

Fourier Frames for the Cantor-4 Set

Gabriel Picioroaga¹ · Eric S. Weber2

Received: 25 June 2015 / Revised: 2 March 2016 / Published online: 11 April 2016 © Springer Science+Business Media New York 2016

Abstract The measure supported on the Cantor-4 set constructed by Jorgensen– Pedersen is known to have a Fourier basis, i.e. that it possess a sequence of exponentials which form an orthonormal basis. We construct Fourier frames for this measure via a dilation theory type construction. We expand the Cantor-4 set to a two dimensional fractal which admits a representation of a Cuntz algebra. Using the action of this algebra, an orthonormal set is generated on the larger fractal, which is then projected onto the Cantor-4 set to produce a Fourier frame.

Keywords Fourier series · Frames · Fractals · Iterated function system · Cuntz algebra

Mathematics Subject Classification Primary 42C15 · 28A80 · Secondary 42B05 · 46L89

Jorgensen and Pedersen $[10]$ demonstrated that there exist singular measures ν which are spectral—that is, they possess a sequence of exponential functions which form an orthonormal basis in $L^2(v)$. The canonical example of such a singular and spectral measure is the uniform measure on the Cantor 4-set defined as follows:

Communicated by Chris Heil.

- B Gabriel Picioroaga gabriel.picioroaga@usd.edu Eric S. Weber esweber@iastate.edu
- ¹ Department of Mathematical Sciences, University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA

² Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, USA

$$
C_4 = \left\{ x \in [0, 1] : x = \sum_{k=1}^{\infty} \frac{a_k}{4^k}, \ a_k \in \{0, 2\} \right\}.
$$

This is analogous to the standard middle third Cantor set where 4^k replaces 3^k . The set *C*⁴ can also be described as the attractor set of the following iterated function system on \mathbb{R} :

$$
\tau_0(x) = \frac{x}{4}, \quad \tau_2(x) = \frac{x+2}{4}.
$$

The uniform measure on the set C_4 then is the unique probability measure μ_4 which is invariant under this iterated function system:

$$
\int f(x) d\mu_4(x) = \frac{1}{2} \left(\int f(\tau_0(x)) d\mu_4(x) + \int f(\tau_2(x)) d\mu_4(x) \right)
$$

for all $f \in C(\mathbb{R})$, see [\[9\]](#page-19-1) for details. The standard spectrum for μ_4 is $\Gamma_4 = \left\{ \sum_{n=0}^{N} l_n 4^n : l_n \in \{0, 1\} \right\}$, though there are many spectra [\[2](#page-18-0)[,4](#page-18-1)]. Extension to larger classes of available spectra and other considerations can be found for example in [\[11](#page-19-2)[,12](#page-19-3),[14](#page-19-4)].

Remarkably, Jorgensen and Pedersen prove that the uniform measure μ_3 on the standard middle third Cantor set is not spectral. Indeed, there are no three mutually orthogonal exponentials in $L^2(\mu_3)$. Thus, there has been much attention on whether there exists a Fourier frame for $L^2(\mu_3)$ –the problem is still unresolved, but see [\[5](#page-18-2),[6\]](#page-18-3) for progress in this regard. In this paper, we will construct Fourier frames for $L^2(\mu_4)$ using a dilation theory type argument. The motivation is whether the construction we demonstrate here for μ_4 will be applicable to μ_3 . Fourier frames for μ_4 were constructed in [\[6\]](#page-18-3) using a duality type construction.

A frame for a Hilbert space *H* is a sequence $\{x_n\}_{n\in I} \subset H$ such that there exists constants $A, B > 0$ such that for all $v \in H$,

$$
A||v||^2 \le \sum_{n\in I} |\langle v, x_n\rangle|^2 \le B||v||^2.
$$

The largest *A* and smallest *B* which satisfy these inequalities are called the frame bounds. The frame is called a Parseval frame if both frame bounds are 1. The sequence ${x_n}_{n \in I}$ is a Bessel sequence if there exists a constant *B* which satisfies the second inequality, whether or not the first inequality holds; *B* is called the Bessel bound. A Fourier frame for $L^2(\mu_4)$ is a sequence of frequencies $\{\lambda_n\}_{n\in I} \subset \mathbb{R}$ together with a sequence of "weights" $\{d_n\}_{n\in I} \subset \mathbb{C}$ such that $x_n = d_n e^{2\pi i \lambda_n x}$ is a frame. Fourier frames (unweighted) for Lebesgue measure were introduced by Duffin and Schaffer [\[3](#page-18-4)], see also Ortega-Cerda and Seip [\[13\]](#page-19-5).

It was proven in [\[8\]](#page-19-6) that a frame for a Hilbert space can be dilated to a Riesz basis for a bigger space, that is to say, that any frame is the image under a projection of a Riesz basis. Moreover, a Parseval frame is the image of an orthonormal basis under a projection. This result is now known to be a consequence of the Naimark dilation theory. This will be our recipe for constructing a Fourier frame: constructing a basis in a bigger space and then projecting onto a subspace. We require the following result along these lines [\[1\]](#page-18-5):

Lemma 1 Let H be a Hilbert space, V , K closed subspaces, and let P_V be the pro*jection onto V. If* $\{x_n\}_{n\in I}$ *is a frame in K with frame bounds A, B, then:*

- 1. ${P_V x_n}_{n \in I}$ *is a Bessel sequence in V with Bessel bound no greater than B*;
- 2. *if the projection* $P_V: K \to V$ *is onto, then* $\{P_V x_n\}_{n \in I}$ *is a frame in* V;
- 3. *if* $V \subset K$, then then ${P_{V}}{x_n}_{n \in I}$ *is a frame in V with frame bounds between A and B.*

Note that if $V \subset K$ and $\{x_n\}_{n \in I}$ is a Parseval frame for *K*, then $\{P_V x_n\}_{n \in I}$ is a Parseval frame for *V*. In the second item above, it is possible that the lower frame bound for $\{P_V x_n\}$ is smaller than *A*, but the upper frame bound is still no greater than *B*.

