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singularity is the Gabor wave front set.
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1 Introduction

The goal of this paper is to study propagation of singularities for the initial value
Cauchy problem for a Schrödinger type equation

{
∂t u(t, x) + qw(x, D)u(t, x) = 0, t � 0, x ∈ Rd ,

u(0, ·) = u0,
(1.1)

where u0 is aGelfand–Shilov distribution onRd ,q = q(x, ξ) is a quadratic formon the
phase space (x, ξ) ∈ T ∗Rd with Re q � 0, and qw(x, D) is a pseudodifferential oper-
ator in theWeyl quantization. This family of equations comprises the free Schrödinger
equationwhere q(x, ξ) = i |ξ |2, the harmonic oscillatorwhere q(x, ξ) = i(|x |2+|ξ |2)
and the heat equation where q(x, ξ) = |ξ |2.

The problem has been studied in the space of tempered distributions [22,34] where
the natural notion of singularity is the Gabor wave front set. This concept of singularity
is defined as the conical subset of the phase space T ∗Rd\{0} in which the short-time
Fourier transform does not have rapid (superpolynomial) decay. The Gabor wave front
set of a tempered distribution is empty exactly when the distribution is a Schwartz
function so it measures deviation from regularity in the sense of both smoothness and
decay at infinity comprehensively.

In this work we study propagation of singularities for the Eq. (1.1) in the func-
tional framework of the Gelfand–Shilov test function spaces and their dual distribution
spaces. More precisely we use the projective limit (Beurling type) Gelfand–Shilov
space �s(Rd) for s > 1/2 that consists of smooth functions satisfying

∀h > 0 ∃Ch > 0 : |xα∂β f (x)| � Chh|α+β|(α!β!)s, x ∈ Rd , α, β ∈ Nd .

This means that �s(Rd) is smaller than the Schwartz space, and hence its dual
�′

s(R
d) is a space of distributions that contains the tempered distributions.

The natural concept of phase space singularities in the realm of Gelfand–Shilov
spaces is the s-Gelfand–Shilov wave front set. The idea was introduced by Hörmander
[16] under the name analytic wave front set for tempered distributions, and further
developed by Cappiello and Schulz [2] and Cordero et al. [5] for Gelfand–Shilov
distributions. These authors had an approach based on the inductive limit Gelfand–
Shilov spaces as opposed to our concept that is based on the projective limit spaces.

A concept similar to the s-Gelfand–Shilov wave front set has been studied by
Mizuhara [18]. This is the homogeneous wave front set of Gevrey order s > 1.
It is included in the s-Gelfand–Shilov wave front set. Propagation results for the
homogeneous Gevrey wave front set are proved in [18] for Schrödinger equations,
albeit of a different type than ours.

In this paper the s-Gelfand–Shilov wave front set W Fs(u) ⊆ T ∗Rd\{0} of u ∈
�′

s(R
d) for s > 1/2 is defined as follows: W Fs(u) is the complement in T ∗Rd\{0}

of the set of z0 ∈ T ∗Rd\{0} such that there exists an open conic set � ⊆ T ∗Rd\{0}
containing z0, and
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∀A > 0 : sup
z∈�

eA|z|1/s |Vϕu(z)| < ∞.

Here Vϕu denotes the short-time Fourier transform defined by ϕ ∈ �s(Rd)\{0}. Thus
the short-time Fourier transform decays like e−A|z|1/s

for any A > 0 in an open cone
around z0. Note that this means that the decay can be close to but not quite like a
Gaussian e−A|z|2 , due to our assumption s > 1/2.

For a tempered distribution, the s-Gelfand–Shilovwave front set contains theGabor
wave front set, and thus gives an enlarged notion of singularity.

Our main result on propagation of singularities for Schrödinger type equations
goes as follows, where e−tqw(x,D) denotes the solution operator (propagator) of the
Eq. (1.1). Let q be the quadratic form on T ∗Rd defined by q(x, ξ) = 〈(x, ξ), Q(x, ξ)〉
and a symmetric matrix Q ∈ C2d×2d , Re Q � 0, F = J Q where

J =
(
0 I
−I 0

)
∈ R2d×2d (1.2)

and s > 1/2. Then for u0 ∈ �′
s(R

d)

W Fs(e−tqw(x,D)u0) ⊆
(

e2tIm F (
W Fs(u0) ∩ S

)) ∩ S, t > 0,

where S is the singular space

S =
( 2d−1⋂

j=0

Ker
[
Re F(Im F) j ]) ∩ T ∗Rd ⊆ T ∗Rd

of the quadratic form q. This result is verbatim the same as [22, Theorem 5.2] when u0
is restricted to be a tempered distribution and when the s-Gelfand–Shilov wave front
set is replaced by the Gabor wave front set (cf. [34, Corollary 4.6]). Thus it gives a
new manifestation of the importance of the singular space for propagation of phase
space singularities for the considered class of equations of Schrödinger type.

The singular space has attracted much attention recently and occurs in several
works on spectral and hypoelliptic properties of non-elliptic quadratic operators [12–
14,23,24,32,33].

The paper is organized as follows. Section 2 contains notations and background
material on Gelfand–Shilov spaces, pseudodifferential operators, the short-time
Fourier transform and the Gabor wave front set. Section 3 gives a comprehensive dis-
cussion on three alternative families of seminorms for the projective Gelfand–Shilov
spaces.

In Sect. 4 we define the s-Gelfand–Shilov wave front set and deduce some proper-
ties: independence of the window function, symplectic invariance, behavior under
tensor product and composition with surjective matrices, and microlocality with
respect to pseudodifferential operators with certain symbols. In this process we show
the continuity of metaplectic operators on �s(Rd) and on �′

s(R
d).
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Section 5 gives a brief discussion on the solution operator to the Eq. (1.1), that is
formulated for u0 ∈ L2(Rd) by means of semigroup theory. Exact propagation results
are given for the case Re Q = 0. Section 6 treats propagation of the s-Gelfand–Shilov
wave front set for a class of linear operators, continuous on �s(Rd) and uniquely
extendible to continuous operators on �′

s(R
d).

In Sect. 7 we discuss shortly Hörmander’s oscillatory integrals with quadratic phase
function, and we prove the inclusion of the s-Gelfand–Shilov wave front set of such
an oscillatory integral in the intersection of its corresponding positive Lagrangian
in T ∗Cd with T ∗Rd . Section 8 gives an account of Hörmander’s description of the
Schwartz kernel of the propagator as an oscillatory integral andwe show the continuity
of the propagator on �s(Rd) and on �′

s(R
d).

Finally in Sect. 9 we assemble the results of Sects. 6, 7 and 8 to prove our results
on propagation of the s-Gelfand–Shilov wave front set for equations of the form (1.1).

2 Preliminaries

2.1 Notations and Basic Definitions

The gradient of a function f with respect to the variable x ∈ Rd is denoted by f ′
x and

the mixed Hessian matrix (∂xi ∂y j f )i, j with respect to x ∈ Rd and y ∈ Rn is denoted
f ′′
xy . The Fourier transform of f ∈ S (Rd) (the Schwartz space) is normalized as

F f (ξ) = f̂ (ξ) =
∫

Rd
f (x)e−i〈x,ξ〉dx,

where 〈x, ξ 〉 denotes the inner product on Rd . The topological dual of S (Rd) is the
space of tempered distributionsS ′(Rd). As conventional D j = −i∂ j for 1 � j � d.

We will make frequent use of the inequality

|x + y|1/s � Cs(|x |1/s + |y|1/s), x, y ∈ Rd ,

where

Cs =
{
1 if s � 1
21/s−1 if 0 < s < 1

.

Since this inequality will be used only for s > 1/2 we may use the cruder estimate
Cs = 2, which leads to the inequalities

eA|x+y|1/s � e2A|x |1/s
e2A|y|1/s

, A > 0, x, y ∈ Rd , (2.1)

e−A|x+y|1/s � e− A
2 |x |1/s

eA|y|1/s
, A > 0, x, y ∈ Rd . (2.2)

The Japanese bracket is 〈x〉 = (1 + |x |2)1/2. For a positive measurable weight
function ω defined on Rd , the Banach space L1

ω(Rd) is endowed with the norm
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‖ f ‖L1
ω

= ‖ f ω‖L1 . The unit sphere in Rd is denoted Sd−1 = {x ∈ Rd : |x | = 1}.
For a matrix A ∈ Rd×d , A � 0 means that A is positive semidefinite, and At is the
transpose. If A is invertible then A−t denotes the inverse transpose. In estimates the
notation f (x) � g(x) understands that f (x) � Cg(x) holds for some constant C > 0
that is uniform for all x in the domain of f and g. If f (x) � g(x) � f (x) then we
write f (x)  g(x).

We denote the translation operator by Tx f (y) = f (y −x), the modulation operator
by Mξ f (y) = ei〈y,ξ 〉 f (y), x, y, ξ ∈ Rd , and the phase space translation operator by

(z) = Mξ Tx , z = (x, ξ) ∈ R2d .

2.2 Gelfand–Shilov Spaces

Let h, s, t > 0. The space Ss
t,h(Rd) is defined as all f ∈ C∞(Rd) such that

‖ f ‖Ss
t,h

≡ sup
|xα∂β f (x)|

h|α+β|α!s β!t (2.3)

is finite. The supremum refers to all α, β ∈ Nd and x ∈ Rd . We set Ss,h = Ss
s,h .

The Banach space Ss
t,h increases with h, s and t , and the embedding Ss

t,h ⊆ S
holds for all h, s, t > 0. If s, t > 1/2, or s = t = 1/2 and h is sufficiently large, then
Ss

t,h contains all finite linear combinations of Hermite functions.

The Gelfand–Shilov spaces Ss
t (Rd) and �s

t (R
d) are the inductive and projective

limits respectively of Ss
t,h(Rd) with respect to h > 0. This means on the one hand

Ss
t (Rd) =

⋃
h>0

Ss
t,h(Rd) and �s

t (R
d) =

⋂
h>0

Ss
t,h(Rd).

On the other hand it means that the topology for Ss
t (Rd) is the strongest topology

such that the inclusionSs
t,h(Rd) ⊆ Ss

t (Rd) is continuous for each h > 0, and the topol-

ogy for �s
t (R

d) is the weakest topology such that the inclusion �s
t (R

d) ⊆ Ss
t,h(Rd)

is continuous for each h > 0.
The space�s

t (R
d) is a Fréchet space with seminorms ‖·‖S t

s,h
, h > 0. The Gelfand–

Shilov spaces are invariant under translation, modulation, dilation, linear coordinate
transformations and tensor products. It holds �s

t (R
d) �= {0} if and only if s, t > 0,

s + t � 1 and (s, t) �= (1/2, 1/2). We set Ss = Ss
s and �s = �s

s . Then Ss(Rd) is
zero when s < 1/2, and �s(Rd) is zero when s ≤ 1/2. From now on we assume that
s > 1/2 when considering �s(Rd).

TheGelfand–Shilov distribution spaces (Ss
t )′(Rd) and (�s

t )
′(Rd) are the projective

and inductive limits respectively of (Ss
t,h)′(Rd). This implies that

(Ss
t )′(Rd) =

⋂
h>0

(Ss
t,h)′(Rd) and (�s

t )
′(Rd) =

⋃
h>0

(Ss
t,h)′(Rd).
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The space (Ss
t )′(Rd) is the topological dual of Ss

t (Rd), and if s > 1/2 then
(�s

t )
′(Rd) is the topological dual of �s

t (R
d) [8].

In this paper we work with the spaces �s(Rd) and �′
s(R

d) = (�s
s )

′(Rd) for
s > 1/2. These spaces are embedded with respect to the Schwartz space and the
tempered distributions as

�s(Rd) ⊆ S (Rd) ⊆ S ′(Rd) ⊆ �′
s(R

d), s > 1/2.

For s > 1/2 the (partial) Fourier transform extends uniquely to homeomorphisms
onS ′(Rd),S ′

s(R
d) and�′

s(R
d), and restricts to homeomorphisms onS (Rd),Ss(Rd)

and �s(Rd).

2.3 Pseudodifferential Operators and the Gabor Wave Front Set

Let s > 1/2. Given a window function ϕ ∈ �s(Rd)\{0}, the short-time Fourier
transform (STFT) [9] of u ∈ �′

s(R
d) is defined by

Vϕu(x, ξ) = (u, Mξ Txϕ) = F (u Txϕ)(ξ), x, ξ ∈ Rd ,

where (·, ·) denotes the conjugate linear action of �′
s on �s , consistent with the inner

product (·, ·)L2 which is conjugate linear in the second argument. The function R2d �
z → Vϕu(z) is smooth.

