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1 Introduction and Preliminaries

Consider the Fourier extension operator

Wφ(x) := φ̂dσ(x) = (2π)(1−n)/2
∫
Sn−1

eix ·ξφ(ξ)dσ(ξ), (1)

where φ ∈ L2(Sn−1), dσ is the Lebesgue measure in S
n−1 and ·̂ denotes the Fourier

transform in R
n .

We have thatWφ is an entire solution (a solution in R
n) of the Helmholtz equation

�u + u = 0. (2)

The functions u = Wφ with φ ∈ L2(Sn−1) called Herglotz wave functions are
relevant in analysis and in particular are extensively used in scattering theory. Hartman
and Wilcox in [10] proved the familiar characterization of the Herglotz functions as
the entire solutions of the Helmholtz equation satisfying

lim sup
R→∞

1

R

∫
|x |<R

|u(x)|2 dx < ∞.

The operatorW is the transpose of the restriction operator for the Fourier transform,
namely the operator R f = f̂|

Sn−1 defined in the Schwartz space.
The restriction problem of Stein–Tomas asks for the values of p and q such that

∥∥∥ f̂|
Sn−1

∥∥∥
Lq (Sn−1)

≤ C ‖ f ‖L p(Rn) , f ∈ S(Rn).

The best known result for q = 2 is given in the Stein–Tomas theorem:

Theorem 1 (Stein–Tomas) If f ∈ L p(Rn) with 1 ≤ p ≤ 2(n+1)
n+3 then

∥∥∥ f̂|
Sn−1

∥∥∥
L2(Sn−1)

≤ Cp,n ‖ f ‖L p(Rn) .

Or equivalent, if f ∈ L2(Sn−1)

‖W f ‖Lq (Rn) ≤ Cq,n ‖ f ‖L2(Sn−1)

for q ≥ 2(n+1)
n−1 .

In [2], it was proved that the extension operator is an isomorphism of L2(S1) onto
the spaceW2 consisting of all entire solutions of Helmholtz equation with radial and
angular derivatives satisfying

‖u‖2H2 =
∫

|x |>1

(
|u(x)|2 +

∣∣∣∣∂u∂r (x)

∣∣∣∣
2

+
∣∣∣∣∂u∂θ

(x)

∣∣∣∣
2
)

dx

|x |3 < ∞.
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This gave a new characterization of the spaceW2 of Herglotz wave functions in R
2 as

a Hilbert space with reproducing kernel. Also, for 1 < p < 4/3, it was proved that the
orthogonal projection P ofH2 ontoW2, can’t be extended as a bounded operator on
Hp, the p-version of H2. Then in [4], Barceló, Bennet and Ruiz proved that P can’t
be extended as a bounded for any p > 1 except for p �= 2. However they obtained a
positive result for 4/3 < p < 4, considering mixed norm spaces Hp,2, defined by

‖u‖2Hp,2 =
∫ ∞

0

(∫ 2π

0

(
|u(rθ)|2 +

∣∣∣∣∂u∂θ
(x)

∣∣∣∣
2
)
dθ

)p/2
rdr

(1 + r2)3/2
.

In this article, we will define Banach spacesHp andW p inR
n, n ≥ 3, generalizing

thementioned spaces in [2].Hp will consist of all functions belonging to L p
(
R
n, dx

〈x〉3
)

jointly with their radial derivative and the euclidean norm of their spherical gradient.
ThenW p will be the closed subspace of all solutions inHp of the Helmholtz equation
�u + u = 0 on the Euclidean space R

n for n ≥ 3 . We will construct and study
the reproducing kernel for W2, which as for n = 2, turns out to be the space of all
Herglotz wave functions and it is characterized as the space of all the entire solutions
of the Helmholtz equation satisfying

‖u‖H2 =
⎛
⎝‖u‖2

L2

(
Rn , dx

〈x〉3
) +

∥∥∥∥∂u

∂r

∥∥∥∥
2

L2

(
Rn , dx

〈x〉3
) + ‖|∇Su|‖2

L2

(
Rn , dx

〈x〉3
)
⎞
⎠

1/2

,

where ∇S denotes the spherical gradient.
In Sect. 2 we will study the space W2. We will show that this is precisely the

space of all Herglotz wave functions and we will calculate its reproducing kernel as a
subspace of H2. In Sect. 3 we consider the spaces Hp and W p for exponents p > 1.
We will prove that these are Banach spaces and we will show that the reproducing
kernel ofH2 has also reproducing properties forW p. Finally, in Sect. 4 we study the
continuity properties of the orthogonal projection P ofH2 ontoW2 in mixed-normed
spacesHp,2 extending the results in [4] for n = 2. Then we consider the continuity of

P in Hp. As in n = 2 this continuity is related to the boundedness in L p
(
R
n, dx

〈x〉3
)

of a singular operator T acting on vector fields and given by

TU (x) = Cn

∫
Rn

|x ||y| Jn/2+1(|x − y|)
(|x − y|)n/2+1

(
(x − Pyx) ·U (y)

)
(y − Px y)

dy

〈y〉3 ,

where Pz denotes the orthogonal projection in the direction of z and Jn/2+1 is the
Bessel function of the first kind. Finally we give a non-boundedness result of T in R

3.
Throughout paperwewill use the following notations and results:BR ⊂ R

n denotes
the open ball with center at the origin and radius R, B = B1, and S

n−1 is the (n−1)−
dimensional unit sphere with surface area σn = 2πn/2

	(n/2) . �S denotes the Laplacian

on S
n−1, that is, the Laplace Beltrami operator on S

n−1 and ∇S will be the spherical
gradient. The conjugate exponent of p will be denoted by p′.
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Throughout this article c and C will denote generic positive constants that may
change in each occurrence.

As usual, if μ is a Borel measure in R, Mμ f will denote the Hardy–Littlewood
maximal function of a locally integrable function f on R:

Mμ f (x) = sup
I :x∈I

1

μ(I )

∫
I
| f (y)| d μ(y),

where the supremum is taken over intervals I ⊂ R. Let w be a weight in R, namely a
non-negative function in L1

loc(μ). By Ap(μ)wewill denote theMuckenhoupt classes.
We say that w is an Ap(μ) weight (w ∈ Ap(μ)) if

(
1

μ(I )

∫
I
w(r)d μ(r)

)(
1

μ(I )

∫
I
w(r)1−p′

d μ(r)

)p−1

≤ C,

for 1 < p < ∞ and

Mμw(r) ≤ Cw(r) a.e.

when p = 1, where C is always independent of I .
We have Ap(μ) ⊂ Aq(μ), 1 ≤ p < q, in particular, A1(μ) ⊂ A2(μ), see [8].
We denote by Jν the Bessel functions of the first kind of order ν

Jν(z) =
( z
2

)ν
∞∑
k=0

(−1)k

k! 	(k + v + 1)

( z
2

)2k
.

The Bessel functions satisfy the following recurrence formulas:

(R1) Jν−1(z) − Jν+1(z) = 2J
′
ν(z).

(R2) Jν−1(z) + Jν+1(z) = 2ν
z Jν(z).

Also, we have that (
Jν(t)

tν

)′
= − Jν+1(t)

tν
. (3)

We will use the following estimates for Bessel functions.

(D1) For any ν > −1/2 and z ∈ C,

|Jν(z)| ≤
( |z|

2

)ν

	(ν + 1)
e|Im z|.

For integer n ≥ 0 we have

|Jn(z)| ≤ |z|n
n!2n e

|z|2
4 .
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(D2) For ν ≥ 1/2 and 0 < r ≤ 1,

|Jν(r)| ≤ C
( r
2

)ν 1

	(ν + 1)
.

(D3) For ν ≥ 1/2, α0 > 0, and 1 ≤ ν sech α ≤ ν sech α0,

|Jν(ν sech α)| ≤ C
e−ν(α−tanh α)

ν1/2
.

