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1 Introduction and Preliminaries

Consider the Fourier extension operator

W (x) = gdo () = (2)1 =72 / @) ©), (1)
S

where ¢ € L>(S"™1), do is the Lebesgue measure in S"~! and ~denotes the Fourier
transform in R”.
We have that W ¢ is an entire solution (a solution in R") of the Helmholtz equation

Au+u=0. )

The functions u = W¢ with ¢ € L*(S*™!) called Herglotz wave functions are
relevant in analysis and in particular are extensively used in scattering theory. Hartman
and Wilcox in [10] proved the familiar characterization of the Herglotz functions as
the entire solutions of the Helmholtz equation satisfying

1
lim sup — Iu(x)lzdx < 0.
R—o0 [x|<R

The operator W is the transpose of the restriction operator for the Fourier transform,
namely the operator Rf = f|_,_, defined in the Schwartz space.
The restriction problem of Stein—Tomas asks for the values of p and ¢ such that

|- |

<C ny € S(R™M).
poy SCIFlny . f & SR

The best known result for ¢ = 2 is given in the Stein—Tomas theorem:

Theorem 1 (Stein-Tomas) If f € LP(R") with1 < p < 251”—:31) then

| 7 < Cpn I Loy -

LZ(Snfl)
Or equivalent, if f € L>(S"™1)

IWfllLawny < Cqun 1S I 21y

forq = 2D,
In [2], it was proved that the extension operator is an isomorphism of L>(S!) onto
the space W? consisting of all entire solutions of Helmholtz equation with radial and

angular derivatives satisfying
2\ dx
—3 < OQ.
|x]

ou 2
julf = | (|u<x>|2+‘a—r(x>
|x|>1
Birkhauser

ou

+ %(x)




836 J Fourier Anal Appl (2017) 23:834-862

This gave a new characterization of the space YW? of Herglotz wave functions in R? as
a Hilbert space with reproducing kernel. Also, for I < p < 4/3, it was proved that the
orthogonal projection P of 2 onto WW?, can’t be extended as a bounded operator on
‘H?, the p-version of H2. Then in [4], Barceld, Bennet and Ruiz proved that P can’t
be extended as a bounded for any p > 1 except for p # 2. However they obtained a
positive result for 4/3 < p < 4, considering mixed norm spaces H?”2, defined by

/2
oo [ ron au  |? r rdr
2 _ 2
||u||H,,,2_/0 (/0 (Iu(r9)| +‘£(x) @)

In this article, we will define Banach spaces H” and W? in R"”, n > 3, generalizing

the mentioned spaces in [2]. H? will consist of all functions belonging to L” (R" , %)

jointly with their radial derivative and the euclidean norm of their spherical gradient.
Then WP will be the closed subspace of all solutions in 7? of the Helmholtz equation
Au + u = 0 on the Euclidean space R” for n > 3 . We will construct and study
the reproducing kernel for W2, which as for n = 2, turns out to be the space of all
Herglotz wave functions and it is characterized as the space of all the entire solutions
of the Helmholtz equation satisfying

1/2

au |?

or

2
lullpz = | Null +
LZ(R” dil)
T (x)3

2

s )
2 dx_ n

L (]R", (x)3) L (R 1 )3)

where Vg denotes the spherical gradient.

In Sect. 2 we will study the space WW?. We will show that this is precisely the
space of all Herglotz wave functions and we will calculate its reproducing kernel as a
subspace of 2. In Sect. 3 we consider the spaces H” and WP for exponents p > 1.
We will prove that these are Banach spaces and we will show that the reproducing
kernel of H? has also reproducing properties for YW”. Finally, in Sect. 4 we study the
continuity properties of the orthogonal projection P of H? onto W2 in mixed-normed
spaces H P2 extending the results in [4] for n = 2. Then we consider the continuity of

P in HP. As in n = 2 this continuity is related to the boundedness in L? (R", %)
of a singular operator T acting on vector fields and given by

Jnppr1(lx =y

dy
(Ix — ypr/2+1 ()3

(3

where P, denotes the orthogonal projection in the direction of z and J, /241 is the
Bessel function of the first kind. Finally we give a non-boundedness result of 7" in R3.

Throughout paper we will use the following notations and results: Bg C R” denotes
the open ball with center at the origin and radius R, B = By, and $" ! is the (n — 1)—

. . . . n/2 .
dimensional unit sphere with surface area 0, = 1261_/2) Ag denotes the Laplacian

TUM) = C, /R xlly| ((x = Pyx) - U()) (v — Pry)

on §"~1, that is, the Laplace Beltrami operator on S"~! and Vg will be the spherical
gradient. The conjugate exponent of p will be denoted by p’.
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Throughout this article ¢ and C will denote generic positive constants that may
change in each occurrence.

As usual, if u is a Borel measure in R, M, f will denote the Hardy-Littlewood
maximal function of a locally integrable function f on R:

M, f(x) = sup —/If(y)ldu(y)
Ixer (1)

where the supremum is taken over intervals I C R. Let w be a weight in R, namely a
non-negative function in L} 1oc()- By Ap (1) we will denote the Muckenhoupt classes.
We say that w is an A, (u) weight (w € A, (w)) if

1 1 ey r-l
(m/lw(r)dﬂ(r)) (m/lw(r) pdﬂ(”)) <C,

for1 < p < oo and
Myw(r) < Cw(r) a.e.

when p = 1, where C is always independent of /.
We have A, (1) C Ay(u), 1 < p < g, in particular, A1 () C Ax(n), see [8].
We denote by J, the Bessel functions of the first kind of order v

00 k
J“(Z)Z( ) Zkvr(ii)wr]) (Z)Zk‘

k=0

The Bessel functions satisfy the following recurrence formulas:

(R1) Jy—1(2) — Joy1(2) = 2J,(2).
(R2) Jo—1(2) + Jv41(2) = 2 J0(2).

Also, we have that
(Jvin)’ _ D) 3
t t

We will use the following estimates for Bessel functions.