The foundation of our construction is a dilation theory type argument. Our first step, described in Sect. [1,](#page-2-0) is to consider the fractal like set $C_4 \times [0, 1]$, which we will view in terms of an iterated function system. This IFS will give rise to a representation of the Cuntz algebra \mathcal{O}_4 on $L^2(\mu_4 \times \lambda)$ since $\mu_4 \times \lambda$ is the invariant measure under the IFS. Then in Sect. [2,](#page-5-0) we will generate via the action of \mathcal{O}_4 an orthonormal set in $L^2(\mu_4 \times \lambda)$ whose vectors have a particular structure. In Sect. [3,](#page-7-0) we consider a subspace *V* of $L^2(\mu_4 \times \lambda)$ which can be naturally identified with $L^2(\mu_4)$, and then project the orthonormal set onto *V* to, ultimately, obtain a frame. Of paramount importance will be whether the orthonormal set generated by \mathcal{O}_4 spans the subspace *V* so that the projection yields a Parseval frame. Section [4](#page-10-0) demonstrates concrete constructions in which this occurs, and identifies all possible Fourier frames that can be constructed using this method.

We note here that there may be Fourier frames for $L^2(\mu_4)$ which cannot be constructed in this manner, but we are unaware of such an example.

1 Dilation of the Cantor-4 Set

We wish to construct a Hilbert space *H* which contains $L^2(\mu_4)$ as a subspace in a natural way. We will do this by making the fractal *C*⁴ bigger as follows. We begin with an iterated function system on \mathbb{R}^2 given by:

$$
\begin{aligned} \Upsilon_0(x, y) &= \left(\frac{x}{4}, \frac{y}{2}\right), \Upsilon_1(x, y) = \left(\frac{x+2}{4}, \frac{y}{2}\right), \\ \Upsilon_2(x, y) &= \left(\frac{x}{4}, \frac{y+1}{2}\right), \Upsilon_3(x, y) = \left(\frac{x+2}{4}, \frac{y+1}{2}\right). \end{aligned}
$$

As these are contractions on \mathbb{R}^2 , there exists a compact attractor set, which is readily verified to be $C_4 \times [0, 1]$. Likewise, by Hutchinson [\[9](#page-19-1)], there exists an invariant probability measure supported on $C_4 \times [0, 1]$; it is readily verified that this invariant measure is $\mu_4 \times \lambda$, where λ denotes the Lebesgue measure restricted to [0, 1]. Thus, for every continuous function $f : \mathbb{R}^2 \to \mathbb{C}$,

$$
\int f(x, y) d(\mu_4 \times \lambda) = \frac{1}{4} \left(\int f\left(\frac{x}{4}, \frac{y}{2}\right) d(\mu_4 \times \lambda) + \int f\left(\frac{x+2}{4}, \frac{y}{2}\right) d(\mu_4 \times \lambda)
$$

$$
+\int f\left(\frac{x}{4},\frac{y+1}{2}\right)d(\mu_4\times\lambda)+\int f\left(\frac{x+2}{4},\frac{y+1}{2}\right)d(\mu_4\times\lambda)\bigg).
$$
 (1)

The iterated function system Υ_i has a left inverse on $C_4 \times [0, 1]$, given by

$$
R: C_4 \times [0, 1] \to C_4 \times [0, 1] : (x, y) \mapsto (4x, 2y) \mod 1,
$$

so that $R \circ \Upsilon_i(x, y) = (x, y)$ for $j = 0, 1, 2, 3$.

We will use the iterated function system to define an action of the Cuntz algebra \mathcal{O}_4 on $L^2(\mu_4 \times \lambda)$. To do so, we choose filters

$$
m_0(x, y) = H_0(x, y)
$$

\n
$$
m_1(x, y) = e^{2\pi ix} H_1(x, y)
$$

\n
$$
m_2(x, y) = e^{4\pi ix} H_2(x, y)
$$

\n
$$
m_3(x, y) = e^{6\pi ix} H_3(x, y)
$$

where

$$
H_j(x, y) = \sum_{k=0}^{3} a_{jk} \chi_{\Upsilon_k(C_4 \times [0,1])}(x, y)
$$

for some choice of scalar coefficients a_{jk} . In order to obtain a representation of \mathcal{O}_4 on $L^2(\mu_4 \times \lambda)$, we require that the above filters satisfy the matrix equation $\mathcal{M}^*(x, y) \mathcal{M}(x, y) = I$ for $\mu_4 \times \lambda$ almost every (x, y) , where

$$
\mathcal{M}(x, y) = \begin{pmatrix} m_0(\Upsilon_0(x, y)) \ m_0(\Upsilon_1(x, y)) \ m_0(\Upsilon_2(x, y)) \ m_0(\Upsilon_3(x, y)) \\ m_1(\Upsilon_0(x, y)) \ m_1(\Upsilon_1(x, y)) \ m_1(\Upsilon_2(x, y)) \ m_1(\Upsilon_3(x, y)) \\ m_2(\Upsilon_0(x, y)) \ m_2(\Upsilon_1(x, y)) \ m_2(\Upsilon_2(x, y)) \ m_2(\Upsilon_3(x, y)) \\ m_3(\Upsilon_0(x, y)) \ m_3(\Upsilon_1(x, y)) \ m_3(\Upsilon_2(x, y)) \ m_3(\Upsilon_3(x, y)) \end{pmatrix}
$$