(D4) If z = r ∈ R, then

|Jν(r)| ≤ C
1

ν
0 ≤ r ≤ ν/2, ν ≥ 1,

|Jν(r)| ≤ Cr−1/3 r ≥ 1, ν ≥ 0,

|Jn(r)| ≤ Cnr
−1/2 r > 0, n ∈ Z.

A known asymptotic formula for Bessel functions is

Jν(r) =
√

2

πr
cos(r − νπ

2
− π

4
) + O(r−3/2) (4)

as r → ∞. In particular,

Jν(r) = O(r−1/2) i f r → ∞.

The proof of following lemma can be found in [5].

Lemma 1 Let ν > 0, p ≥ 1 and a ≥ 1, then there exists a constant C depending
only on p and a, such that

1

C
ν

1
3− p

3

K−1∑
j=0

2 j (1− p
4 ) ≤

∫ 2ν

ν
a

|Jν(r)|pdr ≤ Cν
1
3− p

3

K−1∑
j=0

2 j (1− p
4 ), (5)

where ν
2
3 ≤ 2K ≤ 2ν

2
3 .

The following lemma [9, p. 675] is useful in this paper.

Lemma 2 Let ν(m) = m + n−2
2 . Then

∫ ∞

0
J 2ν(m)(r)

dr

r2
= 1

π

1

ν(m)2 − 1/4
, (6)

for all m ≥ 1 if n = 3 and for all m ≥ 0 if n ≥ 4.
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The space of all surface spherical harmonics of degree m will be denoted by Ym .
In addition, {Y j

m : m ∈ N, j = 1, . . . , dm} will always denote a basis of real valued
spherical harmonics for L2(Sn−1), where

dm =
{
1 if m = 0
(2m+n−2)(m+n−3)!

m!(n−2)! if m ≥ 1.

Theorem 2 (Spherical Harmonic Addition Theorem) Let {Y j
m}, j = 1, . . . , dm be an

orthonormal basis for Ym. Then

Zm(ξ, η) = dm
σn

Pm(ξ · η), (7)

where Zm(ξ, η) =∑dm
j=1 Y

j
m(ξ)Y j

m(η) are called zonal harmonics of degree m, Pm is

the Legendre polynomial of degree m and σn is the total surface area of S
n−1.

The following lemma is known as the Addition Theorem of the Bessel functions
(see [12, Lemma 2, p. 121]).

Lemma 3 If x = rξ , y = sθ , we have

J0(n; |x − y|) =
∞∑

m=0

dmJm(n; r)Jm(n; s)Pm(ξ · θ), (8)

where

Jm(n; r) = 	
(n
2

) ( r
2

) 2−n
2

Jν(m)(r). (9)

We have that

∇ = ∂

∂r
ξ + 1

r
∇S,

that is,

∇Su = r

(
∇u − ∂u

∂r
ξ

)
. (10)

An identity that relates the eigenvalues of the spherical Laplacian with the norm
L2(Sn−1) of the spherical gradient for some spherical harmonic Yk of degree k is given
by ∫

Sn−1
|∇SYk(ξ)|2 dσ(ξ) = k(k + n − 2)

∫
Sn−1

|Yk(ξ)|2 dσ(ξ), (11)

which implies that the norms ‖(−�S)
1/2u‖L2(Sn−1) and ‖|∇Su|‖L2(Sn−1) are equiva-

lent.
A classical result due to Bakry (see [3]), valid for any Riemannian manifold with

non-negative Ricci curvature and in particular for the sphere, is the following.
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Theorem 3 (Bakry) If 1 < p < ∞, there exist constants cp and Cp such that

cp
∥∥(−�S)

1/2u
∥∥
L p(Sn−1)

≤ ∥∥|∇Su|∥∥L p(Sn−1)
≤ Cp

∥∥(−�S)
1/2u

∥∥
L p(Sn−1)

(12)

for all u ∈ C∞
c (Sn−1).

Definition 1 (i) For 1 ≤ p < ∞, we denote byHp the space of all u ∈ D′(Rn) such
that u, ∂u

∂r and |∇Su| ∈ L1
loc(R

n)

‖u‖Hp =
{∫

Rn

(
|u(x)|p +

∣∣∣∣∂u∂r (x)

∣∣∣∣
p

+ |∇Su(x)|p
)

dx

〈x〉3
}1/p

(13)

=
⎛
⎝‖u‖p

L p(Rn , dx
〈x〉3 )

+
∥∥∥∥∂u

∂r

∥∥∥∥
p

L p(Rn , dx
〈x〉3 )

+ ‖|∇Su|‖p

L p(Rn , dx
〈x〉3 )

⎞
⎠

1/p

, (14)

where 〈x〉 := 1/(1 + |x |2)1/2.
(ii) We denote by W p the space of all functions u ∈ Hp satisfying the Helmholtz

equation (2) in R
n .

Remark 1 (1) C∞(Rn) ∩ Hp is dense in Hp and the elements of Hp belong locally
to a weighted Sobolev space in R

n .

(2) By Theorem 3, we can define inHp the equivalent norm ‖�‖�
1
2

Hp given by

‖u‖�
1
2

Hp =
⎛
⎝‖u‖p

L p
(
Rn , dx

〈x〉3
) +

∥∥∥∥∂u

∂r

∥∥∥∥
p

L p
(
Rn , dx

〈x〉3
) + ‖(−�S)

1/2u‖p

L p
(
Rn , dx

〈x〉3
)
⎞
⎠

1/p

.

Throughout this article will be exchanging these norms as needed.

2 The Fourier Extension Operator in L2(Sn−1) and W2

In this section we prove that the spaceW2 is precisely the space of all Herglotz wave
functions.

Lemma 4 If Ym is a spherical harmonic and Fm := WYm, then

(i) Fm(x) = (2π)
1
2 imr−(n−2)/2 Jν(m)(r)Ym(ξ), x = rξ .

(ii) {F j
m(rξ) := (2π)

1
2 imr−(n−2)/2 Jν(m)(r)Y

j
m(ξ)}m, j ,m = 0, 1, . . . , j = 1, 2, . . . ,

dm is an orthogonal family and

‖Fm‖H2 = √
2 + O

(
1

m2

)
. (15)
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(iii) If f =∑m, j amjY
j
m ∈ L2(Sn−1) and u =∑m, j amj F

j
m ∈ W2, then

‖u‖H2 ∼ ‖ f ‖L2(Sn−1) , (16)

and the series of u converges absolutely and uniformly on compact subsets ofRn.

Proof (i) Is a direct consequence of the Funk–Hecke’s formula (see [11, p. 37]) with
x = rξ ,

∫
Sn−1

exp (−i x · w)Ym(w)dσ(w)

= (2π)n/2(−i)mr−(n−2)/2 Jν(m)(r)Ym(ξ). (17)

(ii) By the Lemma 2, (11) and the recursion formula (R1) we have that

‖Fm‖2H2 =
∫
Rn

(
|Fm(x)|2 +

∣∣∣∣∂Fm∂r
(x)

∣∣∣∣
2

+ |∇S Fm(x)|2
)

dx

〈x〉3

= 2 + O

(
1

m2

)
. (18)

Then

‖Fm‖H2 = √
2 + O

(
1

m2

)
.

The orthogonality follows from the orthogonality of the spherical harmonics in
L2(Sn−1).

(iii) By (i i) it follows that ‖�‖H2 ∼ ‖�‖L2(Sn−1). Furthermore, using the recurrence
formula (R1) for Bessel functions and the estimate (D1), it follows that the series
for u converges absolutely and uniformly on compact subsets of R

n ��
Theorem 4 The operator W is a topological isomorphism of L2(Sn−1) onto W2.