(D1) Forany v > —1/2 and 7z € C,
()
1] < T eltm
TS T4 '
For integer n > 0 we have

[z]" =2
e 4
nl2n

[Jn(2)] =

Birkhauser
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(D2)Forv>1/2and0 <r <1,

1

17,(r)] sc(g)”m.

(D3)Forv > 1/2, a9 > 0,and 1 < v sech o < v sech «p,

—v(a—tanh «)

|Jy(vsecha)| < C "y

(D4) If z =r € R, then

1
()] <C—- 0<r<v/2,v=>1,
v

L) <crm'B r>1,v>0,

11" < Cor™V? r >0, n e

A known asymptotic formula for Bessel functions is

_ /2 v =y
Jr) =\ = costr = - = D) + 067 @)

as r — oo. In particular,
L) =00 if r— oo
The proof of following lemma can be found in [5].

Lemmal Letv > 0, p > 1 and a > 1, then there exists a constant C depending
only on p and a, such that

o, kel 2 -
P ; 2 2 ; )3
ZviT8 > 207D f/v [ Jy(r)|Pdr < Cv3™5 D 21079, ®)
=0 a =0
2 2
where v3 < 2K <213,
The following lemma [9, p. 675] is useful in this paper.
Lemma 2 Let v(im) = m + % Then
> dr 1 1
J? -—=—-—— 6
/0 v = G — 14 ©

forallm > 1ifn =3 andforallm > 0ifn > 4.
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The space of all surface spherical harmonics of degree m will be denoted by V.
In addition, {Y,ﬁ :meN,j=1,...,d,} will always denote a basis of real valued
spherical harmonics for L?(S"~!), where

P 1 ifm=0
m = (2m+rrtnf!(2n)(_rg)+!n73)! if m > 1.

Theorem 2 (Spherical Harmonic Addition Theorem) Let {Y,{; Lji=1,...,dy bean
orthonormal basis for Y,,. Then

dm
Zn(E,m) = —Pni-n), (N

n

where Z,,(§, 1) = Z?’il Y,,J; (S)Y,{; (n) are called zonal harmonics of degree m, Py, is

the Legendre polynomial of degree m and o, is the total surface area of S"~!.

The following lemma is known as the Addition Theorem of the Bessel functions
(see [12, Lemma 2, p. 121]).

Lemma 3 Ifx =r&, y = 56, we have

Jo(n; |x —yD) = Z A In (0 1) T (n; 8) P (§ - 0), (8)
m=0
where .
=r("™Y(E)*
Tnnir) =T (3)(5) 7 Jm@. ©)
We have that
0 1
V=—§+-Vg,
or r
that is,
ou
Vsu =r(Vu— —S) (10)
ar

An identity that relates the eigenvalues of the spherical Laplacian with the norm
L%(S"1) of the spherical gradient for some spherical harmonic Y of degree k is given
by

/S_] |stk(s>|2da<s)=k<k+n—2>/s_] Ye@®)Pdo@,  aD
which implies that the norms ||(—Ag)"/2ul|;2gi-1y and ||| Vsull| 2(gi-1) are equiva-
lent.

A classical result due to Bakry (see [3]), valid for any Riemannian manifold with
non-negative Ricci curvature and in particular for the sphere, is the following.

Birkhauser
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Theorem 3 (Bakry) If 1 < p < oo, there exist constants ¢, and C, such that
epll =89 2ull gty = [1Vsulll ooy < Col (=8 Pul gy (12)

forallu € CSO(S”_I).

Definition 1 (i) For 1 < p < 0o, we denote by H? the space of all u € D'(R") such

that 1, and |Vsu| € Lloc(R")
du P dx V7P
lullrr = / [P + | =) +|Vsu)I” ) — 13)
n 8r ()C)
1/p
lu)” L[] Vsl (14)
= u - u ’
LP(R”, (/x) a7 LP(R",(;J;‘) N LP(R", dr)

where (x) := 1/(1 4 |x|*)!/2.
(i) We denote by WP the space of all functions u € H? satisfying the Helmholtz
equation (2) in R”.

Remark 1 (1) C*°(R™) N"H? is dense in H” and the elements of H” belong locally

to a weighted Sobolev space in R”.
1

(2) By Theorem 3, we can define in H” the equivalent norm |. ||$ﬁ, given by

1/p

. _ p A)l/2
||u||H1 ||M|| Lp( n’di) + I(=As) M||Lp( n @%)

d.
L (R, 8 &

Throughout this article will be exchanging these norms as needed.

2 The Fourier Extension Operator in L2(S"1) and W?

In this section we prove that the space WW? is precisely the space of all Herglotz wave
functions.

Lemma 4 IfY,, is a spherical harmonic and Fy, := WY, then

Q) Fn(x) = Q)2 r= D12 ], (M) Y (€), x = rE.
(i) {F(r&) = (zn)%imr—<"—2>/ZJu(m)(r)Y,{1(g)}m,,-,m =0,1,....7=1,2,...,
dy, is an orthogonal family and

1
| Fnll7g2 =ﬁ+0(ﬁ)' (15)
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i) If f = X, amj ¥ € LS Y andu =Y, ; am; Fiy € W2, then
lullgz ~ N fll 21y s (16)

and the series of u converges absolutely and uniformly on compact subsets of R".

Proof (1) Is adirect consequence of the Funk—Hecke’s formula (see [11, p. 37]) with
x =ré&,

/ . exp (—ix - w)Y, (w)do (w)

= Q)" (=i)"r =D Ly (1) Y (6). (17)

(i) By the Lemma 2, (11) and the recursion formula (R1) we have that
dx

oF,
2 _ 2,
1 Em 72 _/Rn(lF’”(x)l ‘ = (x) E

=2+0(L2). (18)
m

| Fnllpe = f+0( )

+ Vs F (x>|2)
Then

The orthogonality follows from the orthogonality of the spherical harmonics in
L2(Sn—1)_

(iii) By (ii) it follows that ||u[[;2 ~ [l 2(gs-1y. Furthermore, using the recurrence
formula (R1) for Bessel functions and the estimate (D1), it follows that the series
for u converges absolutely and uniformly on compact subsets of R” O

Theorem 4 The operator W is a topological isomorphism of L>(S"~") onto W>2.

