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Abstract The measure supported on the Cantor-4 set constructed by Jorgensen–
Pedersen is known to have a Fourier basis, i.e. that it possess a sequence of exponentials
which form an orthonormal basis. We construct Fourier frames for this measure via
a dilation theory type construction. We expand the Cantor-4 set to a two dimensional
fractal which admits a representation of a Cuntz algebra. Using the action of this alge-
bra, an orthonormal set is generated on the larger fractal, which is then projected onto
the Cantor-4 set to produce a Fourier frame.
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algebra
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Jorgensen and Pedersen [10] demonstrated that there exist singular measures ν which
are spectral—that is, they possess a sequence of exponential functions which form an
orthonormal basis in L2(ν). The canonical example of such a singular and spectral
measure is the uniform measure on the Cantor 4-set defined as follows:
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C4 =
{
x ∈ [0, 1] : x =

∞∑
k=1

ak
4k

, ak ∈ {0, 2}
}

.

This is analogous to the standard middle third Cantor set where 4k replaces 3k . The set
C4 can also be described as the attractor set of the following iterated function system
on R:

τ0(x) = x

4
, τ2(x) = x + 2

4
.

The uniform measure on the set C4 then is the unique probability measure μ4 which
is invariant under this iterated function system:

∫
f (x)dμ4(x) = 1

2

(∫
f (τ0(x))dμ4(x) +

∫
f (τ2(x))dμ4(x)

)

for all f ∈ C(R), see [9] for details. The standard spectrum for μ4 is �4 ={∑N
n=0 ln4

n : ln ∈ {0, 1}}, though there are many spectra [2,4]. Extension to larger
classes of available spectra and other considerations can be found for example in
[11,12,14].

Remarkably, Jorgensen and Pedersen prove that the uniform measure μ3 on the
standard middle third Cantor set is not spectral. Indeed, there are no three mutually
orthogonal exponentials in L2(μ3). Thus, there has been much attention on whether
there exists a Fourier frame for L2(μ3)–the problem is still unresolved, but see [5,6]
for progress in this regard. In this paper, we will construct Fourier frames for L2(μ4)

using a dilation theory type argument. The motivation is whether the construction
we demonstrate here for μ4 will be applicable to μ3. Fourier frames for μ4 were
constructed in [6] using a duality type construction.

A frame for a Hilbert space H is a sequence {xn}n∈I ⊂ H such that there exists
constants A, B > 0 such that for all v ∈ H ,

A‖v‖2 ≤
∑
n∈I

|〈v, xn〉|2 ≤ B‖v‖2.

The largest A and smallest B which satisfy these inequalities are called the frame
bounds. The frame is called a Parseval frame if both frame bounds are 1. The sequence
{xn}n∈I is a Bessel sequence if there exists a constant B which satisfies the second
inequality, whether or not the first inequality holds; B is called the Bessel bound. A
Fourier frame for L2(μ4) is a sequence of frequencies {λn}n∈I ⊂ R together with
a sequence of “weights” {dn}n∈I ⊂ C such that xn = dne2π iλn x is a frame. Fourier
frames (unweighted) for Lebesgue measure were introduced by Duffin and Schaffer
[3], see also Ortega-Cerda and Seip [13].

It was proven in [8] that a frame for a Hilbert space can be dilated to a Riesz basis
for a bigger space, that is to say, that any frame is the image under a projection of a
Riesz basis. Moreover, a Parseval frame is the image of an orthonormal basis under
a projection. This result is now known to be a consequence of the Naimark dilation
theory. This will be our recipe for constructing a Fourier frame: constructing a basis
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in a bigger space and then projecting onto a subspace. We require the following result
along these lines [1]:

Lemma 1 Let H be a Hilbert space, V, K closed subspaces, and let PV be the pro-
jection onto V . If {xn}n∈I is a frame in K with frame bounds A, B, then:

1. {PV xn}n∈I is a Bessel sequence in V with Bessel bound no greater than B;
2. if the projection PV : K → V is onto, then {PV xn}n∈I is a frame in V ;
3. if V ⊂ K, then then {PV xn}n∈I is a frame in V with frame bounds between A and

B.

Note that if V ⊂ K and {xn}n∈I is a Parseval frame for K , then {PV xn}n∈I is a
Parseval frame for V . In the second item above, it is possible that the lower frame
bound for {PV xn} is smaller than A, but the upper frame bound is still no greater than
B.

The foundation of our construction is a dilation theory type argument. Our first
step, described in Sect. 1, is to consider the fractal like set C4 × [0, 1], which we will
view in terms of an iterated function system. This IFS will give rise to a representation
of the Cuntz algebra O4 on L2(μ4 × λ) since μ4 × λ is the invariant measure under
the IFS. Then in Sect. 2, we will generate via the action of O4 an orthonormal set in
L2(μ4×λ)whose vectors have a particular structure. In Sect. 3,we consider a subspace
V of L2(μ4 × λ) which can be naturally identified with L2(μ4), and then project the
orthonormal set onto V to, ultimately, obtain a frame. Of paramount importance will
be whether the orthonormal set generated by O4 spans the subspace V so that the
projection yields a Parseval frame. Section 4 demonstrates concrete constructions in
which this occurs, and identifies all possible Fourier frames that can be constructed
using this method.