Let ϕ,ψ ∈ �s(Rd)\0. By [29, Theorem 2.5] we have

∀u ∈ �′
s(R

d) ∃M � 0 : |Vϕu(z)| � eM|z|1/s
, z ∈ R2d , (2.4)

and by [9, Lemma 11.3.3] we have

|Vψu(z)| � (2π)−d‖ϕ‖L2 |Vϕu| ∗ |Vψϕ|(z), z ∈ R2d , (2.5)

where Vψϕ ∈ �s(R2d).
If ϕ ∈ �s(Rd) and ‖ϕ‖L2 = 1, the STFT inversion formula [9, Corollary 11.2.7]

reads

( f, g) = (2π)−d
∫

R2d
Vϕ f (z) Vϕg(z) dz, f ∈ �′

s(R
d), g ∈ �s(Rd). (2.6)

The Weyl quantization of pseudodifferential operators (cf. [7,15,27]) is the map
from symbols a ∈ S (R2d) to operators acting on f ∈ S (Rd) defined by

aw(x, D) f (x) = (2π)−d
∫∫

R2d
ei〈x−y,ξ〉a

(
x + y

2
, ξ

)
f (y) dy dξ.

The conditions on a and f can be modified and relaxed in various ways. The Weyl
quantization can be formulated in the framework of Gelfand–Shilov spaces [1]. For
certain symbols the operator aw(x, D) acts continuously on �s(Rd) when s > 1/2.
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If a ∈ �′
s(R

2d) the Weyl quantization extends a continuous operator �s(Rd) →
�′

s(R
d) that satisfies

(aw(x, D) f, g) = (2π)−d(a, W (g, f )), f, g ∈ �s(Rd),

where the cross-Wigner distribution is defined as

W (g, f )(x, ξ) =
∫

Rd
g(x + y/2) f (x − y/2)e−i〈y,ξ〉dy, (x, ξ) ∈ R2d .

We have W (g, f ) ∈ �s(R2d) when f, g ∈ �s(Rd).
We need the following symbol classes for pseudodifferential operators that act on

S (Rd) in order to define the Gabor wave front set and explain its properties.

Definition 2.1 [27] For m ∈ R the Shubin symbol class Gm is the subspace of all
a ∈ C∞(R2d) such that for every α, β ∈ Nd

|∂α
x ∂

β
ξ a(x, ξ)| � 〈(x, ξ)〉m−|α|−|β|, (x, ξ) ∈ R2d .

Definition 2.2 [15] For m ∈ R, 0 � ρ � 1, 0 � δ < 1, the Hörmander symbol class
Sm
ρ,δ is the subspace of all a ∈ C∞(R2d) such that for every α, β ∈ Nd

|∂α
x ∂

β
ξ a(x, ξ)| � 〈ξ 〉m−ρ|β|+δ|α|, (x, ξ) ∈ R2d . (2.7)

Both Gm and Sm
ρ,δ are Fréchet spaces with respect to their naturally defined semi-

norms.
The following definition involves conic sets in the phase space T ∗Rd\0 � R2d\0.A

set is conic if it is invariant under multiplication with positive reals. Note the difference
to the frequency-conic sets that are used in the definition of the (classical) C∞ wave
front set [15].

Definition 2.3 Given a ∈ Gm , a point z0 ∈ T ∗Rd\0 is called non-characteristic for
a provided there exist A, ε > 0 and an open conic set � ⊆ T ∗Rd\0 such that z0 ∈ �

and

|a(z)| � ε〈z〉m, z ∈ �, |z| � A.

The Gabor wave front set is defined as follows where char(a) is the complement
in T ∗Rd\0 of the set of non-characteristic points for a.

Definition 2.4 [16] If u ∈ S ′(Rd) then the Gabor wave front set W F(u) is the set
of all z ∈ T ∗Rd\0 such that a ∈ Gm for some m ∈ R and aw(x, D)u ∈ S implies
z ∈ char(a).

According to [16, Proposition 6.8] and [25, Corollary 4.3], the Gabor wave front set
can be characterized microlocally by means of the STFT as follows. If u ∈ S ′(Rd)
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and ϕ ∈ S (Rd)\0 then z0 ∈ T ∗Rd\0 satisfies z0 /∈ W F(u) if and only if there exists
an open conic set �z0 ⊆ T ∗Rd\0 containing z0 such that

sup
z∈�z0

〈z〉N |Vϕu(z)| < ∞ ∀N � 0. (2.8)

The most important properties of the Gabor wave front set include the following
facts. Here the microsupport μ supp(a) of a ∈ Gm is defined as follows (cf. [26]).
For z0 ∈ T ∗Rd\0 we have z0 /∈ μ supp(a) if there exists an open cone � ⊆ T ∗Rd\0
containing z0 such that

sup
z∈�

〈z〉N |∂αa(z)| < ∞, α ∈ N2d , N � 0.

(1) If u ∈ S ′(Rd) then W F(u) = ∅ if and only if u ∈ S (Rd) [16, Proposition 2.4].
(2) If u ∈ S ′(Rd) and a ∈ Gm then

W F(aw(x, D)u) ⊆ W F(u) ∩ μ supp(a)

⊆ W F(aw(x, D)u)
⋃

char(a).

(3) If a ∈ S0
0,0 and u ∈ S ′(Rd) then by [25, Theorem 5.1]

W F(aw(x, D)u) ⊆ W F(u). (2.9)

In particular W F(
(z)u) = W F(u) for any z ∈ R2d .

As three basic examples of the Gabor wave front set we mention (cf. [25, Exam-
ples 6.4–6.6])

W F(δx ) = {0} × (Rd\0), x ∈ Rd , (2.10)

W F(ei〈·,ξ〉) = (Rd\0) × {0}, ξ ∈ Rd ,

and

W F(ei〈x,Ax〉/2) = {(x, Ax) : x ∈ Rd\0}, A ∈ Rd×d symmetric.

The canonical symplectic form on T ∗Rd is

σ((x, ξ), (x ′, ξ ′)) = 〈x ′, ξ 〉 − 〈x, ξ ′〉, (x, ξ), (x ′, ξ ′) ∈ T ∗Rd .

With the matrix (1.2) this can be expressed with the inner product on R2d as

σ((x, ξ), (x ′, ξ ′)) = 〈J (x, ξ), (x ′, ξ ′)〉, (x, ξ), (x ′, ξ ′) ∈ T ∗Rd .
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To each symplectic matrix χ ∈ Sp(d, R) is associated an operator μ(χ) that is
unitary on L2(Rd), and determined up to a complex factor of modulus one, such that

μ(χ)−1aw(x, D) μ(χ) = (a ◦ χ)w(x, D), a ∈ S ′(R2d) (2.11)

(cf. [7,15]). The operator μ(χ) is a homeomorphism onS and onS ′.
The mapping Sp(d, R) � χ → μ(χ) is called the metaplectic representation

[7,28]. It is in fact a representation of the so called 2-fold covering group of Sp(d, R),
which is called the metaplectic group and denoted Mp(d, R). The metaplectic repre-
sentation satisfies the homomorphism relation modulo a change of sign:

μ(χχ ′) = ±μ(χ)μ(χ ′), χ, χ ′ ∈ Sp(d, R).

According to [16, Proposition 2.2] theGaborwave front set is symplectically invari-
ant as

W F(μ(χ)u) = χW F(u), χ ∈ Sp(d, R), u ∈ S ′(Rd).

The work [4] contains a study of the propagation of the Gabor wave front set for
linear Schrödinger equations, and [19,21] contain studies of the same question for
semilinear Schrödinger-type equations.

3 Seminorms on Gelfand–Shilov Spaces

We need to work with several families of seminorms on �s(Rd) for s > 1/2 apart
from the seminorms defined by (2.3). The next result shows that there are three
families of seminorms for �s(Rd) that are each equivalent to the family of semi-
norms {‖ f ‖Ss,h , h > 0} defined by (2.3). The three families of seminorms are firstly
{‖ f ‖′

A, ‖ f̂ ‖′
B, A, B > 0} where

‖ f ‖′
A = sup

x∈Rd
eA|x |1/s | f (x)|, (3.1)

secondly {| f |A, A > 0} where

| f |A = sup
x∈Rd , β∈Nd

A|β|eA|x |1/s |Dβ f (x)|
(β!)s

, (3.2)

and thirdly {‖ f ‖′′
A, A > 0} where

‖ f ‖′′
A = sup

z∈R2d
eA|z|1/s |Vϕ f (z)|, (3.3)
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for ϕ ∈ �s(Rd)\0 fixed. It will turn out that the choice of ϕ ∈ �s(Rd)\0 in the
definition of the seminorms {‖ f ‖′′

A, A > 0} is arbitrary (see the proof of Proposition
3.1).

The essential arguments in the proof of the following proposition can be found in
several places, e.g. [3,8,11,20,30]. Nevertheless we prefer to give a detailed account
since it is a cornerstone for our results, and in order to give a self-contained narrative.

Proposition 3.1 Let s > 1/2. Then

∀A, B > 0 ∃h > 0 : ‖ f ‖′
A + ‖ f̂ ‖′

B � ‖ f ‖Ss,h , f ∈ �s(Rd), (3.4)

and

∀h > 0 ∃A, B > 0 : ‖ f ‖Ss,h � ‖ f ‖′
A + ‖ f̂ ‖′

B, f ∈ �s(Rd). (3.5)

Likewise

∀A > 0 ∃h > 0 : | f |A � ‖ f ‖Ss,h , f ∈ �s(Rd), (3.6)

and

∀h > 0 ∃A > 0 : ‖ f ‖Ss,h � | f |A, f ∈ �s(Rd). (3.7)

Finally

∀A > 0 ∃h > 0 : ‖ f ‖′′
A � ‖ f ‖Ss,h , f ∈ �s(Rd), (3.8)

and

∀h > 0 ∃A > 0 : ‖ f ‖Ss,h � ‖ f ‖′′
A, f ∈ �s(Rd). (3.9)

Proof We start with (3.4). Let f ∈ �s(Rd). From (2.3) we have for any h > 0

|xα Dβ f (x)| � ‖ f ‖Ss,h (α!β!)sh|α+β|, α, β ∈ Nd , x ∈ Rd .

This gives for any n ∈ N and any β ∈ Nd

|x |n|Dβ f (x)| � dn/2 max|α|=n
|xα Dβ f (x)| � dn/2‖ f ‖Ss,h (n!β!)shn+|β|, x ∈ Rd ,

(3.10)

which in turn gives with β = 0 and A = 2−1s(d1/2h)−1/s

exp

(
A

s
|x |1/s

)
| f (x)|1/s =

∞∑
n=0

|x |n/s | f (x)|1/s(d1/2h)−n/s

n!
(

A(d1/2h)1/s

s

)n
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� ‖ f ‖1/s
Ss,h

∞∑
n=0

2−n, x ∈ Rd .

For any A > 0 we thus have

‖ f ‖′
A � ‖ f ‖Ss,h1

, f ∈ �s(Rd), (3.11)

if h1 = (s/(2A))sd−1/2.
Since the Fourier transform is continuous on �s(Rd) we get from (3.11) for any

B > 0

‖ f̂ ‖′
B � ‖ f̂ ‖Ss,h0

� ‖ f ‖Ss,h2
, f ∈ �s(Rd), (3.12)

for some h0, h2 > 0. Addition of (3.11) and (3.12) proves (3.4) for h = min(h1, h2).
The second and longer argument of this proof serves to prove (3.5). The argument

follows closely that of the proof of [20, Theorem 6.1.6]. For completeness’ sake we
give the full details.

First we deduce two estimates that are needed. From (3.4) it follows that ‖ f ‖′
A < ∞

and ‖ f̂ ‖′
B < ∞ for any A, B > 0 when f ∈ �s(Rd). Thus for any A > 0 we have

∞∑
n=0

|x |n/s | f (x)|1/s

n!
(

A

s

)n

= exp

(
A

s
|x |1/s

)
| f (x)|1/s � (‖ f ‖′

A)1/s, x ∈ Rd ,

which gives the estimate

|x |n| f (x)| � ‖ f ‖′
A(n!)s

( s

A

)sn
, x ∈ Rd , n ∈ N.

Using |α|! � d |α|α! (cf. [20, Eq. (0.3.3)]) this gives in turn

|xα f (x)| � ‖ f ‖′
A(α!)s

(
ds

A

)s|α|
, x ∈ Rd , α ∈ Nd .