Proof By Lemma 4', to prove that [|W f |42 ~ (WAl L2 it suffices to show that
Wi = Zm,;aij;fz forany f = Zm,/aijyf, € L*>(S"1). Notice that if f; con-
verges to f in L2(S*~!) then W f,, converges uniformly to W f uniformly on compact
sets of R”. Let L2 be the linear span of {Y;}} and W =W |12- I ¢ is a finite

sum j amj Y IS L2 then W¢p = >, j amj F and by Lemma 4(iii) we have that
||W¢||H2 ~ ||¢||L2(Sn 1y- Moreover, W’ can be extended to a continuous operator from
L2(S" 1) into W? so that W’(Zm’j pj Y,{1) = Zm’j pj Fn]1 converges uniformly
on compact subsets of R".

Nowlet f = ¥, s am;¥in € L2 and gy = Y ; i< akj Y{ . Then W (g) =
W/ (¢,) — Wf uniformly on compact subsets and Wf = W' f. Thus, W[ |2 ~
Ifll L2y

Birkhauser
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It remains to prove that W is onto.
Let u € W2, we have that u € C%(R"), so, for r fixed, consider the Fourier series
in spherical harmonics of u(r§), that is,

oo dpy
u(rg) = @m)Er= 2N AL (YA ),

m=0 j=1

with

Qm)zr= =DM () = / u(rn)Y;h(mdo ().
Snfl

Thus, we can apply term by term the Helmholtz operator in polar coordinates

— + A 1
ar? Far oSt
to the representation of u. We obtain
o0 dm . l , V(m)2 ]
2 2| A )+ A0+ (1= =5 JAw () ) Ya®) = 0.
m=0 j=1

and using the orthogonality of the spherical harmonics we have that

p 1, v(m)?
A )+ — AL () 4| 1= =5 ) A () = 0,

foreachm e NU ({0}, j =1, ..., dn, that s, the function A,,; (r) satisfies the Bessel
equation of order v(m). Then, A,,; can be written as a linear combination,

Amj(r) = amj-’u(m)(r) + bijv(m)(r)a

where N, ;) (r) is the Neumann function of order v(m). Since N, () (r) has a singu-
larity at 7 = 0 and A, (r) is bounded, it follows that b,,; = O for all m, j; therefore,
Amj (r) = Amj Jv(m) (r).

We see that zm,j }amj ‘2 < Cllully42, so taking ¢ = Zm,j Qmj Y,{;, we conclude that
¢ e L2(S" Handu = Wo. o

Now we will construct the reproducing kernel for W? as a subspace of the Hilbert
space 'H2. Before, we observe that family { ﬂ,;] F,{,} is an orthonormal basis for W2,

where 8, = ” F,{;

’HZ'
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Let

J
K(x, y) = ZZF (X)F ()7)

m=0 j=1

= 2 (rs) "D/ Z Z u(m)(V)Ju(m)(S)Yj (S)%,

m=0 j=1

where x = r&, y = s6. Using directly the Addition Theorem 2 we have

K(x,y) = 2m(rs)~"=2/2 Z Wzm(g,e) (19)
m=0 m

= 2 (rs)~ 22 Md P(E.9 0

m(rs)” n;) 5 - 0). 20)

By the estimate (D1) for Bessel functions we can prove that the series that define
KC(x, y) converges absolutely and uniformly on compacts subsets of R” x R”. Since
Zm (&, 0) is real then KC(x, y) is symmetric.

The orthogonal projection of H? onto WW? is given by

oo dpy

Pu=> > (u.fy' Fa)rpPr' Fi.

m=0 j=1

with convergence in WW? and also pointwise.
For x € R” fixed, we have

Pu(x) = (u, K(x, )2

dy
:/R (IC(x y)u(y)+—(x y) (y)+Vs9/C(x y) - ngu(y)) e
2D

The function C(x, y) is the reproducing kernel for the space 2.

The following lemma shows that after a topological isomorphism of W2, the kernel
K(x, y) has a closed form.

We call M a multiplier on the sphere S"~! defined by a complex sequence {1, }
to the operator

D anYin®) | =X, tmtnm Yin(€)

for any finite sum 3, ; am; Yin(6).

Birkhauser
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Lemma 5 Let M be the multiplier on the sphere S"~! defined by the sequence {531}.
Then, M is a topological isomorphism of W? onto itself, where here

D aniFa@) | = > Bram Fa@).
m,j

m,j
Moreover, the kernel function of the composition M o P is

Kee.y) = @ lx = y)™ 221z (1 = 1), (22)

namely (M o Pu(x) = (u, Iz(x, N2

Proof Since ¢ < ,831 < C for some constants ¢, C > 0, then it is clear that M is a
topological isomorphism of W? onto itself. In particular, by (19), (8) and (9), we have
that

Kx,y) = MK(x, y)

oo
T —(n— —(n—
=D R (s TR a2 () PaS - 6)

(of
T m=0

= @ lx = yD T2 T (lx -y,

where M may be thought of as acting on & or on 6. _
In H2, the kernel K(x, y) defines a continuous operator P on H? given by

dy

Bu(x) = /]R n (E<x,y)u<y>+ (x. y) “ )+ Vs, Kx ) vsgu(y>) o

Let Hy be the linear span of the set {A(r)Y] (&) : A € CZ°(0,00)}, ;. We can prove
that P = M o P in Hy. Since H, is dense in 72, we conclude that P = M o P. O

Below we will need to study the continuity of the multiplier M in L?(S"~1). For
this we will use the next two results by Strichartz and Bonami—Clerc proved in [13]
and [6], respectively.

Theorem 5 Let m(x) be a function of a real variable satisfying
I*m®O @) <A for k=0,...,a

Ifmj = m(j) then {m;} € M,(S"~") for

P # 1, oo,
where M p(S”_l) denotes the space of all LP —multipliers on the sphere S"!.

