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Abstract The purpose of this paper is to show that the Rudin–Carleson interpolation
theorem is a direct corollary of Fatou’s much older interpolation theorem (of 1906).
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1 Introduction

Denote by � and T the open unit disk and the unit circle in the complex plane,
respectively. Recall that the disk algebra A is the algebra of all continuous functions
on the closed unit disk� that are analytic on�. The following theorem is fundamental;
in particular it implies the F. and M. Riesz theorem on analytic measures (cf. [11], pp.
28-31).

Theorem A (P. Fatou, 1906). Let E be a closed set of Lebesgue measure zero on T .
Then there exists a function λE (z) in the disk algebra A such that λE (z) = 1 on E
and |λE (z)| < 1 on T \E.
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In its original form Fatou’s theorem states the existence of an element of A which
vanishes precisely on E , but it is equivalent to the above version (cf. [11], p. 30, or
[9], pp. 80–81).

The following famous theorem, due to W. Rudin [15] and L. Carleson [4], has been
the starting point of many investigations in complex and functional analysis (including
several complex variables).

Theorem B (Rudin - Carleson). Let E be a closed set of Lebesgue measure zero on T
and let f be a continuous (complex valued) function on E. Then there exists a function
g in the disk algebra A agreeing with f on E .

It is obvious from TheoremA and Theorem B that for any ε > 0 one can choose the
extension function g in Theorem B such that it is bounded by || f ||E + ε, where || f ||E
is the sup norm of f on E . Rudin has shown that one can even choose the function g
such that it is bounded by || f ||E .

Quite naturally, as mentioned already by Rudin, Theorem B may be regarded as a
strengthened form of Theorem A (cf. [15], p. 808).

The present paper shows that TheoremBalso is an elementary corollary of Theorem
A. To be more specific, we present a brief proof of Theorem B merely using Theorem
A and the Heine - Cantor theorem (from Calculus I course); this approach may find
further applications.We use a simple argument based on uniform continuity, which has
been known (at least since 1930s) in particular toM.A. Lavrentiev [12],M.V. Keldysh,
and S.N. Mergelyan, but has not been used for the proof of Theorem B before.

We close the introduction bymentioning some references related to TheoremB. An
abstract theorem of E. Bishop [3] generalizes Theorem B to any situation where the F.
andM. Riesz theorem is valid. A version of this result is the known peak-interpolation
theorem of Bishop (see [16], p. 135); a new approach to this theorem is given in [6].
Further generalizations of Theorem B have been proved by S.Ya. Khavinson [10], and
A. Pelczyński [14]. Some other developments and extensions of Theorem B have been
given by D. Oberlin [13], and by S. Berhanu and J. Hounie [1,2]. The paper by R.
Doss [7] provides elementary proofs for Theorem B and the F. andM. Riesz theorems;
note that the argument of [7] (see p. 600) is based on the Weierstrass approximation
theorem (cf. the remark below).

2 Proof of Theorem B

Let ε > 0 be given. By uniform continuity we cover E by disjoint open intervals
Ik ⊂ T of a finite number n such that | f (z1) − f (z2)| < ε for any z1, z2 ∈ E ∩ Ik
(k = 1, 2, ..., n). Since the intervals Ik are disjoint, the endpoints of Ik are not in
E . Thus each E ∩ Ik is closed. Denote Ek = E ∩ Ik and let λEk (z) be the function
provided by Theorem A. Fix a natural number N so large that |λEk (z)|N < ε

n on T \Ik
for all k. Fix a point tk ∈ Ek for each k and denote h(z) = ∑n

k=1 f (tk)[λEk (z)]N .
Obviously the function h ∈ A is bounded on T by the number (1 + ε)|| f ||E and
| f (z) − h(z)| < ε(1 + || f ||E ) if z ∈ E . Replacing h by 1

1+ε
h allows to assume that

h is bounded on T simply by || f ||E and | f (z) − h(z)| < ε(1 + 2|| f ||E ) if z ∈ E .
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Letting ε = 1
m provides a sequence {hm}, hm ∈ A, which is uniformly bounded on T

by || f ||E and uniformly converges to f on E .1

To complete the proof, we use the following known steps (cf. e.g. [5]). Let η > 0
be given and let ηp > 0 be such

∑
ηp < η. We can find H1 = hm1 ∈ A such

that |H1(z)| ≤ || f ||E on T and | f (z) − H1(z)| < η1 on E . Letting f1 = f − H1
on E , the same reasoning yields H2 ∈ A with |H2(z)| ≤ || f1||E < η1 on T and
| f1(z) − H2(z)| < η2 on E . Similarly we find Hp ∈ A for p = 3, 4, ..., with
appropriate properties. The convergence of the series || f ||E + η1 + η2 + ... implies
that the series

∑
Hp(z) converges uniformly on � to a function g ∈ A, which is

bounded by || f ||E + η. On E holds | f − g| = |( f − H1) − H2 − ... − Hp − ...| =
|( f1 − H2) − H3 − ... − Hp − ...| = ... = |( f p−1 − Hp) − ...| ≤ ηp + ∑∞

k=p ηk .
Since limp→∞(ηp + ∑∞

k=p ηk) = 0, it follows that g = f on E , which completes
the proof.

Remark The known proofs of Theorem B use Theorem A and a polynomial approxi-
mation theorem (cf. [8], p. 125; or [9], pp. 81–82). The latter is needed to approximate
f on E by the elements of the disc algebra A. The above proof uses just Theorem A
to provide such approximation of f on E by the elements of A, which in addition are
bounded by || f ||E on T .
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