Finally we take the L2 norm and estimate for an integer k >d/4 with ε=4k−d >0:

‖xα f ‖L2 � sup
x∈Rd

〈x〉(d+ε)/2|xα f (x)| � sup
x∈Rd , |γ |�2k

|xα+γ f (x)|

� ‖ f ‖′
A((α + γ )!)s

(
ds

A

)s|α+γ |

� ‖ f ‖′
A(α!)s

(
2ds

A

)s|α|
, α ∈ Nd , (3.13)

using (α + γ )! � 2|α+γ |α!γ ! (cf. [20]) and considering k a fixed parameter.
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From (3.13), ‖ f̂ ‖′
B < ∞ for any B > 0, and Parseval’s theorem we obtain

‖Dβ f ‖L2 = (2π)−d/2‖ξβ f̂ ‖L2 � ‖ f̂ ‖′
B(β!)s

(
2ds

B

)s|β|
, β ∈ Nd . (3.14)

Since ‖ f ‖′
A � ‖ f ‖′

A+A0
when A0 � 0 and A > 0 we may use B = A when

we now set out to prove (3.5). It suffices to assume h � 1. We have for α, β ∈ Nd

arbitrary and f ∈ �s(Rd), using the Cauchy–Schwarz inequality, Parseval’s theorem
and the Leibniz rule

|xα Dβ f (x)| = (2π)−d
∣∣∣∣
∫

Rd

̂xα Dβ f (ξ)ei〈x,ξ〉dξ

∣∣∣∣ � ‖〈·〉(d+ε)/2 ̂xα Dβ f ‖L2

� max
|γ |�2k

‖Dγ (xα Dβ f )‖L2

� max
|γ |�2k

∑
μ�min(α,γ )

(
γ

μ

)(
α

μ

)
μ!‖xα−μ Dβ+γ−μ f ‖L2 , x ∈ Rd .

(3.15)

In an intermediate step we rewrite the expression for the L2 norm squared using
integration by parts and estimate it as

‖xα−μ Dβ+γ−μ f ‖2L2

= |(Dβ+γ−μ f, x2α−2μ Dβ+γ−μ f )|
= |( f, Dβ+γ−μ(x2α−2μ Dβ+γ−μ f ))|
�

∑
κ�min(β+γ−μ,2α−2μ)

(
β + γ − μ

κ

)(
2α − 2μ

κ

)
κ!|(x2α−2μ−κ f, D2β+2γ−2μ−κ f )|

�
∑

κ�min(β+γ−μ,2α−2μ)

(
β + γ − μ

κ

)(
2α − 2μ

κ

)
κ!‖x2α−2μ−κ f ‖L2‖D2β+2γ−2μ−κ f ‖L2 .

Setting h = 22s+5/2(2ds/A)s and using (3.13), (3.14) and κ! = κ!2s−δ where
δ = 2s − 1 > 0, we get

‖xα−μ Dβ+γ−μ f ‖2L2

� 22|α+β|‖ f ‖′
A‖ f̂ ‖′

A

∑
κ�min(β+γ−μ,2α−2μ)

κ!((2α − 2μ − κ)!(2β + 2γ − 2μ − κ)!)s

×
(
2−5/2−2sh

)|2α−4μ−2κ+2β+2γ |

� (2−3−4sh2)|α+β|‖ f ‖′
A‖ f̂ ‖′

A

∑
κ�min(β+γ−μ,2α−2μ)

(κ!)−δ((2α − 2μ)!(2β + 2γ − 2μ)!)s

×
(
2−5/2−2sh

)|−4μ−2κ+2γ |



542 J Fourier Anal Appl (2017) 23:530–571

� (2−3−4sh2)|α+β|‖ f ‖′
A‖ f̂ ‖′

A

∑
κ�min(β+γ−μ,2α−2μ)

((2α − 2μ)!(2β + 2γ − 2μ)!)s

� (2−2−2sh2)|α+β|‖ f ‖′
A‖ f̂ ‖′

A((2α − 2μ)!(2β − 2μ)!)s

since we have assumed h � 1, since |μ| � 2k which is a fixed constant, and since

(κ!)−δ
(
2−5/2−2sh

)−2|κ|
� exp

(
δd

(
h−125/2+2s

)2/δ)
, κ ∈ Nd .

We insert this into (3.15) which gives, using μ! � μ!2s and

(2(α − μ))! � 22|α|((α − μ)!)2,

|xα Dβ f (x)|
� (2−1−sh)|α+β|(‖ f ‖′

A‖ f̂ ‖′
A)1/2 max

|γ |�2k

×
∑

μ�min(α,γ )

(
γ

μ

)(
α

μ

)
μ!((2α − 2μ)!(2β − 2μ)!))s/2

� (2−1h)|α+β|(‖ f ‖′
A‖ f̂ ‖′

A)1/2 max
|γ |�2k

∑
μ�min(α,γ )

(
γ

μ

)(
α

μ

)
(α!β!)s

� h|α+β|(α!β!)s(‖ f ‖′
A + ‖ f̂ ‖′

A), x ∈ Rd , α, β ∈ Nd .

This finally proves (3.5), since for any h > 0 we may take A = 23+5/2sh−1/sds.
Next we show (3.6) and (3.7). We start with (3.6).
From (3.10) it follows that we have for A > 0

exp

(
A

s
|x |1/s

)
|Dβ f (x)|1/s =

∞∑
n=0

|x |n/s |Dβ f (x)|1/s(d1/2h)−n/s

n!
(

A(d1/2h)1/s

s

)n

� ‖ f ‖1/s
Ss,h

β!h|β|/s
∞∑

n=0

2−n, x ∈ Rd , β ∈ Nd ,

provided A � 2−1s(d1/2h)−1/s . Thus

eA|x |1/s |Dβ f (x)| � ‖ f ‖Ss,h (β!)sh|β|, x ∈ Rd , β ∈ Nd ,

which gives

| f |A � ‖ f ‖Ss,h , f ∈ �s(Rd),

provided h � min(A−1, (s/(2A))sd−1/2). Hence we have proved (3.6).
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We continue with the proof of (3.7). From (3.6) we know that | f |A < ∞ for any
A > 0 when f ∈ �s(Rd). Hence for any A > 0, β ∈ Nd and x ∈ Rd

∞∑
n=0

|x |n/s |Dβ f (x)|1/s

n!
(

A

s

)n

= exp

(
A

s
|x |1/s

)
|Dβ f (x)|1/s � | f |1/s

A β!A−|β|/s,

which gives

|x |n|Dβ f (x)| � | f |A(n!β!)s A−|β| ( s

A

)sn
, n ∈ N, β ∈ Nd , x ∈ Rd ,

and thus

|xα Dβ f (x)| � | f |A(α!β!)s A−|β|
(

ds

A

)s|α|
, α, β ∈ Nd , x ∈ Rd .

From this it follows that

‖ f ‖Ss,h � | f |A, f ∈ �s(Rd),

for any h > 0 provided A � max(h−1, sdh−1/s). This proves (3.7).
It remains to show (3.8) and (3.9). We start with (3.8).
Let A > 0 and ϕ ∈ �s(Rd)\0. We have for f ∈ �s(Rd)

|Vϕ f (x, ξ)| = |̂f Txϕ(ξ)| � | f̂ | ∗ |̂Txϕ|(ξ) =
∫

Rd
| f̂ (ξ − η)| |ϕ̂(−η)| dη

� ‖ f̂ ‖′
8A

∫
Rd

exp(−8A|ξ − η|1/s) |ϕ̂(−η)| dη

� ‖ f̂ ‖′
8A exp(−4A|ξ |1/s)

∫
Rd

exp(8A|η|1/s) |ϕ̂(−η)| dη

� ‖ f̂ ‖′
8A exp(−4A|ξ |1/s), x, ξ ∈ Rd ,

using (2.2) and (3.4). From this estimate and |Vϕ f (x, ξ)| = (2π)−d |Vϕ̂ f̂ (ξ,−x)| we
also obtain

|Vϕ f (x, ξ)| � ‖ f ‖′
8A exp(−4A|x |1/s), x, ξ ∈ Rd .

With the aid of (2.1) we may conclude

e2A|(x,ξ)|1/s |Vϕ f (x, ξ)|2 � e4A|x |1/s |Vϕ f (x, ξ)| e4A|ξ |1/s |Vϕ f (x, ξ)|
� ‖ f ‖′

8A ‖ f̂ ‖′
8A

which gives

‖ f ‖′′
A � (‖ f ‖′

8A ‖ f̂ ‖′
8A)1/2 � ‖ f ‖′

8A + ‖ f̂ ‖′
8A.
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Combining with (3.4) we have proved (3.8).
We now show (3.9). For that purpose we use the strong version of the STFT inver-

sion formula (2.6) and its Fourier transform, that is

f (x) = (2π)−d
∫

R2d
Vϕ f (y, η)MηTyϕ(x) dy dη, (3.16)

f̂ (ξ) = (2π)−d
∫

R2d
Vϕ f (y, η)Tη M−y ϕ̂(ξ) dy dη, (3.17)

where f ∈ �s(Rd) and ϕ ∈ �s(Rd) satisfies ‖ϕ‖L2 = 1. From (3.16) we obtain for
any A > 0

eA|x |1/s | f (x)| �
∫

R2d
|Vϕ f (y, η)| eA|x |1/s |ϕ(x − y)| dy dη,

� ‖ f ‖′′
3A

∫
R2d

e−3A|(y,η)|1/s
eA|x |1/s−2A|x−y|1/s

dy dη,

� ‖ f ‖′′
3A

∫
R2d

e−3A|(y,η)|1/s
e2A|y|1/s

dy dη,

� ‖ f ‖′′
3A, x ∈ Rd ,

which gives ‖ f ‖′
A � ‖ f ‖′′

3A.
From (3.17) we obtain for any A > 0

eA|ξ |1/s | f̂ (ξ)| �
∫

R2d
|Vϕ f (y, η)| eA|ξ |1/s |ϕ̂(ξ − η)| dy dη,

� ‖ f ‖′′
3A

∫
R2d

e−3A|(y,η)|1/s
eA|ξ |1/s−2A|ξ−η|1/s

dy dη,

� ‖ f ‖′′
3A, ξ ∈ Rd ,

which gives ‖ f̂ ‖′
A � ‖ f ‖′′

3A. Thus ‖ f ‖′
A + ‖ f̂ ‖′

A � ‖ f ‖′′
3A so combining with (3.5)

we have proved (3.9).
Finally we show that the seminorms {‖ f ‖′′

A, A > 0} are equivalent to the same
family of seminorms when the window function ϕ ∈ �s(Rd)\0 is replaced by another
function ψ ∈ �s(Rd)\0. From (2.5) we obtain for A > 0

eA|z|1/s |Vψ f (z)| �
∫

R2d
eA|z|1/s |Vϕ f (z − w)| |Vψϕ(w)| dw

� ‖ f ‖′′
2A

∫
R2d

eA|z|1/s−2A|z−w|1/s |Vψϕ(w)| dw

� ‖ f ‖′′
2A

∫
R2d

e2A|w|1/s |Vψϕ(w)| dw

� ‖ f ‖′′
2A, z ∈ R2d ,
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using (3.8) applied to ϕ ∈ �s(Rd), i.e. ‖ϕ‖′′
C < ∞ for all C > 0. This proves the

claim that the window function ψ ∈ �s(Rd)\0 gives seminorms equivalent to those
of ϕ ∈ �s(Rd)\0. ��

4 Definition and Properties of the s-Gelfand–Shilov Wave Front Set

For s > 1/2 and u ∈ �′
s(R

d) we define the s-Gelfand–Shilov wave front set
W Fs(u) as follows, modifying slightly Cappiello’s and Schulz’s [2, Definition 3.1].
This concept is a coarsening of the Gabor wave front set W F(u) in the sense that
W F(u) ⊆ W Fs(u) for all s > 1/2 and all u ∈ S ′(Rd).

Definition 4.1 Let s > 1/2, ϕ ∈ �s(Rd)\0 and u ∈ �′
s(R

d). Then z0 ∈ T ∗Rd\0
satisfies z0 /∈ W Fs(u) if there exists an open conic set �z0 ⊆ T ∗Rd\0 containing z0
such that for every A > 0

sup
z∈�z0

eA|z|1/s |Vϕu(z)| < ∞.

It follows that W Fs(u) = ∅ if and only if u ∈ �′
s(R

d) satisfies

|Vϕu(z)| � e−A|z|1/s
, z ∈ R2d ,

for any A > 0. By Proposition 3.1 (cf. [29, Proposition 2.4]) this is equivalent to
u ∈ �s(Rd).

