, 1].
And we set fri = xgzi f sothat, foreachi = 1,...,k -1, f = Zzi Jf7i almost
everywhere whenever f is supported in /. Hence, it follows that

5{f=zgff1i,i=1,...,k—l. (38)
Ti

We now recall the multilinear decomposition from [16] (Lemma 2.8).

Lemma 5.6 Lety : [ — RY be a smooth curve. Let Ao, A1, ..., Ax—1, and {T'},
i =1,...,k—1bedefined as in the above. Then, for any x € RY, there is a constant
C, independent of y, x, Ao, A1, ..., Ag—1, such that

k—1
€] @) = € 3TAZT max|g] fr (o)

i=1

k
—2(k—1 1

+ A 2ED e 1€ frr ol (39)
2 o k i=1

AT T LT A
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Here Ilj denotes the element in {I'} and A(If_l, ...,I,]f_l) = minj<j<m<k
dist(zf—l,z,’;—l).

We consider the linear and multi-linear terms in (39), separately. For the linear
term, using Lemma 5.5 we see that

1

q q

max|<€'yf,-|‘ 5( Hf,’yff‘ )

H 7i T g ; I Laaw

1
liliﬁd_((afl) g\
<A e QA(lefIillp)

Ii
1
liliﬁd—((“*@ N\
<A e QA(lefIillp)

Ii

Ba—p(a—0)

1
=Ai 7 Ol flp,

because £ C ¢4 for ¢ > p. Applying Proposition 5.4 to the multilinear term, we
obtain

d—t

L _c et
] Jmax T &) fra-er )17 <CAZS, A TSl
Id—l—l’Id—é—l’“‘;:id—l—l' i=1 '
ATy Ty Ty )2 Ad—t-1 La(dp)
By (39), (37) and these two estimates, we get
d—(—1
Ba—¢@—0) a—t
-C l_l_i —-C _e=2
0, <C D AGA T 0+ CAS T
i=1
Since 1 — % _ Baela=t) 0, we can choose Aj, ..., Ag—¢—1, successively, so
—c , 1-1_fat@=0 1 . .
that CA, 7 A" P q < mforz =1,...,d — ¢ — 1. Therefore, we obtain

a—{
05 < 10, + 17 7, which implies (36).

5.6 Proof of Theorem 2.3

To prove k-linear estimate for p, g satisfying %(1 — %) > % we no longer make use of
Plancherel’s theorem, but we may still use the linear oscillatory integral estimate which
is of 1-dimensional in its nature. The following is basically interpolation between k-
linear and linear estimates.

Proposition 5.7 Let 71, ...,1y, y, and u be given as in Proposition 5.4. If € > 0 is
sufficiently small, then for p, q satisfying q > k and %(1 — %) < % <1l- %, there is
a constant C, independent of y, such that
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k i k

7. —k(l=L_d=a
IT1& A0, = Coma 22 [T, (40)
i=1 i=

whenever f; is supportedinZ;,i = 1,2, ..., k.

Proof For q > k, Minkowski’s inequality gives

Lt@w ~ HH ‘

K k(d «)

< C{u)d’

k
* q
Fo) 1 gy 1915 1l

Hxﬁ

HH &

Lt ®ay

Thus it suffices to show that for %(1 — l) < 1 <1-— l,
p q p

k
T
i=1

k
—k(1—1
<P A ) 1)
i=1

LE R

For g =1- %, 1 < p < 2, the estimate (41) follows by interpolation between

the L2 — LZ2 estimate (32) and the trivial estimate || Hf;l Ei/f,' Lo < HLI N fill s

provided f; is supported in Z;, i = 1,2, ..., k. On the other hand, since |9y, d;(x -

y(t))| ~ 1, using Hérmander’s generalization of Hausdorff-Young’s theorem, we
1

have ||Sff||1‘q < C)»_(l_ﬁ)llfllp. By Holder’s inequality we obtain (41) for 5 =

-1 1< p < 2. Therefore, by interpolating the estimates for s =1- % and

<

5 =1- % we obtain (41) for p, g satisfying ¢ > k and %(1 — %) < % <1- %.

Once Proposition 5.7 is obtained, one can prove Theorem 2.3 by adopting the same
line of argument in the proof of Theorem 2.1. So we shall be brief. We use (40) with
k = [d — a] + 1 to estimates the multilinear terms in (39), and to the linear terms we
apply Lemma 5.5. Thus, we have

1 [d—a]

B 1 Pld—a+1(—{d—a) _ 1 d-e

0. =Clwd D ATGA T T 0+ Ol TA7C, a0
i=1

provided thatg > [d— a]+1and(1—1/p)/([d o +1) < 1/q < 1—1/p. Therefore,

we obtain Q). < (i)o’ A ~0=5=") Whenever 1 — p - % > 0. This
completes the proof.