Birkhduser
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Theorem 6 Let N = ["771] and { i }>o be a sequence of complex numbers such that

(Ao) Il < C,
; _ J
(An) sup-o 2/ V=D 327 AN | < C.
Then {uui} € M,,(S"’l) for 1 < p < oo. Here A denotes the forward difference
operator given by A = fit+1 — Lk
Theorem 7 For | < p < oo, the operators M and M™' are continuous on

LP(S*™Y). That is, the sequences {,331} and {13”—12} define bounded multipliers on
LP(Sth,

Proof By (6) and (18) we obtain that for all m > 2,
B =2+ R(m)

with R(m) = % for some polynomials Py Q of degree 4 and 6, respectively. Thus,
to prove the continuity of M it is enough to show that the sequence {R(m)} defines a

bounded multiplier on L?(S"~!). We have that R® (x) ~ MLFZ for |x| large. Hence,

IFR® (x)] < A,

for all k € N U {0}. Then by Theorem 5, the above inequality implies that {R(m)}
defines a bounded multiplier on L7 (S"~!) for I < p < oo. To prove the continuity
of M~ it suffices to prove the continuity of the multiplier defined by the sequence

{Ym} given by

1

R(m) *

Yin = —pony
T+ A

For m large and L € N fixed, there exists a sequence {r,,} such that

R(m)  R(m)* R(m)E-!
J/m:l—T‘i‘ 22 —---+?+r(m),

[r(m)| ~ O(ﬁ). Using Strichartz’s Theorem we see that each {R(m)k } defines a
bounded multiplier in LP(S"_I) forl < p<ocandk =0,1,...,L — 1. Thus,
to end the proof we will show that if we choose L large enough, {r(m)} defines a
bounded multiplier in L?(S"!) . Let N = [%], then for m large,

2J+1 2J+1 N N
> [ = 3 (3 (V)
m=2J m=2J 1i=0
Cn.L
— 22jL

Birkhauser
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for all j > 2. Therefore,

2J+l1
NS AV, | < €272 = o))

if we choose any L > N /2. By Theorem 6, we conclude that {r,,} defines a bounded
multiplier on L?(S"~1). O

Remark 2 By (18), we have that

et~ ([ (1w + 9sucor) = )1/2
- dx
" Uk ’ (x)?

for u e H>.
Hence we may replace 7> by the Hilbert space H'? with the norm

de \ /2
”””H“:(/R n(|u<x)|2+|vsu<x)|2)ﬁ) : 23)

to define the kernel

0o dpy

J
PRI S G Lt (x)F )

m=0 j=1

where vy, = || Finllyp2 ~ V2+0 (#) In this case, the orthogonal projection P’ on
H'? is given by

d
Put = [ (K050 + (45) P ) a) Put) 5. (4)

()
3 Structure and Properties of YW?

Now we give estimates of the kernel Iz(x, y).
Jn—2 (Ix=yD

2
Qr|x—y) =272’
have the following pointwise estimates:

Lemma 6 Consider Iz(x, y) = y = s0 in the polar form. Then we

_ C

|IK(x,y)| £ ————, (25)
I+x=yD>

‘i~ < ; (26)
ds Tty

= Clx| |yl

Vs, K(x,y)| < ——————. (27)

(I+lx=yh=

Birkhduser
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Proof The inequality (25) follows from (4) and the fact that the function J n2 (r) has

a zero of order (n — 2)/2 atr = 0. Similarly, we can obtain (26).
To prove (27) we estimate any directional derivative D, of K in the direction of a
unit vector v tangent to S"~!. Using (3), we have that

|D,K(x, 50)| = s|V,K(x, y) - v

TG PN
= = (x—y) v
M=
Ju(lx —yD
= Clyl | 2——5—x v
lx — y|2
Ju(lx —yD
< Cly| | =———| Ixl.
lx — |2
Thus in particular we obtain (27). O
Proposition 1 Let
1 ifn=2,3,4,5
B = T}

If p > oy then Iz(x, D, %/E(x, ) and nglz(x, .) belong to LP(%)for eachx € R

Proof In fact, using the estimates given in the Lemma 6 and Peetre’s inequality (1 +
v —=y)~h = €+ [x))/(1 + |y]), we have

_ 1/p 1/p
([ Ranl) " =ef [ —
R (y) R (1+|x—y))z?

1/p
n—1 1 dy
=C+|x) 2 (/ —— 3
R (14 |y])“z 7))

<C(x) < o0.

similarly, %K (x, ) € L7 ().

Finally,

1/p
_ dy \/” |y|? dy
Vs, K(x, )P—) <C / ——
(/]R”| Hitx ) (y)? le( B (1 +|x — y)) TP ()
ol ay )
< Clx|(1+1]x) 2 / 5,73
R (14 [y 7 )

+1 1 dy e
< Clx|(1+ |x)T / —_—
R (14 [y 27 )

) Birkhduser
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<C(x) < o0.

]

Proposition 2 If p > «, then F,{; € WP for any m, j. Moreover, WP = {0} if and
onlyif p > oy

Proof We know that F,,]; is an entire solution of the Helmholtz equation and if p > o,

Fl e LP((%). In fact, by (4)

Poopn=lyy
(1+r2)3/2

o
<:>/ pO=D=F =D gy oo
0

Jv(m) (}")
F0=2)2

. o0
Fj e LP((x) 3dx) <=>/ “ oo
0

whenever p > «,. Thus, F,{, e WP,
Now suppose that W? # {0}. Letu € WP, u # 0. Thenu =, : am; Fyj with

m,j

some a;;; # 0. We have that u(rS)Y,ﬁ (&) eL? (d—x) If ¢ is a radial function such

(x)?
that p(|x|) € LP'(%) and ||(p||Lp,( -1, <1, then by Holder’s inequality

r’ =
(3 )

l dx
[ @] < c.
R (x)

which implies that

00
-]v(k)(r)
/0 ‘r(n_z)/z(p(r)

Consequently, by duality

r

and this implies that p > «,,. O

Poopn=lgy

S (r) >
A +r232 =70

F(1—2)/2

Theorem 8 For 1 < p < oo, WP is a Banach space.

