

Reproducing Kernel for the Herglotz Functions in \mathbb{R}^n and Solutions of the Helmholtz Equation

Salvador Pérez-Esteva 1 · Salvador Valenzuela-Díaz 1

Received: 27 November 2015 / Published online: 27 July 2016 © Springer Science+Business Media New York 2016

Abstract The purpose of this article is to extend to \mathbb{R}^n known results in dimension 2 concerning the structure of a Hilbert space with reproducing kernel of the space of Herglotz wave functions. These functions are the solutions of Helmholtz equation in \mathbb{R}^n that are the Fourier transform of measures supported in the unit sphere with density in $L^2(\mathbb{S}^{n-1})$. As a natural extension of this, we define Banach spaces of solutions of the Helmholtz equation in \mathbb{R}^n belonging to weighted *Sobolev type* spaces \mathcal{H}^p having in a non local norm that involves radial derivatives and spherical gradients. We calculate the reproducing kernel of the Herglotz wave functions and study in \mathcal{H}^p and in mixed norm spaces, the continuity of the orthogonal projection \mathcal{P} of \mathcal{H}^2 onto the Herglotz wave functions.

Keywords Reproducing kernel \cdot Herglotz wave functions \cdot Helmholtz equation \cdot The restriction of Fourier transform

Mathematics Subject Classification 46E22 · 35J05 · 46E15

Communicated by Luis Vega.

 Salvador Valenzuela-Díaz salvadorv@matcuer.unam.mx; salvadorvsky@gmail.com
 Salvador Pérez-Esteva

salvador@matcuer.unam.mx; spesteva@im.unam.mx

¹ Instituto de Matemáticas-Unidad Cuernavaca, Universidad Nacional Autónoma de México, Apartado Postal 273-3, Cuernavaca Mor., CP 62251 Mexico, Mexico

1 Introduction and Preliminaries

Consider the Fourier extension operator

$$W\phi(x) := \widehat{\phi d\sigma(x)} = (2\pi)^{(1-n)/2} \int_{\mathbb{S}^{n-1}} e^{ix \cdot \xi} \phi(\xi) d\sigma(\xi), \tag{1}$$

where $\phi \in L^2(\mathbb{S}^{n-1})$, $d\sigma$ is the Lebesgue measure in \mathbb{S}^{n-1} and $\hat{\cdot}$ denotes the Fourier transform in \mathbb{R}^n .

We have that $W\phi$ is an entire solution (a solution in \mathbb{R}^n) of the Helmholtz equation

$$\Delta u + u = 0. \tag{2}$$

The functions $u = W\phi$ with $\phi \in L^2(\mathbb{S}^{n-1})$ called Herglotz wave functions are relevant in analysis and in particular are extensively used in scattering theory. Hartman and Wilcox in [10] proved the familiar characterization of the Herglotz functions as the entire solutions of the Helmholtz equation satisfying

$$\limsup_{R \to \infty} \frac{1}{R} \int_{|x| < R} |u(x)|^2 \, dx < \infty.$$

The operator W is the transpose of the restriction operator for the Fourier transform, namely the operator $Rf = \widehat{f}_{|_{cn-1}}$ defined in the Schwartz space.

The restriction problem of Stein–Tomas asks for the values of p and q such that

$$\left\|\widehat{f}_{\mathbb{S}^{n-1}}\right\|_{L^q(\mathbb{S}^{n-1})} \le C \|f\|_{L^p(\mathbb{R}^n)}, \quad f \in S(\mathbb{R}^n).$$

The best known result for q = 2 is given in the Stein–Tomas theorem:

Theorem 1 (Stein–Tomas) If $f \in L^p(\mathbb{R}^n)$ with $1 \le p \le \frac{2(n+1)}{n+3}$ then

$$\left\| \widehat{f}_{|_{\mathbb{S}^{n-1}}} \right\|_{L^2(\mathbb{S}^{n-1})} \le C_{p,n} \left\| f \right\|_{L^p(\mathbb{R}^n)}$$

Or equivalent, if $f \in L^2(\mathbb{S}^{n-1})$

$$||Wf||_{L^q(\mathbb{R}^n)} \le C_{q,n} ||f||_{L^2(\mathbb{S}^{n-1})}$$

for $q \ge \frac{2(n+1)}{n-1}$.

In [2], it was proved that the extension operator is an isomorphism of $L^2(\mathbb{S}^1)$ onto the space \mathcal{W}^2 consisting of all entire solutions of Helmholtz equation with radial and angular derivatives satisfying

$$\|u\|_{\mathcal{H}^2}^2 = \int_{|x|>1} \left(|u(x)|^2 + \left| \frac{\partial u}{\partial r}(x) \right|^2 + \left| \frac{\partial u}{\partial \theta}(x) \right|^2 \right) \frac{dx}{|x|^3} < \infty.$$

This gave a new characterization of the space W^2 of Herglotz wave functions in \mathbb{R}^2 as a Hilbert space with reproducing kernel. Also, for 1 , it was proved that the $orthogonal projection <math>\mathcal{P}$ of \mathcal{H}^2 onto W^2 , can't be extended as a bounded operator on \mathcal{H}^p , the *p*-version of \mathcal{H}^2 . Then in [4], Barceló, Bennet and Ruiz proved that \mathcal{P} can't be extended as a bounded for any p > 1 except for $p \neq 2$. However they obtained a positive result for $4/3 , considering mixed norm spaces <math>\mathcal{H}^{p,2}$, defined by

$$\|u\|_{\mathcal{H}^{p,2}}^2 = \int_0^\infty \left(\int_0^{2\pi} \left(|u(r\theta)|^2 + \left| \frac{\partial u}{\partial \theta}(x) \right|^2 \right) d\theta \right)^{p/2} \frac{rdr}{(1+r^2)^{3/2}}$$

In this article, we will define Banach spaces \mathcal{H}^p and \mathcal{W}^p in \mathbb{R}^n , $n \ge 3$, generalizing the mentioned spaces in [2]. \mathcal{H}^p will consist of all functions belonging to $L^p\left(\mathbb{R}^n, \frac{dx}{\langle x \rangle^3}\right)$ jointly with their radial derivative and the euclidean norm of their spherical gradient. Then \mathcal{W}^p will be the closed subspace of all solutions in \mathcal{H}^p of the Helmholtz equation $\Delta u + u = 0$ on the Euclidean space \mathbb{R}^n for $n \ge 3$. We will construct and study the reproducing kernel for \mathcal{W}^2 , which as for n = 2, turns out to be the space of all Herglotz wave functions and it is characterized as the space of all the entire solutions of the Helmholtz equation satisfying

$$\|u\|_{\mathcal{H}^2} = \left(\|u\|^2_{L^2\left(\mathbb{R}^n, \frac{dx}{\langle x\rangle^3}\right)} + \left\|\frac{\partial u}{\partial r}\right\|^2_{L^2\left(\mathbb{R}^n, \frac{dx}{\langle x\rangle^3}\right)} + \||\nabla_S u\|\|^2_{L^2\left(\mathbb{R}^n, \frac{dx}{\langle x\rangle^3}\right)} \right)^{1/2}$$

where ∇_S denotes the spherical gradient.

In Sect. 2 we will study the space W^2 . We will show that this is precisely the space of all Herglotz wave functions and we will calculate its reproducing kernel as a subspace of \mathcal{H}^2 . In Sect. 3 we consider the spaces \mathcal{H}^p and \mathcal{W}^p for exponents p > 1. We will prove that these are Banach spaces and we will show that the reproducing kernel of \mathcal{H}^2 has also reproducing properties for \mathcal{W}^p . Finally, in Sect. 4 we study the continuity properties of the orthogonal projection \mathcal{P} of \mathcal{H}^2 onto \mathcal{W}^2 in mixed-normed spaces $\mathcal{H}^{p,2}$ extending the results in [4] for n = 2. Then we consider the continuity of \mathcal{P} in \mathcal{H}^p . As in n = 2 this continuity is related to the boundedness in $L^p(\mathbb{R}^n, \frac{dx}{\langle x \rangle^3})$ of a singular operator T acting on vector fields and given by

$$TU(x) = C_n \int_{\mathbb{R}^n} |x| |y| \frac{J_{n/2+1}(|x-y|)}{(|x-y|)^{n/2+1}} \left((x - \mathbf{P}_y x) \cdot U(y) \right) (y - \mathbf{P}_x y) \frac{dy}{\langle y \rangle^3}$$

where \mathbf{P}_z denotes the orthogonal projection in the direction of z and $J_{n/2+1}$ is the Bessel function of the first kind. Finally we give a non-boundedness result of T in \mathbb{R}^3 .

Throughout paper we will use the following notations and results: $\mathcal{B}_R \subset \mathbb{R}^n$ denotes the open ball with center at the origin and radius R, $\mathcal{B} = \mathcal{B}_1$, and \mathbb{S}^{n-1} is the (n-1)dimensional unit sphere with surface area $\sigma_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$. Δ_S denotes the Laplacian on \mathbb{S}^{n-1} , that is, the Laplace Beltrami operator on \mathbb{S}^{n-1} and ∇_S will be the spherical gradient. The conjugate exponent of p will be denoted by p'. Throughout this article c and C will denote generic positive constants that may change in each occurrence.

As usual, if μ is a Borel measure in \mathbb{R} , $M_{\mu}f$ will denote the Hardy–Littlewood maximal function of a locally integrable function f on \mathbb{R} :

$$M_{\mu}f(x) = \sup_{I:x \in I} \frac{1}{\mu(I)} \int_{I} |f(y)| \, d\,\mu(y),$$

where the supremum is taken over intervals $I \subset \mathbb{R}$. Let w be a weight in \mathbb{R} , namely a non-negative function in $L^1_{loc}(\mu)$. By $A_p(\mu)$ we will denote the Muckenhoupt classes. We say that w is an $A_p(\mu)$ weight ($w \in A_p(\mu)$) if

$$\left(\frac{1}{\mu(I)}\int_{I}w(r)d\,\mu(r)\right)\left(\frac{1}{\mu(I)}\int_{I}w(r)^{1-p'}d\,\mu(r)\right)^{p-1}\leq C,$$

for 1 and

$$M_{\mu}w(r) \leq Cw(r)$$
 a.e.

when p = 1, where C is always independent of I.

We have $A_p(\mu) \subset A_q(\mu)$, $1 \le p < q$, in particular, $A_1(\mu) \subset A_2(\mu)$, see [8]. We denote by J_v the Bessel functions of the first kind of order v

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k! \, \Gamma(k+\nu+1)} \left(\frac{z}{2}\right)^{2k}.$$

The Bessel functions satisfy the following recurrence formulas:

$$\begin{array}{l} (R1) \ J_{\nu-1}(z) - J_{\nu+1}(z) = 2J_{\nu}(z). \\ (R2) \ J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{2\nu}{z}J_{\nu}(z). \end{array}$$

Also, we have that

$$\left(\frac{J_{\nu}(t)}{t^{\nu}}\right)' = -\frac{J_{\nu+1}(t)}{t^{\nu}}.$$
(3)

We will use the following estimates for Bessel functions.