For our choice of filters, the matrix *M* becomes

$$
\mathcal{M}(x, y) = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ e^{\pi i x/2} a_{10} & -e^{\pi i x/2} a_{11} & e^{\pi i x/2} a_{12} & -e^{\pi i x/2} a_{13} \\ e^{\pi i x} a_{20} & e^{\pi i x} a_{21} & e^{\pi i x} a_{22} & e^{\pi i x} a_{23} \\ e^{3\pi i x/2} a_{30} & -e^{3\pi i x/2} a_{31} & e^{3\pi i x/2} a_{32} & -e^{3\pi i x/2} a_{33} \end{pmatrix},
$$

which is unitary if and only if the matrix

$$
H = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & -a_{11} & a_{12} & -a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & -a_{31} & a_{32} & -a_{33} \end{pmatrix}
$$

is unitary. For the remainder of this section, we assume that *H* is unitary.

Lemma 2 *The operator* S_i : $L^2(\mu_4 \times \lambda) \rightarrow L^2(\mu_4 \times \lambda)$ *given by*

$$
[S_j f](x, y) = \sqrt{4m_j(x, y)} f(R(x, y))
$$

is an isometry.

Proof We calculate:

$$
||S_j f||^2 = \int |\sqrt{4m_j}(x, y) f(R(x, y))|^2 d(\mu_4 \times \lambda)
$$

= $\frac{1}{4} \sum_{k=0}^{3} \int 4|m_j(\Upsilon_k(x, y)) f(R(\Upsilon_k(x, y)))|^2 d(\mu_4 \times \lambda)$
= $\int \left(\sum_{k=0}^{3} |m_j(\Upsilon_k(x, y))|^2 \right) |f(x, y)|^2 d(\mu_4 \times \lambda).$

We used Eq. [\(1\)](#page-3-0) in the second line. The sum in the integral is the square of the Euclidean norm of the *j*th row of the matrix *M*, which is unitary. Hence, the sum is 1, so the integral is $||f||^2$, as required. integral is $|| f ||^2$, as required.

Lemma 3 *The adjoint is given by*

$$
[S_j^* f](x, y) = \frac{1}{2} \sum_{k=0}^{3} \overline{m_j(\Upsilon_k(x, y))} f(\Upsilon_k(x, y)).
$$

Proof Let $f, g \in L^2(\mu_4 \times \lambda)$. We calculate

$$
\langle S_j f, g \rangle = \int \sqrt{4m_j(x, y)} f(R(x, y)) \overline{g(x, y)} d(\mu_4 \times \lambda)
$$

=
$$
\frac{1}{4} \sum_{k=0}^{3} \int \sqrt{4m_j(\Upsilon_k(x, y))} f(R(\Upsilon_k(x, y))) \overline{g(\Upsilon_k(x, y))} d(\mu_4 \times \lambda)
$$

=
$$
\int f(x, y) \overline{\left(\frac{1}{2} \sum_{k=0}^{3} \overline{m_j(\Upsilon_k(x, y))} g(\Upsilon_k(x, y))\right)} d(\mu_4 \times \lambda)
$$

where we use Eq. [\(1\)](#page-3-0) and the fact that *R* is a left inverse of Υ_k .

Lemma 4 *The isometries* S_i *satisfy the Cuntz relations:*

$$
S_j^* S_k = \delta_{jk} I, \qquad \sum_{k=0}^3 S_k S_k^* = I.
$$

Proof We consider the orthogonality relation first. Let $f \in L^2(\mu_4 \times \lambda)$. We calculate:

$$
[S_j^*S_k f](x, y) = \frac{1}{2} \sum_{\ell=0}^3 \overline{m_j(\Upsilon_\ell(x, y))} [S_k f](\Upsilon_\ell(x, y))
$$

$$
= \frac{1}{2} \sum_{\ell=0}^3 \overline{m_j(\Upsilon_\ell(x, y))} \sqrt{4} m_k(\Upsilon_\ell(x, y)) f(R(\Upsilon_\ell(x, y)))
$$

$$
= \left(\sum_{\ell=0}^3 \overline{m_j(\Upsilon_\ell(x, y))} m_k(\Upsilon_\ell(x, y)) \right) f(x, y).
$$

Note that the sum is the scalar product of the *k*th row with the *j*th row of the matrix *M*, which is unitary. Hence, the sum is δ_{jk} as required.