Proof Let v any entire solution of the Helmholtz equation and let ®(x, y) be the
fundamental solution of the Helmholtz equation in R” [1, p. 42], given as

i L (n_
®(x,y) = 7@ lx = y) (n 2’/2H%(Ix —yD.

Birkhduser



J Fourier Anal Appl (2017) 23:834-862 849

Let x € Bg fixed with R > 1. Using a Green’s identity for the functions v and @ (x, -)
we have (see [7, p. 68-69]) for p > R,

n_1 v 0P
v(x) =p / (—(Pw)q>(x, pw) — —(x, ,Ow)v(pw)) do(®).
gn—1 \ 0s as

Next, integrating both sides above with respect to (Hi% on the interval [2R, 3R],

we have the integral representation of v for points of Bk,

v od dy
v(x) = CR/ (S—(y)q)(x, y) — —(x, y)v(y)) —3- (28)
2R<[y|<3R \ 0 ds ()

Now we prove that WP is closed in H?. Differentiating under the integral in (28)
and using Holder’s inequality we have that on any compact set K, any partial derivative

8"‘14( )
—(x
0x®

< Cxuallullpr, ueW?P, xek.

Let {u,} be a sequence in W? converging to u € HP. Taking a subsequence if
necessary, assume that the convergence is also almost everywhere. The relation (28)
implies that {u, } (and all their derivatives) is a Cauchy sequence uniformly in compact
subsets of R”, converging to a limit , that satisfies the Helmholtz equation. Thenu = i
andu € WP. ]

Remark 3 Using the integral representation (28) we can see that the evaluation func-
tional WP — C, v — v(x) is continuous for every x € R”".

Given f(§) = 3%, Z‘f’l | amj Y (&) € LP(S"1), the Riesz means R, of f of
order § is defined by

N di k 8 )
RVFE) =D, (1 - N—H) aij Y/ (§).

k=0 j=1

We will need the following theorem (see [6]) about the convergence of Riesz means
to study the density of the linear span of {F;,} in WP,

Theorem 9 Let 1 < p < o00. If § > (n — 2)/2, then for f € LP(S" 1),
RYf — f inLP(S"™h),

moreover, the Riesz means are uniformly bounded on LP (S"™1), that is, there exists a
uniform constant C s such that

” RISVfHLp(gn—l) = Cp,S”f”L!’(S"—])

forall N.
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Theorem 10 Let p > o, and Wé’ the linear span of{F,,j;}m,j. Then Wé’ is dense in
We.

Proof Given u € WP, the proof of the surjectivity in Theorem 4 shows that there
exists a,,; € C such that

oo dpy )
w(ré) = D> an Fa(ré),

m=0 j=1

where the convergence is absolute and uniform in compact subsets of R”. Let r fixed
and§ > (n—2)/2, and we consider the Riesz means R;SV of u of order 6. By Proposition
2, R?Vu € WP for p > a.

Let AR (r) the integral given by

p

d
a0 = [ (1= 00o] +| - )

+ |(=a9 2Ry —w9)|") do (©).
By the Theorem 9 we have that R;Svu —> u and %R;Svu — % in LP(S"1) as

N — oo. Since (—Ag)!/2(R3u) = R ((—As)?u) we deduce that (—Ag)!/? R u
converges to (—Ag)'/2u in L?(S*~!). Hence

lim AZ(r)=0.
N1—r>noo N(r)

Also, using the uniform boundedness of the Riesz means (Theorem 9) we obtain

o zc [ (weor+| L

g 1/2 P
+ |~ 89 2u@s)| )do(&),

that is, AN (r) < Cg(r) with g € L'(RT, %). Then applying the Lebesgue’s

Dominated Convergence Theorem we have

0= * li AP n—1 dr = 1 OOAP n—1 dr
= Jy A AN e = AT e

Therefore, R;S\,u converges to u in H”. So, we conclude that the linear span of { F;},} m, j
is dense in WP, O

Remark 4 By Theorems 7 and 10, we have that M and M1 are continuous in WP
for any p > «,.

Now we will prove a reproducing property of the orthogonal projection P for the space
We.
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Theorem 11 Let o, < p < «,. Given u € HP, then u € WP if and only if Pu = u.

Proof Letu € WP and a,, < p < «,. By Theorem 10, there exists a sequence
{u,} C Wé’ C W2 such that u, — uin H? for p > «,. Also, since P is continuous
in W2, then Pu,, = u,. On the other hand, by Remark 3, we have that u,, (x) — u(x)
for every x € R". So, to end the proof it is enough to see that Pu, (x) — Pu(x) for
all x € R". In effect,

d
[Pty (x) — Pu(x)| 5/ G, (it — 1) ()]~
R# (y)
K 9 dy
+/]R" ‘g(x,y)‘ ‘g(“n —u)(y) ()’T

d
+ / V5, K. )| [V, (tn — 03] 2%
R» ()

Since by Proposition 1, K(x, ), %(x, .) and |VSHI€(x, )l e L”/(%), applying the
Holder’s inequality we have that

|y (x) = Pu(x)| = |Pup(x) — Pu(x)| < Cx)llup — ullfy, —> 0.

Since we also have that u, (x) —> u(x) we conclude that Pu(x) = u(x).
To prove the converse, let u € H? and suppose u = Pu, then

(A =+ D)yu(x)

K d d
= [ (A+ 1Dy (/C(x, Vu(y) + a—(x, V() + Vs, K(x, y) - Vsyu(y)) _y3
Rn S as (y)-
= 0’

since K(., y) satisfies the Helmholtz equation in R"” for each y € R". Therefore,
uewWwr. O

4 Continuity of P’ in Mixed-Normed Spaces

In this section we prove a positive result about the continuity of P on mixed-normed
spaces, generalizing the results in [4] for n > 2.