Proof By Lemma 4, to prove that ‖W f ‖H2 ∼ ‖ f ‖L2(Sn−1) it suffices to show that

W f = ∑
m, j amj F

j
m for any f = ∑

m, j amjY
j
m ∈ L2(Sn−1). Notice that if fn con-

verges to f in L2(Sn−1) thenW fn converges uniformly toW f uniformly on compact
sets of R

n . Let L2
0 be the linear span of {Y j

m} and W ′ = W |L2
0
. If φ is a finite

sum
∑

m, j amjY
j
m ∈ L2

0 then Wφ = ∑m, j amj F
j
m and by Lemma 4(iii) we have that

‖Wφ‖H2 ∼ ‖φ‖L2(Sn−1).Moreover,W ′ can be extended to a continuous operator from
L2(Sn−1) into W2 so that W ′(∑

m, j amjY
j
m
) = ∑

m, j amj F
j
m converges uniformly

on compact subsets of R
n .

Now let f =∑m, j amjY
j
m ∈ L2(Sn−1) andφm =∑k, j,k≤m akjY

j
k . ThenW (φn) =

W ′(φn) → W f uniformly on compact subsets and W f = W ′ f . Thus, ‖W f ‖H2 ∼
‖ f ‖L2(Sn−1).
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It remains to prove that W is onto.
Let u ∈ W2, we have that u ∈ C∞(Rn), so, for r fixed, consider the Fourier series

in spherical harmonics of u(rξ), that is,

u(rξ) = (2π)
1
2 r−(n−2)/2

∞∑
m=0

dm∑
j=1

im Amj (r)Y
j
m(ξ),

with

(2π)
1
2 r−(n−2)/2im Amj (r) =

∫
Sn−1

u(rη)Y j
m(η)dσ(η).

Thus, we can apply term by term the Helmholtz operator in polar coordinates

∂2

∂r2
+ n − 1

r

∂

∂r
+ 1

r2
�S + 1

to the representation of u. We obtain

∞∑
m=0

dm∑
j=1

(
A′′
mj (r) + 1

r
A′
mj (r) +

(
1 − ν(m)2

r2

)
Amj (r)

)
Y j
m(ξ) = 0,

and using the orthogonality of the spherical harmonics we have that

A′′
mj (r) + 1

r
A′
mj (r) +

(
1 − ν(m)2

r2

)
Amj (r) = 0,

for each m ∈ N ∪ {0}, j = 1, . . . , dm , that is, the function Amj (r) satisfies the Bessel
equation of order ν(m). Then, Amj can be written as a linear combination,

Amj (r) = amj Jν(m)(r) + bmj Nν(m)(r),

where Nν(m)(r) is the Neumann function of order ν(m). Since Nν(m)(r) has a singu-
larity at r = 0 and Amj (r) is bounded, it follows that bmj = 0 for all m, j ; therefore,
Amj (r) = amj Jν(m)(r).

We see that
∑

m, j

∣∣amj
∣∣2 ≤ C‖u‖H2 , so taking φ = ∑

m, j amjY
j
m , we conclude that

φ ∈ L2(Sn−1) and u = Wφ. ��

Now we will construct the reproducing kernel forW2 as a subspace of the Hilbert
space H2. Before, we observe that family {β−1

m F j
m} is an orthonormal basis for W2,

where βm =
∥∥∥F j

m

∥∥∥H2
.
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Let

K(x, y) =
∞∑

m=0

dm∑
j=1

F j
m(x)F j

m(y)

β2
m

= 2π(rs)−(n−2)/2
∞∑

m=0

dm∑
j=1

Jν(m)(r)Jν(m)(s)

β2
m

Y j
m(ξ)Y j

m(θ),

where x = rξ , y = sθ . Using directly the Addition Theorem 2 we have

K(x, y) = 2π(rs)−(n−2)/2
∞∑

m=0

Jν(m)(r)Jν(m)(s)

β2
m

Zm(ξ, θ) (19)

= 2π(rs)−(n−2)/2
∞∑

m=0

Jν(m)(r)Jν(m)(s)

β2
m

dm
σn

Pm(ξ · θ). (20)

By the estimate (D1) for Bessel functions we can prove that the series that define
K(x, y) converges absolutely and uniformly on compacts subsets of R

n × R
n . Since

Zm(ξ, θ) is real then K(x, y) is symmetric.
The orthogonal projection of H2 ontoW2 is given by

Pu =
∞∑

m=0

dm∑
j=1

〈
u, β−1

m F j
m
〉
H2β

−1
m F j

m,

with convergence inW2 and also pointwise.
For x ∈ R

n fixed, we have

Pu(x) = 〈u,K(x, ·)〉H2

=
∫
Rn

(
K(x, y)u(y) + ∂K

∂s
(x, y)

∂u

∂s
(y) + ∇SθK(x, y) · ∇Sθ u(y)

)
dy

〈y〉3 .

(21)

The function K(x, y) is the reproducing kernel for the space W2.
The following lemma shows that after a topological isomorphism ofW2, the kernel

K(x, y) has a closed form.
We call M a multiplier on the sphere S

n−1 defined by a complex sequence {μm}
to the operator

M

⎛
⎝∑

m, j

amjY
j
m(ξ)

⎞
⎠ =∑m, j μmamjY

j
m(ξ)

for any finite sum
∑

m, j amjY
j
m(ξ).
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Lemma 5 LetM be the multiplier on the sphere S
n−1 defined by the sequence {β2

m}.
Then, M is a topological isomorphism of W2 onto itself, where here

M

⎛
⎝∑

m, j

amj F
j
m(ξ)

⎞
⎠ =

∑
m, j

β2
mamj F

j
m(ξ).

Moreover, the kernel function of the composition M ◦ P is

K̃(x, y) = (2π |x − y|)−(n−2)/2 Jn−2
2

(|x − y|), (22)

namely (M ◦ P)u(x) = 〈u, K̃(x, ·)〉H2 .

Proof Since c ≤ β2
m ≤ C for some constants c,C > 0, then it is clear that M is a

topological isomorphism ofW2 onto itself. In particular, by (19), (8) and (9), we have
that

K̃(x, y) := MK(x, y)

= 2π

σn

∞∑
m=0

dmr
−(n−2)/2 Jm+ n−2

2
(r)s−(n−2)/2 Jm+ n−2

2
(s)Pm(ξ · θ)

= (2π |x − y|)−(n−2)/2 Jn−2
2

(|x − y|),

where M may be thought of as acting on ξ or on θ .
InH2, the kernel K̃(x, y) defines a continuous operator P̃ on H2 given by

P̃u(x) =
∫
Rn

(
K̃(x, y)u(y) + ∂K̃

∂s
(x, y)

∂u

∂s
(y) + ∇Sθ K̃(x, y) · ∇Sθ u(y)

)
dy

〈y〉3 .

Let H0 be the linear span of the set {A(r)Y j
m(ξ) : A ∈ C∞

c (0,∞)}m, j . We can prove
that P̃ = M ◦ P inH0. Since H0 is dense inH2, we conclude that P̃ = M ◦ P . ��

Below we will need to study the continuity of the multiplier M in L p(Sn−1). For
this we will use the next two results by Strichartz and Bonami–Clerc proved in [13]
and [6], respectively.

Theorem 5 Let m(x) be a function of a real variable satisfying

|xkm(k)(x)| ≤ A f or k = 0, . . . , a.

If m j = m( j) then {m j } ∈ Mp(S
n−1) for

∣∣∣∣ 1p − 1

2

∣∣∣∣ < a

n − 1
, p �= 1, ∞,

where Mp(S
n−1) denotes the space of all L p−multipliers on the sphere S

n−1.
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Theorem 6 Let N = [ n−1
2 ] and {μk}k≥0 be a sequence of complex numbers such that

(A0) |μk | ≤ C,

(AN ) sup j≥0 2
j (N−1)∑2 j+1

k=2 j |�Nμk | ≤ C.

Then {μk} ∈ Mp(S
n−1) for 1 < p < ∞. Here � denotes the forward difference

operator given by �μk = μk+1 − μk .

Theorem 7 For 1 < p < ∞, the operators M and M−1 are continuous on
L p(Sn−1). That is, the sequences

{
β2
m

}
and

{
β−2
m

}
define bounded multipliers on

L p(Sn−1).