6 Proof of Theorem 3.2

Proof of Theorem 3.2 is based on an adaptation of Erdogan’s argument in [12]. (Also
see [15].) The following is basically a 2-dimensional result in that we only need to
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assume y’ and y” are linearly independent. To begin with, by finite decomposition,
translation and scaling we may assume, as before, that y is close to y¢ such that
ly — ycfi e < ¢ for sufficiently large N and small enough €.

6.1 Geometric Observations

To estimate the integrals on the right hand side of (48), we begin with some geometric
observations regarding the curves.

Lemma 6.1 Let T = [t1, 2] C [0, 1] be an interval of length L 2, )L_%, then
Ay (@) 4+ O(Q1) is contained in a parallelotope AM%/]’dRL + Ay (1) where Ry is a
rectangle of dimension CL x CL? x - -- x CL? which is centered at the origin.

Proof To see this it is sufficient to show that y (Z) + O (A~!) is contained in M%/l’dRL +
y(t1). For any ¢ € [11, 12], by Taylor’s expansion, we have

— 1

t
y(t) —y () = MV DY yd( .

) +e(r, 1, L)

where e(t, 71, L) < L4t So y(Z) — y(71) is contained in M%’,’dR where R is a
rectangle of dimension ~ L x L? x --- x L% which is centered at the origin. Since
At < L? it is clear that (@) + O (1~ contained in MZl‘dRL + y(11).

The following concerns the size of intersection of tubular neighborhoods of curves.
Lemma 6.2 Let 7,7 C [0,1] be intervals satisfying |Z|,|J| ~ 27" and
dist(Z, J) ~ 27" with 2" < A2. Then, for y € RY,

(v + 2y (@D + BO.C) Ny (T) + BO. O] $2". (42)
Proof As before, by a change of variables it is sufficient to show that
|+ ¥ (@) + B, CA~ ) N (y(J) + BO,CA )| S 2"a,
Let V be the subspace spanned by y’(0) and y”(0), and Py be the projection to

V. Since both sets are contained in O (1~ )-neighborhood of arcs, it suffices to show
that

|Py(y +y(@) + BO,CA~"Y N Py(y () + BO, CA~ )| S 2"a2

The sets Py (y + y(Z) + B0, CA™)), Py (y(J) + B(0, CA~")) are contained in
Pyv(y))+Pyy(@D)+ oo™, Pyy(J)+ O(A’]). Since y is close to yf, Pyy isclose
to (t,12/2). So, Py (y) + Pyy(I) + O™, Pyy(J) + O(A™") are contained in
neighborhoods of curves of the form (¢, 2 /2) 4+ O (A ~!) fort € Z,t € J respectively,
and the angle between them is ~ 27". Hence we get the desired bound.
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Lemma 6.3 Let A > 82, Let T be an interval contained in [t — 8, T + 8] and R* be

the rectangle R* = {x : |(x, |;:%)l < 1/8, {vo, x)| < 1,..., |{vg, x)| < 1} where
V2, ..., Vg are an orthonormal basis for the orthogonal complement of span {y’(t)}.

Then, for a sufficiently large C > 0,
Ay@)+ R+ 0(0) Ccay@) + 0(C)
Proof The above is equivalent to
y@O+1'R* 00 cy@ + ocah.

Any member in the left-hand side set can be written as y (¢) + sy’ (t) + o h
for some s, |s| < (18)~!. Hence we need only to show

ly (1) +sy'(t) — y(t +5)| < CA~!

whenever |s| < (18)~!. However this is clear because y (1) + sy’(t) — y(t +s) =
Sl v/ @) =y (@du = 00.7N).

Let ¢ be a fixed Schwartz function which is equal to 1 in a unit cube Q centered at
the origin and vanishes outside 2Q. Moreover ¢ satisfies

o0
8 < Cu D27y (x), foreach x e R, M e Z. (43)
j=1

For a rectangle R C R?, we denote g as ¢ o aEl, where ag is an affine mapping
which takes Q onto R. The following lemma is a slight generalization of Lemma 3.1
in [13].

Lemma 6.4 Let g < --- < Ay < A1 S A and let u be a positive Borel measure
supported in B(0, 1) satisfying (4). Let R be a rectangle of dimensions .1 X ko X - -+ X
Ad, R* be the dual set of R centered at the origin, and A be a nonsingular matrix.
Then

(i) Nl %1 F(pr 0 A" Dllloo S (1ol det A AT 27,

(ii) [ qoige it % | F(or 0 AT + 0y S (oK NAT A TTizy 2 for
K > landx € RY.