Definition 2 Let 1 < p < oo, the mixed-normed space L?(R*; du)(L*(S*1))
consisting of all the measurable functions f(r&) such that

00 L
1172 = /0 ( /S If(ré)lzda(é))zdu(r) < o0,

where du(r) := r"=1/(1 + r2)3/2dr.
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From now on we will write L” (R*: du)(L3(S"~ 1)) as LP2.

Definition 3 For 1 < p < 0o, we denote by H?” 2 the closure of C 2°(R™) with respect
to the mixed-norm

00
el = /0 ( /S 1<|u<rs)|2+|vsu<rs>|2>do<s>) dp(r)

~ /O ( /S (ueHP + |(—As)l/2u(r$)|2)da(§)) " du(),

and denote by WP-? the space of all functions u € H?-? satisfying the Helmholtz
Au+u=0inR".

To study the continuity of 7’ in H?2, we introduce the operator 7 defined by
12 1/2 4 dy
Tu(rg) = (—As,) i (=As) 7K (x, y)u(y)w. (29)

T is well defined when p < «),. In fact, foru € LP-2, by Holder’s inequality, Theorem
3 and Proposition 1, we have

d
‘/ (—As) K (x, yyu(y)
Rn »

_ 1/2 4~ .
< | a2 @) () Wl 21
< C|VsK'(x, .)||Lp,,2(Rn’%) ||u||Lp'2(RnY<%.3)
< Q.

Lemma 7 Let w(r) be a non-negative function such that wh e Ax(d (r)) for some
B > 2. Then

nt / ” | (1) 2w (r)d L (r) / ” | () Pw™ (ndjatr) < C,
0 0

where C independent of n.
The proof of this lemma can be found in [4] and we have the following version.

Lemma 8 Ler w(r) be a non-negative function and suppose there exists > 2 such
that wP € Ay(dfi(r)) and —a = (n — 2)(1 — %) <2-— % Then

o0 o0
m* /0 | oy (M) 2w (r)d i (r) /0 | ooy (M) Pr ~Cw™ (M d () < €, (30)
where C is independent of m.
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Proof Let I'' and I? be the integrals given by

I' = /O o (7 Prw(R)d i (r)

and
o0
= /0 o (D 2Fw™ () di(r),

respectively.
We split these integrals as

1 v(m)sechag 2v(m) 00
Il :/ _|_/ +/ _|_/ — Zlil
0 1 v(m)sechag 2v(m) .

i=1

1 v(m)sechog 2v(m) o) 4
12=/ +/ +/ +/ =>1I.
0 1 v(m)sechog 2v(m)

j=1

and

We proceed as in the proof of Lemma 7. We will prove that
m*I' I} < C; i, jefl,2,3,4).

Suppose m > 1, then by Holder’s inequality and the estimates of Bessel functions
(D1)—-(D4) we have

1 . 1/ 1 | 1/p
1} < (o, 1/# (/0 | Ty () |2 9P dﬂ(r)) (m /0 wﬂ(r)d/l(r))

c U g st 1/8 | v 1/8
= 2rmiy? (/0 ’ an (’)) (ﬁ([o,u)/o v (”)

1 1/8
< ¢ ( ! / wﬂ(r)d/l(r)) ,
= @mmH2 \ ([0, 1] Jo

h__C ®  feat /g | SR 1/8
4= )P (/Mm)’ g (r)) (ﬁ([2v(m),oo]) o (r))

Cv(m)a 1 o0 8 B )1/18
d
=T (ﬂ([zv(m>,oo]> o D)
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and

Loof [ B 4 v ! Y B v
1 < - — i
2= /1 ‘ ' u([l,v(m)cn/] wHnaRe

C 1 v(m)c 5 _ /8
= o ﬁ([Lv(m)c])/] wirdprn )

where ¢ = sechaq for some ag > 0, ¢p(r) = a(r) — tanha(r), Bo = ¢(v(m)c) =
ap —tanh g > 0 and the function «(r) is defined by the equation v(m) sinh @ (r) = r.

In addition, by Lemma 1 we see that

a 2v(m) 178
C”(m)( ! wﬁ(r)dﬂ(r)) .

I <
3= m2 a([v(im)c, 2v(m)]) v(m)c

Similarly, we have that
C 1 1 /B
< ( / w‘ﬁ(r)dﬁ(r)) ,
b= @mm)2 \ o, 1) Jo

: 1/8
, _ Cvim)™@ 1 pime g
Iy = e2mBo (ﬂ([l’ 2v(m)c]) ~/l w P (r)dp(r) )

1/
Cv(m)™¢ 1 2v(m) s i
m? (ﬁ([v(m)c, 20D Joome (rdp(r) ) .

1} <
Furthermore, using that a > % — 2 it follows that
1 o0

) Cv(m)_“ —/3 B )1//3
h=—n (ﬁ([Zv(m),oo]) oy AR

Consequently, since w? € As(dji(r)),

m41l.11j? <C; i,je{l,23,4}.

Proposition 3 Let g, € (1, 0o) such that

;oo ifn=23
b= 2424 ifn>3

If p € (Bn, B,) N (4/3,4) then T is a bounded operator on LP2. Moreover, ifp ¢
(4/3,4) then T cannot be extended to a bounded operator on LP-2.
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Proof Firstwenotethat p € (8,, B,) C (o0, c,) and then p satisfies (n —1)(1— %) <
2.