(D1) For any $\nu > -1/2$ and $z \in \mathbb{C}$,

$$|J_{\nu}(z)| \leq \frac{\left(\frac{|z|}{2}\right)^{\nu}}{\Gamma(\nu+1)} e^{|Im z|}$$

For integer $n \ge 0$ we have

$$|J_n(z)| \le \frac{|z|^n}{n!2^n} e^{\frac{|z|^2}{4}}.$$

(*D*2) For $\nu \ge 1/2$ and $0 < r \le 1$,

$$|J_{\nu}(r)| \le C \left(\frac{r}{2}\right)^{\nu} \frac{1}{\Gamma(\nu+1)}$$

(D3) For $\nu \ge 1/2$, $\alpha_0 > 0$, and $1 \le \nu$ sech $\alpha \le \nu$ sech α_0 ,

$$|J_{\nu}(\nu \operatorname{sech} \alpha)| \leq C \frac{e^{-\nu(\alpha - \tanh \alpha)}}{\nu^{1/2}}.$$

(D4) If $z = r \in \mathbb{R}$, then

$$|J_{\nu}(r)| \le C \frac{1}{\nu} \quad 0 \le r \le \nu/2, \ \nu \ge 1,$$

$$|J_{\nu}(r)| \le Cr^{-1/3} \quad r \ge 1, \ \nu \ge 0,$$

$$|J_{n}(r)| \le C_{n}r^{-1/2} \quad r > 0, \ n \in \mathbb{Z}.$$

A known asymptotic formula for Bessel functions is

$$J_{\nu}(r) = \sqrt{\frac{2}{\pi r}} \cos(r - \frac{\nu \pi}{2} - \frac{\pi}{4}) + O(r^{-3/2})$$
(4)

as $r \to \infty$. In particular,

$$J_{\nu}(r) = O(r^{-1/2}) \quad if \quad r \to \infty.$$

The proof of following lemma can be found in [5].

Lemma 1 Let v > 0, $p \ge 1$ and $a \ge 1$, then there exists a constant C depending only on p and a, such that

$$\frac{1}{C}\nu^{\frac{1}{3}-\frac{p}{3}}\sum_{j=0}^{K-1}2^{j(1-\frac{p}{4})} \le \int_{\frac{\nu}{a}}^{2\nu}|J_{\nu}(r)|^{p}dr \le C\nu^{\frac{1}{3}-\frac{p}{3}}\sum_{j=0}^{K-1}2^{j(1-\frac{p}{4})},$$
(5)

where $v^{\frac{2}{3}} \le 2^K \le 2v^{\frac{2}{3}}$.

The following lemma [9, p. 675] is useful in this paper.

Lemma 2 Let $v(m) = m + \frac{n-2}{2}$. Then

$$\int_0^\infty J_{\nu(m)}^2(r) \frac{dr}{r^2} = \frac{1}{\pi} \frac{1}{\nu(m)^2 - 1/4},\tag{6}$$

for all $m \ge 1$ if n = 3 and for all $m \ge 0$ if $n \ge 4$.

The space of all surface spherical harmonics of degree *m* will be denoted by \mathcal{Y}_m . In addition, $\{Y_m^j : m \in \mathbb{N}, j = 1, ..., d_m\}$ will always denote a basis of real valued spherical harmonics for $L^2(\mathbb{S}^{n-1})$, where

$$d_m = \begin{cases} 1 & \text{if } m = 0\\ \frac{(2m+n-2)(m+n-3)!}{m!(n-2)!} & \text{if } m \ge 1. \end{cases}$$

Theorem 2 (Spherical Harmonic Addition Theorem) Let $\{Y_m^j\}$, $j = 1, ..., d_m$ be an orthonormal basis for \mathcal{Y}_m . Then

$$Z_m(\xi,\eta) = \frac{d_m}{\sigma_n} P_m(\xi \cdot \eta),\tag{7}$$

where $Z_m(\xi, \eta) = \sum_{j=1}^{d_m} \overline{Y_m^j(\xi)} \overline{Y_m^j(\eta)}$ are called zonal harmonics of degree m, P_m is the Legendre polynomial of degree m and σ_n is the total surface area of \mathbb{S}^{n-1} .

The following lemma is known as the Addition Theorem of the Bessel functions (see [12, Lemma 2, p. 121]).

Lemma 3 If $x = r\xi$, $y = s\theta$, we have

$$\mathcal{J}_0(n; |x - y|) = \sum_{m=0}^{\infty} d_m \mathcal{J}_m(n; r) \mathcal{J}_m(n; s) P_m(\xi \cdot \theta),$$
(8)

where

$$\mathcal{J}_m(n;r) = \Gamma\left(\frac{n}{2}\right) \left(\frac{r}{2}\right)^{\frac{2-n}{2}} J_{\nu(m)}(r).$$
(9)

We have that

$$\nabla = \frac{\partial}{\partial r} \xi + \frac{1}{r} \nabla_S,$$

that is,

$$\nabla_S u = r \left(\nabla u - \frac{\partial u}{\partial r} \xi \right). \tag{10}$$

An identity that relates the eigenvalues of the spherical Laplacian with the norm $L^2(\mathbb{S}^{n-1})$ of the spherical gradient for some spherical harmonic Y_k of degree k is given by

$$\int_{\mathbb{S}^{n-1}} |\nabla_S Y_k(\xi)|^2 \, d\sigma(\xi) = k(k+n-2) \int_{\mathbb{S}^{n-1}} |Y_k(\xi)|^2 \, d\sigma(\xi), \tag{11}$$

which implies that the norms $\|(-\Delta_S)^{1/2}u\|_{L^2(\mathbb{S}^{n-1})}$ and $\||\nabla_S u\|\|_{L^2(\mathbb{S}^{n-1})}$ are equivalent.

A classical result due to Bakry (see [3]), valid for any Riemannian manifold with non-negative Ricci curvature and in particular for the sphere, is the following.

Theorem 3 (Bakry) If $1 , there exist constants <math>c_p$ and C_p such that

$$c_p \left\| (-\Delta_S)^{1/2} u \right\|_{L^p(\mathbb{S}^{n-1})} \le \left\| |\nabla_S u| \right\|_{L^p(\mathbb{S}^{n-1})} \le C_p \left\| (-\Delta_S)^{1/2} u \right\|_{L^p(\mathbb{S}^{n-1})}$$
(12)

for all $u \in C_c^{\infty}(\mathbb{S}^{n-1})$.

Definition 1 (i) For $1 \le p < \infty$, we denote by \mathcal{H}^p the space of all $u \in \mathcal{D}'(\mathbb{R}^n)$ such that $u, \frac{\partial u}{\partial r}$ and $|\nabla_S u| \in L^1_{loc}(\mathbb{R}^n)$

$$\|u\|_{\mathcal{H}^p} = \left\{ \int_{\mathbb{R}^n} \left(|u(x)|^p + \left| \frac{\partial u}{\partial r}(x) \right|^p + |\nabla_S u(x)|^p \right) \frac{dx}{\langle x \rangle^3} \right\}^{1/p}$$
(13)

$$= \left(\left\| u \right\|_{L^{p}(\mathbb{R}^{n}, \frac{dx}{\langle x \rangle^{3}})}^{p} + \left\| \frac{\partial u}{\partial r} \right\|_{L^{p}(\mathbb{R}^{n}, \frac{dx}{\langle x \rangle^{3}})}^{p} + \left\| \left| \nabla_{S} u \right| \right\|_{L^{p}(\mathbb{R}^{n}, \frac{dx}{\langle x \rangle^{3}})}^{p} \right)^{r/p},$$
(14)

where $\langle x \rangle := 1/(1+|x|^2)^{1/2}$.

- (ii) We denote by W^p the space of all functions $u \in \mathcal{H}^p$ satisfying the Helmholtz equation (2) in \mathbb{R}^n .
- *Remark 1* (1) $C^{\infty}(\mathbb{R}^n) \cap \mathcal{H}^p$ is dense in \mathcal{H}^p and the elements of \mathcal{H}^p belong locally to a weighted Sobolev space in \mathbb{R}^n .
- (2) By Theorem 3, we can define in \mathcal{H}^p the equivalent norm $\|\cdot\|_{\mathcal{H}^p}^{\Delta^{\frac{1}{2}}}$ given by

$$\|u\|_{\mathcal{H}^p}^{\Delta^{\frac{1}{2}}} = \left(\|u\|_{L^p\left(\mathbb{R}^n, \frac{dx}{\langle x \rangle^3}\right)}^p + \left\|\frac{\partial u}{\partial r}\right\|_{L^p\left(\mathbb{R}^n, \frac{dx}{\langle x \rangle^3}\right)}^p + \|(-\Delta_S)^{1/2}u\|_{L^p\left(\mathbb{R}^n, \frac{dx}{\langle x \rangle^3}\right)}^p\right)^{1/p}$$

Throughout this article will be exchanging these norms as needed.

2 The Fourier Extension Operator in $L^2(\mathbb{S}^{n-1})$ and \mathcal{W}^2

In this section we prove that the space \mathcal{W}^2 is precisely the space of all Herglotz wave functions.

Lemma 4 If Y_m is a spherical harmonic and $F_m := WY_m$, then

(i) $F_m(x) = (2\pi)^{\frac{1}{2}} i^m r^{-(n-2)/2} J_{\nu(m)}(r) Y_m(\xi), x = r\xi.$ (ii) $\{F_m^j(r\xi) := (2\pi)^{\frac{1}{2}} i^m r^{-(n-2)/2} J_{\nu(m)}(r) Y_m^j(\xi)\}_{m,j}, m = 0, 1, \dots, j = 1, 2, \dots, d_m \text{ is an orthogonal family and}$

$$||F_m||_{\mathcal{H}^2} = \sqrt{2} + O\left(\frac{1}{m^2}\right).$$
 (15)

(iii) If
$$f = \sum_{m,j} a_{mj} Y_m^j \in L^2(\mathbb{S}^{n-1})$$
 and $u = \sum_{m,j} a_{mj} F_m^j \in \mathcal{W}^2$, then
 $\|u\|_{\mathcal{H}^2} \sim \|f\|_{L^2(\mathbb{S}^{n-1})}$, (16)

and the series of u converges absolutely and uniformly on compact subsets of \mathbb{R}^n .

Proof (i) Is a direct consequence of the Funk–Hecke's formula (see [11, p. 37]) with $x = r\xi$,

$$\int_{\mathbb{S}^{n-1}} \exp(-ix \cdot w) Y_m(w) d\sigma(w) = (2\pi)^{n/2} (-i)^m r^{-(n-2)/2} J_{\nu(m)}(r) Y_m(\xi).$$
(17)

(ii) By the Lemma 2, (11) and the recursion formula (R1) we have that

$$\|F_m\|_{\mathcal{H}^2}^2 = \int_{\mathbb{R}^n} \left(|F_m(x)|^2 + \left| \frac{\partial F_m}{\partial r}(x) \right|^2 + |\nabla_S F_m(x)|^2 \right) \frac{dx}{\langle x \rangle^3}$$
$$= 2 + O\left(\frac{1}{m^2}\right). \tag{18}$$

Then

$$\|F_m\|_{\mathcal{H}^2} = \sqrt{2} + O\left(\frac{1}{m^2}\right).$$

The orthogonality follows from the orthogonality of the spherical harmonics in $L^2(\mathbb{S}^{n-1})$.

(iii) By (*ii*) it follows that $\|\cdot\|_{\mathcal{H}^2} \sim \|\cdot\|_{L^2(\mathbb{S}^{n-1})}$. Furthermore, using the recurrence formula (*R*1) for Bessel functions and the estimate (D1), it follows that the series for *u* converges absolutely and uniformly on compact subsets of \mathbb{R}^n

Theorem 4 The operator W is a topological isomorphism of $L^2(\mathbb{S}^{n-1})$ onto \mathcal{W}^2 .

Proof By Lemma 4, to prove that $||Wf||_{\mathcal{H}^2} \sim ||f||_{L^2(\mathbb{S}^{n-1})}$ it suffices to show that $Wf = \sum_{m,j} a_{mj} F_m^j$ for any $f = \sum_{m,j} a_{mj} Y_m^j \in L^2(\mathbb{S}^{n-1})$. Notice that if f_n converges to f in $L^2(\mathbb{S}^{n-1})$ then Wf_n converges uniformly to Wf uniformly on compact sets of \mathbb{R}^n . Let L_0^2 be the linear span of $\{Y_m^j\}$ and $W' = W \mid_{L_0^2}$. If ϕ is a finite sum $\sum_{m,j} a_{mj} Y_m^j \in L_0^2$ then $W\phi = \sum_{m,j} a_{mj} F_m^j$ and by Lemma 4(iii) we have that $||W\phi||_{\mathcal{H}^2} \sim ||\phi||_{L^2(\mathbb{S}^{n-1})}$. Moreover, W' can be extended to a continuous operator from $L^2(\mathbb{S}^{n-1})$ into \mathcal{W}^2 so that $W'(\sum_{m,j} a_{mj} Y_m^j) = \sum_{m,j} a_{mj} F_m^j$ converges uniformly on compact subsets of \mathbb{R}^n .