The following lemma is needed in the proof of the independence of W Fs(u) of the
window function ϕ ∈ �s(Rd)\0.
Lemma 4.2 Let s > 1/2 and let f be a measurable function on Rd that satisfies

| f (x)| � eM|x |1/s
, x ∈ Rd , (4.1)

for some M � 0. Suppose there exists a non-empty open conic set � ⊆ Rd\0 such
that

sup
x∈�

eA|x |1/s | f (x)| < ∞ (4.2)

for all A > 0. If

g ∈
⋂
A>0

L1
exp(A|·|1/s )

(Rd) (4.3)

then for any open conic set �′ ⊆ Rd\0 such that �′ ∩ Sd−1 ⊆ �, we have

sup
x∈�′

eA|x |1/s | f ∗ g(x)| < ∞ (4.4)

for all A > 0.



546 J Fourier Anal Appl (2017) 23:530–571

Proof By (2.1) and the assumptions (4.1) and (4.3) we have

| f ∗ g(x)| � e2M|x |1/s
, x ∈ Rd ,

so it suffices to assume |x | � L for some large number L > 0.
Let ε > 0. We estimate and split the convolution integral as

| f ∗ g(x)| �
∫

〈y〉�ε〈x〉
| f (x − y)| |g(y)| dy

︸ ︷︷ ︸
:=I1

+
∫

〈y〉>ε〈x〉
| f (x − y)| |g(y)| dy

︸ ︷︷ ︸
:=I2

.

Consider I1. Since 〈y〉 � ε〈x〉 we have x − y ∈ � if x ∈ �′, |x | � 1, and ε > 0 is
chosen sufficiently small. The assumptions (4.2), (4.3), and (2.2) give

I1 �
∫

〈y〉�ε〈x〉
e−A|x+y|1/s |g(y)| dy � e− A

2 |x |1/s
∫

Rd
eA|y|1/s |g(y)| dy

� e− A
2 |x |1/s

, x ∈ �′, |x | � 1, (4.5)

for any A > 0. Next we estimate I2 using (4.1) and 〈y〉 > ε〈x〉. The latter inequality
implies that |y|1/s � |x |1/sε1/s/2 when |x | � L if L > 0 is sufficiently large. This
gives for any A > 0

I2 �
∫

〈y〉>ε〈x〉
eM|x−y|1/s |g(y)| dy

� e2M|x |1/s
∫

〈y〉>ε〈x〉
e2M|y|1/s

e−2ε−1/s (2M+A)|y|1/s
e2ε

−1/s (2M+A)|y|1/s |g(y)| dy

� e(2M−2M−A)|x |1/s
∫

Rd
e(2M+2ε−1/s (2M+A))|y|1/s |g(y)| dy

� e−A|x |1/s
, x ∈ Rd , |x | � L , (4.6)

again using (4.3). A combination of (4.5) and (4.6) proves (4.4) for A > 0 arbitrary.
��

Using Lemma 4.2 we show next that Definition 4.1 does not depend on the choice
of the window function ϕ ∈ �s(Rd)\0.
Proposition 4.3 Suppose s > 1/2 and u ∈ �′

s(R
d). The definition of the s-Gelfand–

Shilov wave front set W Fs(u) does not depend on the window function ϕ ∈ �s(Rd)\0.

Proof Let ϕ,ψ ∈ �s(Rd)\0. By (2.4) we have for some M � 0

|Vϕu(z)| � eM|z|1/s
, z ∈ R2d ,

and by (2.5) we have

|Vψu(z)| � (2π)−d‖ϕ‖L2 |Vϕu| ∗ |Vψϕ|(z), z ∈ R2d .
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By Proposition 3.1 (cf. [29, Theorem 2.4]) we have

|Vψϕ(z)| � e−A|z|1/s
, z ∈ R2d ,

for any A > 0, and hence

Vψϕ ∈
⋂
A>0

L1
exp(A|·|1/s )

(R2d).

From Lemma 4.2 we may now draw the following conclusion. If |Vϕu(z)| decays
like e−A|z|1/s

for any A > 0 in a conic set � ⊆ T ∗Rd\0 containing z0 �= 0 then we
get decay like e−A|z|1/s

for any A > 0 in a smaller cone containing z0 for |Vψu(z)|.
Hence, by symmetry, decay of order e−A|z|1/s

for any A > 0 in an open cone around
a point in T ∗Rd\0 happens simultaneously for Vϕu and Vψu. ��

The s-Gelfand–Shilovwave front setW Fs(u)decreaseswhen the index s increases:

t � s �⇒ W Ft (u) ⊆ W Fs(u). (4.7)

From W F(u) ⊆ W Fs(u) for u ∈ S ′(Rd) and (2.10) we have for any s > 1/2

W Fs(δ0) ⊇ {0} × (Rd\0).

To see the opposite inclusion we note that if x0 ∈ Rd\0 and ξ0 ∈ Rd then (x0, ξ0) ∈
� = {(x, ξ) ∈ T ∗Rd\0 : |ξ | < C |x |} for some C > 0, which is an open conic subset
of T ∗Rd\0.

Let ϕ ∈ �s(Rd)\0 and let ε > 0. Since |Vϕδ0(x, ξ)| = |ϕ(−x)| it follows from
Proposition 3.1 that for any A > 0

sup
z∈�

eA|z|1/s |Vϕδ0(z)| � sup
z∈�

e2A(1+C1/s )|x |1/s |ϕ(−x)| < ∞.

This shows that (x0, ξ0) /∈ W Fs(δ0), and proves

W Fs(δ0) ⊆ {0} × (Rd\0).

Hence

W Fs(δ0) = {0} × (Rd\0), s > 1/2. (4.8)

Next we show continuity of the metaplectic operators when they act on �s(Rd) for
s > 1/2. We note that continuity of metaplectic operators acting on Ss(Rd) for s � 1
is contained in [6, Proposition 3.5], and G. Tranquilli [31, Theorem 32] has shown
continuity on Ss(Rd) for s � 1/2. Our proof is inspired by hers.

Proposition 4.4 If s > 1/2andχ ∈ Sp(d, R) then the metaplectic operatorμ(χ)acts
continuously on �s(Rd), and extends uniquely to a continuous operator on �′

s(R
d).
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Proof By [7, Proposition 4.10] eachmatrixχ ∈ Sp(d, R) is a finite product ofmatrices
of the form

J ,

(
A−1 0
0 At

)
,

(
I 0
B I

)
,

for A ∈ GL(d, R) and B ∈ Rd×d symmetric. To show that μ(χ) is continuous on
�s(Rd) it thus suffices to show that μ(χ) is continuous on �s(Rd) when χ has each
of these three forms.

We have μ(J ) = (2π)−d/2F , and μ(χ) f (x) = |A|1/2 f (Ax) when A ∈
GL(d, R) and

χ =
(

A−1 0
0 At

)
.

The Fourier transform and linear coordinate transformations are continuous oper-
ators on �s(Rd). Therefore it remains to prove that μ(χ) is continuous on �s(Rd)

when B ∈ Rd×d is symmetric and

χ =
(

I 0
B I

)
. (4.9)

We have μ(χ) f (x) = ei〈Bx,x〉/2 f (x) when (4.9) holds (cf. (2.11) and [7]).
Due to the continuity of coordinate transformations on �s(Rd), it suffices to con-

sider diagonal matrices B with non-negative entries. By an induction argument applied
to the seminorms (2.3) it further suffices to work in dimension d = 1 and prove con-
tinuity on �s(R) of the multiplication operator f → g f for g(x) = eix2/2.

It may be confirmed by induction that for any k ∈ N we have Dk g = pk g where
pk is the polynomial of order k

pk(x) = k!
�k/2�∑
m=0

xk−2m(−i)m

m!(k − 2m)!2m
.

Using k! � 2k(k − 2m)!(2m)! we can estimate |pk(x)| as

|pk(x)| �
�k/2�∑
m=0

|x |k−2m(2m)!
m!2m−k

�
�k/2�∑
m=0

|x |k−2mm!2m+k .

By Leibniz’ rule we have for any A > 0 and any B � A

|Dn(g f )(x)| �
∑
k�n

(
n

k

)
|pk(x)| |Dn−k f (x)|

� | f |2B(n!)se−B|x |1/s
A−n

∑
k�n

(
n

k

)
|pk(x)|e−B|x |1/s

Ak
(

(n − k)!
n!

)s

� | f |2B(n!)se−A|x |1/s
A−n

∑
k�n

(
n

k

)
|pk(x)|e−B|x |1/s

Ak(k!)−s , n ∈ N, x ∈ R.
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As an intermediate step we compute and estimate, using m! = m!2s−ε where
ε = 2s − 1 > 0,

|pk(x)|Ak(k!)−s �
�k/2�∑
m=0

|x |k−2mm!2m+k Ak(k!)−s

=
�k/2�∑
m=0

2m+k A2mm!
(

(k − 2m)!
k!

)s
(

(A|x |)(k−2m)/s

(k − 2m)!

)s

� es A1/s |x |1/s
�k/2�∑
m=0

2m+k
(

A2m/ε

m!
)ε (

m!2(k − 2m)!
k!

)s

� es A1/s |x |1/s
�k/2�∑
m=0

2m+k
(

A2m/ε

m!
)ε

� es A1/s |x |1/s
eεA2/ε

22k .

If B � s A1/s we thus obtain

|Dn(g f )(x)| � | f |2B(n!)se−A|x |1/s
(A/5)−n

� | f |2B(n!)se−(A/5)|x |1/s
(A/5)−n, n ∈ N, x ∈ R.

Hence we have shown that for any A > 0 we have

|g f |A � | f |B

for B � max(2s(5A)1/s, 10A). In view of Proposition 3.1 this shows that the multi-
plication operator f → g f with g(x) = eix2/2 is continuous on �s(R).

Thus μ(χ) is continuous on �s(Rd) when χ has the form (4.9) with B symmetric.
We may now conclude that μ(χ) is continuous on �s(Rd) for all χ ∈ Sp(d, R).

Finally the unique extension to a continuous operator on �′
s(R

d) follows from the
facts that μ(χ) is unitary and �s(Rd) is dense in �′

s(R
d). ��

The combination of Propositions 4.3 and 4.4 gives the symplectic invariance of the
s-Gelfand–Shilov wave front set, as follows.

Corollary 4.5 If s > 1/2 then

W Fs(μ(χ)u) = χW Fs(u), χ ∈ Sp(d, R), u ∈ �′
s(R

d).

Proof By the proof of [34, Lemma 3.7] we have

∣∣Vμ(χ)ϕ (μ(χ)u) (χ z)
∣∣ = ∣∣Vϕu(z)

∣∣
for ϕ ∈ �s(Rd), u ∈ �′

s(R
d), χ ∈ Sp(d, R) and z ∈ R2d . By Proposition 4.4

μ(χ)ϕ ∈ �s(Rd) so the result follows immediately from Proposition 4.3. ��
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Example 4.6 A combination of (4.8) and μ(J ) = (2π)−d/2F gives

W Fs(1) = (Rd\0) × {0}, s > 1/2. (4.10)

If B ∈ Rd×d is symmetric then χ defined by (4.9) defines the metaplectic multi-
plication operator μ(χ) = ei〈Bx,x〉/2. Corollary 4.5 combined with (4.10) yields

W Fs(ei〈Bx,x〉/2) = {(x, Bx) : x ∈ Rd\0}, s > 1/2. (4.11)

Next we show a result on the s-Gelfand–Shilov wave front set of a tensor product.
The corresponding result for the Gabor wave front set is [16, Proposition 2.8]. With
obvious modification of the proof given below you get an alternative proof of the latter
result. Here we use the notation x = (x ′, x ′′) ∈ Rm+n , x ′ ∈ Rm , x ′′ ∈ Rn .

Proposition 4.7 If s > 1/2, u ∈ �′
s(R

m), and v ∈ �′
s(R

n) then

W Fs(u ⊗ v) ⊆ (
(W Fs(u) ∪ {0}) × (W Fs(v) ∪ {0})) \0

= {(x, ξ) ∈ T ∗Rm+n\0 : (x ′, ξ ′)∈W Fs(u) ∪ {0}, (x ′′, ξ ′′) ∈ W Fs(v) ∪ {0}}\0.

Proof Let ϕ ∈ �s(Rm)\0 and ψ ∈ �s(Rn)\0. Suppose (x0, ξ0) ∈ T ∗Rm+n\0 does
not belong to the set on the right hand side. Then either (x ′

0, ξ
′
0) /∈ W Fs(u) ∪ {0}

or (x ′′
0 , ξ ′′

0 ) /∈ W Fs(v) ∪ {0}. For reasons of symmetry we may assume (x ′
0, ξ

′
0) /∈

W Fs(u) ∪ {0}.
Then (x ′

0, ξ
′
0) ∈ �′ ⊆ T ∗Rm\0 where �′ is an open conic subset, and

sup
(x ′,ξ ′)∈�′

eA|(x ′,ξ ′)|1/s |Vϕu(x ′, ξ ′))| < ∞

for all A > 0. Define for C > 0 the open conic set

� = {(x, ξ) ∈ T ∗Rm+n : (x ′, ξ ′) ∈ �′, |(x ′′, ξ ′′)| < C |(x ′, ξ ′)|} ⊆ T ∗Rm+n\0.