It suffices to prove the proposition for (8,, ;) and p > 2, since T is self adjoint
with respect to the duality (f, g) = [n fg% of LP? and L”"2,

Next, expanding # in spherical harmonics, that is,

u(rg) = umj(NYih(E),

m,j

and using the Fourier expansion of the kernel X" we have

Tu(r&) = Tujitmj () Yih (§), 31)

m, j

where

(e}
Tnj finj (r) = Cm(m +n —=2)Jy oy (ryr 272 / Ty ()5~ 7272 f(s) dpa(s).
0
(32)
Showing that T is bounded on L?'? is equivalent to prove the vector-valued inequal-
ity,

P 1 P 1
2 p 2 P

/0 S Tojitms | dpntr) sc/o S i OF | due) |
m,j

m,j
(33)
with C independent of m.
Let r be the dual exponent of p/2. By duality, there exists 7 € L"(du) with
”h”Lr(du) = 1 such that

ya

/O S TP | duts) | = /O S Tt )P (5)dpas).
m, j m, j

<

Let g(s) = s#h(s) and [t the measure given by dji(r) = ﬁ. Notice that
since p < 4 we have that » > 2, so we can choose y such that 2 < y < r, then
gV € L}, (df), 8" < My(g") a.e. and

» 2
7 p

JAR DI ATIET e
0 m,j
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= /0 N D Tjumj () Ps™ 217 g(s)d u(s)

m,j

oo
= / > Tt () Ps 20D g () s)
0

m,j
o0 1
<> / | Tonjtam ()22 2P (M [g7 1(5)) 7 dji(s)
m, j 0
4 [ —(n=2)/2\2 2(n-2)/ ~
<Ot [ s PR ) dis)
. 0
m,j

o0
x / O e e R O
0
o0
/ [t (5) 12522 Py (s)d fu(s)
0

o0
<c> / |t ()22~ Py (s)d fi(s)
- J0
m,j

o0
-2)(2-1 -
Xm“/ oty )22 Dus)das)
0

o0
—(n=2)(%— _ ~
/ o ()12~ D (s)dfics),
0

1
where w(s) = (My[g"1(s))7 . Furthermore, since (n — 1)(1 — %) < 2, we have that
(n—2) (% — 1) — % > —2. Then we can choose y close enough to r so that for some

2 < B <y we have (n — 2)(% -1) - /13 > —2. We know (see [8, Theorem 7.7(1)])

B
that M;(g")7 € Aj(i1). Then since M is bounded on L*(ft) for s > 1, by Lemma
8 and Holder’s inequality, we have

p 2
7 P

/0 D Tjumi)1* | ducs)
m’j

< C /OO Z |u’nj (S)|2S2(V172)/P(Mﬁ[g}/](s))%dﬂ(s)
0 m,j

P 2
2 P 1

=¢ /0 D umj )P djuGs) (/0 (Ma[gyus))?dﬁ(s))'

m,j

S
hSE[S}

<c| [ (Xt aue
m, j
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Now we prove that 7' is not continuous on LP2 for p ¢ (4/3,4).
Letu(r§) = 2., ;umj (r) Y, (£), where

Upj(ré) = Va|JU(m)(r)|p/71Sgn(Ju(m)(V))X[u(m),Zv(m)]Yrﬁ(g) (34
with o = — (";2) ﬁ (see in [4], the sequence {f,} in the proof of Theorem 4).
Writing Tu(r§) = Zm,j Tonjumj (r)Y,,j;(E) as in (31), we have that

2v(m) , o 1/p
lwmjll, , = | o) (WP 7= 2P 2 (r)
P

v(m)

and

2v(m)

1/p
1Tl p2 = Cm(m +n — 2)( / |Ju<m>(r>|f’r<"2>"/2du(r)) X 115 -
v

(m)

Therefore,

”ijumj ||p,2 2v(m) p e 2v(m) % tp
——>C | Jom) (r) [P dr | Jom) (PP dr ,
“umj”p’z v(m) v(m)

and using the Lemma 1 we see that this last expression is not bounded if p ¢ (4/3, 4).
O

Now, we are ready to demonstrate the main theorem of this section.

Theorem 12 Ifp € (B, B,)N(4/3, 4) then P’ can be extended to a bounded operator
on HP*2. Moreover, if p ¢ (4/3, 4) then P’ cannot be extended to a bounded operator
on HP2. In particular, for n =2, 3, 4, 5, P’ is continuous on HP:2 if and only if
p € (4/3,4).

Proof Let p € (B4, B,) N (4/3,4). To prove the L?*2 boundedness of P/, it suffices
to prove that the operators 77, T», T3 with kernels

K, y), (=As) 2K (x, ), (=Ag) 2 (=A5) 2K (x, y),

are bounded on L?*2. By Proposition 3, we know that T3 is continuous on L”*2. To
prove the continuity of 77 and 75 notice that

K'(x,y) = Mi(=As) (= Ag) 2K (x, )
and

(—As)' 2K (x, y) = Ma(=As) P (= As) K (x, y),
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where M/ and M, are the multipliers in S"~! corresponding to the sequences
e —Il—n—Z) and NG (m1+n—2) respectively. Then proceeding as in Theorem 3 we see
that the required vector valued inequalities for 77 and 7> are less demanding than
(33).

Now we show that 7’ is not continuous in H?>> for p ¢ (4/3, 4).

If P’ is continuous in H”-? then since (—ASE)_U2 : HP2 — HP-? is bounded

(due to the fact that (—Ags)_l/2 is bounded in L2(S"~!)), we have that

L=(=As) 0P o(=Ag)""? (35)
is continuous in LP-2.
But
/ dy
Lu(x) = K e, yyu(y) —= + Tu(x),
Rr »

hence, in the notation of Proposition 3,

(-t Y
Eu(x) = Z (m(m T 2) + 1) Tm]umj(r)Ym(%-)

m,j

and it follows proceeding as in Proposition 3, that £ is not bounded in L2 for
p¢4/3,4). o

Now we will obtain a negative result relative to the continuity of projection P.
Notice that by Remark 4 the operators P and P have the same continuity properties
on H?. This motivates the study of the continuity of the integral operator 7 given by

x=r§, y=s0, (36)

~ d
Tuw = Vs, [ Vs, -2

0

since the most singular part of Pis precisely 7 (Vs,u).
Using (10), we can split the operator in the sum 7 = 77 + 75, where

d
Tiu(x) = cn/ Il y1 (1 = 1) (A(u, V) — A, y) - ii) =6
Rn [x[ [x]/ (y)

d
Tou(x) = cn/R 1y Fujaet (1 — yD(x — Pyx) - Vs, u(y)(y — ny)@%’ (38)

where Fy (1) = %,A(u, y) = u(y)—u(y)-ﬁﬁ and P b = %\Z_I is the orthogonal
projection of b in the direction of a.