Proof Fixing a large enough M, by (43) and change of variables we have
d 00

1BRE) < Cor [T ax D27 M x5 (),

k=1 j=1
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which gives
d [} ‘
/ BR(A (x = A S [ m D 27" / Koipe (AT (x = )du(y).  (44)
k=1 j=1

Since 2/ R* is covered by as many as ~ )ff / HZ:I A cubes with side-length
ZjAI_I, applying (4) and (5) to each of the cubes gives f Koige (AT (x — yNdp(y) <
tini1— 29 . _ _—

(e (IAT2727 1 = —. Since 1 * |F(pg 0 A™H|(x) = |det A| [ |@r(A"(x —

et e
y))|du(y), by combining the inequalities we get

(0.¢]
x| Flpr o A7HI0) S det Al D 27 () (1A 12727 )2
j=1
S (el det AIJAT 2.

This proves (i).
We now turn to (ii). Without loss of generality we may assume x = 0. By (44),

/ 1 1 F (o 0 A0 dy
KA—!R*

d 00
< et Al [T > 27Mi / / Xk Ak )Xo a6 — 0 )dy.  (45)

k=1 j=I

Since u — y € 2/ A™'R* in the last integrand, x g s g+ (y) < X(k+27)a—1 g+ (). SO
we have

// XKk A—t R+ (V) Xoia—t g+ (y — w)dpu(u)dy

L,
<|detA™| ——— / X(k+2/)A— g ()d p(u)
k=1"k
274 o Ad
S ldet A7 | ——— (W (AT (K + 227 H* —1—.
k=1"k k=1"k
. d
For the last inequality we cover (K + 2/) R* with O( l_[d)tl . ) cubes of side length
k=1"k
(K + 21'))»1_1 and use (4) and (5). By combining this and (45), we get (ii). O
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6.2 Whitney Type Decomposition

By a Whitney type decomposition we may write

puxou= U [ U @xn]|Up (46)

4<on<i? T=T 1=

where Z, J are dyadic intervals, D is a union of finitely overlapping boxes of side
length ~ A_%, and D is contained in the CA™ 2 -neighborhood of the diagonal {(x, x) :
x € [0, 1]}. Here, we say Z ~ J to mean that Z, [ are not adjacent but have adjacent
parent intervals.

For 7 = [a, b] we set

reay(H+0M:y'(B) x—y®) =0=y'(@) x—y@)} ifa#0b#]l,

Qz=1xerxyH+00):y'®) - (x—ybd) =<0} ifa=0,
(xerxy(H+00):0<y'(@-(x—y))) ifb=1,
and set
8T =8 Xz 47

For distinct dyadic intervals Z, J C [0, 1], the intersection of €2, 7 and €2, 7 has
Lebesgue measure zero in R4 because 27" > A~ 1/2, This leads to

1
logx2

Bl < > > @®eswli+2 > gzl
n=2 |I|=|J|=27" IeJg
I~J

where J is a finitely overlapping set of dyadic intervals Z with |Z| ~ A7 Using

above inequality, we have for any g > 2,

1
logxr2

1810w = 20 20 1Ez&Tl g, 2 BT 49)
n=2 |I|=|J|=2"" ZeTg
I~TJ

6.2.1 Estimate for g7, L € Jg

For 7 = [11, 2] € Jg, we have 27" ~ A~ 1/2, By Lemma 6.1 the support of g7,
i.e. 2, 7 is contained in a parallelotope M%/l’dR where R is a rectangle of dimensions
CAZxCx---xC.Hence g7 = gr+F(pro(MY)™1). Since || F(pro(MY )Nl <
C, by Holder’s inequality we get
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1
|gz| < (8717 % | F(r o (MLH D7,
So, we have
—_— — — d—a
IEZN 70 gy < / (18Z17 * | F(pr o MLD™HD@)dp(x) S (a7 I18Z1§. (49)
The last inequality follows from (i) in Lemma 6.4 and the fact that R has dimensions

CiZ x C x --- x C. Since q > 2, by Hausdorff-Young inequality and Holder’s
inequality, we have

o 1_1 1. 11
1820, < lezly < llezlalR. 71777 < lgzla(r2)? s,

Thus, combining this with (49),

[N

2 g 1 2 |, d-D-a
— oS S ==
D g ey S e’ 27 2270 D lgzlly S (' AT 0 gl3. (50)
TeJg ASKH))

E

6.2.2 Bilinear Term Estimate

Firstly, we assume ¢ = 2. Fix n with 4 < 2" < 2172 and a pairZ = [t1, ], J =
[t3, 4] of dyadic intervals with |Z| = |J| = 27" and Z ~ J. Since Z ~ J, the
support of g7 * g 7 is contained in a parallelotope M%/l’dR where R is a rectangle with
dimensions 2CA27" x 2CA27 2" x ... x 2CA2~2", Using g7 %87 = (87 *87)(¢Rr o