Now let $f = \sum_{m,j} a_{mj} Y_m^j \in L^2(\mathbb{S}^{n-1})$ and $\phi_m = \sum_{k,j,k \le m} a_{kj} Y_k^j$. Then $W(\phi_n) = W'(\phi_n) \to Wf$ uniformly on compact subsets and Wf = W'f. Thus, $||Wf||_{\mathcal{H}^2} \sim ||f||_{L^2(\mathbb{S}^{n-1})}$.

It remains to prove that W is onto.

Let $u \in W^2$, we have that $u \in C^{\infty}(\mathbb{R}^n)$, so, for *r* fixed, consider the Fourier series in spherical harmonics of $u(r\xi)$, that is,

$$u(r\xi) = (2\pi)^{\frac{1}{2}} r^{-(n-2)/2} \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} i^m A_{mj}(r) Y_m^j(\xi),$$

with

$$(2\pi)^{\frac{1}{2}}r^{-(n-2)/2}i^{m}A_{mj}(r) = \int_{\mathbb{S}^{n-1}} u(r\eta)\overline{Y_{m}^{j}(\eta)}d\sigma(\eta).$$

Thus, we can apply term by term the Helmholtz operator in polar coordinates

$$\frac{\partial^2}{\partial r^2} + \frac{n-1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\Delta_S + 1$$

to the representation of u. We obtain

$$\sum_{m=0}^{\infty} \sum_{j=1}^{d_m} \left(A_{mj}''(r) + \frac{1}{r} A_{mj}'(r) + \left(1 - \frac{\nu(m)^2}{r^2}\right) A_{mj}(r) \right) Y_m^j(\xi) = 0,$$

and using the orthogonality of the spherical harmonics we have that

$$A_{mj}''(r) + \frac{1}{r}A_{mj}'(r) + \left(1 - \frac{\nu(m)^2}{r^2}\right)A_{mj}(r) = 0,$$

for each $m \in \mathbb{N} \cup \{0\}$, $j = 1, ..., d_m$, that is, the function $A_{mj}(r)$ satisfies the Bessel equation of order $\nu(m)$. Then, A_{mj} can be written as a linear combination,

$$A_{mj}(r) = a_{mj} J_{\nu(m)}(r) + b_{mj} N_{\nu(m)}(r),$$

where $N_{\nu(m)}(r)$ is the Neumann function of order $\nu(m)$. Since $N_{\nu(m)}(r)$ has a singularity at r = 0 and $A_{mj}(r)$ is bounded, it follows that $b_{mj} = 0$ for all m, j; therefore, $A_{mj}(r) = a_{mj}J_{\nu(m)}(r)$. We see that $\sum_{m,j} |a_{mj}|^2 \leq C ||u||_{\mathcal{H}^2}$, so taking $\phi = \sum_{m,j} a_{mj}Y_m^j$, we conclude that $\phi \in L^2(\mathbb{S}^{n-1})$ and $u = W\phi$.

Now we will construct the reproducing kernel for W^2 as a subspace of the Hilbert space \mathcal{H}^2 . Before, we observe that family $\{\beta_m^{-1}F_m^j\}$ is an orthonormal basis for W^2 , where $\beta_m = \left\|F_m^j\right\|_{\mathcal{H}^2}$.

Let

$$\begin{aligned} \mathcal{K}(x, y) &= \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} \frac{F_m^j(x) \overline{F_m^j(y)}}{\beta_m^2} \\ &= 2\pi (rs)^{-(n-2)/2} \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} \frac{J_{\nu(m)}(r) J_{\nu(m)}(s)}{\beta_m^2} Y_m^j(\xi) \overline{Y_m^j(\theta)}, \end{aligned}$$

where $x = r\xi$, $y = s\theta$. Using directly the Addition Theorem 2 we have

$$\mathcal{K}(x, y) = 2\pi (rs)^{-(n-2)/2} \sum_{m=0}^{\infty} \frac{J_{\nu(m)}(r) J_{\nu(m)}(s)}{\beta_m^2} Z_m(\xi, \theta)$$
(19)

$$= 2\pi (rs)^{-(n-2)/2} \sum_{m=0}^{\infty} \frac{J_{\nu(m)}(r) J_{\nu(m)}(s)}{\beta_m^2} \frac{d_m}{\sigma_n} P_m(\xi \cdot \theta).$$
(20)

By the estimate (D1) for Bessel functions we can prove that the series that define $\mathcal{K}(x, y)$ converges absolutely and uniformly on compacts subsets of $\mathbb{R}^n \times \mathbb{R}^n$. Since $Z_m(\xi, \theta)$ is real then $\mathcal{K}(x, y)$ is symmetric.

The orthogonal projection of \mathcal{H}^2 onto \mathcal{W}^2 is given by

$$\mathcal{P}u = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} \langle u, \beta_m^{-1} F_m^j \rangle_{\mathcal{H}^2} \beta_m^{-1} F_m^j,$$

with convergence in \mathcal{W}^2 and also pointwise.

For $x \in \mathbb{R}^n$ fixed, we have

$$\mathcal{P}u(x) = \langle u, \mathcal{K}(x, \cdot) \rangle_{\mathcal{H}^{2}} = \int_{\mathbb{R}^{n}} \left(\mathcal{K}(x, y)u(y) + \frac{\partial \mathcal{K}}{\partial s}(x, y)\frac{\partial u}{\partial s}(y) + \nabla_{S_{\theta}}\mathcal{K}(x, y) \cdot \nabla_{S_{\theta}}u(y) \right) \frac{dy}{\langle y \rangle^{3}}.$$
(21)

The function $\mathcal{K}(x, y)$ is the reproducing kernel for the space \mathcal{W}^2 .

The following lemma shows that after a topological isomorphism of W^2 , the kernel $\mathcal{K}(x, y)$ has a closed form.

We call \mathcal{M} a multiplier on the sphere \mathbb{S}^{n-1} defined by a complex sequence $\{\mu_m\}$ to the operator

$$\mathcal{M}\left(\sum_{m,j} a_{mj} Y_m^j(\xi)\right) = \sum_{m,j} \mu_m a_{mj} Y_m^j(\xi)$$

for any finite sum $\sum_{m,j} a_{mj} Y_m^j(\xi)$.

Lemma 5 Let \mathcal{M} be the multiplier on the sphere \mathbb{S}^{n-1} defined by the sequence $\{\beta_m^2\}$. Then, \mathcal{M} is a topological isomorphism of \mathcal{W}^2 onto itself, where here

$$\mathcal{M}\left(\sum_{m,j}a_{mj}F_m^j(\xi)\right) = \sum_{m,j}\beta_m^2 a_{mj}F_m^j(\xi).$$

Moreover, the kernel function of the composition $\mathcal{M} \circ \mathcal{P}$ is

$$\widetilde{\mathcal{K}}(x, y) = (2\pi |x - y|)^{-(n-2)/2} J_{\frac{n-2}{2}}(|x - y|),$$
(22)

namely $(\mathcal{M} \circ \mathcal{P})u(x) = \langle u, \widetilde{\mathcal{K}}(x, \cdot) \rangle_{\mathcal{H}^2}.$

Proof Since $c \leq \beta_m^2 \leq C$ for some constants c, C > 0, then it is clear that \mathcal{M} is a topological isomorphism of \mathcal{W}^2 onto itself. In particular, by (19), (8) and (9), we have that

$$\begin{split} \mathcal{K}(x, y) &:= \mathcal{M}\mathcal{K}(x, y) \\ &= \frac{2\pi}{\sigma_n} \sum_{m=0}^{\infty} d_m r^{-(n-2)/2} J_{m+\frac{n-2}{2}}(r) s^{-(n-2)/2} J_{m+\frac{n-2}{2}}(s) P_m(\xi \cdot \theta) \\ &= (2\pi |x-y|)^{-(n-2)/2} J_{\frac{n-2}{2}}(|x-y|), \end{split}$$

where \mathcal{M} may be thought of as acting on ξ or on θ .

In \mathcal{H}^2 , the kernel $\widetilde{\mathcal{K}}(x, y)$ defines a continuous operator $\widetilde{\mathcal{P}}$ on \mathcal{H}^2 given by

$$\widetilde{\mathcal{P}}u(x) = \int_{\mathbb{R}^n} \left(\widetilde{\mathcal{K}}(x, y)u(y) + \frac{\partial \widetilde{\mathcal{K}}}{\partial s}(x, y)\frac{\partial u}{\partial s}(y) + \nabla_{S_\theta}\widetilde{\mathcal{K}}(x, y) \cdot \nabla_{S_\theta}u(y) \right) \frac{dy}{\langle y \rangle^3}.$$

Let \mathcal{H}_0 be the linear span of the set $\{A(r)Y_m^j(\xi) : A \in C_c^{\infty}(0,\infty)\}_{m,j}$. We can prove that $\widetilde{\mathcal{P}} = \mathcal{M} \circ \mathcal{P}$ in \mathcal{H}_0 . Since \mathcal{H}_0 is dense in \mathcal{H}^2 , we conclude that $\widetilde{\mathcal{P}} = \mathcal{M} \circ \mathcal{P}$. \Box

Below we will need to study the continuity of the multiplier \mathcal{M} in $L^p(\mathbb{S}^{n-1})$. For this we will use the next two results by Strichartz and Bonami–Clerc proved in [13] and [6], respectively.

Theorem 5 Let m(x) be a function of a real variable satisfying

$$|x^k m^{(k)}(x)| \le A$$
 for $k = 0, ..., a$.

If $m_j = m(j)$ then $\{m_j\} \in \mathcal{M}_p(\mathbb{S}^{n-1})$ for

$$\left|\frac{1}{p} - \frac{1}{2}\right| < \frac{a}{n-1}, \ p \neq 1, \ \infty,$$

where $\mathcal{M}_p(\mathbb{S}^{n-1})$ denotes the space of all L^p -multipliers on the sphere \mathbb{S}^{n-1} .

Theorem 6 Let $N = \left[\frac{n-1}{2}\right]$ and $\{\mu_k\}_{k\geq 0}$ be a sequence of complex numbers such that

$$\begin{aligned} (A_0) \ |\mu_k| &\leq C, \\ (A_N) \ \sup_{j \geq 0} 2^{j(N-1)} \sum_{k=2^j}^{2^{j+1}} |\Delta^N \mu_k| &\leq C. \end{aligned}$$

Then $\{\mu_k\} \in \mathcal{M}_p(\mathbb{S}^{n-1})$ for $1 . Here <math>\Delta$ denotes the forward difference operator given by $\Delta \mu_k = \mu_{k+1} - \mu_k$.

Theorem 7 For $1 , the operators <math>\mathcal{M}$ and \mathcal{M}^{-1} are continuous on $L^p(\mathbb{S}^{n-1})$. That is, the sequences $\{\beta_m^2\}$ and $\{\beta_m^{-2}\}$ define bounded multipliers on $L^p(\mathbb{S}^{n-1})$.