We note here that there may be Fourier frames for L2(μ4) which cannot be con-
structed in this manner, but we are unaware of such an example.

1 Dilation of the Cantor-4 Set

We wish to construct a Hilbert space H which contains L2(μ4) as a subspace in a
natural way. We will do this by making the fractal C4 bigger as follows. We begin
with an iterated function system on R

2 given by:

ϒ0(x, y) =
( x
4
,
y

2

)
, ϒ1(x, y) =

( x + 2

4
,
y

2

)
,

ϒ2(x, y) =
( x
4
,
y + 1

2

)
, ϒ3(x, y) =

( x + 2

4
,
y + 1

2

)
.

As these are contractions on R2, there exists a compact attractor set, which is readily
verified to be C4 × [0, 1]. Likewise, by Hutchinson [9], there exists an invariant
probability measure supported on C4 × [0, 1]; it is readily verified that this invariant
measure is μ4 × λ, where λ denotes the Lebesgue measure restricted to [0, 1]. Thus,
for every continuous function f : R2 → C,
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∫
f (x, y) d(μ4 × λ)=1

4

(∫
f

(
x

4
,
y

2

)
d(μ4 × λ)+

∫
f

(
x + 2

4
,
y

2

)
d(μ4 × λ)

+
∫

f

(
x

4
,
y + 1

2

)
d(μ4 × λ) +

∫
f

(
x + 2

4
,
y + 1

2

)
d(μ4 × λ)

)
. (1)

The iterated function system ϒ j has a left inverse on C4 × [0, 1], given by

R : C4 × [0, 1] → C4 × [0, 1] : (x, y) 
→ (4x, 2y) mod 1,

so that R ◦ ϒ j (x, y) = (x, y) for j = 0, 1, 2, 3.
We will use the iterated function system to define an action of the Cuntz algebra

O4 on L2(μ4 × λ). To do so, we choose filters

m0(x, y) = H0(x, y)

m1(x, y) = e2π i x H1(x, y)

m2(x, y) = e4π i x H2(x, y)

m3(x, y) = e6π i x H3(x, y)

where

Hj (x, y) =
3∑

k=0

a jkχϒk(C4×[0,1])(x, y)

for some choice of scalar coefficients a jk . In order to obtain a representation of
O4 on L2(μ4 × λ), we require that the above filters satisfy the matrix equation
M∗(x, y)M(x, y) = I for μ4 × λ almost every (x, y), where

M(x, y) =

⎛
⎜⎜⎝
m0(ϒ0(x, y)) m0(ϒ1(x, y)) m0(ϒ2(x, y)) m0(ϒ3(x, y))
m1(ϒ0(x, y)) m1(ϒ1(x, y)) m1(ϒ2(x, y)) m1(ϒ3(x, y))
m2(ϒ0(x, y)) m2(ϒ1(x, y)) m2(ϒ2(x, y)) m2(ϒ3(x, y))
m3(ϒ0(x, y)) m3(ϒ1(x, y)) m3(ϒ2(x, y)) m3(ϒ3(x, y))

⎞
⎟⎟⎠

For our choice of filters, the matrix M becomes

M(x, y) =

⎛
⎜⎜⎝
a00 a01 a02 a03
eπ i x/2a10 −eπ i x/2a11 eπ i x/2a12 −eπ i x/2a13
eπ i xa20 eπ i xa21 eπ i xa22 eπ i xa23
e3π i x/2a30 −e3π i x/2a31 e3π i x/2a32 −e3π i x/2a33

⎞
⎟⎟⎠ ,

which is unitary if and only if the matrix

H =

⎛
⎜⎜⎝
a00 a01 a02 a03
a10 −a11 a12 −a13
a20 a21 a22 a23
a30 −a31 a32 −a33

⎞
⎟⎟⎠
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is unitary. For the remainder of this section, we assume that H is unitary.

Lemma 2 The operator S j : L2(μ4 × λ) → L2(μ4 × λ) given by

[S j f ](x, y) = √
4m j (x, y) f (R(x, y))

is an isometry.

Proof We calculate:

‖S j f ‖2 =
∫

|√4m j (x, y) f (R(x, y))|2 d(μ4 × λ)

= 1

4

3∑
k=0

∫
4|m j (ϒk(x, y)) f (R(ϒk(x, y)))|2 d(μ4 × λ)

=
∫ (

3∑
k=0

|m j (ϒk(x, y))|2
)

| f (x, y)|2 d(μ4 × λ).

WeusedEq. (1) in the second line. The sum in the integral is the square of the Euclidean
norm of the j th row of the matrix M, which is unitary. Hence, the sum is 1, so the
integral is ‖ f ‖2, as required. ��
Lemma 3 The adjoint is given by

[S∗
j f ](x, y) = 1

2

3∑
k=0

m j (ϒk(x, y)) f (ϒk(x, y)).