Then (x0, ξ0) ∈ � for C > 0 sufficiently large since (x ′
0, ξ

′
0) �= 0. By (2.4) we have

for some M � 0

|Vψv(z)| � eM|z|1/s
, z ∈ R2d .

This gives for any A > 0

sup
(x,ξ)∈�

eA|(x,ξ)|1/s |Vϕ⊗ψu ⊗ v(x, ξ)|

= sup
(x,ξ)∈�

eA|(x,ξ)|1/s |Vϕu(x ′, ξ ′)| |Vψv(x ′′, ξ ′′)|

� sup
(x,ξ)∈�

e2A|(x ′,ξ ′)|1/s+(2A+M)|(x ′′,ξ ′′)|1/s |Vϕu(x ′, ξ ′)|
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� sup
(x ′,ξ ′)∈�′

e(2A+C1/s (2A+M))|(x ′,ξ ′)|1/s |Vϕu(x ′, ξ ′)|

< ∞.

It follows that (x0, ξ0) /∈ W Fs(u ⊗ v). ��
We need in Sect. 7 the following result which is an adaptation of [16, Proposition

2.3] from the Gabor wave front set to the s-Gelfand–Shilov wave front set. Modified
naturally the proof can be considered an alternative proof of the latter result.

Proposition 4.8 If s > 1/2, u ∈ �′
s(R

d)\0 and A ∈ Rd×n is a surjective matrix,
then

W Fs(u ◦ A) = {(x, Atξ) ∈ T ∗Rn\0 : (Ax, ξ) ∈ W Fs(u)} ∪ Ker A\0 × {0}.

Proof Due to Corollary 4.5, andμ(χ) f (x) = |B|1/2 f (Bx)when B ∈ GL(d, R) and

χ =
(

B−1 0
0 Bt

)
,

it suffices to assume k := n − d > 0 and A = (Id 0) where 0 ∈ Rd×k . We split
variables as x = (x ′, x ′′) ∈ Rn with x ′ ∈ Rd and x ′′ ∈ Rk . We need to prove

W Fs(u ⊗ 1)

= {(x; ξ ′, 0) ∈ T ∗Rn\0 : (x ′, ξ ′) ∈ W Fs(u)} ∪
(
{0d} × Rk\0 × {0n}

)
(4.12)

where we use the notation 0n = 0 ∈ Rn .
The inclusion

W Fs(u ⊗ 1)

⊆ {(x; ξ ′, 0) ∈ T ∗Rn\0 : (x ′, ξ ′) ∈ W Fs(u)} ∪
(
{0d} × Rk\0 × {0n}

)

is a particular case of Proposition 4.7, combined with (4.10).
To prove the opposite inclusion, we first show

W Fs(u ⊗ 1) ⊇ {0d} × Rk\0 × {0n}. (4.13)

Let ϕ ∈ �s(Rd)\0 satisfy (u, ϕ) �= 0 and let ψ ∈ �s(Rk)\0 satisfy ψ̂(0) �= 0. If
x ′′ ∈ Rk\0 then due to

|Vϕ⊗ψu ⊗ 1(x, ξ)| = |Vϕu(x ′, ξ ′)| |ψ̂(−ξ ′′)| (4.14)

we have for any t > 0

|Vϕ⊗ψu ⊗ 1(t (0, x ′′; 0)| = |Vϕu(0, 0)| |ψ̂(0)| = |(u, ϕ)| |ψ̂(0)| �= 0.
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Thus Vϕ⊗ψu⊗1 does not decay in any conical neighborhood of (0, x ′′; 0) ∈ T ∗Rn ,
which proves (4.13).

To prove (4.12) it thus suffices to show the inclusion

W Fs(u ⊗ 1) ⊇ {(x; ξ ′, 0) ∈ T ∗Rn\0 : (x ′, ξ ′) ∈ W Fs(u)}. (4.15)

Suppose 0 �= (x0; ξ ′
0, 0) /∈ W Fs(u ⊗ 1). If (x ′

0, ξ
′
0) = 0 then (x ′

0, ξ
′
0) /∈ W Fs(u),

so we may assume (x ′
0, ξ

′
0) �= 0. We have (x0; ξ ′

0, 0) ∈ � ⊆ T ∗Rn\0 where � is an
open conic set such that

sup
(x,ξ)∈�

eA|(x,ξ)|1/s |Vϕu(x ′, ξ ′)| |ψ̂(−ξ ′′)| < ∞

for all A > 0, cf. (4.14).
Define the open conic set

�′ = {(x ′, ξ ′) ∈ T ∗Rd\0 : ∃x ′′ ∈ Rk : (x ′, x ′′, ξ ′, 0) ∈ �} ⊆ T ∗Rd\0.

Then (x ′
0, ξ

′
0) ∈ �′ since (x ′

0, ξ
′
0) �= 0. Let A > 0 be arbitrary. Define the functions

f (x ′, ξ ′) = eA|(x ′,ξ ′)|1/s |Vϕu(x ′, ξ ′)| |ψ̂(0)|, (x ′, ξ ′) ∈ T ∗Rd ,

g(x, ξ) = eA|(x ′,ξ ′)|1/s |Vϕu(x ′, ξ ′)| |ψ̂(−ξ ′′)|
� eA|(x,ξ)|1/s |Vϕu(x ′, ξ ′)| |ψ̂(−ξ ′′)|, (x, ξ) ∈ T ∗Rn .

For some sequence (x ′
n, ξ ′

n)n∈N ⊆ �′, where for each n ∈ N there exists x ′′
n ∈ Rk

such that (x ′
n, x ′′

n , ξ ′
n, 0) ∈ �, we have

sup
(x ′,ξ ′)∈�′

eA|(x ′,ξ ′)|1/s |Vϕu(x ′, ξ ′)| = |ψ̂(0)|−1 lim
n→∞ f (x ′

n, ξ ′
n)

= |ψ̂(0)|−1 lim
n→∞ g(x ′

n, x ′′
n , ξ ′

n, 0)

� sup
(x,ξ)∈�

eA|(x,ξ)|1/s |Vϕu(x ′, ξ ′)| |ψ̂(−ξ ′′)|

< ∞.

This means that (x ′
0, ξ

′
0) /∈ W Fs(u) which proves (4.15). ��

Let s > 1/2 and suppose a ∈ C∞(R2d) satisfies the estimates

|∂αa(z)| � h|α|(α!)s, α ∈ N2d , z ∈ R2d , (4.16)

for all h > 0. According to [1, Theorem 3.10] aw(x, D) is then a continuous operator
on �s(Rd) that extends uniquely to a continuous operator on �′

s(R
d). In particular

W Fs(aw(x, D)u) is well defined for u ∈ �′
s(R

d). The next result shows that these
pseudodifferential operators are microlocal with respect to the s-Gelfand–Shilov wave
front set. First we need a lemma.
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Lemma 4.9 If ϕ ∈ �s(R2d)\0 and a ∈ C∞(R2d) satisfies the estimates (4.16) for
all h > 0, then for any A > 0

∣∣Vϕa(x, ξ)
∣∣ � e−A|ξ |1/s

, x ∈ R2d , ξ ∈ R2d .

Proof We start by estimating a seminorm (2.3) of ϕ T−x a. From (4.16) we obtain for
any h > 0

|yα Dβ
y (ϕ(y)a(y + x))| �

∑
γ�β

(
β

γ

)
|yα Dβ−γ ϕ(y)| |Dγ a(y + x)|

� ‖ϕ‖Ss,h/2

∑
γ�β

(
β

γ

)
(h/2)|β−γ+α+γ |((β − γ )!γ !α!)s

� (h/2)|α+β|(β!α!)s
∑
γ�β

(
β

γ

)

� h|α+β|(β!α!)s, x, y ∈ R2d , α, β ∈ N2d .

It follows that for any h > 0 we have the estimate

‖ϕ T−x a‖Ss,h � Ch, x ∈ R2d ,

where Ch > 0. Note that the estimate is uniform over x ∈ R2d .
By Proposition 3.1, or more precisely (3.4), we have for any A > 0

‖ ̂ϕ T−x a‖′
A � CA, x ∈ R2d ,

for some CA > 0. This gives finally for any A > 0

∣∣Vϕa(x, ξ)
∣∣ = |̂aTxϕ(ξ)| = | ̂ϕ T−x a(ξ)| � e−A|ξ |1/s

, x ∈ R2d , ξ ∈ R2d .

��
Proposition 4.10 If s > 1/2 and a ∈ C∞(R2d) satisfies the estimates (4.16) for all
h > 0 then

W Fs(aw(x, D)u) ⊆ W Fs(u), u ∈ �′
s(R

d).

Proof Pickϕ ∈ �s(Rd) such that‖ϕ‖L2 = 1.Denoting the formal adjoint ofaw(x, D)

by aw(x, D)∗, (2.6) gives for u ∈ �′
s(R

d) and z ∈ R2d

Vϕ(aw(x, D)u)(z) = (aw(x, D)u,
(z)ϕ)

= (u, aw(x, D)∗
(z)ϕ)

= (2π)−d
∫

R2d
Vϕu(w) (
(w)ϕ, aw(x, D)∗
(z)ϕ) dw
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= (2π)−d
∫

R2d
Vϕu(w) (aw(x, D)
(w)ϕ,
(z)ϕ) dw

= (2π)−d
∫

R2d
Vϕu(z − w) (aw(x, D)
(z − w)ϕ,
(z)ϕ) dw.

By e.g. [10, Lemma 3.1] we have

|(aw(x, D)
(z − w)ϕ,
(z)ϕ)| = (2π)−d
∣∣∣V�a

(
z − w

2
,Jw

)∣∣∣
where � is the Wigner distribution � = W (ϕ, ϕ) ∈ �s(R2d). Defining

g(w) = sup
z∈R2d

|(aw(x, D)
(z − w)ϕ,
(z)ϕ)|, w ∈ R2d ,

we thus obtain from Lemma 4.9

g ∈
⋂
A>0

L1
exp(A|·|1/s )

(R2d)

and

|Vϕ(aw(x, D)u)(z)| � |Vϕu| ∗ g(z), z ∈ R2d . (4.17)

If 0 �= z0 ∈ T ∗Rd\W Fs(u) then there exists an open conic set � ⊆ T ∗Rd\0
containing z0 such that for all A > 0

sup
z∈�

eA|z|1/s |Vϕu(z)| < ∞.

By (2.4) we have for some M > 0

|Vϕu(z)| � eM|z|1/s
, z ∈ R2d .

It now follows from (4.17) and Lemma 4.2 that for any open conic set�′ containing
z0 such that �′ ∩ S2d−1 ⊆ � we have for all A > 0

sup
z∈�′

eA|z|1/s |Vϕ(aw(x, D)u)(z)| < ∞,

which proves that z0 /∈ W Fs(aw(x, D)u). We have thus shown

W Fs(aw(x, D)u) ⊆ W Fs(u).

��
Corollary 4.11 Let s > 1/2 and u ∈ �′

s(R
d). For any z ∈ R2d we have

W Fs(
(z)u) = W Fs(u).
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Proof Since 
(−z)
(z) = ei〈x,ξ〉 for z = (x, ξ) ∈ R2d , it suffices to show
W Fs(
(z)u) ⊆ W Fs(u). The latter inclusion follows from Proposition 4.10 if we
succeed in showing that the Weyl symbol for 
(z) is smooth and satisfies (4.16) for
any h > 0.

We have 
(z) = aw
z (x, D) where

az(w) = ei〈x,ξ〉/2+i〈J z,w〉, z = (x, ξ), w ∈ R2d

(cf. the proof of [34, Lemma 3.7]). Thus

|∂αaz(w)| � |z||α| = h|α|(α!)s
(

(|z|/h)|α|/s

α!
)s

� h|α|(α!)s
(

(d(|z|/h)1/s)|α|

|α|!
)s

� h|α|(α!)s exp(sd(|z|/h)1/s), α ∈ N2d , w ∈ R2d ,

for any h > 0. The estimates (4.16) are thus satisfied. ��

5 Schrödinger Equations and Solution Operators

As stated in Sect. 1 the ultimate purpose of this paper is to prove results on propagation
of the s-Gelfand–Shilov wave front set for the initial value Cauchy problem for a class
of Schrödinger equations. More precisely we study the equation

{
∂t u(t, x) + qw(x, D)u(t, x) = 0,
u(0, ·) = u0,

(5.1)

where s > 1/2, u0 ∈ �′
s(R

d), t � 0 and x ∈ Rd . The Hamiltonian qw(x, D) has the
quadratic form Weyl symbol

q(x, ξ) = 〈(x, ξ), Q(x, ξ)〉, x, ξ ∈ Rd ,

where Q ∈ C2d×2d is a symmetric matrix with Re Q � 0. The special case Re Q = 0
will admit to study the equation for t ∈ R instead of t � 0.