Proof By (6) and (18) we obtain that for all $m \ge 2$,

$$\beta_m^2 = 2 + R(m)$$

with $R(m) = \frac{P(m)}{Q(m)}$ for some polynomials $P \neq Q$ of degree 4 and 6, respectively. Thus, to prove the continuity of \mathcal{M} it is enough to show that the sequence $\{R(m)\}$ defines a bounded multiplier on $L^p(\mathbb{S}^{n-1})$. We have that $R^{(k)}(x) \sim \frac{1}{|x|^{k+2}}$ for |x| large. Hence,

$$|x^k R^{(k)}(x)| \le A,$$

for all $k \in \mathbb{N} \cup \{0\}$. Then by Theorem 5, the above inequality implies that $\{R(m)\}$ defines a bounded multiplier on $L^p(\mathbb{S}^{n-1})$ for $1 . To prove the continuity of <math>\mathcal{M}^{-1}$, it suffices to prove the continuity of the multiplier defined by the sequence $\{\gamma_m\}$ given by

$$\gamma_m = \frac{1}{1 + \frac{R(m)}{2}}.$$

For *m* large and $L \in \mathbb{N}$ fixed, there exists a sequence $\{r_m\}$ such that

$$\gamma_m = 1 - \frac{R(m)}{2} + \frac{R(m)^2}{2^2} - \dots + \frac{R(m)^{L-1}}{2^{L-1}} + r(m),$$

 $|r(m)| \sim O(\frac{1}{m^{2L}})$. Using Strichartz's Theorem we see that each $\{R(m)^k\}$ defines a bounded multiplier in $L^p(\mathbb{S}^{n-1})$ for $1 and <math>k = 0, 1, \dots, L-1$. Thus, to end the proof we will show that if we choose *L* large enough, $\{r(m)\}$ defines a bounded multiplier in $L^p(\mathbb{S}^{n-1})$. Let $N = \lfloor \frac{n-1}{2} \rfloor$, then for *m* large,

$$\sum_{m=2^{j}}^{2^{j+1}} \left| \Delta^{N} r_{m} \right| = \sum_{m=2^{j}}^{2^{j+1}} \left| \sum_{i=0}^{N} (-1)^{i} \binom{N}{i} r_{m-i} \right|$$
$$\leq \frac{C_{N,L}}{2^{2jL}}$$

for all $j \ge 2$. Therefore,

$$2^{j(N-1)} \sum_{m=2^{j}}^{2^{j+1}} \left| \Delta^{N} r_{m} \right| \le C_{L} 2^{j(N-2L)} = O(1)$$

if we choose any L > N/2. By Theorem 6, we conclude that $\{r_m\}$ defines a bounded multiplier on $L^p(\mathbb{S}^{n-1})$.

Remark 2 By (18), we have that

$$\|u\|_{\mathcal{H}^2} \sim \left(\int_{\mathbb{R}^n} \left(|u(x)|^2 + |\nabla_S u(x)|^2\right) \frac{dx}{\langle x \rangle^3}\right)^{1/2}$$

for $u \in \mathcal{H}^2$.

Hence we may replace \mathcal{H}^2 by the Hilbert space \mathcal{H}'^2 with the norm

$$\|u\|_{\mathcal{H}^{2}} = \left(\int_{\mathbb{R}^{n}} \left(|u(x)|^{2} + |\nabla_{S}u(x)|^{2} \right) \frac{dx}{\langle x \rangle^{3}} \right)^{1/2},$$
(23)

to define the kernel

$$\mathcal{K}'(x, y) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} \frac{F_m^j(x) \overline{F_m^j(y)}}{\gamma_m^2},$$

where $\gamma_m = \|F_m\|_{\mathcal{H}^{/2}} \sim \sqrt{2} + O\left(\frac{1}{m^2}\right)$. In this case, the orthogonal projection \mathcal{P}' on \mathcal{H}'^2 is given by

$$\mathcal{P}'u(x) = \int_{\mathbb{R}^n} \left(\mathcal{K}'(x, y)u(y) + (-\Delta_{S_\theta})^{1/2} \mathcal{K}'(x, y)(-\Delta_{S_\theta})^{1/2} u(y) \right) \frac{dy}{\langle y \rangle^3}.$$
 (24)

3 Structure and Properties of W^p

Now we give estimates of the kernel $\widetilde{\mathcal{K}}(x, y)$.

Lemma 6 Consider $\widetilde{\mathcal{K}}(x, y) = \frac{J_{\frac{n-2}{2}}(|x-y|)}{(2\pi|x-y|)^{(n-2)/2}}$, $y = s\theta$ in the polar form. Then we have the following pointwise estimates:

$$\left|\tilde{\mathcal{K}}(x, y)\right| \le \frac{C}{(1+|x-y|)^{\frac{n-1}{2}}},$$
(25)

$$\left|\frac{\partial}{\partial s}\widetilde{\mathcal{K}}(x,y)\right| \le \frac{C}{\left(1+|x-y|\right)^{\frac{n-1}{2}}},\tag{26}$$

$$\left|\nabla_{S_{\theta}}\widetilde{\mathcal{K}}(x, y)\right| \leq \frac{C|x||y|}{\left(1 + |x - y|\right)^{\frac{n+1}{2}}}.$$
(27)

Proof The inequality (25) follows from (4) and the fact that the function $J_{\frac{n-2}{2}}(r)$ has a zero of order (n-2)/2 at r = 0. Similarly, we can obtain (26).

To prove (27) we estimate any directional derivative D_{ν} of $\widetilde{\mathcal{K}}$ in the direction of a unit vector ν tangent to \mathbb{S}^{n-1} . Using (3), we have that

$$\begin{aligned} |D_{\nu}\widetilde{\mathcal{K}}(x,s\theta)| &= s |\nabla_{y}\widetilde{\mathcal{K}}(x,y) \cdot \nu| \\ &= C|y| \left| \frac{J_{\frac{n}{2}}(|x-y|)}{|x-y|^{n/2}}(x-y) \cdot \nu \right| \\ &= C|y| \left| \frac{J_{\frac{n}{2}}(|x-y|)}{|x-y|^{\frac{n}{2}}}x \cdot \nu \right| \\ &\leq C|y| \left| \frac{J_{\frac{n}{2}}(|x-y|)}{|x-y|^{\frac{n}{2}}} \right| |x|. \end{aligned}$$

Thus in particular we obtain (27).

Proposition 1 Let

$$\alpha_n = \begin{cases} 1 & \text{if } n = 2, 3, 4, 5\\ \frac{2(n-3)}{n-1} & \text{if } n > 5. \end{cases}$$

If $p > \alpha_n$ then $\widetilde{\mathcal{K}}(x, .)$, $\frac{\partial}{\partial s}\widetilde{\mathcal{K}}(x, .)$ and $\nabla_{S_\theta}\widetilde{\mathcal{K}}(x, .)$ belong to $L^p(\frac{dy}{\langle y \rangle^3})$ for each $x \in \mathbb{R}^n$.

Proof In fact, using the estimates given in the Lemma 6 and Peetre's inequality $(1 + |x - y|)^{-1} \le C(1 + |x|)/(1 + |y|)$, we have

$$\begin{split} \left(\int_{\mathbb{R}^n} \left| \widetilde{\mathcal{K}}(x, y) \right|^p \frac{dy}{\langle y \rangle^3} \right)^{1/p} &\leq C \left(\int_{\mathbb{R}^n} \frac{1}{(1+|x-y|)^{\frac{n-1}{2}p}} \frac{dy}{\langle y \rangle^3} \right)^{1/p} \\ &\leq C(1+|x|)^{\frac{n-1}{2}} \left(\int_{\mathbb{R}^n} \frac{1}{(1+|y|)^{\frac{n-1}{2}p}} \frac{dy}{\langle y \rangle^3} \right)^{1/p} \\ &\leq C(x) < \infty. \end{split}$$

Similarly, $\frac{\partial}{\partial s} \widetilde{\mathcal{K}}(x, .) \in L^p\left(\frac{dy}{\langle y \rangle^3}\right)$. Finally,

$$\begin{split} \left(\int_{\mathbb{R}^{n}} \left| \nabla_{S_{\theta}} \widetilde{\mathcal{K}}(x, y) \right|^{p} \frac{dy}{\langle y \rangle^{3}} \right)^{1/p} &\leq C |x| \left(\int_{\mathbb{R}^{n}} \frac{|y|^{p}}{(1+|x-y|)^{\frac{n+1}{2}p}} \frac{dy}{\langle y \rangle^{3}} \right)^{1/p} \\ &\leq C |x| (1+|x|)^{\frac{n+1}{2}} \left(\int_{\mathbb{R}^{n}} \frac{|y|^{p}}{(1+|y|)^{\frac{n+1}{2}p}} \frac{dy}{\langle y \rangle^{3}} \right)^{1/p} \\ &\leq C |x| (1+|x|)^{\frac{n+1}{2}} \left(\int_{\mathbb{R}^{n}} \frac{1}{(1+|y|)^{\frac{n-1}{2}p}} \frac{dy}{\langle y \rangle^{3}} \right)^{1/p} \end{split}$$

🔇 Birkhäuser

$$\leq C(x) < \infty$$

Proposition 2 If $p > \alpha_n$ then $F_m^j \in W^p$ for any m, j. Moreover, $W^p \neq \{0\}$ if and only if $p > \alpha_n$.

Proof We know that F_m^j is an entire solution of the Helmholtz equation and if $p > \alpha_n$, $F_m^j \in L^p\left(\frac{dx}{\langle x \rangle^3}\right)$. In fact, by (4)

$$F_m^j \in L^p(\langle x \rangle^{-3} dx) \Longleftrightarrow \int_0^\infty \left| \frac{J_{\nu(m)}(r)}{r^{(n-2)/2}} \right|^p \frac{r^{n-1} dr}{(1+r^2)^{3/2}} < \infty$$
$$\longleftrightarrow \int_0^\infty r^{(n-1)-\frac{p}{2}(n-1)+3} dr < \infty$$

whenever $p > \alpha_n$. Thus, $F_m^j \in W^p$. Now suppose that $W^p \neq \{0\}$. Let $u \in W^p$, $u \neq 0$. Then $u = \sum_{m,j} a_{mj} F_{mj}$ with some $a_{mj} \neq 0$. We have that $u(r\xi)Y_k^l(\xi) \in L^p\left(\frac{dx}{\langle x \rangle^3}\right)$. If φ is a radial function such that $\varphi(|x|) \in L^{p'}\left(\frac{dx}{\langle x \rangle^3}\right)$ and $\|\varphi\|_{L^{p'}(\frac{p^{n-1}}{\langle r \rangle^3})} \le 1$, then by Hölder's inequality

$$\int_{\mathbb{R}^n} \left| u(x) Y_k^l(\xi) \varphi(|x|) \right| \frac{dx}{\langle x \rangle^3} \le C,$$

which implies that

$$\int_0^\infty \left| \frac{J_{\nu(k)}(r)}{r^{(n-2)/2}} \varphi(r) \right| \frac{r^{n-1}}{\langle r \rangle^3} dr \le C.$$

Consequently, by duality

$$\int_0^\infty \left| \frac{J_{\nu(k)}(r)}{r^{(n-2)/2}} \right|^p \frac{r^{n-1}dr}{(1+r^2)^{3/2}} < \infty,$$

and this implies that $p > \alpha_n$.

Theorem 8 For $1 , <math>W^p$ is a Banach space.