Proof Let f, g ∈ L2(μ4 × λ). We calculate

〈S j f, g〉 =
∫ √

4m j (x, y) f (R(x, y))g(x, y) d(μ4 × λ)

= 1

4

3∑
k=0

∫ √
4m j (ϒk(x, y)) f (R(ϒk(x, y)))g(ϒk(x, y)) d(μ4 × λ)

=
∫

f (x, y)

(
1

2

3∑
k=0

m j (ϒk(x, y))g(ϒk(x, y))

)
d(μ4 × λ)

where we use Eq. (1) and the fact that R is a left inverse of ϒk . ��
Lemma 4 The isometries S j satisfy the Cuntz relations:

S∗
j Sk = δ jk I,

3∑
k=0

Sk S
∗
k = I.
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Proof We consider the orthogonality relation first. Let f ∈ L2(μ4×λ). We calculate:

[S∗
j Sk f ](x, y) = 1

2

3∑

=0

m j (ϒ
(x, y))[Sk f ](ϒ
(x, y))

= 1

2

3∑

=0

m j (ϒ
(x, y))
√
4mk(ϒ
(x, y)) f (R(ϒ
(x, y)))

=
(

3∑

=0

m j (ϒ
(x, y))mk(ϒ
(x, y))

)
f (x, y).

Note that the sum is the scalar product of the kth row with the j th row of the matrix
M, which is unitary. Hence, the sum is δ jk as required.

Now for the identity relation, let f, g ∈ L2(μ4 × λ). We calculate:

〈 3∑
k=0

Sk S
∗
k f, g

〉
=

3∑
k=0

〈
S∗
k f, S∗

k g
〉

=
3∑

k=0

∫ (
1

2

3∑

=0

mk(ϒ
(x, y)) f (ϒ
(x, y))

)

×
⎛
⎝1

2

3∑
n=0

mk(ϒn(x, y))g(ϒn(x, y))

⎞
⎠ d(μ4 × λ)

=
3∑


=0

3∑
n=0

1

4

∫ (
3∑

k=0

mk(ϒ
(x, y))mk(ϒn(x, y))

)
f (ϒ
(x, y))g(ϒn(x, y)) d(μ4×λ)

= 1

4

3∑
n=0

∫
f (ϒn(x, y))g(ϒn(x, y)) d(μ4 × λ)

=
∫

f (x, y)g(x, y) d(μ4 × λ) = 〈 f, g〉.

Note that the sum over k in the third line is the scalar product of the 
th column with
the nth column of M, so the sum collapses to δ
n . The sum on n in the fourth line
collapses by Eq. (1). ��

2 Orthonormal Sets in L2(μ4 × λ)

Since the isometries S j satisfy the Cuntz relations, we can use them to generate ortho-
normal sets in the space L2(μ4 × λ). We do so by having the isometries act on a
generating vector. We consider words in the alphabet {0, 1, 2, 3}; letW4 denote the set
of all such words. For a word ω = jK jK−1 . . . j1, we denote by |ω| = K the length
of the word, and define

Sω f = S jK S jK−1 . . . S j1 f.
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Definition 1 Let

X4 = {ω ∈ W4 : |ω| = 1} ∪ {ω ∈ W4 : |ω| ≥ 2, j1 �= 0}.

For convenience, we allow the empty word ω∅ with length 0, and define Sω∅ = I , the
identity.

Lemma 5 Suppose f ∈ L2(μ4 × λ) with ‖ f ‖ = 1, and that S0 f = f . Then,

{Sω f : ω ∈ X4}

is an orthonormal set.

Proof Supposeω,ω′ ∈ X4 withω �= ω′. First consider |ω| = |ω′|, withω = jK . . . j1
and ω′ = iK . . . i1. Suppose that 
 is the largest index such that j
 �= i
. Then we have

〈Sω f, Sω′ f 〉 = 〈S j
 . . . S j1 f, Si
 . . . Si1 f 〉 = 〈S∗
i
 S j
 . . . S j1 f, Si
−1 . . . Si1 f 〉 = 0

by the orthogonality condition of the Cuntz relations.
Now, if K = |ω| > |ω′| = M , with ω′ = iM . . . i1, we define the word ρ =

iM . . . i10 . . . 0 so that |ρ| = K . Note that ρ /∈ X4 so ω �= ρ. Note further that
Sω′ f = Sρ f . Thus, by a similar argument to that above, we have

〈Sω f, Sω′ f 〉 = 0.

��
Remark 1 The set {Sω f : ω ∈ X4} need not be complete. We will provide an example
of this in Example 1 in Sect. 4.

Our goal is to project the set {Sω f : ω ∈ X4} onto some subspaceV of L2(μ4×λ) to
obtain a frame. To that end, we need to know when the projection {PV Sω f : ω ∈ X4}
is a frame, which by Lemma 1 requires the projection PV : K → V to be onto, where
K is the subspace spanned by {Sω f : ω ∈ X4}. The tool we will use is the following
result, which is a minor adaptation of Theorem 3.1 from [7].

Theorem 1 Let H be a Hilbert space, K ⊂ H a closed subspace, and (Si )
N−1
i=0 be

a representation of the Cuntz algebra ON . Let E be an orthonormal set in H and
f : X → K a norm continuous function on a topological space X with the following
properties:

(i) E = ∪N−1
i=0 SiE where the union is disjoint.

(ii) span{ f (t) : t ∈ X} = K and ‖ f (t)‖ = 1, for all t ∈ X.
(iii) There exist functions mi : X → C, gi : X → X, i = 0, . . . , N − 1 such that

S∗
i f (t) = mi (t) f (gi (t)), t ∈ X. (2)

(iv) There exist c0 ∈ X such that f (c0) ∈ spanE .
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(v) The only function h ∈ C(X) with h ≥ 0, h(c) = 1, ∀ c ∈ {x ∈ X : f (x) ∈
spanE}, and

h(t) =
N−1∑
i=0

|mi (t)|2 h(gi (t)), t ∈ X (3)

are the constant functions.