Proof By (6) and (18) we obtain that for all m ≥ 2,

β2
m = 2 + R(m)

with R(m) = P(m)
Q(m)

for some polynomials P y Q of degree 4 and 6, respectively. Thus,
to prove the continuity ofM it is enough to show that the sequence {R(m)} defines a
bounded multiplier on L p(Sn−1). We have that R(k)(x) ∼ 1

|x |k+2 for |x | large. Hence,

|xk R(k)(x)| ≤ A,

for all k ∈ N ∪ {0}. Then by Theorem 5, the above inequality implies that {R(m)}
defines a bounded multiplier on L p(Sn−1) for 1 < p < ∞. To prove the continuity
of M−1, it suffices to prove the continuity of the multiplier defined by the sequence
{γm} given by

γm = 1

1 + R(m)
2

.

For m large and L ∈ N fixed, there exists a sequence {rm} such that

γm = 1 − R(m)

2
+ R(m)2

22
− · · · + R(m)L−1

2L−1 + r(m),

|r(m)| ∼ O( 1
m2L ). Using Strichartz’s Theorem we see that each {R(m)k} defines a

bounded multiplier in L p(Sn−1) for 1 < p < ∞ and k = 0, 1, . . . , L − 1. Thus,
to end the proof we will show that if we choose L large enough, {r(m)} defines a
bounded multiplier in L p(Sn−1) . Let N = [ n−1

2

]
, then for m large,

2 j+1∑
m=2 j

∣∣∣�Nrm
∣∣∣ =

2 j+1∑
m=2 j

∣∣∣∣∣
N∑
i=0

(−1)i
(
N

i

)
rm−i

∣∣∣∣∣
≤ CN ,L

22 j L
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for all j ≥ 2. Therefore,

2 j (N−1)
2 j+1∑
m=2 j

∣∣∣�Nrm
∣∣∣ ≤ CL2

j (N−2L) = O(1)

if we choose any L > N/2. By Theorem 6, we conclude that {rm} defines a bounded
multiplier on L p(Sn−1). ��
Remark 2 By (18), we have that

‖u‖H2 ∼
(∫

Rn

(
|u(x)|2 + |∇Su(x)|2

) dx

〈x〉3
)1/2

for u ∈ H2.
Hence we may replace H2 by the Hilbert space H′2 with the norm

‖u‖H′2 =
(∫

Rn

(
|u(x)|2 + |∇Su(x)|2

) dx

〈x〉3
)1/2

, (23)

to define the kernel

K′(x, y) =
∞∑

m=0

dm∑
j=1

F j
m(x)F j

m(y)

γ 2
m

,

where γm = ‖Fm‖H′2 ∼ √
2+ O

(
1
m2

)
. In this case, the orthogonal projection P ′ on

H′2 is given by

P ′u(x) =
∫
Rn

(
K′(x, y)u(y) + (−�Sθ )

1/2K′(x, y)(−�Sθ )
1/2u(y)

) dy

〈y〉3 . (24)

3 Structure and Properties of W p

Now we give estimates of the kernel K̃(x, y).

Lemma 6 Consider K̃(x, y) =
J n−2

2
(|x−y|)

(2π |x−y|)(n−2)/2 , y = sθ in the polar form. Then we

have the following pointwise estimates:

∣∣K̃(x, y)
∣∣ ≤ C

(1 + |x − y|) n−1
2

, (25)

∣∣∣∣ ∂

∂s
K̃(x, y)

∣∣∣∣ ≤ C

(1 + |x − y|) n−1
2

, (26)

∣∣∇Sθ K̃(x, y)
∣∣ ≤ C |x | |y|

(1 + |x − y|) n+1
2

. (27)
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Proof The inequality (25) follows from (4) and the fact that the function Jn−2
2

(r) has
a zero of order (n − 2)/2 at r = 0. Similarly, we can obtain (26).

To prove (27) we estimate any directional derivative Dν of K̃ in the direction of a
unit vector ν tangent to S

n−1. Using (3), we have that

|DνK̃(x, sθ)| = s|∇yK̃(x, y) · ν|

= C |y|
∣∣∣∣
Jn
2
(|x − y|)

|x − y|n/2 (x − y) · ν

∣∣∣∣
= C |y|

∣∣∣∣
Jn
2
(|x − y|)

|x − y| n2 x · ν

∣∣∣∣
≤ C |y|

∣∣∣∣
Jn
2
(|x − y|)

|x − y| n2
∣∣∣∣ |x |.

Thus in particular we obtain (27). ��
Proposition 1 Let

αn =
{
1 if n = 2, 3, 4, 5
2(n−3)
n−1 if n > 5.

If p > αn then K̃(x, .), ∂
∂s K̃(x, .) and∇Sθ K̃(x, .) belong to L p(

dy
〈y〉3 ) for each x ∈ R

n.

Proof In fact, using the estimates given in the Lemma 6 and Peetre’s inequality (1 +
|x − y))−1 ≤ C(1 + |x |)/(1 + |y|), we have

(∫
Rn

∣∣K̃(x, y)
∣∣p dy

〈y〉3
)1/p

≤ C

(∫
Rn

1

(1 + |x − y|) n−1
2 p

dy

〈y〉3
)1/p

≤ C(1 + |x |) n−1
2

(∫
Rn

1

(1 + |y|) n−1
2 p

dy

〈y〉3
)1/p

≤ C(x) < ∞.

Similarly, ∂
∂s K̃(x, .) ∈ L p

(
dy
〈y〉3
)
.

Finally,

(∫
Rn

∣∣∇Sθ K̃(x, y)
∣∣p dy

〈y〉3
)1/p

≤ C |x |
(∫

Rn

|y|p
(1 + |x − y|) n+1

2 p

dy

〈y〉3
)1/p

≤ C |x |(1 + |x |) n+1
2

(∫
Rn

|y|p
(1 + |y|) n+1

2 p

dy

〈y〉3
)1/p

≤ C |x |(1 + |x |) n+1
2

(∫
Rn

1

(1 + |y|) n−1
2 p

dy

〈y〉3
)1/p
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≤ C(x) < ∞.

��

Proposition 2 If p > αn then F j
m ∈ W p for any m, j . Moreover, W p �= {0} if and

only if p > αn.

Proof We know that F j
m is an entire solution of the Helmholtz equation and if p > αn ,

F j
m ∈ L p

(
dx
〈x〉3
)
. In fact, by (4)

F j
m ∈ L p(〈x〉−3dx) ⇐⇒

∫ ∞

0

∣∣∣∣ Jν(m)(r)

r (n−2)/2

∣∣∣∣
p rn−1dr

(1 + r2)3/2
< ∞

⇐⇒
∫ ∞

0
r (n−1)− p

2 (n−1)+3dr < ∞

whenever p > αn . Thus, F
j
m ∈ W p.

Now suppose that W p �= {0}. Let u ∈ W p, u �= 0. Then u = ∑
m, j amj Fmj with

some amj �= 0. We have that u(rξ)Y l
k(ξ) ∈ L p

(
dx
〈x〉3
)
. If ϕ is a radial function such

that ϕ(|x |) ∈ L p′( dx
〈x〉3
)
and ‖ϕ‖

L p′ ( rn−1

〈r〉3 )
≤ 1, then by Hölder’s inequality

∫
Rn

∣∣u(x)Y l
k(ξ)ϕ(|x |)∣∣ dx〈x〉3 ≤ C,

which implies that

∫ ∞

0

∣∣∣∣ Jν(k)(r)

r (n−2)/2
ϕ(r)

∣∣∣∣ r
n−1

〈r〉3 dr ≤ C.

Consequently, by duality

∫ ∞

0

∣∣∣∣ Jν(k)(r)

r (n−2)/2

∣∣∣∣
p rn−1dr

(1 + r2)3/2
< ∞,

and this implies that p > αn . ��

Theorem 8 For 1 < p < ∞,W p is a Banach space.