Now for the identity relation, let $f, g \in L^2(\mu_4 \times \lambda)$. We calculate:

$$
\left\langle \sum_{k=0}^{3} S_k S_k^* f, g \right\rangle = \sum_{k=0}^{3} \left\langle S_k^* f, S_k^* g \right\rangle
$$

\n
$$
= \sum_{k=0}^{3} \int \left(\frac{1}{2} \sum_{\ell=0}^{3} \overline{m_k(\Upsilon_\ell(x, y))} f(\Upsilon_\ell(x, y)) \right)
$$

\n
$$
\times \left(\frac{1}{2} \sum_{n=0}^{3} \overline{m_k(\Upsilon_n(x, y))} g(\Upsilon_n(x, y)) \right) d(\mu_4 \times \lambda)
$$

\n
$$
= \sum_{\ell=0}^{3} \sum_{n=0}^{3} \frac{1}{4} \int \left(\sum_{k=0}^{3} \overline{m_k(\Upsilon_\ell(x, y))} m_k(\Upsilon_n(x, y)) \right) f(\Upsilon_\ell(x, y)) \overline{g(\Upsilon_n(x, y))} d(\mu_4 \times \lambda)
$$

\n
$$
= \frac{1}{4} \sum_{n=0}^{3} \int f(\Upsilon_n(x, y)) \overline{g(\Upsilon_n(x, y))} d(\mu_4 \times \lambda)
$$

\n
$$
= \int f(x, y) \overline{g(x, y)} d(\mu_4 \times \lambda) = \langle f, g \rangle.
$$

Note that the sum over k in the third line is the scalar product of the ℓ th column with the *n*th column of *M*, so the sum collapses to $\delta_{\ell n}$. The sum on *n* in the fourth line collapses by Eq. [\(1\)](#page-3-0). \Box

2 Orthonormal Sets in $L^2(\mu_4 \times \lambda)$

Since the isometries S_i satisfy the Cuntz relations, we can use them to generate orthonormal sets in the space $L^2(\mu_4 \times \lambda)$. We do so by having the isometries act on a generating vector. We consider words in the alphabet {0, 1, 2, 3}; let *W*⁴ denote the set of all such words. For a word $\omega = j_K j_{K-1} \dots j_1$, we denote by $|\omega| = K$ the length of the word, and define

$$
S_{\omega}f = S_{j_K}S_{j_{K-1}}\ldots S_{j_1}f.
$$

Definition 1 Let

$$
X_4 = \{ \omega \in W_4 : |\omega| = 1 \} \cup \{ \omega \in W_4 : |\omega| \ge 2, j_1 \ne 0 \}.
$$

For convenience, we allow the empty word ω_{\emptyset} with length 0, and define $S_{\omega_{\emptyset}} = I$, the identity.

Lemma 5 *Suppose* $f \in L^2(\mu_4 \times \lambda)$ *with* $|| f || = 1$ *, and that* $S_0 f = f$ *. Then,*

$$
\{S_{\omega}f : \omega \in X_4\}
$$

is an orthonormal set.

Proof Suppose ω , $\omega' \in X_4$ with $\omega \neq \omega'$. First consider $|\omega| = |\omega'|$, with $\omega = j_K \dots j_1$ and $\omega' = i_K \dots i_1$. Suppose that ℓ is the largest index such that $j_\ell \neq i_\ell$. Then we have

$$
\langle S_{\omega}f, S_{\omega'}f\rangle = \langle S_{j_{\ell}}\dots S_{j_{1}}f, S_{i_{\ell}}\dots S_{i_{1}}f\rangle = \langle S_{i_{\ell}}^{*}S_{j_{\ell}}\dots S_{j_{1}}f, S_{i_{\ell-1}}\dots S_{i_{1}}f\rangle = 0
$$

by the orthogonality condition of the Cuntz relations.

Now, if $K = |\omega| > |\omega'| = M$, with $\omega' = i_M \dots i_1$, we define the word $\rho =$ $i_M \dots i_1 0 \dots 0$ so that $|\rho| = K$. Note that $\rho \notin X_4$ so $\omega \neq \rho$. Note further that $S_{\omega'} f = S_{\rho} f$. Thus, by a similar argument to that above, we have

$$
\langle S_{\omega}f, S_{\omega'}f \rangle = 0.
$$

 \Box

Remark 1 The set $\{S_{\omega} f : \omega \in X_4\}$ need not be complete. We will provide an example of this in Example [1](#page-14-0) in Sect. [4.](#page-10-0)

Our goal is to project the set { $S_{\omega} f : \omega \in X_4$ } onto some subspace *V* of $L^2(\mu_4 \times \lambda)$ to obtain a frame. To that end, we need to know when the projection $\{P_V S_{\omega} f : \omega \in X_4\}$ is a frame, which by Lemma [1](#page-2-1) requires the projection $P_V: K \to V$ to be onto, where *K* is the subspace spanned by $\{S_{\omega} f : \omega \in X_4\}$. The tool we will use is the following result, which is a minor adaptation of Theorem 3.1 from [\[7](#page-19-7)].

Theorem 1 *Let* H *be a Hilbert space,* $K \subset H$ *a closed subspace, and* $(S_i)_{i=0}^{N-1}$ *be a representation of the Cuntz algebra* \mathcal{O}_N *. Let* $\mathcal E$ *be an orthonormal set in* $\mathcal H$ *and* $f: X \to \mathcal{K}$ *a norm continuous function on a topological space X with the following properties:*

- (i) $\mathcal{E} = \bigcup_{i=0}^{N-1} S_i \mathcal{E}$ where the union is disjoint.
- (ii) $\overline{span} \{ f(t) : t \in X \} = \mathcal{K}$ *and* $|| f(t) || = 1$ *, for all* $t \in X$ *.*
- (iii) *There exist functions* $\mathfrak{m}_i : X \to \mathbb{C}$, $g_i : X \to X$, $i = 0, \ldots, N-1$ such that

$$
S_i^* f(t) = \mathfrak{m}_i(t) f(g_i(t)), \quad t \in X.
$$
 (2)

(iv) *There exist* $c_0 \in X$ *such that* $f(c_0) \in \overline{span}\mathcal{E}$ *.*

(v) *The only function h* $\in C(X)$ *with* $h \geq 0$, $h(c) = 1$, $\forall c \in \{x \in X : f(x) \in C\}$ *spanE*}*, and*

$$
h(t) = \sum_{i=0}^{N-1} |\mathfrak{m}_i(t)|^2 h(g_i(t)), \quad t \in X
$$
 (3)

are the constant functions.