According to [1, Theorem 3.10] qw(x, D) extends to a continuous operator on
�′

s(R
d), andwewill later prove that also the solution operator is continuous on�′

s(R
d)

for each t � 0 (see Corollary 8.2).
The Hamilton map F corresponding to q is defined by

σ(Y, F X) = q(Y, X), X, Y ∈ R2d ,

where q(Y, X) is the bilinear polarized version of the form q, i.e. q(X, Y ) = q(Y, X)

and q(X, X) = q(X). The Hamilton map F is the matrix
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F = J Q ∈ C2d×2d

where J is the matrix (1.2).
For u0 ∈ L2(Rd) the equation (5.1) is solved for t � 0 by

u(t, x) = e−tqw(x,D)u0(x)

where the solution operator (propagator) e−tqw(x,D) is the contraction semigroup that
is generated by the operator −qw(x, D). Contraction semigroup means a strongly
continuous semigroup with L2 operator norm � 1 for all t � 0 (cf. [35]). The reason
why −qw(x, D), or more precisely the closure M−q as an unbounded linear operator
in L2(Rd) of the operator−qw(x, D) defined onS (Rd), generates such a semigroup
is explained in [17, pp.425–26]. The contraction semigroup property is a consequence
of M−q and its adjoint M−q being dissipative operators [35]. For M−q this means

Re (M−qu, u) = (M−Re qu, u) � 0, u ∈ D(M−q),

D(M−q) ⊆ L2(Rd) denoting the domain of M−q , which follows from the assumption
Re Q � 0. Note the feature M−q = M∗−q that holds for the Weyl quantization.

Our objective is the propagation of the s-Gelfand–Shilov wave front set with s >

1/2 for the Schrödinger propagator e−tqw(x,D). This means that we seek inclusions
for

W Fs(e−tqw(x,D)u0)

in terms of W Fs(u0), F and t � 0 for u0 ∈ �′
s(R

d).
If Re Q = 0 then the propagator is given bymeans of themetaplectic representation.

To wit, if Re Q = 0 then e−tqw(x,D) is a group of unitary operators, and we have by
[7, Theorem 4.45]

e−tqw(x,D) = μ(e−2i t F ), t ∈ R.

In this case F is purely imaginary and i F ∈ sp(d, R), the symplectic Lie algebra,
which implies that e−2i t F ∈ Sp(d, R) for any t ∈ R [7]. According to Corollary 4.5
we thus have if s > 1/2

W Fs(e−tqw(x,D)u0) = e−2i t F W Fs(u0), t ∈ R, u0 ∈ �′
s(R

d).

The propagation of the s-Gelfand–Shilov wave front set is thus exact when Re Q =
0. In the rest of the paper we study the more general assumption Re Q � 0. Under
this assumption we will show in Sect. 8 that the propagator e−tqw(x,D) is a continuous
operator on �s(Rd) and extends uniquely to a continuous operator on �′

s(R
d) when

s > 1/2.
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6 Propagation of the s-Gelfand–Shilov Wave Front Set for Certain
Linear Operators

In this section we prepare for the results on propagation of the s-Gelfand–Shilov wave
front set for e−tqw(x,D) in Sect. 9. We show propagation of singularities for linear
operators in terms of their Schwartz kernels.

For s > 1/2 a kernel K ∈ �′
s(R

2d) defines a continuous linear map K :
�s(Rd) → �′

s(R
d) by

(K f, g) = (K , g ⊗ f ), f, g ∈ �s(Rd). (6.1)

Letϕ ∈ �s(Rd) satisfy ‖ϕ‖L2 = 1 and set� = ϕ⊗ϕ ∈ �s(R2d). By [34, Lemma4.1]
we have for u, ψ ∈ �s(Rd)

(K u, ψ) = (2π)−2d
∫

R4d V�K (x, y, ξ,−η) Vϕψ(x, ξ) Vϕu(y, η) dx dy dξ dη.

(6.2)

In the following results we need a definition from [16], adapted from the Gabor to
the s-Gelfand–Shilov wave front set. For K ∈ �′

s(R
2d) we define

W Fs
1 (K ) = {(x, ξ) ∈ T ∗Rd : (x, 0, ξ, 0) ∈ W Fs(K )} ⊆ T ∗Rd\0,

W Fs
2 (K ) = {(y, η) ∈ T ∗Rd : (0, y, 0,−η) ∈ W Fs(K )} ⊆ T ∗Rd\0. (6.3)

Lemma 6.1 If s > 1/2, K ∈ �′
s(R

2d) and W Fs
1 (K ) = W Fs

2 (K ) = ∅, then there
exists C > 1 such that

W Fs(K ) ⊆ {(x, y, ξ, η) ∈ T ∗R2d : C−1|(x, ξ)| < |(y, η)| < C |(x, ξ)|}.

Proof Suppose

W K s(K ) ⊆ {(x, y, ξ, η) ∈ T ∗R2d : |(y, η)| < C |(x, ξ)|}

does not hold for any C > 0. Then for each n ∈ N there exists (xn, yn, ξn, ηn) ∈
W Fs(K ) such that |(yn, ηn)| � n|(xn, ξn)|.Wemay assume that |(xn, yn, ξn, ηn)| = 1
for each n ∈ N since W Fs(K ) is conic. Thus (xn, ξn) → 0 as n → ∞. Passing to a
subsequence (without change of notation) and using the closedness of W Fs(K ) gives

(xn, yn, ξn, ηn) → (0, y, 0, η) ∈ W Fs(K ), n → ∞,

for some (y, η) ∈ S2d−1. This implies (y,−η) ∈ W Fs
2 (K ) which is a contradiction.

Similarly one shows

W K s(K ) ⊆ {(x, y, ξ, η) ∈ T ∗R2d : |(x, ξ)| < C |(y, η)|}

for some C > 0 using W Fs
1 (K ) = ∅. ��
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In the next result we use the conventional notation (cf. [16,17]) for the reflection
operator in the fourth Rd coordinate on R4d

(x, y, ξ, η)′ = (x, y, ξ,−η), x, y, ξ, η ∈ Rd .

Lemma 6.2 Suppose s > 1/2, K ∈ �′
s(R

2d) and W Fs
1 (K ) = W Fs

2 (K ) = ∅.
Suppose that the linear map K : �s(Rd) → �′

s(R
d) defined by (6.1) is continuous

K : �s(Rd) → �s(Rd) and extends uniquely to a continuous linear operator K :
�′

s(R
d) → �′

s(R
d). If ϕ ∈ �s(Rd) satisfies ‖ϕ‖L2 = 1 and � = ϕ ⊗ ϕ then (6.2)

extends to u ∈ �′
s(R

d) and ψ ∈ �s(Rd).

Proof Let ϕ ∈ �s(Rd) satisfy ‖ϕ‖L2 = 1 and let u ∈ �′
s(R

d). By (2.4) we have for
some M � 0

|Vϕu(z)| � eM|z|1/s
, z ∈ R2d . (6.4)

Define for n ∈ N

un = (2π)−d
∫

|z|�n
Vϕu(z)
(z)ϕ dz.

In order to verify un ∈ �s(Rd) we use the seminorms (3.3) for A > 0. We have
for any A > 0

eA|w|1/s |Vϕun(w)| �
∫

|z|�n
|Vϕu(z)| eA|w|1/s |Vϕϕ(w − z)| dz

�
∫

|z|�n
eM|z|1/s+A|w|1/s−2A|w−z|1/s

dz

�
∫

|z|�n
e(M+2A)|z|1/s

dz

� 1, w ∈ R2d .

It follows that un ∈ �s(Rd) for n ∈ N.
To prove that un → u in �′

s(R
d) as n → ∞ we pick ψ ∈ �s(Rd). From (6.4), the

estimate (cf. Proposition 3.1 and [29, Theorem 2.4])

|Vϕψ(z)| � e−A|z|1/s
, z ∈ R2d , A > 0, (6.5)

we obtain by means of dominated convergence and (2.6)

(un, ψ) = (2π)−d
∫

|z|�n
Vϕu(z) Vϕψ(z) dz

−→ (2π)−d
∫

R2d
Vϕu(z) Vϕψ(z) dz

= (u, ψ), n → ∞.
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This proves the claim that un → u in �′
s(R

d) as n → ∞.
We also need the estimate (cf. [9, Eq. (11.29)])

|Vϕun(z)| � (2π)−d |Vϕu| ∗ |Vϕϕ|(z), z ∈ R2d ,

which in view of (6.4) and (6.5) with ψ replaced by ϕ and conjugation of the window
function gives the bound

|Vϕun(z)| � e4M|z|1/s
, z ∈ R2d , n ∈ N, (6.6)

that holds uniformly over n ∈ N.
We are now in a position to assemble the arguments into a proof of formula (6.2)

for u ∈ �′
s(R

d) and ψ ∈ �s(Rd). Using (6.2) for un gives

(K u, ψ) = lim
n→∞(2π)−2d

∫
R4d

V�K (x, y, ξ,−η) Vϕψ(x, ξ)

×Vϕun(y, η) dx dy dξ dη. (6.7)

Since Vϕun(y, η) → Vϕu(y, η) as n → ∞ for all (y, η) ∈ R2d , the formula (6.2)
follows from dominated convergence if we can show that the modulus of the integrand
in (6.7) is bounded by an integrable function that does not depend on n ∈ N.

For C > 1 define the open conic set

� = {(x, y, ξ, η) ∈ T ∗R2d : C−1|(x, ξ)| < |(y, η)| < C |(x, ξ)|} ⊆ T ∗R2d\0.

If C is chosen properly then we have W K s(K ) ⊆ � by Lemma 6.1.
Let ε > 0. For the integral in (6.7) over �′ we may estimate, using the estimate

|V�K (x, y, ξ,−η)| � eB|(x,y,ξ,η)|1/s
, (x, y, ξ, η) ∈ R4d , (6.8)

for some B � 0 (cf. (2.4)), and (6.5), (6.6), for any A > 0

∫
�′

|V�K (x, y, ξ,−η)| |Vϕψ(x, ξ)| |Vϕun(y, η)| dx dy dξ dη

�
∫

�′
e−ε|(y,η)|1/s

e(2B−A)|(x,ξ)|1/s+(2B+4M+ε)|(y,η)|1/s
dx dy dξ dη

�
∫

�′
e−ε|(y,η)|1/s

e(2B−A+C1/s (2B+4M+ε))|(x,ξ)|1/s
dx dy dξ dη < ∞, (6.9)

in the final inequality assuming that A > 0 is sufficiently large.
Since � ⊆ T ∗R2d\0 is open and W K s(K ) ⊆ � we have for any A > 0

|V�K (x, y, ξ,−η)| � e−A|(x,y,ξ,η)|1/s
, (x, y, ξ,−η) ∈ R4d\�.
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This gives for the integral in (6.7) over R4d\�′, again using (6.6),

∫
R4d\�′

|V�K (x, y, ξ,−η)| |Vϕψ(x, ξ)| |Vϕun(y, η)| dx dy dξ dη

�
∫

R4d\�′
e−A|(x,y,ξ,η)|1/s+4M|(y,η)|1/s

dx dy dξ dη

�
∫

R4d
e(4M−A)|(x,y,ξ,η)|1/s

dx dy dξ dη < ∞ (6.10)

provided A > 0 is sufficiently large.
Combined, (6.9) and (6.10) show our claim that the modulus of the integrand in

(6.7) is bounded by an integrable function that does not depend on n ∈ N. ��
Since

Vϕ
(t, θ)ϕ(x, ξ) = ei〈x,ξ−θ〉Vϕϕ(t − x, θ − ξ), t, x, θ, ξ ∈ Rd ,

we obtain from Lemma 6.2 with ψ = 
(t, θ)ϕ for (t, θ) ∈ R2d , u ∈ �′
s(R

d),
ϕ ∈ �s(Rd) and ‖ϕ‖L2 = 1

Vϕ(K u)(t, θ) = (K u,
(t, θ)ϕ)

= (2π)−2d
∫

R4d
ei〈x,ξ−θ〉V�K (x, y, ξ,−η)

×Vϕϕ(t − x, θ − ξ) Vϕu(y, η) dx dy dξ dη. (6.11)

This formula will be useful in the proof of Theorem 6.3.
The following result concerns propagation of singularities for linear operators and

is a version of Hörmander’s [16, Proposition 2.11] adapted to the s-Gelfand–Shilov
wave front set. We use the relation mapping notation

W Fs(K )′ ◦ W Fs(u)

= {(x, ξ) ∈ T ∗Rd : ∃(y, η) ∈ W Fs(u) : (x, y, ξ,−η) ∈ W Fs(K )}.