Proof Let v any entire solution of the Helmholtz equation and let �(x, y) be the
fundamental solution of the Helmholtz equation in R

n [1, p. 42], given as

�(x, y) = i

4
(2π |x − y|)−(n−2)/2H1

n−2
2

(|x − y|).
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Let x ∈ BR fixed with R > 1. Using a Green’s identity for the functions v and �(x, ·)
we have (see [7, p. 68–69]) for ρ > R,

v(x) = ρn−1
∫
Sn−1

(
∂v

∂s
(ρω)�(x, ρω) − ∂�

∂s
(x, ρω)v(ρω)

)
dσ(ω).

Next, integrating both sides above with respect to dρ
(1+ρ2)3/2

on the interval [2R, 3R],
we have the integral representation of v for points of BR ,

v(x) = CR

∫
2R≤|y|≤3R

(
∂v

∂s
(y)�(x, y) − ∂�

∂s
(x, y)v(y)

)
dy

〈y〉3 . (28)

Now we prove that W p is closed in Hp. Differentiating under the integral in (28)
and usingHölder’s inequality we have that on any compact set K , any partial derivative

∣∣∣∣∂
αu

∂xα
(x)

∣∣∣∣ ≤ CK ,α‖u‖Hp , u ∈ W p, x ∈ K .

Let {un} be a sequence in W p converging to u ∈ Hp. Taking a subsequence if
necessary, assume that the convergence is also almost everywhere. The relation (28)
implies that {un} (and all their derivatives) is a Cauchy sequence uniformly in compact
subsets ofRn , converging to a limit ũ, that satisfies theHelmholtz equation. Thenu = ũ
and u ∈ W p. ��
Remark 3 Using the integral representation (28) we can see that the evaluation func-
tional W p −→ C, v �−→ v(x) is continuous for every x ∈ R

n .

Given f (ξ) = ∑∞
m=0

∑dm
j=1 amjY

j
m(ξ) ∈ L p(Sn−1), the Riesz means Rδ

N of f of
order δ is defined by

Rδ
N f (ξ) =

N∑
k=0

dk∑
j=1

(
1 − k

N + 1

)δ

akjY
j
k (ξ).

Wewill need the following theorem (see [6]) about the convergence of Riesz means
to study the density of the linear span of {F j

m} inW p.

Theorem 9 Let 1 ≤ p ≤ ∞. If δ > (n − 2)/2, then for f ∈ L p(Sn−1),

Rδ
N f → f in L p(Sn−1),

moreover, the Riesz means are uniformly bounded on L p(Sn−1), that is, there exists a
uniform constant Cp,δ such that

∥∥Rδ
N f
∥∥
L p(Sn−1)

≤ Cp,δ‖ f ‖L p(Sn−1)

for all N .
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Theorem 10 Let p > αn and W p
0 the linear span of {F j

m}m, j . Then W p
0 is dense in

W p.

Proof Given u ∈ W p, the proof of the surjectivity in Theorem 4 shows that there
exists amj ∈ C such that

u(rξ) =
∞∑

m=0

dm∑
j=1

amj F
j
m(rξ),

where the convergence is absolute and uniform in compact subsets of R
n . Let r fixed

and δ > (n−2)/2, andwe consider the Rieszmeans Rδ
N of u of order δ. By Proposition

2, Rδ
Nu ∈ W p for p > αn .

Let �p
N (r) the integral given by

�
p
N (r) =

∫
Sn−1

(∣∣(Rδ
Nu − u)(rξ)

∣∣p +
∣∣∣∣ ∂

∂r
(Rδ

Nu − u)(rξ)

∣∣∣∣
p

+ ∣∣(−�S)
1/2(Rδ

Nu − u)(rξ)
∣∣p) dσ(ξ).

By the Theorem 9 we have that Rδ
Nu −→ u and ∂

∂r R
δ
Nu −→ ∂u

∂r in L p(Sn−1) as
N → ∞. Since (−�S)

1/2(Rδ
Nu) = Rδ

N ((−�S)
1/2u) we deduce that (−�S)

1/2Rδ
Nu

converges to (−�S)
1/2u in L p(Sn−1). Hence

lim
N→∞ �

p
N (r) = 0.

Also, using the uniform boundedness of the Riesz means (Theorem 9) we obtain

�
p
N (r) ≤ C

∫
Sn−1

(
|u(rξ)|p +

∣∣∣∣ ∂

∂r
u(rξ)

∣∣∣∣
p

+
∣∣∣(−�S)

1/2u(rξ)

∣∣∣p
)
dσ(ξ),

that is, �
p
N (r) ≤ Cg(r) with g ∈ L1

(
R

+, rn−1dr
(1+r2)3/2

)
. Then applying the Lebesgue’s

Dominated Convergence Theorem we have

0 =
∫ ∞

0
lim

N→∞ �
p
N (r)rn−1 dr

(1 + r2)3/2
= lim

N→∞

∫ ∞

0
�

p
N (r)rn−1 dr

(1 + r2)3/2
.

Therefore, Rδ
Nu converges to u inHp. So, we conclude that the linear span of {F j

m}m, j

is dense inW p. ��
Remark 4 By Theorems 7 and 10, we have that M and M−1 are continuous in W p

for any p > αn .

Nowwewill prove a reproducing property of the orthogonal projectionP for the space
W p.
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Theorem 11 Let αn < p < α′
n. Given u ∈ Hp, then u ∈ W p if and only if Pu = u.

Proof Let u ∈ W p and αn < p < α′
n . By Theorem 10, there exists a sequence

{un} ⊆ W p
0 ⊆ W2 such that un → u in Hp for p > αn . Also, since P is continuous

inW2, then Pun = un . On the other hand, by Remark 3, we have that un(x) → u(x)
for every x ∈ R

n . So, to end the proof it is enough to see that Pun(x) → Pu(x) for
all x ∈ R

n . In effect,

|Pun(x) − Pu(x)| ≤
∫
Rn

|K(x, y)| |(un − u)(y)| dy

〈y〉3

+
∫
Rn

∣∣∣∣∂K∂s (x, y)

∣∣∣∣
∣∣∣∣ ∂

∂s
(un − u)(y)

∣∣∣∣ dy

〈y〉3

+
∫
Rn

∣∣∇SθK(x, y)
∣∣ ∣∣∇Sθ (un − u)(y)

∣∣ dy

〈y〉3 .

Since by Proposition 1, K̃(x, .), ∂K̃
∂s (x, .) and |∇Sθ K̃(x, .)| ∈ L p′( dy

〈y〉3
)
, applying the

Hölder’s inequality we have that

|un(x) − Pu(x)| = |Pun(x) − Pu(x)| ≤ C(x)‖un − u‖p
Hp −→ 0.

Since we also have that un(x) −→ u(x) we conclude that Pu(x) = u(x).
To prove the converse, let u ∈ Hp and suppose u = Pu, then

(� + 1)xu(x)

=
∫
Rn

(� + 1)x

(
K(x, y)u(y) + ∂K

∂s
(x, y)

∂u

∂s
(y) + ∇SθK(x, y) · ∇Sθ u(y)

)
dy

〈y〉3
= 0,

since K(., y) satisfies the Helmholtz equation in R
n for each y ∈ R

n . Therefore,
u ∈ W p. ��

4 Continuity of P ′ in Mixed-Normed Spaces

In this section we prove a positive result about the continuity of P on mixed-normed
spaces, generalizing the results in [4] for n > 2.

Definition 2 Let 1 ≤ p < ∞, the mixed-normed space L p(R+; dμ)(L2(Sn−1))

consisting of all the measurable functions f (rξ) such that

‖ f ‖p
L p,2 :=

∫ ∞

0

(∫
Sn−1

| f (rξ)|2dσ(ξ)

) p
2

dμ(r) < ∞,

where dμ(r) := rn−1/(1 + r2)3/2dr .
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From now on we will write L p(R+; dμ)(L2(Sn−1)) as L p,2.