Proof Let v any entire solution of the Helmholtz equation and let $\Phi(x, y)$ be the fundamental solution of the Helmholtz equation in \mathbb{R}^n [1, p. 42], given as

$$\Phi(x, y) = \frac{i}{4} (2\pi |x - y|)^{-(n-2)/2} H^1_{\frac{n-2}{2}}(|x - y|).$$

Birkhäuser

Let $x \in \mathcal{B}_R$ fixed with R > 1. Using a Green's identity for the functions v and $\Phi(x, \cdot)$ we have (see [7, p. 68–69]) for $\rho > R$,

$$v(x) = \rho^{n-1} \int_{\mathbb{S}^{n-1}} \left(\frac{\partial v}{\partial s}(\rho\omega) \Phi(x, \rho\omega) - \frac{\partial \Phi}{\partial s}(x, \rho\omega) v(\rho\omega) \right) d\sigma(\omega).$$

Next, integrating both sides above with respect to $\frac{d\rho}{(1+\rho^2)^{3/2}}$ on the interval [2*R*, 3*R*], we have the integral representation of *v* for points of \mathcal{B}_R ,

$$v(x) = C_R \int_{2R \le |y| \le 3R} \left(\frac{\partial v}{\partial s}(y) \Phi(x, y) - \frac{\partial \Phi}{\partial s}(x, y) v(y) \right) \frac{dy}{\langle y \rangle^3}.$$
 (28)

Now we prove that W^p is closed in H^p . Differentiating under the integral in (28) and using Hölder's inequality we have that on any compact set *K*, any partial derivative

$$\left|\frac{\partial^{\alpha} u}{\partial x^{\alpha}}(x)\right| \leq C_{K,\alpha} \|u\|_{\mathcal{H}^p}, \quad u \in \mathcal{W}^p, \ x \in K.$$

Let $\{u_n\}$ be a sequence in \mathcal{W}^p converging to $u \in \mathcal{H}^p$. Taking a subsequence if necessary, assume that the convergence is also almost everywhere. The relation (28) implies that $\{u_n\}$ (and all their derivatives) is a Cauchy sequence uniformly in compact subsets of \mathbb{R}^n , converging to a limit \tilde{u} , that satisfies the Helmholtz equation. Then $u = \tilde{u}$ and $u \in \mathcal{W}^p$.

Remark 3 Using the integral representation (28) we can see that the evaluation functional $\mathcal{W}^p \longrightarrow \mathbb{C}, v \longmapsto v(x)$ is continuous for every $x \in \mathbb{R}^n$.

Given $f(\xi) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} a_{mj} Y_m^j(\xi) \in L^p(\mathbb{S}^{n-1})$, the Riesz means R_N^{δ} of f of order δ is defined by

$$R_N^{\delta} f(\xi) = \sum_{k=0}^N \sum_{j=1}^{d_k} \left(1 - \frac{k}{N+1} \right)^{\delta} a_{kj} Y_k^j(\xi).$$

We will need the following theorem (see [6]) about the convergence of Riesz means to study the density of the linear span of $\{F_m^j\}$ in \mathcal{W}^p .

Theorem 9 Let $1 \le p \le \infty$. If $\delta > (n-2)/2$, then for $f \in L^p(\mathbb{S}^{n-1})$,

$$R_N^{\delta} f \to f \quad in \, L^p(\mathbb{S}^{n-1}),$$

moreover, the Riesz means are uniformly bounded on $L^p(\mathbb{S}^{n-1})$, that is, there exists a uniform constant $C_{p,\delta}$ such that

$$\|R_N^{\delta}f\|_{L^p(\mathbb{S}^{n-1})} \le C_{p,\delta}\|f\|_{L^p(\mathbb{S}^{n-1})}$$

for all N.

Theorem 10 Let $p > \alpha_n$ and \mathcal{W}_0^p the linear span of $\{F_m^j\}_{m,j}$. Then \mathcal{W}_0^p is dense in \mathcal{W}^p .

Proof Given $u \in W^p$, the proof of the surjectivity in Theorem 4 shows that there exists $a_{mj} \in \mathbb{C}$ such that

$$u(r\xi) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} a_{mj} F_m^j(r\xi),$$

where the convergence is absolute and uniform in compact subsets of \mathbb{R}^n . Let *r* fixed and $\delta > (n-2)/2$, and we consider the Riesz means R_N^{δ} of *u* of order δ . By Proposition 2, $R_N^{\delta} u \in \mathcal{W}^p$ for $p > \alpha_n$.

Let $\Lambda_N^p(r)$ the integral given by

$$\begin{split} \Lambda^p_N(r) &= \int_{\mathbb{S}^{n-1}} \left(\left| (R^{\delta}_N u - u)(r\xi) \right|^p + \left| \frac{\partial}{\partial r} (R^{\delta}_N u - u)(r\xi) \right|^p \right. \\ &+ \left| (-\Delta_S)^{1/2} (R^{\delta}_N u - u)(r\xi) \right|^p \right) d\sigma(\xi). \end{split}$$

By the Theorem 9 we have that $R_N^{\delta} u \longrightarrow u$ and $\frac{\partial}{\partial r} R_N^{\delta} u \longrightarrow \frac{\partial u}{\partial r}$ in $L^p(\mathbb{S}^{n-1})$ as $N \to \infty$. Since $(-\Delta_S)^{1/2}(R_N^{\delta} u) = R_N^{\delta}((-\Delta_S)^{1/2}u)$ we deduce that $(-\Delta_S)^{1/2}R_N^{\delta}u$ converges to $(-\Delta_S)^{1/2}u$ in $L^p(\mathbb{S}^{n-1})$. Hence

$$\lim_{N \to \infty} \Lambda_N^p(r) = 0.$$

Also, using the uniform boundedness of the Riesz means (Theorem 9) we obtain

$$\Lambda_N^p(r) \le C \int_{\mathbb{S}^{n-1}} \left(|u(r\xi)|^p + \left| \frac{\partial}{\partial r} u(r\xi) \right|^p + \left| (-\Delta_S)^{1/2} u(r\xi) \right|^p \right) d\sigma(\xi),$$

that is, $\Lambda_N^p(r) \leq Cg(r)$ with $g \in L^1(\mathbb{R}^+, \frac{r^{n-1}dr}{(1+r^2)^{3/2}})$. Then applying the Lebesgue's Dominated Convergence Theorem we have

$$0 = \int_0^\infty \lim_{N \to \infty} \Lambda_N^p(r) r^{n-1} \frac{dr}{(1+r^2)^{3/2}} = \lim_{N \to \infty} \int_0^\infty \Lambda_N^p(r) r^{n-1} \frac{dr}{(1+r^2)^{3/2}}.$$

Therefore, $R_N^{\delta} u$ converges to u in \mathcal{H}^p . So, we conclude that the linear span of $\{F_m^j\}_{m,j}$ is dense in \mathcal{W}^p .

Remark 4 By Theorems 7 and 10, we have that \mathcal{M} and \mathcal{M}^{-1} are continuous in \mathcal{W}^p for any $p > \alpha_n$.

Now we will prove a reproducing property of the orthogonal projection \mathcal{P} for the space \mathcal{W}^p .

Theorem 11 Let $\alpha_n . Given <math>u \in \mathcal{H}^p$, then $u \in \mathcal{W}^p$ if and only if $\mathcal{P}u = u$.

Proof Let $u \in W^p$ and $\alpha_n . By Theorem 10, there exists a sequence <math>\{u_n\} \subseteq W_0^p \subseteq W^2$ such that $u_n \to u$ in \mathcal{H}^p for $p > \alpha_n$. Also, since \mathcal{P} is continuous in \mathcal{W}^2 , then $\mathcal{P}u_n = u_n$. On the other hand, by Remark 3, we have that $u_n(x) \to u(x)$ for every $x \in \mathbb{R}^n$. So, to end the proof it is enough to see that $\mathcal{P}u_n(x) \to \mathcal{P}u(x)$ for all $x \in \mathbb{R}^n$. In effect,

$$\begin{aligned} |\mathcal{P}u_n(x) - \mathcal{P}u(x)| &\leq \int_{\mathbb{R}^n} |\mathcal{K}(x, y)| \left| (u_n - u)(y) \right| \frac{dy}{\langle y \rangle^3} \\ &+ \int_{\mathbb{R}^n} \left| \frac{\partial \mathcal{K}}{\partial s}(x, y) \right| \left| \frac{\partial}{\partial s} (u_n - u)(y) \right| \frac{dy}{\langle y \rangle^3} \\ &+ \int_{\mathbb{R}^n} \left| \nabla_{S_{\theta}} \mathcal{K}(x, y) \right| \left| \nabla_{S_{\theta}} (u_n - u)(y) \right| \frac{dy}{\langle y \rangle^3}. \end{aligned}$$

Since by Proposition 1, $\widetilde{\mathcal{K}}(x, .)$, $\frac{\partial \widetilde{\mathcal{K}}}{\partial s}(x, .)$ and $|\nabla_{S_{\theta}}\widetilde{\mathcal{K}}(x, .)| \in L^{p'}\left(\frac{dy}{\langle y \rangle^3}\right)$, applying the Hölder's inequality we have that

$$|u_n(x) - \mathcal{P}u(x)| = |\mathcal{P}u_n(x) - \mathcal{P}u(x)| \le C(x) ||u_n - u||_{\mathcal{H}^p}^p \longrightarrow 0.$$

Since we also have that $u_n(x) \longrightarrow u(x)$ we conclude that Pu(x) = u(x).

To prove the converse, let $u \in \mathcal{H}^p$ and suppose u = Pu, then

$$(\Delta + 1)_{x}u(x) = \int_{\mathbb{R}^{n}} (\Delta + 1)_{x} \left(\mathcal{K}(x, y)u(y) + \frac{\partial \mathcal{K}}{\partial s}(x, y)\frac{\partial u}{\partial s}(y) + \nabla_{S_{\theta}}\mathcal{K}(x, y) \cdot \nabla_{S_{\theta}}u(y) \right) \frac{dy}{\langle y \rangle^{3}} = 0.$$

since $\mathcal{K}(., y)$ satisfies the Helmholtz equation in \mathbb{R}^n for each $y \in \mathbb{R}^n$. Therefore, $u \in W^p$.

4 Continuity of \mathcal{P}' in Mixed-Normed Spaces

In this section we prove a positive result about the continuity of \mathcal{P} on mixed-normed spaces, generalizing the results in [4] for n > 2.

Definition 2 Let $1 \le p < \infty$, the mixed-normed space $L^p(\mathbb{R}^+; d\mu)(L^2(\mathbb{S}^{n-1}))$ consisting of all the measurable functions $f(r\xi)$ such that

$$\|f\|_{L^{p,2}}^{p} := \int_{0}^{\infty} \left(\int_{\mathbb{S}^{n-1}} |f(r\xi)|^{2} d\sigma(\xi) \right)^{\frac{p}{2}} d\mu(r) < \infty,$$

where $d\mu(r) := r^{n-1}/(1+r^2)^{3/2}dr$.

From now on we will write $L^p(\mathbb{R}^+; d\mu)(L^2(\mathbb{S}^{n-1}))$ as $L^{p,2}$.

Definition 3 For $1 \le p < \infty$, we denote by $\mathcal{H}^{p,2}$ the closure of $C_c^{\infty}(\mathbb{R}^n)$ with respect to the mixed-norm

$$\begin{aligned} \|u\|_{\mathcal{H}^{p,2}}^{p} &:= \int_{0}^{\infty} \left(\int_{\mathbb{S}^{n-1}} (|u(r\xi)|^{2} + |\nabla_{S}u(r\xi)|^{2}) d\sigma(\xi) \right)^{\frac{p}{2}} d\mu(r) \\ &\sim \int_{0}^{\infty} \left(\int_{\mathbb{S}^{n-1}} (|u(r\xi)|^{2} + |(-\Delta_{S})^{1/2}u(r\xi)|^{2}) d\sigma(\xi) \right)^{\frac{p}{2}} d\mu(r), \end{aligned}$$

and denote by $W^{p,2}$ the space of all functions $u \in \mathcal{H}^{p,2}$ satisfying the Helmholtz $\Delta u + u = 0$ in \mathbb{R}^n .