Then K ⊂ spanE .

3 The Projection

Recall the definition of the filtersm j (x, y) = e2π i j x Hj (x, y) from Sect. 1. We choose
the filter coefficients a jk so that the matrix H is unitary. We place the additional
constraint that

a00 = a01 = a02 = a03 = 1

2
,

so that S01 = 1, where 1 the function in L2(μ4 × λ) which is identically 1. As
S01 = 1, by Lemma 5, the set {Sω1 : ω ∈ X4} is orthonormal. Moreover, we place
the additional constraint that for every j , a j0+a j2 = a j1+a j3, which will be required
for our calculation of the projection.

Definition 2 We define the subspace V = { f ∈ L2(μ4 × λ) : f (x, y) =
g(x)χ[0,1](y), g ∈ L2(μ4)}. Note that the subspace V can be identified with L2(μ4)

via the isometric isomorphism g 
→ g(x)χ[0,1](y). We will suppress the y variable in
the future.

Definition 3 We define a function c : X4 → N0 as follows: for a word ω =
jK jK−1 . . . j1,

c(ω) =
K∑

k=1

jk4
K−k .

Here N0 = N ∪ {0}. It is readily verified that c is a bijection.

Lemma 6 For a word ω = jK jK−1 . . . j1,

Sω1 = e2π ic(ω)x

(
K∏

k=1

2Hjk (R
K−k(x, y))

)
.

Proof We proceed by induction on the length of the word ω. The equality is readily
verified for |ω| = 1. Let ω0 = jK−1 jn−2 . . . j1. We have

Sω1 = S jK Sω01

= S jK

[
e2π ic(ω0)x

(
K−1∏
k=1

2Hjk (R
K−1−k(x, y))

)]
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= 2e2π i jK x HjK (x, y)e2π ic(ω0)·4x
(
K−1∏
k=1

Hjk (R
K−k(x, y))

)

= 2e2π i( jK+4c(ω0))x HjK (RK−K (x, y))

(
K−1∏
k=1

2Hjk (R
K−k(x, y))

)

= 2e2π ic(ω)x

(
K−1∏
k=1

2Hjk (R
K−k(x, y))

)
.

The last line above is justified by the following calculation:

jK + 4c(ω0) = jK + 4

(
K−1∑
k=1

jk4
K−1−k

)

= jK 4
K−K +

K−1∑
k=1

jk4
K−k

=
K∑

k=1

jk4
K−k

= c(ω).

��
We wish to project the vectors Sω1 onto the subspace V . The following lemma

calculates that projection, where PV denotes the projection onto the subspace V .

Lemma 7 If f (x, y) = g(x)h(x, y) with g ∈ L2(μ4) and h ∈ L∞(μ4 × λ), then

[PV f ](x, y) = g(x)G(x)

where G(x) = ∫
[0,1] h(x, y)dλ(y).

Proof We verify that for every F(x) ∈ L2(μ4), f (x, y) − g(x)G(x) is orthogonal to
F(x). We calculate utilizing Fubini’s theorem:

〈 f − gG, F〉=
∫ ∫

g(x)h(x, y)F(x) d(μ4 × λ)−
∫ ∫

g(x)G(x)F(x) d(μ4 × λ)

=
∫
C4

g(x)F(x)

(∫
[0,1]

h(x, y) − G(x) dλ(y)

)
dμ4(x)

=
∫
C4

g(x)F(x) (G(x) − G(x)) dμ4(x)

= 0.

��
For the purposes of the following lemma, αx and βy are understood to be modulo

1.



J Fourier Anal Appl (2017) 23:324–343 333

Lemma 8 For any word ω = jK jK−1 . . . j1,

∫ K∏
k=1

2Hjk (R
k−1(x, y)) dλ(y) =

K∏
k=1

2
∫

Hjk (4
k−1x, y) dλ(y).

Proof Let Fm(x, y) = ∏K
k=m 2Hjk (4

k−1x, 2k−m y). Note that

Fm
(
x,

y

2

)
= 2Hjm

(
4m−1x,

y

2

)(
K∏

k=m+1

2Hjk (4
k−1x, 2k−(m+1)y)

)

= 2Hjm

(
4m−1x,

y

2

)
Fm+1(x, y).

Likewise for Fm
(
x, y+1

2

)
.