Definition 3 For 1 ≤ p < ∞, we denote byHp,2 the closure ofC∞
c (Rn)with respect

to the mixed-norm

‖u‖p
Hp,2 :=

∫ ∞

0

(∫
Sn−1

(|u(rξ)|2 + |∇Su(rξ)|2)dσ(ξ)

) p
2

dμ(r)

∼
∫ ∞

0

(∫
Sn−1

(|u(rξ)|2 + |(−�S)
1/2u(rξ)|2)dσ(ξ)

) p
2

dμ(r),

and denote by W p,2 the space of all functions u ∈ Hp,2 satisfying the Helmholtz
�u + u = 0 in R

n .

To study the continuity of P ′ inHp,2, we introduce the operator T defined by

Tu(rξ) = (−�Sξ )
1/2
∫
Rn

(−�Sθ )
1/2K′(x, y)u(y)

dy

〈y〉3 . (29)

T is well defined when p < α′
n . In fact, for u ∈ L p,2, by Hölder’s inequality, Theorem

3 and Proposition 1, we have

∣∣∣∣
∫
Rn

(−�Sθ )
1/2K′(x, y)u(y)

dy

〈y〉3
∣∣∣∣

≤
∥∥∥(−�Sθ )

1/2K′(x, ·)
∥∥∥
L p′,2

(
Rn ,

dy
〈y〉3
) ‖u‖

L p,2
(
Rn ,

dy
〈y〉3
)

≤ C
∥∥∇SK′(x, ·)∥∥

L p′,2
(
Rn ,

dy
〈y〉3
) ‖u‖

L p,2
(
Rn ,

dy
〈y〉3
)

< ∞.

Lemma 7 Let w(r) be a non-negative function such that wβ ∈ A2(dμ̃(r)) for some
β > 2. Then

n4
∫ ∞

0
|Jn(r)|2w(r)dμ̃(r)

∫ ∞

0
|Jn(r)|2w−1(r)dμ̃(r) ≤ C,

where C independent of n.

The proof of this lemma can be found in [4] and we have the following version.

Lemma 8 Let w(r) be a non-negative function and suppose there exists β > 2 such
that wβ ∈ A2(dμ̃(r)) and −a = (n − 2)(1 − 2

p ) < 2 − 1
β
. Then

m4
∫ ∞

0
|Jν(m)(r)|2raw(r)dμ̃(r)

∫ ∞

0
|Jν(m)(r)|2r−aw−1(r)dμ̃(r) ≤ C, (30)

where C is independent of m.
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Proof Let I 1 and I 2 be the integrals given by

I 1 =
∫ ∞

0
|Jν(m)(r)|2raw(r)dμ̃(r)

and

I 2 =
∫ ∞

0
|Jν(m)(r)|2r−aw−1(r)dμ̃(r),

respectively.
We split these integrals as

I 1 =
∫ 1

0
+
∫ ν(m)sechα0

1
+
∫ 2ν(m)

ν(m)sechα0
+
∫ ∞

2ν(m)

=
4∑

i=1

I 1i

and

I 2 =
∫ 1

0
+
∫ ν(m)sechα0

1
+
∫ 2ν(m)

ν(m)sechα0
+
∫ ∞

2ν(m)

=
4∑
j=1

I 2j .

We proceed as in the proof of Lemma 7. We will prove that

m4 I 1i I
2
j ≤ C; i, j ∈ {1, 2, 3, 4}.

Suppose m ≥ 1, then by Hölder’s inequality and the estimates of Bessel functions
(D1)–(D4) we have

I 11 ≤ μ̃([0, 1])1/β
(∫ 1

0
|Jν(m)(r)|2β

′
raβ

′
dμ̃(r)

)1/β ′(
1

μ̃([0, 1])
∫ 1

0
wβ(r)dμ̃(r)

)1/β

≤ C

(2mm!)2
(∫ 1

0
r (n−2)β

′+aβ
′
dμ̃(r)

)1/β ′ (
1

μ̃([0, 1])
∫ 1

0
wβ(r)dμ̃(r)

)1/β

≤ C

(2mm!)2
(

1

μ̃([0, 1])
∫ 1

0
wβ(r)dμ̃(r)

)1/β
,

I 14 ≤ C

ν(m)1/β

(∫ ∞

2ν(m)

r−β
′+aβ

′
dμ̃(r)

)1/β ′(
1

μ̃([2ν(m),∞])
∫ ∞

2ν(m)

wβ(r)dμ̃(r)

)1/β

≤ Cν(m)a

m2

(
1

μ̃([2ν(m),∞])
∫ ∞

2ν(m)

wβ(r)dμ̃(r)

)1/β
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and

I 12 ≤ C

(∫ ν(m)c

1
e−2ν(m)β

′
φ(r) dr

)1/β
′ (

1

μ̃([1, ν(m)c])
∫ ν(m)c

1
wβ(r)dμ̃(r)

)1/β

≤ C

e2mβ0

(
1

μ̃([1, ν(m)c])
∫ ν(m)c

1
wβ(r)dμ̃(r)

)1/β

,

where c = sechα0 for some α0 > 0, φ(r) = α(r) − tanh α(r), β0 = φ(ν(m)c) =
α0 − tanh α0 > 0 and the function α(r) is defined by the equation ν(m) sinh α(r) = r .

In addition, by Lemma 1 we see that

I 13 ≤ Cν(m)a

m2

(
1

μ̃([ν(m)c, 2ν(m)])
∫ 2ν(m)

ν(m)c
wβ(r)dμ̃(r)

)1/β

.

Similarly, we have that

I 21 ≤ C

(2mm!)2
(

1

μ̃([0, 1])
∫ 1

0
w−β(r)dμ̃(r)

)1/β

,

I 22 ≤ Cν(m)−a

e2mβ0

(
1

μ̃([1, 2ν(m)c])
∫ 2ν(m)c

1
w−β(r)dμ̃(r)

)1/β

,

I 23 ≤ Cν(m)−a

m2

(
1

μ̃([ν(m)c, 2ν(m)])
∫ 2ν(m)

ν(m)c
w−β(r)dμ̃(r)

)1/β

.

Furthermore, using that a > 1
β

− 2 it follows that

I 24 ≤ Cν(m)−a

m2

(
1

μ̃([2ν(m),∞])
∫ ∞

2ν(m)

w−β(r)dμ̃(r)

)1/β

,

Consequently, since wβ ∈ A2(dμ̃(r)),

m4 I 1i I
2
j ≤ C; i, j ∈ {1, 2, 3, 4}.

��
Proposition 3 Let βn ∈ (1,∞) such that

β ′
n =

{∞ if n = 2, 3
2 + 4

n−3 if n > 3.

If p ∈ (βn, β
′
n) ∩ (4/3, 4) then T is a bounded operator on L p,2. Moreover, if p /∈

(4/3, 4) then T cannot be extended to a bounded operator on L p,2.
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Proof First we note that p ∈ (βn, β
′
n) ⊂ (αn, α

′
n) and then p satisfies (n−1)(1− 2

p ) <

2.
It suffices to prove the proposition for (βn, β

′
n) and p ≥ 2, since T is self adjoint

with respect to the duality ( f, g) → ∫
Rn f g dx

〈x〉3 of L p,2 and L p′,2.
Next, expanding u in spherical harmonics, that is,

u(rξ) =
∑
m, j

umj (r)Y
j
m(ξ),

and using the Fourier expansion of the kernel K′ we have

Tu(rξ) =
∑
m, j

Tmjumj (r)Y
j
m(ξ), (31)

where

Tmj fmj (r) = Cm(m+n−2)Jν(m)(r)r
−(n−2)/2

∫ ∞

0
Jν(m)(s)s

−(n−2)/2 fmj (s) dμ(s).

(32)
Showing that T is bounded on L p,2 is equivalent to prove the vector-valued inequal-

ity,

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|Tmjumj (r)|2
⎞
⎠

p
2

dμ(r)

⎞
⎟⎠

1
p

≤ C

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|umj (r)|2
⎞
⎠

p
2

dμ(r)

⎞
⎟⎠

1
p

,

(33)
with C independent of m.