Theorem 6.3 Let s > 1/2 and let K be the continuous linear operator (6.1) defined
by the Schwartz kernel K ∈ �′

s(R
2d). SupposeK : �s(Rd) → �s(Rd) is continuous

and extends uniquely to a continuous linear operator K : �′
s(R

d) → �′
s(R

d), and
suppose

W Fs
1 (K ) = W Fs

2 (K ) = ∅. (6.12)

Then for u ∈ �′
s(R

d) we have

W Fs(K u) ⊆ W Fs(K )′ ◦ W Fs(u). (6.13)
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Proof It follows from (2.4) that (6.8) is satisfied for some B � 0 if � ∈ �s(R2d)\0.
Denote by

p1,3(x, y, ξ, η) = (x, ξ),

p2,−4(x, y, ξ, η) = (y,−η), x, y, ξ, η ∈ Rd ,

the projections R4d → R2d onto the first and the third Rd coordinate, and onto the
second and the fourth Rd coordinate with a change sign in the latter, respectively.

By Lemma 6.1 there exists c > 1 such that

W Fs(K ) ⊆ �1 = {(x, y, ξ, η) ∈ T ∗R2d : c−1|(x, ξ)| < |(y, η)| < c|(x, ξ)|},

and, defining

�1,3 = {(x, y, ξ, η) ∈ T ∗R2d : c|(x, ξ)| � |(y, η)|},
�2,4 = {(x, y, ξ, η) ∈ T ∗R2d : c|(y, η)| � |(x, ξ)|},

we thus have

�1 ⊆ R4d\(�1,3 ∪ �2,4). (6.14)

We show the inclusion (6.13) by showing that

0 �= (t0, θ0) /∈ W Fs(K )′ ◦ W Fs(u) (6.15)

implies (t0, θ0) /∈ W Fs(K u). Thus we suppose (6.15). By [34, Lemma 4.2] we may
assume that (t0, θ0) ∈ �0 and�0 ∩ W Fs(K )′ ◦�2 = ∅where�0,�2 ⊆ T ∗Rd\0 are
conic, open and W Fs(u) ⊆ �2. (The assumption of [34, Lemma 4.2] corresponds to
the assumption (6.12).) Here we use the notation � ⊆ T ∗Rd\0 for the closure in the
usual topology in T ∗Rd\0 of a conical subset � ⊆ T ∗Rd\0.

Hence

�0 ∩ p1,3
(

W Fs(K ) ∩ p−1
2,−4 �2

)
= ∅,

or, equivalently,

p−1
1,3 �0 ∩ W Fs(K ) ∩ p−1

2,−4 �2 = ∅.

Due to assumption (6.12) we may strengthen this into

p−1
1,3 (�0 ∪ {0})\0 ∩ W Fs(K ) ∩ p−1

2,−4 (�2 ∪ {0})\0 = ∅.
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Since p−1
1,3 (�0 ∪ {0})\0 and p−1

2,−4 (�2 ∪ {0})\0 are closed conic subsets of R4d\0,
decreasing �1 ⊆ R4d\0 if necessary, there exist open conic subsets �0, �1, �2 ⊆
R4d\0 such that

W Fs(K ) ⊆ �1, p−1
1,3 �0 ⊆ �0, p−1

2,−4 �2 ⊆ �2,

and

�0 ∩ �1 ∩ �2 = ∅. (6.16)

Let �0 ⊆ T ∗Rd\0 be an open conic set such that (t0, θ0) ∈ �0 and �0 ∩ S2d−1 ⊆
�0. Let ϕ ∈ �s(Rd), ‖ϕ‖L2 = 1 and � = ϕ ⊗ ϕ. From Lemma 6.2 we know that
formula (6.11) holds. Therefore we have for any A > 0

eA|(t,θ)|1/s |Vϕ(K u)(t, θ)| �
∫

R4d
|V�K (x, y, ξ,−η)| eA|(t,θ)|1/s |Vϕϕ(t − x, θ − ξ)|

×|Vϕu(y, η)| dx dy dξ dη. (6.17)

We will show that this integral is bounded when (t, θ) ∈ �0 for any A > 0 which
proves that (t0, θ0) /∈ W Fs(K u).

Consider first the right hand side integral over (x, y, ξ,−η) ∈ R4d\�1. We have
for any b > 0

|V�K (x, y, ξ,−η)| � e−b|(x,y,ξ,η)|1/s
, (x, y, ξ,−η) ∈ R4d\�1, (6.18)

due to W Fs(K ) ⊆ �1 and �1 ⊆ R4d\0 being open. By (2.4) we have

|Vϕu(z)| � eM|z|1/s
, z ∈ R2d , (6.19)

for some M � 0, and by Proposition 3.1 we have

|Vϕϕ(z)| � e−c|z|1/s
, z ∈ R2d , (6.20)

for any c > 0. Thus

∫
R4d\�′

1

|V�K (x, y, ξ,−η)| eA|(t,θ)|1/s |Vϕϕ(t − x, θ − ξ)| |Vϕu(y, η)| dx dy dξ dη

�
∫

R4d\�′
1

e−b|(x,y,ξ,η)|1/s+2A|(x,ξ)|1/s+M|(y,η)|1/s
e2A|(t−x,θ−ξ)|1/s

|Vϕϕ(t − x, θ − ξ)| dx dy dξ dη

�
∫

R4d
e(2A+M−b)|(x,y,ξ,η)|1/s

dx dy dξ dη < ∞ (6.21)

if b > 0 is chosen sufficiently large. The estimate holds for all (t, θ) ∈ R2d .
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It remains to estimate the right hand side integral (6.17) over (x, y, ξ,−η) ∈ �1.
By (6.14) and (6.16) we have �1 ⊆ G1 ∪ G2 where

G1 = R4d\(�1,3 ∪ �2,4 ∪ �0), G2 = R4d\(�1,3 ∪ �2,4 ∪ �2).

When (x, y, ξ,−η) ∈ �1 wehave |(x, ξ)|  |(y, η)|. Firstwe study (x, y, ξ,−η) ∈
G1. Then (x, y, ξ,−η) /∈ �0 which implies (x, ξ) /∈ �0. There exists δ > 0 such that

|(x, ξ) − (t, θ)| � δ|(x, ξ)|, (x, ξ) /∈ �0, (t, θ) ∈ �0.

Let ε > 0. For (t, θ) ∈ �0 we obtain with the aid of (6.8) using |(x, ξ)|  |(y, η)|,
(6.19) and (6.20), where B, M � 0 are fixed and c > 0 is arbitrary, with B1 > 0 a
new constant that depends on B, M, ε, s,

∫
G ′
1

|V�K (x, y, ξ,−η)| eA|(t,θ)|1/s |Vϕϕ(t − x, θ − ξ)| |Vϕu(y, η)| dx dy dξ dη

�
∫

G ′
1

eB|(x,y,ξ,η)|1/s+2A|(x,ξ)|1/s+M|(y,η)|1/s

×e2A|(t−x,θ−ξ)|1/s |Vϕϕ(t − x, θ − ξ)| dx dy dξ dη

�
∫

G ′
1

e−ε|(x,y,ξ,η)|1/s+B1|(x,ξ)|1/s−c|(t−x,θ−ξ)|1/s
dx dy dξ dη

�
∫

R4d
e−ε|(x,y,ξ,η)|1/s+ (B1−cδ1/s)|(x,ξ)|1/s

dx dy dξ dη

< ∞ (6.22)

provided c � B1δ
−1/s .

Finally we study (x, y, ξ,−η) ∈ G2. Then (x, y, ξ,−η) /∈ �2 so we have (y, η) /∈
�2. Hence (y, η) ∈ G where G ⊆ T ∗Rd is closed, conic and does not intersect
W Fs(u). We obtain with the aid of (6.8) for any (t, θ) ∈ T ∗Rd , using |(x, ξ)| 
|(y, η)| and (6.20), for B � 0 fixed and B1 > 0 a new constant that depends on
A, B, ε, s,

∫
G ′
2

|V�K (x, y, ξ,−η)| eA|(t,θ)|1/s |Vϕϕ(t − x, θ − ξ)| |Vϕu(y, η)| dx dy dξ dη

�
∫

G ′
2

eB|(x,y,ξ,η)|1/s+2A|(x,ξ)|1/s |Vϕu(y, η)| dx dy dξ dη

�
∫

G ′
2

e−ε|(x,y,ξ,η)|1/s+B1|(y,η)|1/s |Vϕu(y, η)| dx dy dξ dη

� sup
w∈G

eB1|w|1/s |Vϕu(w)| < ∞. (6.23)
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We can now combine (6.17), (6.21), �1 ⊆ G1 ∪ G2, (6.22) and (6.23) to conclude

sup
(t,θ)∈�0

eA|(t,θ)|1/s |Vϕ(K u)(t, θ)| < ∞

for any A > 0. Thus (t0, θ0) /∈ W Fs(K u). ��

7 The s-Gelfand–Shilov Wave Front Set of Oscillatory Integrals

7.1 Oscillatory Integrals

We need to describe a class of oscillatory integrals with quadratic phase functions
introduced by Hörmander [17]. This is useful due to the fact that the Schwartz kernel
of the Schrödinger propagator e−tqw(x,D) is an integral of this form, aswewill describe
in Sect. 8. Our discussion on oscillatory integrals is brief. For a richer account we refer
to [17,22].

Let p be a complex-valued quadratic form on Rd+N ,

p(x, θ) = 〈(x, θ), P(x, θ)〉, x ∈ Rd , θ ∈ RN , (7.1)

where P ∈ C(d+N )×(d+N ) is the symmetric matrix

P =
(

Pxx Pxθ

Pθx Pθθ

)
(7.2)

where Pxx ∈ Cd×d , Pxθ ∈ Cd×N and Pθθ ∈ CN×N .
Suppose P satisfies the following two conditions.

(1) Im P � 0;
(2) the row vectors of the submatrix

(
Pθx Pθθ

) ∈ CN×(d+N )

are linearly independent over C.

Under these circumstances the oscillatory integral

u(x) =
∫

RN
eip(x,θ) dθ, x ∈ Rd , (7.3)

can be given a unique meaning as an element in S ′(Rd), by means of a regulariza-
tion procedure [17,22]. Due to the embedding S ′(Rd) ⊆ �′

s(R
d) (s > 1/2), the

oscillatory integral defines a unique element u ∈ �′
s(R

d).
An oscillatory integral of the form (7.3) is, up to multiplication with an element in

C\0, bijectively associated with a Lagrangian subspace λ ⊆ T ∗Cd , that is positive in
the sense of

iσ(X , X) � 0, X ∈ λ.
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The positive Lagrangian associated with the oscillatory integral (7.3) is

λ = {(x, p′
x (x, θ)) ∈ T ∗Cd : p′

θ (x, θ) = 0, (x, θ) ∈ Cd+N } ⊆ T ∗Cd . (7.4)

The integer N in the integral (7.3) is not uniquely determined by u. In fact, it may be
possible to decrease N and obtain the same u times a nonzero complex constant. This
procedure may be iterated until the term that is quadratic in θ disappears. The form p
is then (cf. [17, Propositions 5.6 and 5.7])

p(x, θ) = ρ(x) + 〈Lθ, x〉 (7.5)

where ρ is a quadratic form, Im ρ � 0 and L ∈ Rd×N is an injective matrix. The
matrix L is uniquely determined by the Lagrangian λ modulo invertible right factors,
and similarly the values of ρ on Ker Lt are uniquely determined.

The oscillatory integral is (cf. [17, Proposition 5.7])

u(x) = (2π)N δ0(Lt x)eiρ(x), x ∈ Rd , (7.6)

where δ0 = δ0(RN ).

7.2 The s-Gelfand–Shilov Wave Front Set of an Oscillatory Integral

Theorem 7.1 Let u ∈ S ′(Rd) be the oscillatory integral (7.3) with the associated
positive Lagrangian λ given by (7.4). Then for s > 1/2

W Fs(u) ⊆ (λ ∩ T ∗Rd)\0. (7.7)

Proof First we assume N � 1 in (7.3) and in the end we will take care of the case
N = 0.