We will assume that n = 3 and we will prove that 7 cannot be extended in general
to a bounded operator on L” ((x)*3dx). Let m € N and By, be the unit ball of center
(0, 0, m) and fixed radius € < 1. Define u,, = xp, €1 .
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We consider the region R of the upper half-space between two cones c% (xl2 +

x3) < x3 < c3(x} + x3) and such that |xi| > |x2|. Now, for fixed . > 0 and
k > Am, let Ay be the annulus between the spheres centered in (0, 0, m) and radii
o (k) and a (k) + [, with a(k) = 2k + C and where C and [ > 0 are chosen so that

cos(t —(5+ D5 — %) =1/2fort € [a(k), a(k) +1].

Lemma 9 There exists positive constant ) such that, if k > Am, then |R N Ag| ~ k2
uniformly for large m.

Proof Clearly |R N Ag| = O(kz). Now consider spherical coordinates {(r, 9, ¢) :
r>0,0 €[0,2r], ¢ € [0, m]} centered at the point (cartesian) (0, 0, m). Notice that
as a subset of RZ, every vertical section R N A N {(r,0p,¢) : r > 0,¢ € [0, ]} is
independent of 8y € [0, /4] . This subset of R? contains the region in Sy described
as follows.

Let P; be the intersection of («(k) + [)S' and the line s = cl_lt in the plane (s, t)
and P, the intersection of a(k)S! and the line s = cy 1% in the plane (s, ¢) both with
t>m.

Then define Sj as the intersection of the annulus o < |x — (0, m)| < ay + [ and
the region in the first quadrant between the line /; through (0, m) and P; and the line
I> passing through (0, m) and P,. Let ¢; be such that tan (/2 — ¢;) is the slope of
the line [; fori =1, 2.

It follows that if A;( C R N Ay in spherical coordinates centered on (0, 0, m) is
given by the inequalities w(k) <r < a(k) +1,0 <6 < %, ¢ < ¢ < ¢, then we
have

z a(k)+l

| AL =/ / / rZsindr dg d6 > Ck>(cos ¢z — cos ¢1).
0 Joo Ja(k)

Hence, to complete the proof of the lemma, it suffices to show that there exists ¢ > 0

such that

cos ¢p — cos ¢y > c. 39

Denoting o (k) just by a, we observe that P, = (¢, %, ) with

b m—i—\/m + (o2 —mz)(c —l—l)
B 2+ Da

R |

LetX > 0and ¢ > Am.Then 1 — 2<1 z,and

h Cz IVa? —m? 1 /1 1 40)
<> _—
o (02 + Da 62—2 1 A2
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Similarly, we have that P; = (cfltl, t1) and

b Mm@ D2 — w2+ 1)
atl (e + D(a+1) '

: m 1
Since o > Am then a < hence

f 1 Ve e+

<— + —
o+l (774 D " +1

(41)

By (40) and (41), we have that

/1 -2
153 131 - 1 /1 1 1 2t (c;"+1D
a a+l~ /Cz_z+1 A2 (e P+ DA 41 ’
Since the limit of the right side is positive as A — 0o, we conclude that choosing A

large enough tp /o — t1/(ot + 1) > €, for some € > 0.
Finally for such A, if « > Am we have that

fh—m I —m
COS @y — COS ] = —
¢ ¢ o o+ A

%) I3
=|=- +h,
(a a+k)

where || ~ 0(%) Therefore, since 12 /o — t1 /(¢ + 1) > ¢ then (39) holds for large
m and the proof is complete. O

Theorem 13 7 cannot be extended to a bounded operator on LP ((x)3dx) for p €
(1,3/2).

Proof Lety € B, then we can write to y = me3 + y’ with |y’| < €, so that
(Pyy)3 = (Pyme3); + (Pry')3 < Cm + €.
Therefore,
(y—=Pyy)3=(m—€)—(Cm+e)=(1-C)m—2=Cm=Cly| (42)

for all € sufficiently small, m sufficiently large and choosing C < 1.
On the other hand, we have that

yoxy
(x =Pyx) - up(y) =x1 — —-—-eq,
vyl
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estimating above the right hand side we have
y-xy €
-e1| = — (lxiyil + Ix2y2| + [x3y3]) < Clxile/m.
Iyl bl m
Hence,
(x —=Pyx) - up(y) =x1 — O(lx1le/m) > Clx1| > C|x]. 43)

Let x € Ag. For (42), (43) and (4), we deduce that

xlm dy _ ClxP?
k3 < >3 — k3 :

(Tattm ()] = c/ ol

m

By Lemma 9,

T, _ / |7'2um<x>|P
LP(Ukzcm RNAY Usecn RNAL .

>CZ 1 pi|RmA|>EZL>
- km) i3 = e+ =

k>Cm k>Cm
and so
1ot Lo Uy 000 2 -
Furthermore,
T =€ [ S5 < o
Then,

dx
Tt l? =/ it ()7 -2
LP(Ug=cm RNAK) rocm RNAL <x>3

<C/ ( |x] )p dx
= Uk>CmRﬂAk m2k2 <x>3
P dx

e 3 [ Gom) o
k;‘m rRA, \m2k2 ) (x)3
2,, > /mk o7 1R 0 Al

k>Cm

C 1 C
m2p Z kp+1 = m3p’
k>Cm

e 2 ()

(44)
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Consequently,

C
1 Tittm (U A0 < 5 (45)
Finally, by (44) and (45)

1T unlly = (Tt — (=Tl

v

||'T2Mm||Lp(Uk2Cm RNAg) — ”/Tlum”LF(UkZan RNAy)

1 1 C
‘)=

then, since [lull, ~ m=3/P,

T
1Zunl, > Cm3/P72, (46)
letmll,
Hence 7 is not bounded if p € (1, 3/2). O
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