To study the continuity of \mathcal{P}' in $\mathcal{H}^{p,2}$, we introduce the operator T defined by

$$Tu(r\xi) = (-\Delta_{S_{\xi}})^{1/2} \int_{\mathbb{R}^{n}} (-\Delta_{S_{\theta}})^{1/2} \mathcal{K}'(x, y) u(y) \frac{dy}{\langle y \rangle^{3}}.$$
 (29)

T is well defined when $p < \alpha'_n$. In fact, for $u \in L^{p,2}$, by Hölder's inequality, Theorem 3 and Proposition 1, we have

$$\begin{split} & \left| \int_{\mathbb{R}^n} (-\Delta_{S_\theta})^{1/2} \mathcal{K}'(x, y) u(y) \frac{dy}{\langle y \rangle^3} \right| \\ & \leq \left\| (-\Delta_{S_\theta})^{1/2} \mathcal{K}'(x, \cdot) \right\|_{L^{p',2}\left(\mathbb{R}^n, \frac{dy}{\langle y \rangle^3}\right)} \|u\|_{L^{p,2}\left(\mathbb{R}^n, \frac{dy}{\langle y \rangle^3}\right)} \\ & \leq C \left\| \nabla_S \mathcal{K}'(x, \cdot) \right\|_{L^{p',2}\left(\mathbb{R}^n, \frac{dy}{\langle y \rangle^3}\right)} \|u\|_{L^{p,2}\left(\mathbb{R}^n, \frac{dy}{\langle y \rangle^3}\right)} \\ & < \infty. \end{split}$$

Lemma 7 Let w(r) be a non-negative function such that $w^{\beta} \in A_2(d\tilde{\mu}(r))$ for some $\beta > 2$. Then

$$n^{4} \int_{0}^{\infty} |J_{n}(r)|^{2} w(r) d\tilde{\mu}(r) \int_{0}^{\infty} |J_{n}(r)|^{2} w^{-1}(r) d\tilde{\mu}(r) \leq C,$$

where C independent of n.

The proof of this lemma can be found in [4] and we have the following version.

Lemma 8 Let w(r) be a non-negative function and suppose there exists $\beta > 2$ such that $w^{\beta} \in A_2(d\tilde{\mu}(r))$ and $-a = (n-2)(1-\frac{2}{p}) < 2-\frac{1}{\beta}$. Then

$$m^{4} \int_{0}^{\infty} |J_{\nu(m)}(r)|^{2} r^{a} w(r) d\tilde{\mu}(r) \int_{0}^{\infty} |J_{\nu(m)}(r)|^{2} r^{-a} w^{-1}(r) d\tilde{\mu}(r) \le C, \quad (30)$$

where C is independent of m.

Proof Let I^1 and I^2 be the integrals given by

$$I^{1} = \int_{0}^{\infty} \left| J_{\nu(m)}(r) \right|^{2} r^{a} w(r) d\tilde{\mu}(r)$$

and

$$I^{2} = \int_{0}^{\infty} |J_{\nu(m)}(r)|^{2} r^{-a} w^{-1}(r) d\tilde{\mu}(r),$$

respectively.

We split these integrals as

$$I^{1} = \int_{0}^{1} + \int_{1}^{\nu(m)\operatorname{sech}\alpha_{0}} + \int_{\nu(m)\operatorname{sech}\alpha_{0}}^{2\nu(m)} + \int_{2\nu(m)}^{\infty} = \sum_{i=1}^{4} I_{i}^{1}$$

and

$$I^{2} = \int_{0}^{1} + \int_{1}^{\nu(m)\operatorname{sech}\alpha_{0}} + \int_{\nu(m)\operatorname{sech}\alpha_{0}}^{2\nu(m)} + \int_{2\nu(m)}^{\infty} = \sum_{j=1}^{4} I_{j}^{2}.$$

We proceed as in the proof of Lemma 7. We will prove that

$$m^4 I_i^1 I_j^2 \le C; \quad i, j \in \{1, 2, 3, 4\}.$$

Suppose $m \ge 1$, then by Hölder's inequality and the estimates of Bessel functions (D1)-(D4) we have

$$\begin{split} I_{1}^{1} &\leq \tilde{\mu}([0,1])^{1/\beta} \left(\int_{0}^{1} |J_{\nu(m)}(r)|^{2\beta'} r^{a\beta'} d\tilde{\mu}(r) \right)^{1/\beta'} \left(\frac{1}{\tilde{\mu}([0,1])} \int_{0}^{1} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta} \\ &\leq \frac{C}{(2^{m}m!)^{2}} \left(\int_{0}^{1} r^{(n-2)\beta' + a\beta'} d\tilde{\mu}(r) \right)^{1/\beta'} \left(\frac{1}{\tilde{\mu}([0,1])} \int_{0}^{1} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta} \\ &\leq \frac{C}{(2^{m}m!)^{2}} \left(\frac{1}{\tilde{\mu}([0,1])} \int_{0}^{1} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}, \end{split}$$

$$\begin{split} I_{4}^{1} &\leq \frac{C}{\nu(m)^{1/\beta}} \left(\int_{2\nu(m)}^{\infty} r^{-\beta' + a\beta'} d\tilde{\mu}(r) \right)^{1/\beta'} \left(\frac{1}{\tilde{\mu}([2\nu(m), \infty])} \int_{2\nu(m)}^{\infty} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta} \\ &\leq \frac{C\nu(m)^{a}}{m^{2}} \left(\frac{1}{\tilde{\mu}([2\nu(m), \infty])} \int_{2\nu(m)}^{\infty} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta} \end{split}$$

and

$$\begin{split} I_{2}^{1} &\leq C \left(\int_{1}^{\nu(m)c} e^{-2\nu(m)\beta'\phi(r)} \, dr \right)^{1/\beta'} \left(\frac{1}{\tilde{\mu}([1,\nu(m)c])} \int_{1}^{\nu(m)c} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta} \\ &\leq \frac{C}{e^{2m\beta_{0}}} \left(\frac{1}{\tilde{\mu}([1,\nu(m)c])} \int_{1}^{\nu(m)c} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}, \end{split}$$

where $c = \operatorname{sech}\alpha_0$ for some $\alpha_0 > 0$, $\phi(r) = \alpha(r) - \tanh \alpha(r)$, $\beta_0 = \phi(\nu(m)c) = \alpha_0 - \tanh \alpha_0 > 0$ and the function $\alpha(r)$ is defined by the equation $\nu(m) \sinh \alpha(r) = r$.

In addition, by Lemma 1 we see that

$$I_{3}^{1} \leq \frac{C\nu(m)^{a}}{m^{2}} \left(\frac{1}{\tilde{\mu}([\nu(m)c, 2\nu(m)])} \int_{\nu(m)c}^{2\nu(m)} w^{\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}$$

Similarly, we have that

$$\begin{split} I_1^2 &\leq \frac{C}{(2^m m!)^2} \left(\frac{1}{\tilde{\mu}([0,1])} \int_0^1 w^{-\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}, \\ I_2^2 &\leq \frac{C\nu(m)^{-a}}{e^{2m\beta_0}} \left(\frac{1}{\tilde{\mu}([1,2\nu(m)c])} \int_1^{2\nu(m)c} w^{-\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}, \\ I_3^2 &\leq \frac{C\nu(m)^{-a}}{m^2} \left(\frac{1}{\tilde{\mu}([\nu(m)c,2\nu(m)])} \int_{\nu(m)c}^{2\nu(m)} w^{-\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}. \end{split}$$

Furthermore, using that $a > \frac{1}{\beta} - 2$ it follows that

$$I_4^2 \le \frac{C\nu(m)^{-a}}{m^2} \left(\frac{1}{\tilde{\mu}([2\nu(m),\infty])} \int_{2\nu(m)}^{\infty} w^{-\beta}(r) d\tilde{\mu}(r) \right)^{1/\beta}$$

Consequently, since $w^{\beta} \in A_2(d\tilde{\mu}(r))$,

$$m^4 I_i^1 I_j^2 \le C; \quad i, j \in \{1, 2, 3, 4\}.$$

Proposition 3 Let $\beta_n \in (1, \infty)$ such that

$$\beta'_n = \begin{cases} \infty & \text{if } n = 2, 3\\ 2 + \frac{4}{n-3} & \text{if } n > 3. \end{cases}$$

If $p \in (\beta_n, \beta'_n) \cap (4/3, 4)$ then T is a bounded operator on $L^{p,2}$. Moreover, if $p \notin (4/3, 4)$ then T cannot be extended to a bounded operator on $L^{p,2}$.

Proof First we note that $p \in (\beta_n, \beta'_n) \subset (\alpha_n, \alpha'_n)$ and then p satisfies $(n-1)(1-\frac{2}{p}) < 2$.

It suffices to prove the proposition for (β_n, β'_n) and $p \ge 2$, since *T* is self adjoint with respect to the duality $(f, g) \to \int_{\mathbb{R}^n} fg \frac{dx}{\langle x \rangle^3}$ of $L^{p,2}$ and $L^{p',2}$.

Next, expanding u in spherical harmonics, that is,

$$u(r\xi) = \sum_{m,j} u_{mj}(r) Y_m^j(\xi),$$

and using the Fourier expansion of the kernel \mathcal{K}' we have

$$Tu(r\xi) = \sum_{m,j} T_{mj} u_{mj}(r) Y_m^j(\xi),$$
(31)

where

$$T_{mj}f_{mj}(r) = Cm(m+n-2)J_{\nu(m)}(r)r^{-(n-2)/2}\int_0^\infty J_{\nu(m)}(s)s^{-(n-2)/2}f_{mj}(s)\,d\mu(s).$$
(32)

Showing that T is bounded on $L^{p,2}$ is equivalent to prove the vector-valued inequality,

$$\left(\int_{0}^{\infty} \left(\sum_{m,j} |T_{mj}u_{mj}(r)|^{2}\right)^{\frac{p}{2}} d\mu(r)\right)^{\frac{1}{p}} \leq C \left(\int_{0}^{\infty} \left(\sum_{m,j} |u_{mj}(r)|^{2}\right)^{\frac{p}{2}} d\mu(r)\right)^{\frac{1}{p}},$$
(33)

with C independent of m.

Let r be the dual exponent of p/2. By duality, there exists $h \in L^r(d\mu)$ with $||h||_{L^r(d\mu)} = 1$ such that

$$\left(\int_0^\infty \left(\sum_{m,j} |T_{mj}u_{mj}(s)|^2\right)^{\frac{p}{2}} d\mu(s)\right)^{\frac{2}{p}} = \int_0^\infty \sum_{m,j} |T_{mj}u_{mj}(s)|^2 h(s) d\mu(s).$$

Let $g(s) = s^{\frac{n-2}{r}}h(s)$ and $\tilde{\mu}$ the measure given by $d\tilde{\mu}(r) = \frac{rdr}{(1+r^2)^{3/2}}$. Notice that since p < 4 we have that r > 2, so we can choose γ such that $2 < \gamma \leq r$, then $g^{\gamma} \in L^1_{loc}(d\tilde{\mu}), g^{\gamma} \leq M_{\tilde{\mu}}(g^{\gamma})$ a.e. and

$$\left(\int_0^\infty \left(\sum_{m,j} |T_{mj}u_{mj}(s)|^2\right)^{\frac{p}{2}} d\mu(s)\right)^{\frac{2}{p}}$$