Then $K \subset \overline{span} \mathcal{E}$ *.*

3 The Projection

Recall the definition of the filters $m_i(x, y) = e^{2\pi i jx} H_i(x, y)$ from Sect. [1.](#page-2-0) We choose the filter coefficients a_{ik} so that the matrix *H* is unitary. We place the additional constraint that

$$
a_{00}=a_{01}=a_{02}=a_{03}=\frac{1}{2},
$$

so that $S_0 \mathbb{1} = \mathbb{1}$, where $\mathbb{1}$ the function in $L^2(\mu_4 \times \lambda)$ which is identically 1. As $S_0 \mathbb{1} = \mathbb{1}$, by Lemma [5,](#page-6-0) the set $\{S_\omega \mathbb{1} : \omega \in X_4\}$ is orthonormal. Moreover, we place the additional constraint that for every *j*, $a_{j0}+a_{j2}=a_{j1}+a_{j3}$, which will be required for our calculation of the projection.

Definition 2 We define the subspace $V = \{f \in L^2(\mu_4 \times \lambda) : f(x, y) =$ $g(x)\chi_{[0,1]}(y)$, $g \in L^2(\mu_4)$. Note that the subspace *V* can be identified with $L^2(\mu_4)$ via the isometric isomorphism $g \mapsto g(x)\chi_{[0,1]}(y)$. We will suppress the *y* variable in the future.

Definition 3 We define a function $c : X_4 \rightarrow \mathbb{N}_0$ as follows: for a word $\omega =$ *jK jK*−¹ ... *j*1,

$$
c(\omega) = \sum_{k=1}^{K} j_k 4^{K-k}.
$$

Here $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. It is readily verified that *c* is a bijection.

Lemma 6 *For a word* $\omega = j_K j_{K-1} \dots j_1$,

*^S*ω¹ ⁼ *SjK ^S*ω0¹

$$
S_{\omega}1 = e^{2\pi i c(\omega)x} \left(\prod_{k=1}^{K} 2H_{j_k}(R^{K-k}(x, y)) \right).
$$

Proof We proceed by induction on the length of the word ω . The equality is readily verified for $|\omega| = 1$. Let $\omega_0 = j_{K-1} j_{n-2} \dots j_1$. We have

$$
S_{\omega} \mathbb{1} = S_{j_K} S_{\omega_0} \mathbb{1}
$$

= $S_{j_K} \left[e^{2\pi i c(\omega_0)x} \left(\prod_{k=1}^{K-1} 2H_{j_k}(R^{K-1-k}(x, y)) \right) \right]$

$$
= 2e^{2\pi i j_K x} H_{jk}(x, y)e^{2\pi i c(\omega_0) \cdot 4x} \left(\prod_{k=1}^{K-1} H_{jk}(R^{K-k}(x, y)) \right)
$$

= $2e^{2\pi i (j_K + 4c(\omega_0))x} H_{jk}(R^{K-K}(x, y)) \left(\prod_{k=1}^{K-1} 2H_{jk}(R^{K-k}(x, y)) \right)$
= $2e^{2\pi i c(\omega)x} \left(\prod_{k=1}^{K-1} 2H_{jk}(R^{K-k}(x, y)) \right).$

The last line above is justified by the following calculation:

$$
j_K + 4c(\omega_0) = j_K + 4\left(\sum_{k=1}^{K-1} j_k 4^{K-1-k}\right)
$$

= $j_K 4^{K-K} + \sum_{k=1}^{K-1} j_k 4^{K-k}$
= $\sum_{k=1}^{K} j_k 4^{K-k}$
= $c(\omega)$.

 \Box

We wish to project the vectors S_{ω} 1 onto the subspace *V*. The following lemma calculates that projection, where P_V denotes the projection onto the subspace V .

Lemma 7 If
$$
f(x, y) = g(x)h(x, y)
$$
 with $g \in L^2(\mu_4)$ and $h \in L^{\infty}(\mu_4 \times \lambda)$, then
\n
$$
[Py f](x, y) = g(x)G(x)
$$

 $where G(x) = \int_{[0,1]} h(x, y) d\lambda(y).$

Proof We verify that for every $F(x) \in L^2(\mu_4)$, $f(x, y) - g(x)G(x)$ is orthogonal to $F(x)$. We calculate utilizing Fubini's theorem:

$$
\langle f - gG, F \rangle = \int \int g(x)h(x, y)\overline{F(x)} d(\mu_4 \times \lambda) - \int \int g(x)G(x)\overline{F(x)} d(\mu_4 \times \lambda)
$$

=
$$
\int_{C_4} g(x)\overline{F(x)} \left(\int_{[0,1]} h(x, y) - G(x) d\lambda(y) \right) d\mu_4(x)
$$

=
$$
\int_{C_4} g(x)\overline{F(x)} (G(x) - G(x)) d\mu_4(x)
$$

= 0.

 \Box

For the purposes of the following lemma, αx and βy are understood to be modulo 1.