Since λ is the invariant measure for the iterated function system y 
→ y
2 , y 
→ y+1

2 ,
we calculate:

∫ 1

0
Fm(x, y) dλ(y) = 1

2

[∫ 1

0
Fm

(
x,

y

2

)
dλ(y) +

∫ 1

0
Fm

(
x,

y + 1

2

)
dλ(y)

]

= 1

2

[∫ 1

0
2Hjm

(
4m−1x,

y

2

)
Fm+1(x, y)

+2Hjm

(
4m−1x,

y + 1

2

)
Fm+1(x, y) dλ(y)

]

= 1

2

[∫ 1

0
2a jm ,q Fm+1(x, y) + 2a jm ,q+2Fm+1(x, y) dλ(y)

]

= 1

2

[
2a jm ,q + 2a jm ,q+2

] ·
[∫ 1

0
Fm+1(x, y) dλ(y)

]

=
[∫ 1

0
2Hjm (4m−1x, y) dλ(y)

]
·
[∫ 1

0
Fm+1(x, y) dλ(y)

]

where q = 0 if 0 ≤ 4m−1x < 1
2 , and q = 1 if 1

2 ≤ 4m−1x < 1.
The result now follows by a standard induction argument. ��

Proposition 1 Suppose the filters m j (x, y) are chosen so that

(i) the matrix H is unitary,
(ii) a00 = a01 = a02 = a03 = 1

2 , and
(iii) for j = 0, 1, 2, 3, a j0 + a j2 = a j1 + a j3.

Then for any word ω = jK . . . j1,

PV Sω1 = dωe
2π ic(ω)x ,
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where

dω =
K∏

k=1

(
a jk0 + a jk2

)
. (4)

Proof We apply the previous three Lemmas to obtain

[PV Sω1](x, y) = e2π ic(ω)x
∫ K∏

k=1

2Hjk (R
k−1(x, y))dλ(y)

= e2π ic(ω)x
K∏

k=1

2
∫

Hjk (4
k−1x, y)dλ(y)

By assumption (iii), the integral
∫
Hjk (4

k−1x, y)dλ(y) is independent of x , and the
value of the integral is

a j0
2 + a j2

2 . Eq. (4) now follows. ��

4 Concrete Constructions

We now turn to concrete constructions of Fourier frames for μ4. The hypotheses of
Lemma 5 and Proposition 1 require H to be unitary and requires the matrix

A =

⎛
⎜⎜⎝
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎞
⎟⎟⎠

to have the first row be identically 1
2 and to have the vector

(
1 −1 1 −1

)T in the kernel.
We can use Hadamard matrices to construct examples of such a matrix A. Every

4 × 4 Hadamard matrix is a permutation of the following matrix:

Uρ = 1

2

⎛
⎜⎜⎝
1 1 1 1
1 −1 ρ −ρ

1 1 −1 −1
1 −1 −ρ ρ

⎞
⎟⎟⎠

where ρ is any complex number of modulus 1.
If we set H = Uρ , we obtain

A = 1

2

⎛
⎜⎜⎝
1 1 1 1
1 1 ρ ρ

1 1 −1 −1
1 1 −ρ −ρ

⎞
⎟⎟⎠ (5)

which has the requisite properties to apply Lemma 5 and Proposition 1.
We define for k = 1, 2, 3, lk : N0 → N0 by lk(n) is the number of digits equal to k

in the base 4 expansion of n. Note that lk(0) = 0, and we follow the convention that
00 = 1.
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Theorem 2 For the choice A as in Eq. (5) with ρ �= −1, the sequence

{(
1 + ρ

2

)l1(n)

0l2(n)

(
1 − ρ

2

)l3(n)

e2π inx : n ∈ N0

}
(6)

is a Parseval frame in L2(μ4).

Proof By Lemma 5, we have that {Sω1 : ω ∈ X4} is an orthonormal set. For a word
ω = jK jK−1 . . . j1, Proposition 1 yields that

PV Sω1 = e2π ic(ω)x
K∏

k=1

(
a jk0 + a jk2

)
.

Then, setting n = c(ω), we obtain

PV Sω1 = e2π inx (a00 + a02)
K−l1(n)−l2(n)−l3(n)

3∏
j=1

(
a j0 + a j2

)l j (n)
.

Since

a00 + a02 = 1, a10 + a12 = 1 + ρ

2
, a20 + a22 = 0, a30 + a32 = 1 − ρ

2
,

it follows that

PV Sω1 =
(
1 + ρ

2

)l1(n)

0l2(n)

(
1 − ρ

2

)l3(n)

e2π inx .

Since c is a bijection, the set {PV Sω1 : ω ∈ X4} coincides with the set in (6).
In order to establish that the set (6) is a Parseval frame, we wish to apply Lemma 1,

which requires that the subspace V is contained in the closed span of {Sω1 : ω ∈ X4}.
Denote the closed span byK. We will proceed in a manner nearly identical to the proof
of Theorem 1 and its inspiration [7, Theorem 3.1]. Define the function f : R → V
by f (t) = et where et (x, y) = e2π i xt . Note that f (0) = 1 ∈ K. Likewise, define a
function hX : R → R by

hX (t) =
∑
ω∈X4

|〈 f (t), Sω1〉|2 = ‖PK f (t)‖2.

��
Claim 1 We have hX ≡ 1.

Assuming for the moment that the claim holds, we deduce that f (t) ∈ K for every
t ∈ R. Since { f (γ ) : γ ∈ �4} is an orthonormal basis for V , it follows that the closed
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span of { f (t) : t ∈ R} is all of V . We conclude that V ⊂ K, and so Lemma 1 implies
that {PV Sω1 : ω ∈ X4} is a Parseval frame for V , from which the Theorem follows.