As discussed abovewemay assume that p is of the form (7.5) where ρ is a quadratic
form, Im ρ � 0 and L ∈ Rd×N is injective, and u is given by (7.6). The positive
Lagrangian (7.4) associated to u is hence

λ = {(x, ρ′(x) + Lθ) : (x, θ) ∈ Cd+N , Lt x = 0} ⊆ T ∗Cd . (7.8)

By [22, Proposition 3.4] and the uniqueness part of [17, Proposition 5.7] we may
assume

Re (Ran ρ′) ⊥ Ran L , Im (Ran ρ′) ⊥ Ran L .

If x ∈ Rd , θ ∈ CN and 0 = Im (ρ′(x) + Lθ) = Im (ρ′)(x) + LIm θ , we may
thus conclude Im (ρ′)(x) = 0 and LIm θ = 0, so the injectivity of L forces θ ∈ RN .
Hence

λ ∩ T ∗Rd = {(x,Re (ρ′)(x) + Lθ) : (x, θ) ∈ Rd+N , Lt x = 0}. (7.9)
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According to Proposition 4.8 and (4.8)

W Fs(δ0(Lt ·)) = {(x, Lξ) ∈ T ∗Rd\0 : Lt x = 0, ξ ∈ RN \0} ∪ Ker Lt\0 × {0}
= (Ker Lt × LRN )\0 ⊆ T ∗Rd\0.

We write ρ(x) = ρr (x) + iρi (x) and

ρr (x) = 〈Rr x, x〉, ρi (x) = 〈Ri x, x〉 (7.10)

with Rr , Ri ∈ Rd×d symmetric and Ri � 0. The function eiρr (x), considered as a
multiplication operator, is the metaplectic operator

eiρr (x) = μ(χ)

where

χ =
(

I 0
2Rr I

)
∈ Sp(d, R). (7.11)

The function g(x) = e−ρi (x) satisfies the estimates (4.16) for all h > 0. In fact,

since Ri � 0 it suffices to verify the estimates for g(U x) = 
n
j=1e−μ j x2j where

U ∈ Rd×d is an orthogonal matrix and μ j > 0 for 1 � j � n � d. The function
x → g(U x) clearly satisfies (4.16) for all h > 0 since it is a tensor product of a
Gaussian on Rn , that belongs to �s(Rn), and the function one on Rd−n .

If we consider e−ρi (x) as a function of (x, ξ) ∈ T ∗Rd , constant with respect to the
ξ variable, then the corresponding Weyl pseudodifferential operator is multiplication
with e−ρi (x). Proposition 4.10 gives

W Fs(e−ρi u) ⊆ W Fs(u), u ∈ �′
s(R

d). (7.12)

Piecing these arguments together, using Corollary 4.5 and (7.9), gives

W Fs(u) = W Fs(e−ρi eiρr δ0(Lt ·))
⊆ W Fs(eiρr δ0(Lt ·))
= χW Fs(δ0(Lt ·))
= {(x, 2Rr x + Lθ) : (x, θ) ∈ Rd+N , Lt x = 0}\0
= {(x, ρ′

r (x) + Lθ) : (x, θ) ∈ Rd+N , Lt x = 0}\0
= (λ ∩ T ∗Rd)\0. (7.13)

This ends the proof when N � 1.
Finally, if N = 0 then the (degenerate) oscillatory integral (7.3) is

u(x) = eiρ(x)
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where ρ = ρr + iρi is given by (7.10) with Rr , Ri ∈ Rd×d symmetric and Ri � 0.
By (7.4) the corresponding positive Lagrangian is

λ = {(x, 2(Rr + i Ri )x) : x ∈ Cd} ⊆ T ∗Cd (7.14)

which gives

λ ∩ T ∗Rd = {(x, 2Rr x) : x ∈ Rd}.

Since W Fs(1) = (Rd\0) × {0} (cf. (4.10)) we obtain, again using (7.12) and
recycling the argument above,

W Fs(u) = W Fs(e−ρi eiρr )

⊆ W Fs(eiρr )

= χW Fs(1)
= {(x, 2Rr x) : x ∈ Rd\0}
= (λ ∩ T ∗Rd)\0.

��
Remark 7.2 From W F(u) ⊆ W Fs(u) for u ∈ S ′(Rd) and s > 1/2 it follows that
Theorem 7.1 is a sharpening of [22, Theorem 3.6].

8 The Schwartz Kernel of the Schrödinger Propagator

Let q be a quadratic form on T ∗Rd defined by a symmetric matrix Q ∈ C2d×2d

with Hamilton map F = J Q and Re Q � 0. According to [17, Theorem 5.12] the
Schrödinger propagator is

e−tqw(x,D) = Ke−2i t F

where Ke−2i t F : S (Rd) → S ′(Rd) is the linear continuous operator with Schwartz
kernel

KT (x, y) = (2π)−(d+N )/2

√
det

(
p′′
θθ / i p′′

θy
p′′

xθ i p′′
xy

)∫
RN

eip(x,y,θ)dθ ∈ S ′(R2d)

(8.1)

with T = e−2i t F . This kernel is an oscillatory with respect to a quadratic form p on
R2d+N as discussed in Sect. 7.1. The positive Lagrangian associated to the Schwartz
kernel Ke−2i t F is

λ = {(x, y, ξ,−η) ∈ T ∗C2d : (x, ξ) = e−2i t F (y, η)}. (8.2)

By [22, Lemma 4.2] the Lagrangian λ = λe−2i t F given by (8.2) is a positive twisted
graph Lagrangian defined by the matrix e−2i t F ∈ Sp(d, C). When a twisted graph
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Lagrangian defined by a matrix T ∈ Sp(d, C) is positive, also the matrix is called
positive [17]. This means

i
(
σ(T X , T X) − σ(X , X)

)
� 0, X ∈ T ∗Cd .

Since Ke−2i t F ∈ S ′(R2d) the propagator is a continuous operator e−tqw(x,D) :
S (Rd) → S ′(Rd). We have in fact continuity e−tqw(x,D) : S (Rd) → S (Rd).
This follows from [17, Proposition 5.8 and Theorem 5.12] which says that KT :
S (Rd) → S (Rd) is continuous for any positive matrix T ∈ Sp(d, C). The next
result shows that KT : �s(Rd) → �s(Rd) is continuous and KT extends uniquely
to a continuous operator KT : �′

s(R
d) → �′

s(R
d).

Proposition 8.1 Suppose T ∈ Sp(d, C) is positive and let KT : S (Rd) → S ′(Rd)

be the continuous linear operator having Schwartz kernel KT ∈ S ′(R2d) defined
by (8.1). For s > 1/2 the operator KT is continuous on �s(Rd) and KT extends
uniquely to a continuous operator on �′

s(R
d).

Proof Due to the above mentioned continuity of KT on S (Rd), we have for some
integer L � 0

sup
x∈Rd

|KT f (x)| �
∑

|α+β|�L

sup
x∈Rd

|xα Dβ f (x)|.

Using the seminorms (2.3) it can be seen readily that the operators f → Dβ f and
f → xα f are continuous operators on �s(Rd). By Proposition 3.1 we therefore have
for any A > 0

eA|x |1/s |xα Dβ f (x)| � ‖xα Dβ f ‖′
A � ‖ f ‖′

B + ‖ f̂ ‖′
B, |α + β| � L , x ∈ Rd ,

for some B > 0, where we use the seminorm (3.1). This gives

‖KT f ‖′
A = sup

x∈Rd
eA|x |1/s |KT f (x)| � ‖ f ‖′

B + ‖ f̂ ‖′
B (8.3)

which gives a desired continuity estimate for one of the two families of seminorms
{‖ f ‖′

A, ‖ f̂ ‖′
B, A, B > 0}.

To prove thatKT is continuous on�s(Rd) it remains to estimate ‖F (KT f )‖′
A for

any A > 0. The Fourier transform has Schwartz kernel K (x, y) = e−i〈x,y〉 which is a
degenerate oscillatory integral with N = 0, cf. (7.3). The corresponding Lagrangian
is by (7.4)

λ = {(x, y,−y,−x) ∈ T ∗C2d : (x, y) ∈ T ∗Cd}
= {(x, y, ξ,−η) ∈ T ∗C2d : (x, ξ) = J (y, η)}.

Due to the uniqueness, modulo multiplication with a nonzero complex number,
of the correspondence between oscillatory integrals and Lagrangians, it follows that
F = (2π)d/2μ(J ) = cKJ for some c ∈ C\0.
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We may hence write for some c ∈ C\0, using the semigroup property of T → KT

modulo sign, when T ∈ Sp(d, C) is positive (cf. [17, Proposition 5.9])

F (KT f ) = FKTFF−1 f = c2KJKTKJF−1 f

= ±c2KJ TJF−1 f.

Since J TJ ∈ Sp(d, C) is positive, and since the estimate (8.3) holds for any
positive T ∈ Sp(d, C) for some B > 0, we obtain for any A > 0

‖F (KT f )‖′
A � ‖ f ‖′

B + ‖ f̂ ‖′
B (8.4)

for some B > 0. Combining (8.3) and (8.4) and referring to Proposition 3.1, we have
proved that KT is continuous on �s(Rd).

Finally we show that KT extends uniquely to a continuous operator on �′
s(R

d).
The formal adjoint of KT is K

T
−1 which is indexed by the inverse conjugate matrix

T
−1 ∈ Sp(d, C) [17]. The positivity of T

−1
is an immediate consequence of the

assumed positivity of T . Thus KT may be defined on �′
s(R

d) by

(KT u, ϕ) = (u,K
T

−1ϕ), u ∈ �′
s(R

d), ϕ ∈ �s(Rd), s > 1/2,

which gives a uniquely defined extension ofKT as a continuous operator on �′
s(R

d).
��
Corollary 8.2 The Schrödinger propagator e−tqw(x,D) has Schwartz kernel Ke−2i t F ∈
S ′(R2d). For t � 0 and s > 1/2 it is a continuous operator on �s(Rd), and it extends
uniquely to a continuous operator on �′

s(R
d).

9 Propagation of the s-Gelfand–Shilov Wave Front set for Schrödinger
Equations

Since the Schwartz kernel of the Schrödinger propagator e−tqw(x,D) is an oscillatory
integral corresponding to the positive Lagrangian (8.2), an appeal to Theorem 7.1
gives the following result. For s > 1/2 the s-Gelfand–Shilov wave front set of the
Schwartz kernel Ke−2i t F of the propagator e−tqw(x,D) for t � 0 obeys the inclusion

W Fs(Ke−2i t F )

⊆ {(x, y, ξ,−η) ∈ T ∗R2d\0 : (x, ξ) = e−2i t F (y, η), Im e−2i t F (y, η) = 0}.
(9.1)

Combining this with Corollary 8.2 and Theorem 6.3 now gives a result on prop-
agation of singularities. The assumptions of the latter theorem are satisfied for
K = Ke−2i t F = e−tqw(x,D), since W Fs

1 (Ke−2i t F ) = W Fs
2 (Ke−2i t F ) = ∅ follows

from (9.1) and the invertibility of e−2i t F ∈ C2d×2d , cf. (6.3).
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Corollary 9.1 Suppose q is a quadratic form on T ∗Rd defined by a symmetric matrix
Q ∈ C2d×2d , Re Q � 0, F = J Q, and s > 1/2. Then for u ∈ �′

s(R
d)

W Fs(e−tqw(x,D)u) ⊆ e−2i t F
(

W Fs(u) ∩ Ker(Im e−2i t F )
)

, t � 0.

As in the proof of [22, Theorem 5.2], the latter inclusion can be sharpened using
the semigroup modulo sign property of the propagator [17]

e−(t1+t2)qw(x,D) = ±e−t1qw(x,D)e−t2qw(x,D), t1, t2 � 0.

In fact, using this property and some elementary arguments one obtains the inclu-
sions

W Fs(e−tqw(x,D)u) ⊆
(

e2tIm F (
W Fs(u) ∩ S

)) ∩ S

⊆ e−2i t F
(

W Fs(u) ∩ Ker(Im e−2i t F )
)

where the singular space

S =
⎛
⎝2d−1⋂

j=0

Ker
[
Re F(Im F) j ]

⎞
⎠ ∩ T ∗Rd ⊆ T ∗Rd

of the quadratic form q plays a crucial role.

Corollary 9.2 Suppose q is a quadratic form on T ∗Rd defined by a symmetric matrix
Q ∈ C2d×2d , Re Q � 0, F = J Q, and s > 1/2. Then for u ∈ �′

s(R
d)

W Fs(e−tqw(x,D)u) ⊆
(

e2tIm F (
W Fs(u) ∩ S

)) ∩ S, t > 0.
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