Lemma 8 *For any word* $\omega = j_K j_{K-1} \dots j_1$,

$$
\int \prod_{k=1}^{K} 2H_{j_k}(R^{k-1}(x, y)) d\lambda(y) = \prod_{k=1}^{K} 2 \int H_{j_k}(4^{k-1}x, y) d\lambda(y).
$$

Proof Let $F_m(x, y) = \prod_{k=m}^{K} 2H_{jk} (4^{k-1}x, 2^{k-m}y)$. Note that

$$
F_m(x, \frac{y}{2}) = 2H_{j_m}\left(4^{m-1}x, \frac{y}{2}\right)\left(\prod_{k=m+1}^K 2H_{j_k}(4^{k-1}x, 2^{k-(m+1)}y)\right)
$$

= $2H_{j_m}\left(4^{m-1}x, \frac{y}{2}\right)F_{m+1}(x, y).$

Likewise for $F_m(x, \frac{y+1}{2})$.

Since λ is the invariant measure for the iterated function system $y \mapsto \frac{y}{2}$, $y \mapsto \frac{y+1}{2}$, we calculate:

$$
\int_{0}^{1} F_{m}(x, y) d\lambda(y) = \frac{1}{2} \left[\int_{0}^{1} F_{m}(x, \frac{y}{2}) d\lambda(y) + \int_{0}^{1} F_{m}(x, \frac{y+1}{2}) d\lambda(y) \right]
$$

\n
$$
= \frac{1}{2} \left[\int_{0}^{1} 2H_{j_{m}}(4^{m-1}x, \frac{y}{2}) F_{m+1}(x, y)
$$

\n
$$
+ 2H_{j_{m}}(4^{m-1}x, \frac{y+1}{2}) F_{m+1}(x, y) d\lambda(y) \right]
$$

\n
$$
= \frac{1}{2} \left[\int_{0}^{1} 2a_{j_{m},q} F_{m+1}(x, y) + 2a_{j_{m},q+2} F_{m+1}(x, y) d\lambda(y) \right]
$$

\n
$$
= \frac{1}{2} \left[2a_{j_{m},q} + 2a_{j_{m},q+2} \right] \cdot \left[\int_{0}^{1} F_{m+1}(x, y) d\lambda(y) \right]
$$

\n
$$
= \left[\int_{0}^{1} 2H_{j_{m}}(4^{m-1}x, y) d\lambda(y) \right] \cdot \left[\int_{0}^{1} F_{m+1}(x, y) d\lambda(y) \right]
$$

where $q = 0$ if $0 \le 4^{m-1}x < \frac{1}{2}$, and $q = 1$ if $\frac{1}{2} \le 4^{m-1}x < 1$. The result now follows by a standard induction argument. \square

Proposition 1 *Suppose the filters m_j(* x *,* y *) are chosen so that*

- (i) *the matrix H is unitary,*
- (ii) $a_{00} = a_{01} = a_{02} = a_{03} = \frac{1}{2}$, and
- (iii) *for* $j = 0, 1, 2, 3, a_{j0} + a_{j2}^2 = a_{j1} + a_{j3}$.

Then for any word $\omega = j_K \dots j_1$,

$$
P_V S_\omega \mathbb{1} = d_\omega e^{2\pi i c(\omega)x},
$$

where

$$
d_{\omega} = \prod_{k=1}^{K} (a_{jk} 0 + a_{jk} 2).
$$
 (4)

Proof We apply the previous three Lemmas to obtain

$$
[P_V S_{\omega} \mathbb{1}](x, y) = e^{2\pi i c(\omega)x} \int \prod_{k=1}^{K} 2H_{j_k}(R^{k-1}(x, y))d\lambda(y)
$$

$$
= e^{2\pi i c(\omega)x} \prod_{k=1}^{K} 2 \int H_{j_k}(4^{k-1}x, y)d\lambda(y)
$$

By assumption (iii), the integral $\int H_{ik} (4^{k-1}x, y) d\lambda(y)$ is independent of *x*, and the value of the integral is $\frac{a_{j0}}{2} + \frac{a_{j2}}{2}$. Eq. [\(4\)](#page-10-1) now follows.

4 Concrete Constructions

We now turn to concrete constructions of Fourier frames for μ_4 . The hypotheses of Lemma [5](#page-6-0) and Proposition [1](#page-9-0) require *H* to be unitary and requires the matrix

$$
A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{pmatrix}
$$

to have the first row be identically $\frac{1}{2}$ and to have the vector $(1 -1 1 -1)^T$ in the kernel.

We can use Hadamard matrices to construct examples of such a matrix *A*. Every 4×4 Hadamard matrix is a permutation of the following matrix:

$$
U_{\rho} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & \rho & -\rho \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -\rho & \rho \end{pmatrix}
$$

where ρ is any complex number of modulus 1.

If we set $H = U_\rho$, we obtain

$$
A = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & \rho & \rho \\ 1 & 1 & -1 & -1 \\ 1 & 1 & -\rho & -\rho \end{pmatrix}
$$
 (5)

which has the requisite properties to apply Lemma [5](#page-6-0) and Proposition [1.](#page-9-0)

We define for $k = 1, 2, 3, l_k : \mathbb{N}_0 \to \mathbb{N}_0$ by $l_k(n)$ is the number of digits equal to k in the base 4 expansion of *n*. Note that $l_k(0) = 0$, and we follow the convention that $0^0 = 1.$