Thus, we turn to the proof of Claim 1. First, we require {Sω1 : ω ∈ X4} =
∪3

j=0{S j Sω1 : ω ∈ X4}, where the union is disjoint. Clearly, the RHS is a subset of
the LHS, and the union is disjoint. Consider an element of the LHS: Sω1. If |ω| ≥ 2,
we write Sω1 = S j Sω01 for some j and some ω0 ∈ X4, whence Sω1 is in the RHS. If
|ω| = 1, then we write Sω1 = S j1 = S j S01, which is again an element of the RHS.
Equality now follows.

As a consequence,

hX (t) =
∑
ω∈X4

|〈 f (t), Sω1〉|2

=
3∑
j=0

∑
ω∈X4

|〈 f (t), S j Sω1〉|2

=
3∑
j=0

∑
ω∈X4

|〈S∗
j f (t), Sω1〉|2.

We calculate:

[S∗
j f (t)](x, y) = 1

2

3∑
k=0

m j (ϒk(x, y))et (ϒk(x, y))

= 1

2

[
a j0e

−2π i j x/4et
( x
4
,
y

2

)
+ e−π i j a j1e

−2π i j x/4et
( x + 2

4
,
y

2

)

+ a j2e
−2π i j x/4et

( x
4
,
y + 1

2

)
+e−π i j a j3e

−2π i j x/4et
( x + 2

4
,
y + 1

2

)]

= 1

2

[
a j0e

−2π i j x/4et
( x
4
,
y

2

)
+ e−π i j a j1e

−2π i j x/4eπ i t et
( x
4
,
y

2

)
+a j2e

−2π i j x/4et
( x
4
,
y

2

)
+e−π i j a j3e

−2π i j x/4eπ i t et
( x
4
,
y

2

)]
= 1

2

[
a j0 + e−π i j a j1e

π i t + a j2 + e−π i j a j3e
π i t

]
e−2π i j x/4et

( x
4
,
y

2

)
= 1

2

[
a j0 + e−π i j a j1e

π i t + a j2 + e−π i j a j3e
π i t

]
e2π i(t

x
4 − j x4 )

= 1

2

[
a j0 + e−π i j a j1e

π i t + a j2 + e−π i j a j3e
π i t

]
e2π i

(
t− j
4 x

)

= 1

2

[
a j0 + e−π i j a j1e

π i t + a j2 + e−π i j a j3e
π i t

]
e t− j

4
(x, y).

Thus, we define

m j (t) = 1

2

(
a j0 + a j2

) + e−π i j

2

(
a j1 + a j3

)
eπ i t ,
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and

g j (t) = t − j

4
.

As a consequence, we obtain

hX (t) =
3∑
j=0

∑
ω∈X4

|〈S∗
j f (t), Sω1〉|2

=
3∑
j=0

∑
ω∈X4

|〈m j (t) f (g j (t)), Sω1〉|2

=
3∑
j=0

|m j (t)|2hX (g j (t)). (7)

Because of our choice of coefficients in the matrix A, which has the vector(
1 −1 1 −1

)T in the kernel, we have for every j : a j0 + a j2 = a j1 + a j3. Thus,
if we let b j = a j0 + a j2, the functions m j simplify to

m j (t) = b j

2
eπ i t2 cos

(
π
t

2

)

for j = 0, 2, and

m j (t) = − ib j

2
eπ i t2 sin

(
π
t

2

)

for j = 1, 3. Substituting these into Eq. (7),

hX (t) = cos2
(

π t

2

)
hX

(
t

4

)
+ sin2

(
π t

2

) |1 + ρ|2
4

hX

(
t − 1

4

)
(8)

+ sin2
(

π t

2

) |1 − ρ|2
4

hX

(
t − 3

4

)
.

Claim 2 The function hX can be extended to an entire function.

Assume for the moment that Claim 2 holds, we finish the proof of Claim 1. If
hX (t) = 1 for t ∈ [−1, 0], then hX (z) = 1 for all z ∈ C, and Claim 1 holds.

Now, assume to the contrary that hX (t) is not identically 1 on [−1, 0]. Since 0 ≤
hX (t) ≤ 1 for t real, then β = min{hX (t) : t ∈ [−1, 0]} < 1. Because constant
functions satisfy (8), h1 := hX − β also satisfies Eq. (8). There exists t0 such that
h1(t0) = 0 and t0 �= 0 as hX (0) = 1. Since h1 ≥ 0 each of the terms in (8) must
vanish :

cos2
(

π t0
2

)
h1

(
t0
4

)
= 0 (9)
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sin2
(

π t0
2

) |1 + ρ|2
4

h1

(
t0 − 1

4

)
= 0 (10)

sin2
(

π t0
2

) |1 − ρ|2
4

h1

(
t0 − 3

4

)
= 0 (11)

Our hypothesis is that ρ �= −1, so in Eq. (10), the coefficient |1+ρ|2
4 �= 0.

Case 1 If t0 �= −1 then Eq. (9) implies h1(t0/4) = 0 = h1(g0(t0)). Let t1 :=
g0(t0) ∈ (−1, 0); iterating the previous argument implies that h1(g0(t1)) = 0. Thus,
we obtain an infinite sequence of zeroes of h1.

Case 2 If t0 = −1, then the previous argument does not hold. However, we can
construct another zero of h1, t ′0 ∈ (−1, 0) to which the previous argument will hold.
Indeed, if t0 = −1, Eq. (10) implies h1((t0 − 1)/4) = h1(−1/2) = 0. Let t ′0 = −1/2
and continue as in Case 1.