(M%/,’d)_l), we obtain
/IEE(X)Q(X)Id,u(X) §/|§f(x)§j7(x)|(u*|]-‘(<pRo(M3’1’d)‘1)|)(x)dx. (51)

Consider a tiling of R? with rectangles T’ of dimensions C2™" x C x - - - x C. Note
that each T is contained in a rectangle x7 +C 222" R* for some x € R¥. Also let ¢ be
a fixed non-negative Schwartz function satisfying ¢ > 1/2 on Q, supp a C Q and the
inequality of (43). Using the properties of ¢, we obtain 1 < > ¢3 < > 67 < 1,
where ¢7 :=¢ o a;l.

Setgzr =87 (pro(ML)).By1 <3S, ¢3 and Cauchy—Schwarz inequality,
we get

/ 182087 ()| (1 * | F(gr o (ML) ™) (x)dx
<> / 182,787 7 () (1 * | F(@r o (ML) (x) (¢ o (ML) (x)dx
T

SO lgzr8g 2l =1 F(pr o (ML ™D I(¢r o (ML) 2. (52)
T
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By a standard argument

/ lg7.7(0)g7.7(0)[*dx = / lez.7 *27.0("I*dy

< sup |(y + supp(gz.7)) Nsupp(g.7.r)llgz.7 131877113
y

By Lemma 6.3, y +supp(gz.7). supp(g.7.7) are contained in y + Ay (Z) + B(0, C),
Ay (J) + B(0, C), respectively. Thus, Lemma 6.2 implies sup,, |(y + supp(gz,7)) N
supp(g7.7)| S 2". So, we get

/ lg7.7 (0877 (0)dx S 2"gz.rl3l87.7 5 (53)
Now we show
e % |F(pr 0 (M2D D@7 o (MEDHIF < (uyZrd—o27". (54)
First we note that by (i) in Lemma 6.4,
e 1 F(@r 0 ML) Dlloo  (mard™@@M47. (55)

Using (43) for ¢7 and (ii) in Lemma 6.4 with recalling that 7 is contained in
x7 + CA272" R* for some x7 € R?, we have

/ (| F(pr o MTD ™ HN @) (@ o (ML) (x)dx

2/\

o
> oM / x| F(er o (M = 2 (ML) )
— 2322 (MYt R*

j=1 71

< (e @1

Since ¢ (x) < 1, by combining this and (55), we get (54).
By the inequalities (51), (52), (53), and (54) and using the fact that > 4)2 <1

d—a
18287 L1y S legITHzlngTllz (1ar 7 lgzl2llgsll2 (56)

For the last inequality, we used the Cauchy—Schwarz inequality and Plancherel’s
theorem.
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By (56), we have

S 00> @ e S e > D S lezlbligsl

4<n <) 12 T = T |=27" 4<n<)\2|T|=2""I~T
i~J
1 1
d—a 2 2 d—a
Swer™ D (3 lerld) (X NezlB)” S (whar 3" logaligl:
4212 (=2 \Z|=2"

For the second inequality we use the fact that there are finitely many intervals J
related to Z for each dyadic interval Z. Thus we get the required bound in the case
q =2.

Now we assume g > 4. Let Z, J with Z ~ 7, and R be defined as before. Using
g7 %87 = (g7 % g7)(pr 0 (M%’]’d)_l), Holder’s inequality, and (55), we have

4 o py—nyd—a e 52—~
@y S e gG Ik [k

w

Repeating the argument for (53) and using Lemma 6.2, we have [ |g7(x)g7 (x) |2dx
< 2"lgzl3llg 713 Also, by Young’s inequality and Cauchy-Schwarz inequality,

18287 llc < 227"llgzll2llg7 ll2. Hence, we get

e L g d _ _q 1 1
||gIgj||z%(d )5 (WA FI22M) =TT e |15 g 71l5 -

m

1
0, since 2" < A2, then Ad—+3-2(on)—dta+3-§

q_ _ g gt
272my—dret3=3 - pd-a+3-2 Hence

Here, if —d + o +3 —
(d—D—«a

q
7 =
q . _

A4t 2 Otherwise, A4~

max (L4 @=D=e |_2a_ 2d=2)
Xt ¢ T ezllalig s la-

2
q

o <
||gIgJ||L%(dM) S e A

Thus by the same argument as before, we sum along n, Z, J to get

2 1, d-D-a 2a | 2(d-2)
o~ max( 5+ Jd—=4 )+e€ 2
> g, S e AT g,
4= <Al \T)=| T |=27"
T~

Since the intermediate cases follow by interpolation, this completes the proof. O
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