Theorem 2 *For the choice A as in Eq.*[\(5\)](#page-10-2) *with* $\rho \neq -1$ *, the sequence*

$$
\left\{ \left(\frac{1+\rho}{2} \right)^{l_1(n)} 0^{l_2(n)} \left(\frac{1-\rho}{2} \right)^{l_3(n)} e^{2\pi i n x} : n \in \mathbb{N}_0 \right\}
$$
(6)

is a Parseval frame in $L^2(\mu_4)$ *.*

Proof By Lemma [5,](#page-6-0) we have that ${S_\omega 1 : \omega \in X_4}$ is an orthonormal set. For a word $\omega = j_K j_{K-1} \dots j_1$ $\omega = j_K j_{K-1} \dots j_1$ $\omega = j_K j_{K-1} \dots j_1$, Proposition 1 yields that

$$
P_V S_{\omega} \mathbb{1} = e^{2\pi i c(\omega)x} \prod_{k=1}^K (a_{j_k 0} + a_{j_k 2}).
$$

Then, setting $n = c(\omega)$, we obtain

$$
P_V S_{\omega} \mathbb{1} = e^{2\pi i n x} (a_{00} + a_{02})^{K - l_1(n) - l_2(n) - l_3(n)} \prod_{j=1}^3 (a_{j0} + a_{j2})^{l_j(n)}.
$$

Since

$$
a_{00} + a_{02} = 1
$$
, $a_{10} + a_{12} = \frac{1+\rho}{2}$, $a_{20} + a_{22} = 0$, $a_{30} + a_{32} = \frac{1-\rho}{2}$,

it follows that

$$
P_V S_{\omega} \mathbb{1} = \left(\frac{1+\rho}{2}\right)^{l_1(n)} 0^{l_2(n)} \left(\frac{1-\rho}{2}\right)^{l_3(n)} e^{2\pi i n x}.
$$

Since *c* is a bijection, the set $\{P_V S_\omega \mathbb{1} : \omega \in X_4\}$ coincides with the set in [\(6\)](#page-11-0).

In order to establish that the set (6) is a Parseval frame, we wish to apply Lemma [1,](#page-2-1) which requires that the subspace *V* is contained in the closed span of $\{S_{\omega} 1 : \omega \in X_4\}$. Denote the closed span by *K*. We will proceed in a manner nearly identical to the proof of Theorem [1](#page-6-1) and its inspiration [\[7](#page-19-7), Theorem 3.1]. Define the function $f : \mathbb{R} \to V$ by $f(t) = e_t$ where $e_t(x, y) = e^{2\pi i x t}$. Note that $f(0) = 1 \in \mathcal{K}$. Likewise, define a function $h_X : \mathbb{R} \to \mathbb{R}$ by

$$
h_X(t) = \sum_{\omega \in X_4} |\langle f(t), S_{\omega} \mathbb{1} \rangle|^2 = ||P_{\mathcal{K}} f(t)||^2.
$$

Claim 1 We have $h_X \equiv 1$.

Assuming for the moment that the claim holds, we deduce that $f(t) \in K$ for every $t \in \mathbb{R}$. Since $\{f(\gamma) : \gamma \in \Gamma_4\}$ is an orthonormal basis for *V*, it follows that the closed

 \Box

span of $\{f(t): t \in \mathbb{R}\}$ is all of *V*. We conclude that $V \subset K$, and so Lemma [1](#page-2-1) implies that $\{P_V S_\omega \mathbb{1} : \omega \in X_4\}$ is a Parseval frame for *V*, from which the Theorem follows.

Thus, we turn to the proof of Claim [1.](#page-11-1) First, we require $\{S_{\omega} 1 : \omega \in X_4\}$ $\bigcup_{j=0}^{3} \{S_j S_{\omega} \mathbb{1} : \omega \in X_4\}$, where the union is disjoint. Clearly, the RHS is a subset of the LHS, and the union is disjoint. Consider an element of the LHS: $S_{\omega} \mathbb{1}$. If $|\omega| \geq 2$, we write $S_{\omega}1 = S_j S_{\omega_0}1$ for some *j* and some $\omega_0 \in X_4$, whence $S_{\omega}1$ is in the RHS. If $|\omega| = 1$, then we write $S_{\omega}1 = S_j1 = S_jS_01$, which is again an element of the RHS. Equality now follows.

As a consequence,

$$
h_X(t) = \sum_{\omega \in X_4} |\langle f(t), S_{\omega} \mathbb{1} \rangle|^2
$$

=
$$
\sum_{j=0}^{3} \sum_{\omega \in X_4} |\langle f(t), S_j S_{\omega} \mathbb{1} \rangle|^2
$$

=
$$
\sum_{j=0}^{3} \sum_{\omega \in X_4} |\langle S_j^* f(t), S_{\omega} \mathbb{1} \rangle|^2.
$$

We calculate:

$$
[S_{j}^{*} f(t)](x, y) = \frac{1}{2} \sum_{k=0}^{3} \overline{m_{j}(\Upsilon_{k}(x, y))} e_{t}(\Upsilon_{k}(x, y))
$$

\n
$$
= \frac{1}{2} \left[\overline{a_{j0}} e^{-2\pi i j x/4} e_{t} \left(\frac{x}{4}, \frac{y}{2} \right) + e^{-\pi i j} \overline{a_{j1}} e^{-2\pi i j x/4} e_{t} \left(\frac{x+2}{4}, \frac{y}{2} \right) \right.
$$

\n
$$
+ \overline{a_{j2}} e^{-2\pi i j x/4} e_{t} \left(\frac{x}{4}, \frac{y+1}{2} \right)
$$

\n
$$
+ e^{-\pi i j} \overline{a_{j3}} e^{-2\pi i j x/4} e_{t} \left(\frac{x+2}{4}, \frac{y+1}{2} \right) \right]
$$