In either case, h1 vanishes on a (countable) set with an accumulation point, and
since h1 is analytic it follows that h1 ≡ 0, a contradiction, and Claim 1 holds.

Now, to prove Claim 2, we follow the proof of Lemma 4.2 of [10]. For a fixed
ω ∈ X4, define fω : C → C by

fω(z) = 〈ez, Sω1〉 =
∫

e2π i zx [Sω1](x, y) d(μ4 × λ).

Since the distribution [Sω1](x, y) d(μ4 × λ) is compactly supported, a standard con-
vergence argument demonstrates that fω is entire. Likewise, f ∗

ω(z) = fω(z) is entire,
and for t real,

fω(t) f ∗
ω(t) = (〈et , Sω1〉) (〈et , Sω1〉) = |〈et , Sω1〉|2.

Thus,

hX (t) =
∑
ω∈X4

fω(t) f ∗
ω(t).

For n ∈ N, let hn(z) = ∑
|ω|≤n fω(z) f ∗

ω(z), which is entire. By Hölder’s inequality,

∑
ω∈X4

| fω(z) f ∗
ω(z)| ≤

⎛
⎝ ∑

ω∈X4

|〈ez, Sω1〉|2
⎞
⎠

1/2 ⎛
⎝ ∑

ω∈X4

|〈ez, Sω1〉|2
⎞
⎠

1/2

≤ ‖ez‖‖ez‖ ≤ eK Im(z)

for some constant K . Thus, the sequence hn(z) converges pointwise to a function
h(z), and are uniformly bounded on strips Im(z) ≤ C . By the theorems of Montel
and Vitali, the limit function h is entire, which coincides with hX for real t , and Claim
2 is proved.

Example 1 As mentioned in Sect. 2, in general, {Sω1} need not be complete, and the
exceptional point ρ = −1 in Theorem 2 provides the example. In the case ρ = −1,
the set (6) becomes
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{dne2π inx : n ∈ N0}

where the coefficients dn = 1 if n ∈ �3 and 0 otherwise. Here,

�3 =
{

N∑
n=0

ln4
n : ln ∈ {0, 3}

}

and it is known [4] that the sequence {e2π inx : n ∈ �3} is incomplete in L2(μ4). Thus,
{PV Sω1} is incomplete in V , so {Sω1} is incomplete in L2(μ4 × λ).

We can generalize the construction of Theorem 2 as follows. We want to choose a
matrix

A =

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

h10 h11 h12 h13
h20 h21 h22 h23
h30 h31 h32 h33

⎞
⎟⎟⎠

such that
(
1 −1 1 −1

)T is in the kernel of H and the matrix

H =

⎛
⎜⎜⎝

1
2

1
2

1
2

1
2

h10 −h11 h12 −h13
h20 h21 h22 h23
h30 −h31 h32 −h33

⎞
⎟⎟⎠

is unitary. We obtain a system of nonlinear equations in the 12 unknowns. To parame-
trize all solutions, we consider the following row vectors:

�v0 = 1

2

(
1 1 1 1

) �w0 = 1

2

(
1 −1 1 −1

)
(12)

�v1 = 1

2

(
1 −1 −1 1

) �w1 = 1

2

(
1 1 −1 −1

)
(13)

�v2 = 1

2

(
1 1 −1 −1

) �w2 = 1

2

(
1 −1 −1 1

)
(14)

If we construct the matrix A so that the rows are linear combinations of {�v0, �v1, �v2},
then A will satisfy the desired condition on the kernel. Note that if the j th row of A is
α j0�v0+α j1�v1+α j2�v2 for j = 1, 3, then the j th row of H is α j0 �w0+α j1 �w1+α j2 �w2,
whereas if j = 0, 2, then the j th row of H is equal to the j th row of A.

Thus, we want to choose coefficients α jk , j = 0, 1, 2, 3, k = 1, 2, 3 so that the
matrix

H =

⎛
⎜⎜⎝

α00�v0 + α01�v1 + α02�v2
α10 �w0 + α11 �w1 + α12 �w2
α20�v0 + α21�v1 + α22�v2

α30 �w0 + α31 �w1 + α32 �w2

⎞
⎟⎟⎠ (15)
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is unitary. To satisfy the requirement on the first row, we choose α00 = 1 and α01 =
α02 = 0. Calculating the inner products of the rows of H , we obtain the following
necessary and sufficient conditions:

|α j0|2 + |α j1|2 + |α j2|2 = 1 (16)

α00α20 = 0 (17)

α11α22 + α12α21 = 0 (18)

α10α30 + α11α31 + α12α32 = 0 (19)

α21α32 + α22α31 = 0 (20)

Proposition 2 Fix α00 = 1. There exists a solution to the Eqs. (16–20) if and only if
α10, α30 ∈ C with

|α10|2 + |α30|2 = 1. (21)

Proof (⇐) If |α10|2 = 1, then we choose α21 = α31 = 1 and all other coefficients
to be 0 to obtain a solution to Eqs. (16–20). Likewise, if |α10|2 = 0, then choose
α11 = α21 = 1 and all other coefficients to be 0.