Let r be the dual exponent of p/2. By duality, there exists h ∈ Lr (dμ) with
‖h‖Lr (dμ) = 1 such that

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|Tmjumj (s)|2
⎞
⎠

p
2

dμ(s)

⎞
⎟⎠

2
p

=
∫ ∞

0

∑
m, j

|Tmjumj (s)|2h(s)dμ(s).

Let g(s) = s
n−2
r h(s) and μ̃ the measure given by dμ̃(r) = rdr

(1+r2)3/2
. Notice that

since p < 4 we have that r > 2, so we can choose γ such that 2 < γ ≤ r , then
gγ ∈ L1

loc(dμ̃), gγ ≤ Mμ̃(gγ ) a.e. and

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|Tmjumj (s)|2
⎞
⎠

p
2

dμ(s)

⎞
⎟⎠

2
p
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=
∫ ∞

0

∑
m, j

|Tmjumj (s)|2s−(n−2)/r g(s)dμ(s)

=
∫ ∞

0

∑
m, j

|Tmjumj (s)|2s(n−2)(1−1/r)g(s)dμ̃(s)

≤
∑
m, j

∫ ∞

0
|Tmjumj (s)|2s2(n−2)/p(Mμ̃[gγ ](s)) 1

γ dμ̃(s)

≤ C
∑
m, j

m4
∫ ∞

0
|Jν(m)(s)s

−(n−2)/2|2s2(n−2)/pw(s)dμ̃(s)

×
∫ ∞

0
|Jν(m)(s)s

−(n−2)/2|2s2(n−2)/qw−1(s)dμ̃(s)
∫ ∞

0
|umj (s)|2s2(n−2)/pw(s)dμ̃(s)

≤ C
∑
m, j

∫ ∞

0
|umj (s)|2s2(n−2)/pw(s)dμ̃(s)

× m4
∫ ∞

0
|Jν(m)(s)|2s(n−2)( 2

p −1)
w(s)dμ̃(s)

∫ ∞

0
|Jν(m)(s)|2s−(n−2)( 2

p −1)
w−1(s)dμ̃(s),

where w(s) = (Mμ̃[gγ ](s)) 1
γ . Furthermore, since (n − 1)

(
1 − 2

p

)
< 2, we have that

(n − 2)
( 2
p − 1

)− 1
r > −2. Then we can choose γ close enough to r so that for some

2 < β < γ we have (n − 2)
( 2
p − 1

)− 1
β

> −2. We know (see [8, Theorem 7.7(1)])

that Mμ̃(gγ )
β
γ ∈ A1(μ̃). Then since Mμ̃ is bounded on Ls(μ̃) for s > 1, by Lemma

8 and Hölder’s inequality, we have

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|Tmjumj (s)|2
⎞
⎠

p
2

dμ(s)

⎞
⎟⎠

2
p

≤ C
∫ ∞

0

∑
m, j

|umj (s)|2s2(n−2)/p(Mμ̃[gγ ](s)) 1
γ dμ̃(s)

≤ C

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|umj (s)|2s2(n−2)/p

⎞
⎠

p
2

dμ̃(s)

⎞
⎟⎠

2
p (∫ ∞

0
(Mμ̃[gγ ](s)) r

γ dμ̃(s)

) 1
r

≤ C

⎛
⎜⎝
∫ ∞

0

⎛
⎝∑

m, j

|umj (s)|2
⎞
⎠

p
2

dμ(s)

⎞
⎟⎠

2
p

.
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Now we prove that T is not continuous on L p,2 for p /∈ (4/3, 4).
Let u(rξ) =∑m, j umj (r)Y

j
m(ξ), where

umj (rξ) = rα|Jν(m)(r)|p′−1sgn(Jν(m)(r))χ[ν(m),2ν(m)]Y j
m(ξ) (34)

with α = − (n−2)
2

1
p−1 (see in [4], the sequence { fn} in the proof of Theorem 4).

Writing Tu(rξ) =∑m, j Tmjumj (r)Y
j
m(ξ) as in (31), we have that

‖umj‖p,2 =
(∫ 2ν(m)

ν(m)

|Jν(m)(r)|p′
r−(n−2)p′/2dμ(r)

)1/p

and

‖Tmjumj‖p,2 ≥ Cm(m + n − 2)

(∫ 2ν(m)

ν(m)

|Jν(m)(r)|pr−(n−2)p/2dμ(r)

)1/p

× ‖umj‖p
p,2.

Therefore,

‖Tmjumj‖p,2

‖umj‖p,2
≥ C

(∫ 2ν(m)

ν(m)

|Jν(m)(r)|pdr
)1/p(∫ 2ν(m)

ν(m)

|Jν(m)(r)|p′
dr

)1/p′

,

and using the Lemma 1 we see that this last expression is not bounded if p /∈ (4/3, 4).
��

Now, we are ready to demonstrate the main theorem of this section.

Theorem 12 If p ∈ (βn, β
′
n)∩(4/3, 4) thenP ′ can be extended to a bounded operator

onHp,2. Moreover, if p /∈ (4/3, 4) then P ′ cannot be extended to a bounded operator
on Hp,2. In particular, for n =2, 3, 4, 5, P ′ is continuous on Hp,2 if and only if
p ∈ (4/3, 4).

Proof Let p ∈ (βn, β
′
n) ∩ (4/3, 4). To prove the L p,2 boundedness of P ′, it suffices

to prove that the operators T1, T2, T3 with kernels

K′(x, y), (−�Sξ )
1/2K′(x, y), (−�Sξ )

1/2(−�Sθ )
1/2K′(x, y),

are bounded on L p,2. By Proposition 3, we know that T3 is continuous on L p,2. To
prove the continuity of T1 and T2 notice that

K′(x, y) = M1(−�Sξ )
1/2(−�Sθ )

1/2K′(x, y)

and

(−�Sξ )
1/2K′(x, y) = M2(−�Sξ )

1/2(−�Sθ )
1/2K′(x, y),
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where M1 and M2 are the multipliers in S
n−1 corresponding to the sequences

1
m(m+n−2) and 1√

m(m+n−2)
respectively. Then proceeding as in Theorem 3 we see

that the required vector valued inequalities for T1 and T2 are less demanding than
(33).

Now we show that P ′ is not continuous inHp,2 for p /∈ (4/3, 4).
If P ′ is continuous in Hp,2 then since (−�Sξ )

−1/2 : Hp,2 → Hp,2 is bounded
(due to the fact that (−�Sξ )

−1/2 is bounded in L2(Sn−1)), we have that

L = (−�Sξ )
1/2 ◦ P ′ ◦ (−�Sξ )

−1/2 (35)

is continuous in L p,2.
But

Lu(x) =
∫
Rn

K′(x, y)u(y)
dy

〈y〉3 + Tu(x),

hence, in the notation of Proposition 3,

Lu(x) =
∑
m, j

(
1

m(m + n − 2)
+ 1

)
Tmjumj (r)Y

j
m(ξ)

and it follows proceeding as in Proposition 3, that L is not bounded in L p,2 for
p /∈ (4/3, 4). ��

Now we will obtain a negative result relative to the continuity of projection P .
Notice that by Remark 4 the operators P and P̃ have the same continuity properties
onHp. This motivates the study of the continuity of the integral operator T given by

T u(x) = ∇Sξ

∫
Rn

∇Sθ K̃(x, y) · u(y)
dy

〈y〉3 , x = rξ, y = sθ, (36)

since the most singular part of P̃ is precisely T (∇Sθ u).
Using (10), we can split the operator in the sum T = T1 + T2, where

T1u(x) = Cn

∫
Rn

|x ||y|Fn/2(|x − y|)
(

A(u, y) − A(u, y) · x

|x |
x

|x |
)

dy

〈y〉3 , (37)

T2u(x) = Cn

∫
Rn

|x ||y|Fn/2+1(|x − y|)(x − Pyx) · ∇Sθ u(y)(y − Px y)
dy

〈y〉3 , (38)

where Fα(t) = Jα(t)
tα ,A(u, y) = u(y)−u(y)· y

|y|
y

|y| andPab = a·b
|a|

a
|a| is the orthogonal

projection of b in the direction of a.
We will assume that n = 3 and we will prove that T cannot be extended in general

to a bounded operator on L p(〈x〉−3dx). Let m ∈ N and Bm be the unit ball of center
(0, 0,m) and fixed radius ε < 1. Define um = χBm e1 .
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We consider the region R of the upper half-space between two cones c21
(
x21 +

x22
) ≤ x23 ≤ c22

(
x21 + x22

)
and such that |x1| > |x2|. Now, for fixed λ > 0 and

k > λm, let Ak be the annulus between the spheres centered in (0, 0,m) and radii
α(k) and α(k) + l, with α(k) = 2πk + C and where C and l > 0 are chosen so that
cos
(
t − ( n2 + 1)π

2 − π
4

) ≥ 1/2 for t ∈ [α(k), α(k) + l].