855

$$\begin{split} &= \int_{0}^{\infty} \sum_{m,j} |T_{mj} u_{mj}(s)|^{2} s^{-(n-2)/r} g(s) d\mu(s) \\ &= \int_{0}^{\infty} \sum_{m,j} |T_{mj} u_{mj}(s)|^{2} s^{(n-2)(1-1/r)} g(s) d\tilde{\mu}(s) \\ &\leq \sum_{m,j} \int_{0}^{\infty} |T_{mj} u_{mj}(s)|^{2} s^{2(n-2)/p} (M_{\tilde{\mu}}[g^{\gamma}](s))^{\frac{1}{\gamma}} d\tilde{\mu}(s) \\ &\leq C \sum_{m,j} m^{4} \int_{0}^{\infty} |J_{\nu(m)}(s)s^{-(n-2)/2}|^{2} s^{2(n-2)/p} w(s) d\tilde{\mu}(s) \\ &\times \int_{0}^{\infty} |J_{\nu(m)}(s)s^{-(n-2)/2}|^{2} s^{2(n-2)/p} w^{-1}(s) d\tilde{\mu}(s) \\ &\int_{0}^{\infty} |u_{mj}(s)|^{2} s^{2(n-2)/p} w(s) d\tilde{\mu}(s) \\ &\leq C \sum_{m,j} \int_{0}^{\infty} |u_{mj}(s)|^{2} s^{2(n-2)/p} w(s) d\tilde{\mu}(s) \\ &\times m^{4} \int_{0}^{\infty} |J_{\nu(m)}(s)|^{2} s^{-(n-2)(\frac{2}{p}-1)} w(s) d\tilde{\mu}(s), \\ &\int_{0}^{\infty} |J_{\nu(m)}(s)|^{2} s^{-(n-2)(\frac{2}{p}-1)} w^{-1}(s) d\tilde{\mu}(s), \end{split}$$

where $w(s) = (M_{\tilde{\mu}}[g^{\gamma}](s))^{\frac{1}{\gamma}}$. Furthermore, since $(n-1)(1-\frac{2}{p}) < 2$, we have that $(n-2)(\frac{2}{p}-1)-\frac{1}{r} > -2$. Then we can choose γ close enough to r so that for some $2 < \beta < \gamma$ we have $(n-2)(\frac{2}{p}-1)-\frac{1}{\beta} > -2$. We know (see [8, Theorem 7.7(1)]) that $M_{\tilde{\mu}}(g^{\gamma})^{\frac{\beta}{\gamma}} \in A_1(\tilde{\mu})$. Then since $M_{\tilde{\mu}}$ is bounded on $L^s(\tilde{\mu})$ for s > 1, by Lemma 8 and Hölder's inequality, we have

$$\begin{split} &\left(\int_{0}^{\infty} \left(\sum_{m,j} |T_{mj}u_{mj}(s)|^{2}\right)^{\frac{p}{2}} d\mu(s)\right)^{\frac{2}{p}} \\ &\leq C \int_{0}^{\infty} \sum_{m,j} |u_{mj}(s)|^{2} s^{2(n-2)/p} (M_{\tilde{\mu}}[g^{\gamma}](s))^{\frac{1}{\gamma}} d\tilde{\mu}(s) \\ &\leq C \left(\int_{0}^{\infty} \left(\sum_{m,j} |u_{mj}(s)|^{2} s^{2(n-2)/p}\right)^{\frac{p}{2}} d\tilde{\mu}(s)\right)^{\frac{2}{p}} \left(\int_{0}^{\infty} (M_{\tilde{\mu}}[g^{\gamma}](s))^{\frac{r}{\gamma}} d\tilde{\mu}(s)\right)^{\frac{1}{r}} \\ &\leq C \left(\int_{0}^{\infty} \left(\sum_{m,j} |u_{mj}(s)|^{2}\right)^{\frac{p}{2}} d\mu(s)\right)^{\frac{2}{p}}. \end{split}$$

Now we prove that T is not continuous on $L^{p,2}$ for $p \notin (4/3, 4)$.

Let $u(r\xi) = \sum_{m,j} u_{mj}(r) Y_m^j(\xi)$, where

$$u_{mj}(r\xi) = r^{\alpha} |J_{\nu(m)}(r)|^{p'-1} sgn(J_{\nu(m)}(r))\chi_{[\nu(m),2\nu(m)]}Y_m^j(\xi)$$
(34)

with $\alpha = -\frac{(n-2)}{2} \frac{1}{p-1}$ (see in [4], the sequence $\{f_n\}$ in the proof of Theorem 4). Writing $Tu(r\xi) = \sum_{m,j} T_{mj} u_{mj}(r) Y_m^j(\xi)$ as in (31), we have that

$$\|u_{mj}\|_{p,2} = \left(\int_{\nu(m)}^{2\nu(m)} |J_{\nu(m)}(r)|^{p'} r^{-(n-2)p'/2} d\mu(r)\right)^{1/p}$$

and

$$\|T_{mj}u_{mj}\|_{p,2} \ge Cm(m+n-2) \left(\int_{\nu(m)}^{2\nu(m)} |J_{\nu(m)}(r)|^p r^{-(n-2)p/2} d\mu(r) \right)^{1/p} \times \|u_{mj}\|_{p,2}^p$$

Therefore,

$$\frac{\|T_{mj}u_{mj}\|_{p,2}}{\|u_{mj}\|_{p,2}} \ge C \left(\int_{\nu(m)}^{2\nu(m)} |J_{\nu(m)}(r)|^p dr \right)^{1/p} \left(\int_{\nu(m)}^{2\nu(m)} |J_{\nu(m)}(r)|^{p'} dr \right)^{1/p'},$$

and using the Lemma 1 we see that this last expression is not bounded if $p \notin (4/3, 4)$.

Now, we are ready to demonstrate the main theorem of this section.

Theorem 12 If $p \in (\beta_n, \beta'_n) \cap (4/3, 4)$ then \mathcal{P}' can be extended to a bounded operator on $\mathcal{H}^{p,2}$. Moreover, if $p \notin (4/3, 4)$ then \mathcal{P}' cannot be extended to a bounded operator on $\mathcal{H}^{p,2}$. In particular, for $n = 2, 3, 4, 5, \mathcal{P}'$ is continuous on $\mathcal{H}^{p,2}$ if and only if $p \in (4/3, 4)$.

Proof Let $p \in (\beta_n, \beta'_n) \cap (4/3, 4)$. To prove the $L^{p,2}$ boundedness of \mathcal{P}' , it suffices to prove that the operators T_1, T_2, T_3 with kernels

$$\mathcal{K}'(x, y), \ (-\Delta_{S_{\xi}})^{1/2} \mathcal{K}'(x, y), \ (-\Delta_{S_{\xi}})^{1/2} (-\Delta_{S_{\theta}})^{1/2} \mathcal{K}'(x, y),$$

are bounded on $L^{p,2}$. By Proposition 3, we know that T_3 is continuous on $L^{p,2}$. To prove the continuity of T_1 and T_2 notice that

$$\mathcal{K}'(x, y) = \mathcal{M}_1(-\Delta_{S_{\xi}})^{1/2}(-\Delta_{S_{\theta}})^{1/2}\mathcal{K}'(x, y)$$

and

$$(-\Delta_{S_{\xi}})^{1/2}\mathcal{K}'(x,y) = \mathcal{M}_2(-\Delta_{S_{\xi}})^{1/2}(-\Delta_{S_{\theta}})^{1/2}\mathcal{K}'(x,y),$$

where \mathcal{M}_1 and \mathcal{M}_2 are the multipliers in \mathbb{S}^{n-1} corresponding to the sequences $\frac{1}{m(m+n-2)}$ and $\frac{1}{\sqrt{m(m+n-2)}}$ respectively. Then proceeding as in Theorem 3 we see that the required vector valued inequalities for T_1 and T_2 are less demanding than (33).

Now we show that \mathcal{P}' is not continuous in $\mathcal{H}^{p,2}$ for $p \notin (4/3, 4)$.

If \mathcal{P}' is continuous in $\mathcal{H}^{p,2}$ then since $(-\Delta_{S_{\xi}})^{-1/2} : \mathcal{H}^{p,2} \to \mathcal{H}^{p,2}$ is bounded (due to the fact that $(-\Delta_{S_{\xi}})^{-1/2}$ is bounded in $L^2(\mathbb{S}^{n-1})$), we have that

$$\mathcal{L} = (-\Delta_{S_{\xi}})^{1/2} \circ \mathcal{P}' \circ (-\Delta_{S_{\xi}})^{-1/2}$$
(35)

is continuous in $L^{p,2}$.

But

$$\mathcal{L}u(x) = \int_{\mathbb{R}^n} \mathcal{K}'(x, y) u(y) \frac{dy}{\langle y \rangle^3} + Tu(x),$$

hence, in the notation of Proposition 3,

$$\mathcal{L}u(x) = \sum_{m,j} \left(\frac{1}{m(m+n-2)} + 1 \right) T_{mj} u_{mj}(r) Y_m^j(\xi)$$

and it follows proceeding as in Proposition 3, that \mathcal{L} is not bounded in $L^{p,2}$ for $p \notin (4/3, 4)$.

Now we will obtain a negative result relative to the continuity of projection \mathcal{P} . Notice that by Remark 4 the operators \mathcal{P} and $\widetilde{\mathcal{P}}$ have the same continuity properties on \mathcal{H}^p . This motivates the study of the continuity of the integral operator \mathcal{T} given by

$$\mathcal{T}u(x) = \nabla_{S_{\xi}} \int_{\mathbb{R}^n} \nabla_{S_{\theta}} \widetilde{\mathcal{K}}(x, y) \cdot u(y) \frac{dy}{\langle y \rangle^3}, \ x = r\xi, \ y = s\theta,$$
(36)

since the most singular part of $\widetilde{\mathcal{P}}$ is precisely $\mathcal{T}(\nabla_{S_{\theta}}u)$.

Using (10), we can split the operator in the sum $T = T_1 + T_2$, where

$$\mathcal{T}_{1}u(x) = C_{n} \int_{\mathbb{R}^{n}} |x||y| F_{n/2}(|x-y|) \left(\mathbf{A}(u,y) - \mathbf{A}(u,y) \cdot \frac{x}{|x|} \frac{x}{|x|}\right) \frac{dy}{\langle y \rangle^{3}}, \quad (37)$$

$$\mathcal{T}_2 u(x) = C_n \int_{\mathbb{R}^n} |x| |y| F_{n/2+1}(|x-y|)(x-\mathbf{P}_y x) \cdot \nabla_{S_\theta} u(y)(y-\mathbf{P}_x y) \frac{dy}{\langle y \rangle^3}, \quad (38)$$

where $F_{\alpha}(t) = \frac{J_{\alpha}(t)}{t^{\alpha}}$, $\mathbf{A}(u, y) = u(y) - u(y) \cdot \frac{y}{|y|} \frac{y}{|y|}$ and $\mathbf{P}_{a}b = \frac{a \cdot b}{|a|} \frac{a}{|a|}$ is the orthogonal projection of *b* in the direction of *a*.

We will assume that n = 3 and we will prove that \mathcal{T} cannot be extended in general to a bounded operator on $L^p(\langle x \rangle^{-3} dx)$. Let $m \in \mathbb{N}$ and B_m be the unit ball of center (0, 0, m) and fixed radius $\epsilon < 1$. Define $u_m = \chi_{B_m} \mathbf{e}_1$.

We consider the region *R* of the upper half-space between two cones $c_1^2(x_1^2 + x_2^2) \le x_3^2 \le c_2^2(x_1^2 + x_2^2)$ and such that $|x_1| > |x_2|$. Now, for fixed $\lambda > 0$ and $k > \lambda m$, let A_k be the annulus between the spheres centered in (0, 0, m) and radii $\alpha(k)$ and $\alpha(k) + l$, with $\alpha(k) = 2\pi k + C$ and where *C* and l > 0 are chosen so that $\cos\left(t - (\frac{n}{2} + 1)\frac{\pi}{2} - \frac{\pi}{4}\right) \ge 1/2$ for $t \in [\alpha(k), \alpha(k) + l]$.

Lemma 9 There exists positive constant λ such that, if $k > \lambda m$, then $|R \cap A_k| \sim k^2$ uniformly for large m.

Proof Clearly $|R \cap A_k| = O(k^2)$. Now consider spherical coordinates $\{(r, \theta, \varphi) : r > 0, \theta \in [0, 2\pi], \varphi \in [0, \pi]\}$ centered at the point (cartesian) (0, 0, m). Notice that as a subset of \mathbb{R}^2 , every vertical section $R \cap A_k \cap \{(r, \theta_0, \varphi) : r > 0, \varphi \in [0, \pi]\}$ is independent of $\theta_0 \in [0, \pi/4]$. This subset of \mathbb{R}^2 contains the region in S_k described as follows.