Now suppose that 0 < |α10| < 1, and we choose λ = −α10α30

1 − |α10|2 . Then choose α11

and α12 such that |α11|2 + |α12|2 = 1− |α10|2. Now let α31 = λα11 and α32 = λα12.
We have

α10α30 + α11α31 + α12α32 = α10α30 + λ|α11|2 + λ|α12|2
= α10α30 + λ(1 − |α10|2) (22)

= 0,

so Eq. (19) is satisfied.
Equation (17) forces α20 = 0; choose α21 and α22 such that |α21|2 + |α22|2 = 1

and α11α21 + α12α22 = 0. Thus, Eqs. (18) and (20) are satisfied. Finally, regarding
Eq. (16), it is satisfied for j = 0, 1, 2 by construction. For j = 3, we calculate:

|α30|2 + |α31|2 + |α32|2 = |α30|2 + |λ|2
(
|α11|2 + |α12|2

)
= |α30|2 + |α10|2|α30|2

(1 − |α10|2)2
(
1 − |α10|2

)

= |α30|2
(
1 + |α10|2

1 − |α10|2
)

= |α30|2
1 − |α10|2 (23)

= 1

as required.
(⇒) Suppose that we have a solution to Eqs. (16–20). If |α10| = 1, then we must

have α11 = α12 = 0, and thus Eq. (19) requires α30 = 0, so Eq. (21) holds.
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Now suppose |α10| < 1. Since α20 = 0, we must have that |α21|2 + |α22|2 = 1.
Combining this with Eqs. (18) and (20) imply that the matrix(

α11 α12
α31 α32

)

is singular. Thus, there exists a λ such that α31 = λα11 and α32 = λα12. Using the

same computation as in Eq. (22), we conclude that λ = −α10α30

1 − |α10|2 ; then Eq. (23)

implies (21). ��
The coefficient matrix we obtain from this construction is

H = 1

2

⎛
⎜⎜⎝
1 1 1 1
α10 + α11 + α12 α10 − α11 + α12 α10 − α11 − α12 α10 + α11 − α12

α21 + α22 −α21 + α22 −α21 − α22 α21 − α22

α30 + λα11 + λα12 α30 − λα11 + λα12 α30 − λα11 − λα12 α30 + λα11 − λα12

⎞
⎟⎟⎠

where we are allowed to choose α11, α12, α21 and α22 subject to the normalization
condition in Eq. (16). However, those choices do not affect the construction, since if
we apply Proposition 1 and the calculation from Theorem 2, we obtain

PV Sω1 = (α10)

1(n) · (0)
2(n)) · (α30)


3(n)e2π inx . (24)

This will in fact be a Parseval frame for L2(μ4), provided V ⊂ K, as in the proof of
Theorem 2.

Theorem 3 Suppose p, q ∈ C with |p|2 + |q|2 = 1. Then

{p
1(n) · 0
2(n) · q
3(n)e2π inx : n ∈ N0}

is a Parseval frame for L2(μ4), provided p �= 0.

Proof Substitute α10 = p and α30 = q in Proposition 2 and Eq. (24). As noted, we
only need to verify V ⊂ K. We proceed as in the proof of Theorem 2; indeed, define
f , hX , m j and g j as previously. We obtain b0 = 1, b1 = p, b2 = 0, and b3 = q , so
Eq. (8) becomes

hX (t) = cos2
(

π t

2

)
hX

(
t

4

)
+ |p|2 sin2

(
π t

2

)
hX

(
t − 1

4

)

+|q|2 sin2
(

π t

2

)
hX

(
t − 3

4

)
.

From here, the same argument shows that hX ≡ 1, and V ⊂ K. ��

5 Concluding Remarks

We remark here that the constructions given above forμ4 does notwork forμ3. Indeed,
we have the following no-go result. To obtain the measure μ3 × λ, we consider the
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iterated function system:

ϒ0(x, y) =
( x
3
,
y

2

)
, ϒ1(x, y) =

( x + 2

3
,
y

2

)
,

ϒ2(x, y) =
( x
3
,
y + 1

2

)
, ϒ3(x, y) =

( x + 2

3
,
y + 1

2

)
.

Using the same choice of filters, the matrix M(x, y) reduces to

H =

⎛
⎜⎜⎝
a00 a01 a02 a03
a10 e4π i/3a11 a12 e4π i/3a13
a20 e2π i/3a21 a22 e2π i/3a23
a30 a31 a32 a33

⎞
⎟⎟⎠

which we require to be unitary. Additionally, we require the same conditions as for
μ4, namely, the first row of H must have all entries 1

2 , and a j0 + a j2 = a j1 + a j3.
The inner product of the first two rows must be 0. Hence,

1

2

(
a10 + e4π i/3a11 + a12 + e4π i/3a13

)
= 1

2
(a10 + a12) (1 + e4π i/3) = 0.

Consequently, a10 + a12 = 0. Likewise, a20 + a22 = a30 + a32 = 0. As a result,

H

⎛
⎜⎜⎝
1
0
1
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a00 + a02
a10 + a12
a20 + a22
a30 + a32

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠

and so H cannot be unitary.
It may be possible to extend the construction for μ4 to μ3 by considering a repre-

sentation ofOn for some sufficiently large n, or by considering μ3 ×ρ for some other
fractal measure ρ rather than λ.

Acknowledgements We thank Dorin Dutkay for assisting with the proof of Claim 1 in Theorem 2.
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