Lemma 9 There exists positive constant λ such that, if k > λm, then |R ∩ Ak | ∼ k2

uniformly for large m.

Proof Clearly |R ∩ Ak | = O(k2). Now consider spherical coordinates {(r, θ, ϕ) :
r > 0, θ ∈ [0, 2π ], ϕ ∈ [0, π ]} centered at the point (cartesian) (0, 0,m). Notice that
as a subset of R

2, every vertical section R ∩ Ak ∩ {(r, θ0, ϕ) : r > 0, ϕ ∈ [0, π ]} is
independent of θ0 ∈ [0, π/4] . This subset of R

2 contains the region in Sk described
as follows.

Let P1 be the intersection of (α(k) + l)S1 and the line s = c−1
1 t in the plane (s, t)

and P2 the intersection of α(k)S1 and the line s = c−1
2 t in the plane (s, t) both with

t > m.
Then define Sk as the intersection of the annulus αk < |x − (0,m)| < αk + l and

the region in the first quadrant between the line l1 through (0,m) and P1 and the line
l2 passing through (0,m) and P2. Let ϕi be such that tan (π/2 − ϕi ) is the slope of
the line li for i = 1, 2.

It follows that if A′
k ⊂ R ∩ Ak in spherical coordinates centered on (0, 0,m) is

given by the inequalities α(k) ≤ r ≤ α(k) + l, 0 ≤ θ ≤ π
4 , ϕ2 ≤ ϕ ≤ ϕ1, then we

have

∣∣A′
k

∣∣ =
∫ π

4

0

∫ ϕ1

ϕ2

∫ α(k)+l

α(k)
r2 sin ϕdr dϕ dθ ≥ Ck2(cosϕ2 − cosϕ1).

Hence, to complete the proof of the lemma, it suffices to show that there exists c > 0
such that

cosφ2 − cosφ1 ≥ c. (39)

Denoting α(k) just by α, we observe that P2 = (c−1
2 t2, t2) with

t2
α

=
m +

√
m2 + (α2 − m2)(c−2

2 + 1)

(c−2
2 + 1)α

.

Let λ > 0 and α > λm. Then 1 − 1
λ2

< 1 − m2

α2 , and

t2
α

≥
√
c−2
2 + 1

√
α2 − m2

(c−2
2 + 1)α

≥ 1√
c−2
2 + 1

√
1 − 1

λ2
. (40)
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Similarly, we have that P1 = (c−1
1 t1, t1) and

t1
α + l

=
m +

√
m2 + [(α + l)2 − m2](c−2

1 + 1)

(c−2
1 + 1)(α + l)

.

Since α > λm then m
α+l < 1

λ
, hence

t1
α + l

≤ 1

(c−2
1 + 1)λ

+
√

1
λ2

+ (c−2
1 + 1)

c−2
1 + 1

. (41)

By (40) and (41), we have that

t2
α

− t1
α + l

≥ 1√
c−2
2 + 1

√
1 − 1

λ2
− 1

(c−2
1 + 1)λ

−
√

1
λ2

+ (c−2
1 + 1)

c−2
1 + 1

.

Since the limit of the right side is positive as λ → ∞, we conclude that choosing λ

large enough t2/α − t1/(α + λ) ≥ ε, for some ε > 0.
Finally for such λ, if α > λm we have that

cosϕ2 − cosϕ1 = t2 − m

α
− t1 − m

α + λ

=
(
t2
α

− t1
α + λ

)
+ h,

where |h| ∼ O
( 1
m

)
. Therefore, since t2/α − t1/(α + λ) ≥ c then (39) holds for large

m and the proof is complete. ��
Theorem 13 T cannot be extended to a bounded operator on L p(〈x〉−3dx) for p ∈
(1, 3/2).

Proof Let y ∈ Bm , then we can write to y = me3 + y′ with |y′| < ε, so that

(Px y)3 = (Pxme3)3 + (Px y
′)3 < Cm + ε.

Therefore,

(y − Px y)3 ≥ (m − ε) − (Cm + ε) = (1 − C)m − 2ε ≥ Cm ≥ C |y| (42)

for all ε sufficiently small, m sufficiently large and choosing C < 1.
On the other hand, we have that

(x − Pyx) · um(y) = x1 − y · x
|y|

y

|y| · e1,
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estimating above the right hand side we have

∣∣∣∣ y · x
|y|

y

|y| · e1

∣∣∣∣ ≤ ε

m2 (|x1y1| + |x2y2| + |x3y3|) ≤ C |x1|ε/m.

Hence,
(x − Pyx) · um(y) = x1 − O(|x1|ε/m) > C |x1| > C |x | . (43)

Let x ∈ Ak . For (42), (43) and (4), we deduce that

|T2um(x)| ≥ C
∫
Bm

|x |m 1

k3
|x |m dy

〈y〉3 ≥ C |x |2
k3m

.

By Lemma 9,

‖T2um‖p
L p(
⋃

k≥Cm R∩Ak )
=
∫
⋃

k≥Cm R∩Ak

|T2um(x)|p dx

〈x〉3≥C
∑
k≥Cm

∫
Ak

(
k2

k3m

)p
dx

〈x〉3

≥ C
∑
k≥Cm

(
1

km

)p 1

k3
|R ∩ Ak | ≥ C

mp

∑
k≥Cm

1

k p+1 ≥ C

m2p ,

and so

‖T2um‖L p(
⋃

k≥Cm R∩Ak ) ≥ C

m2 . (44)

Furthermore,

|T1um(x)| ≤ C
∫
Bm

|x |m
k2

dy

〈y〉3 ≤ C |x |
m2k2

.

Then,

‖T1um‖p
L p(
⋃

k≥Cm R∩Ak )
=
∫
⋃

k≥Cm R∩Ak

|T1um(x)|p dx

〈x〉3

≤ C
∫
⋃

k≥Cm R∩Ak

( |x |
m2k2

)p dx

〈x〉3

≤ C
∑
k≥Cm

∫
R∩Ak

(
k

m2k2

)p dx

〈x〉3

≤ C

m2p

∑
k≥Cm

∫
R∩Ak

1

k p+3
|R ∩ Ak |

≤ C

m2p

∑
k≥Cm

1

k p+1 ≤ C

m3p .
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Consequently,

‖T1um‖L p(
⋃

k≥Cm R∩Ak ) ≤ C

m3 . (45)

Finally, by (44) and (45)

‖T um‖p = ‖(T2um − (−T1um)‖p

≥ ‖T2um‖L p(
⋃

k≥Cm R∩Ak ) − ‖T1um‖L p(
⋃

k≥Cm R∩Ak )

≥ C

(
1

m2 − 1

m3

)
≥ C

m2 ,

then, since ‖um‖p ∼ m−3/p,

‖T um‖p

‖um‖p
≥ Cm3/p−2. (46)

Hence T is not bounded if p ∈ (1, 3/2). ��
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