Let P_1 be the intersection of $(\alpha(k) + l)\mathbb{S}^1$ and the line $s = c_1^{-1}t$ in the plane (s, t)and P_2 the intersection of $\alpha(k)\mathbb{S}^1$ and the line $s = c_2^{-1}t$ in the plane (s, t) both with t > m.

Then define S_k as the intersection of the annulus $\alpha_k < |x - (0, m)| < \alpha_k + l$ and the region in the first quadrant between the line l_1 through (0, m) and P_1 and the line l_2 passing through (0, m) and P_2 . Let φ_i be such that $\tan (\pi/2 - \varphi_i)$ is the slope of the line l_i for i = 1, 2.

It follows that if $A'_k \subset R \cap A_k$ in spherical coordinates centered on (0, 0, m) is given by the inequalities $\alpha(k) \leq r \leq \alpha(k) + l$, $0 \leq \theta \leq \frac{\pi}{4}$, $\varphi_2 \leq \varphi \leq \varphi_1$, then we have

$$\left|A_{k}'\right| = \int_{0}^{\frac{\pi}{4}} \int_{\varphi_{2}}^{\varphi_{1}} \int_{\alpha(k)}^{\alpha(k)+l} r^{2} \sin \varphi dr \ d\varphi \ d\theta \ge Ck^{2}(\cos \varphi_{2} - \cos \varphi_{1}).$$

Hence, to complete the proof of the lemma, it suffices to show that there exists c > 0 such that

$$\cos\phi_2 - \cos\phi_1 \ge c. \tag{39}$$

Denoting $\alpha(k)$ just by α , we observe that $P_2 = (c_2^{-1}t_2, t_2)$ with

$$\frac{t_2}{\alpha} = \frac{m + \sqrt{m^2 + (\alpha^2 - m^2)(c_2^{-2} + 1)}}{(c_2^{-2} + 1)\alpha}.$$

Let $\lambda > 0$ and $\alpha > \lambda m$. Then $1 - \frac{1}{\lambda^2} < 1 - \frac{m^2}{\alpha^2}$, and

$$\frac{t_2}{\alpha} \ge \frac{\sqrt{c_2^{-2} + 1\sqrt{\alpha^2 - m^2}}}{(c_2^{-2} + 1)\alpha} \ge \frac{1}{\sqrt{c_2^{-2} + 1}}\sqrt{1 - \frac{1}{\lambda^2}}.$$
(40)

Similarly, we have that $P_1 = (c_1^{-1}t_1, t_1)$ and

$$\frac{t_1}{\alpha+l} = \frac{m + \sqrt{m^2 + [(\alpha+l)^2 - m^2](c_1^{-2} + 1)}}{(c_1^{-2} + 1)(\alpha+l)}$$

Since $\alpha > \lambda m$ then $\frac{m}{\alpha+l} < \frac{1}{\lambda}$, hence

$$\frac{t_1}{\alpha+l} \le \frac{1}{(c_1^{-2}+1)\lambda} + \frac{\sqrt{\frac{1}{\lambda^2} + (c_1^{-2}+1)}}{c_1^{-2}+1}.$$
(41)

By (40) and (41), we have that

$$\frac{t_2}{\alpha} - \frac{t_1}{\alpha + l} \ge \frac{1}{\sqrt{c_2^{-2} + 1}} \sqrt{1 - \frac{1}{\lambda^2}} - \frac{1}{(c_1^{-2} + 1)\lambda} - \frac{\sqrt{\frac{1}{\lambda^2} + (c_1^{-2} + 1)}}{c_1^{-2} + 1}.$$

Since the limit of the right side is positive as $\lambda \to \infty$, we conclude that choosing λ large enough $t_2/\alpha - t_1/(\alpha + \lambda) \ge \epsilon$, for some $\epsilon > 0$.

Finally for such λ , if $\alpha > \lambda m$ we have that

$$\cos \varphi_2 - \cos \varphi_1 = \frac{t_2 - m}{\alpha} - \frac{t_1 - m}{\alpha + \lambda}$$
$$= \left(\frac{t_2}{\alpha} - \frac{t_1}{\alpha + \lambda}\right) + h$$

where $|h| \sim O(\frac{1}{m})$. Therefore, since $t_2/\alpha - t_1/(\alpha + \lambda) \ge c$ then (39) holds for large *m* and the proof is complete.

Theorem 13 \mathcal{T} cannot be extended to a bounded operator on $L^p(\langle x \rangle^{-3} dx)$ for $p \in (1, 3/2)$.

Proof Let $y \in B_m$, then we can write to $y = m\mathbf{e_3} + y'$ with $|y'| < \epsilon$, so that

$$(\mathbf{P}_x y)_3 = (\mathbf{P}_x m \mathbf{e}_3)_3 + (\mathbf{P}_x y')_3 < Cm + \epsilon.$$

Therefore,

$$(y - \mathbf{P}_x y)_3 \ge (m - \epsilon) - (Cm + \epsilon) = (1 - C)m - 2\epsilon \ge Cm \ge C|y|$$
(42)

for all ϵ sufficiently small, *m* sufficiently large and choosing C < 1.

On the other hand, we have that

$$(x - \mathbf{P}_y x) \cdot u_m(y) = x_1 - \frac{y \cdot x}{|y|} \frac{y}{|y|} \cdot \mathbf{e_1},$$

estimating above the right hand side we have

$$\left|\frac{y \cdot x}{|y|} \frac{y}{|y|} \cdot \mathbf{e_1}\right| \leq \frac{\epsilon}{m^2} \left(|x_1y_1| + |x_2y_2| + |x_3y_3|\right) \leq C|x_1|\epsilon/m.$$

Hence,

$$(x - \mathbf{P}_{y}x) \cdot u_{m}(y) = x_{1} - O(|x_{1}|\epsilon/m) > C|x_{1}| > C|x|.$$
(43)

Let $x \in A_k$. For (42), (43) and (4), we deduce that

$$|\mathcal{T}_2 u_m(x)| \ge C \int_{B_m} |x| m \frac{1}{k^3} |x| m \frac{dy}{\langle y \rangle^3} \ge \frac{C|x|^2}{k^3 m}.$$

By Lemma 9,

$$\begin{aligned} \|\mathcal{T}_{2}u_{m}\|_{L^{p}(\bigcup_{k\geq Cm}R\cap A_{k})}^{p} &= \int_{\bigcup_{k\geq Cm}R\cap A_{k}}|\mathcal{T}_{2}u_{m}(x)|^{p}\frac{dx}{\langle x\rangle^{3}}\geq C\sum_{k\geq Cm}\int_{A_{k}}\left(\frac{k^{2}}{k^{3}m}\right)^{p}\frac{dx}{\langle x\rangle^{3}}\\ &\geq C\sum_{k\geq Cm}\left(\frac{1}{km}\right)^{p}\frac{1}{k^{3}}\left|R\cap A_{k}\right|\geq \frac{C}{m^{p}}\sum_{k\geq Cm}\frac{1}{k^{p+1}}\geq \frac{C}{m^{2p}},\end{aligned}$$

and so

$$\|\mathcal{T}_2 u_m\|_{L^p(\bigcup_{k\geq Cm} R\cap A_k)} \geq \frac{C}{m^2}.$$
(44)

Furthermore,

$$|\mathcal{T}_1 u_m(x)| \le C \int_{B_m} |x| \frac{m}{k^2} \frac{dy}{\langle y \rangle^3} \le \frac{C|x|}{m^2 k^2}.$$

Then,

$$\begin{split} \|\mathcal{T}_{1}u_{m}\|_{L^{p}(\bigcup_{k\geq Cm}R\cap A_{k})}^{p} &= \int_{\bigcup_{k\geq Cm}R\cap A_{k}}|\mathcal{T}_{1}u_{m}(x)|^{p}\frac{dx}{\langle x\rangle^{3}}\\ &\leq C\int_{\bigcup_{k\geq Cm}R\cap A_{k}}\left(\frac{|x|}{m^{2}k^{2}}\right)^{p}\frac{dx}{\langle x\rangle^{3}}\\ &\leq C\sum_{k\geq Cm}\int_{R\cap A_{k}}\left(\frac{k}{m^{2}k^{2}}\right)^{p}\frac{dx}{\langle x\rangle^{3}}\\ &\leq \frac{C}{m^{2p}}\sum_{k\geq Cm}\int_{R\cap A_{k}}\frac{1}{k^{p+3}}\left|R\cap A_{k}\right|\\ &\leq \frac{C}{m^{2p}}\sum_{k\geq Cm}\frac{1}{k^{p+1}}\leq \frac{C}{m^{3p}}. \end{split}$$

Consequently,

$$\|\mathcal{T}_{1}u_{m}\|_{L^{p}(\bigcup_{k\geq Cm}R\cap A_{k})}\leq \frac{C}{m^{3}}.$$
(45)

Finally, by (44) and (45)

$$\begin{aligned} \|\mathcal{T}u_{m}\|_{p} &= \|(\mathcal{T}_{2}u_{m} - (-\mathcal{T}_{1}u_{m})\|_{p} \\ &\geq \|\mathcal{T}_{2}u_{m}\|_{L^{p}(\bigcup_{k \geq Cm} R \cap A_{k})} - \|\mathcal{T}_{1}u_{m}\|_{L^{p}(\bigcup_{k \geq Cm} R \cap A_{k})} \\ &\geq C\left(\frac{1}{m^{2}} - \frac{1}{m^{3}}\right) \geq \frac{C}{m^{2}}, \end{aligned}$$

then, since $||u_m||_p \sim m^{-3/p}$,

$$\frac{\|\mathcal{T}u_m\|_p}{\|u_m\|_p} \ge Cm^{3/p-2}.$$
(46)

Hence \mathcal{T} is not bounded if $p \in (1, 3/2)$.

Acknowledgements S. Pérez-Esteva was partially supported by the Mexican Grant PAPIIT-UNAM IN102915. S. Valenzuela-Díaz was sponsored by the SEP-CONACYT Project No. 129280 (México).

References

- Agmon, S.: A Representation Theorem for Solutions of the Helmholtz Equation and Resolvent Estimates for the Laplacian. Analysis. et cetera, pp. 39–76. Academic Press, Boston (1990)
- Alvarez, J., Folch-Gabayet, M., Esteva, S.P.: Banach spaces of solutions of the Helmholtz equation in the plane. J. Fourier Anal. Appl. 7(1), 49–62 (2001)
- Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In: Séminaire de Probabilités, XXI, *Lecture Notes in Math.*, vol. 1247, pp. 137–172. Springer, Berlin (1987)
- Barceló, J.A., Bennet, J., Ruiz, A.: Mapping properties of a projection related to the Helmholtz equation. J. Fourier Anal. Appl. 9(6), 541–562 (2003)
- Barceló Valcárcel, J.A.: Funciones de banda limitada. Ph.D. thesis, Universidad Autónoma de Madrid (1988)
- Bonami, A., Clerc, J.L.: Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques. Trans. Am. Math. Soc. 183, 223–263 (1973)
- Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Krieger Publishing Company, Malabar (1992)
- Duoandikoetxea, J.: Fourier Analysis. Studies in Mathematics, vol. Graduate. Americal Mathematical Society, Providence (2001)
- 9. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, California (2000)
- Hartman, P., Wilcox, C.: On solutions of the Helmholz equation in exterior domains. Math. Z. 75, 228–255 (1960/1961)
- 11. Helgason, S.: Topics in Harmonic Analysis on Homogeneous Spaces. Birkhäuser, Boston (1981)
- 12. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York (1998)
- Strichartz, R.S.: Multipliers for spherical harmonic expansions. Trans. Am. Math. Soc. 167, 115–124 (1972)