\n
$$
= \frac{1}{2} \left[\overline{a_{j0}} e^{-2\pi i j x/4} e_{t} \left(\frac{x}{4}, \frac{y}{2} \right) + e^{-\pi i j} \overline{a_{j1}} e^{-2\pi i j x/4} e^{\pi i t} e_{t} \left(\frac{x}{4}, \frac{y}{2} \right) \right.
$$

\n
$$
+ \overline{a_{j2}} e^{-2\pi i j x/4} e_{t} \left(\frac{x}{4}, \frac{y}{2} \right) + e^{-\pi i j} \overline{a_{j3}} e^{-2\pi i j x/4} e^{\pi i t} e_{t} \left(\frac{x}{4}, \frac{y}{2} \right) \right]
$$

\n
$$
= \frac{1}{2} \left[\overline{a_{j0}} + e^{-\pi i j} \overline{a_{j1}} e^{\pi i t} + \overline{a_{j2}} + e^{-\pi i j} \overline{a_{j3}} e^{\pi i t} \right] e^{-2\pi i j x/4} e_{t} \left(\frac{x}{4}, \frac{y}{2} \right)
$$

\n
$$
= \frac{1}{2} \left[\overline{a_{j0}} + e^{-\pi i j} \overline{a_{j1}} e^{\pi i t} + \overline{a_{j2}} + e^{-\pi i j} \overline
$$

Thus, we define

$$
\mathfrak{m}_j(t) = \frac{1}{2} \left(\overline{a_{j0}} + \overline{a_{j2}} \right) + \frac{e^{-\pi i j}}{2} \left(\overline{a_{j1}} + \overline{a_{j3}} \right) e^{\pi i t},
$$

and

$$
g_j(t) = \frac{t-j}{4}.
$$

As a consequence, we obtain

$$
h_X(t) = \sum_{j=0}^{3} \sum_{\omega \in X_4} |\langle S_j^* f(t), S_{\omega} \mathbb{1} \rangle|^2
$$

=
$$
\sum_{j=0}^{3} \sum_{\omega \in X_4} |\langle \mathfrak{m}_j(t) f(g_j(t)), S_{\omega} \mathbb{1} \rangle|^2
$$

=
$$
\sum_{j=0}^{3} |\mathfrak{m}_j(t)|^2 h_X(g_j(t)).
$$
 (7)

Because of our choice of coefficients in the matrix *A*, which has the vector $(1 -1 1 -1)^T$ in the kernel, we have for every *j*: $a_{j0} + a_{j2} = a_{j1} + a_{j3}$. Thus, if we let $b_j = \overline{a_{j0}} + \overline{a_{j2}}$, the functions m_j simplify to

$$
\mathfrak{m}_j(t) = \frac{b_j}{2} e^{\pi i \frac{t}{2}} \cos\left(\pi \frac{t}{2}\right)
$$

for $j = 0, 2$, and

$$
\mathfrak{m}_j(t) = -\frac{ib_j}{2} e^{\pi i \frac{t}{2}} \sin\left(\pi \frac{t}{2}\right)
$$

for $j = 1, 3$. Substituting these into Eq. [\(7\)](#page-13-0),

$$
h_X(t) = \cos^2\left(\frac{\pi t}{2}\right) h_X\left(\frac{t}{4}\right) + \sin^2\left(\frac{\pi t}{2}\right) \frac{|1+\overline{\rho}|^2}{4} h_X\left(\frac{t-1}{4}\right) \tag{8}
$$

$$
+ \sin^2\left(\frac{\pi t}{2}\right) \frac{|1-\overline{\rho}|^2}{4} h_X\left(\frac{t-3}{4}\right).
$$

Claim 2 The function h_X can be extended to an entire function.

Assume for the moment that Claim [2](#page-13-1) holds, we finish the proof of Claim [1.](#page-11-1) If $h_X(t) = 1$ $h_X(t) = 1$ for $t \in [-1, 0]$, then $h_X(z) = 1$ for all $z \in \mathbb{C}$, and Claim 1 holds.

Now, assume to the contrary that $h_X(t)$ is not identically 1 on [−1, 0]. Since $0 \le$ $h_X(t) \leq 1$ for *t* real, then $\beta = \min\{h_X(t) : t \in [-1, 0]\}$ < 1. Because constant functions satisfy [\(8\)](#page-13-2), $h_1 := h_X - \beta$ also satisfies Eq. (8). There exists t_0 such that $h_1(t_0) = 0$ and $t_0 \neq 0$ as $h_X(0) = 1$. Since $h_1 \geq 0$ each of the terms in [\(8\)](#page-13-2) must vanish :

$$
\cos^2\left(\frac{\pi t_0}{2}\right)h_1\left(\frac{t_0}{4}\right) = 0\tag{9}
$$

$$
\sin^2\left(\frac{\pi t_0}{2}\right)\frac{|1+\overline{\rho}|^2}{4}h_1\left(\frac{t_0-1}{4}\right) = 0\tag{10}
$$

$$
\sin^2\left(\frac{\pi t_0}{2}\right)\frac{|1-\overline{\rho}|^2}{4}h_1\left(\frac{t_0-3}{4}\right) = 0\tag{11}
$$

Our hypothesis is that $\rho \neq -1$, so in Eq. [\(10\)](#page-14-1), the coefficient $\frac{|1+\overline{\rho}|^2}{4} \neq 0$.

Case 1 If $t_0 \neq -1$ then Eq. [\(9\)](#page-13-3) implies $h_1(t_0/4) = 0 = h_1(g_0(t_0))$. Let $t_1 :=$ $g_0(t_0) \in (-1, 0)$; iterating the previous argument implies that $h_1(g_0(t_1)) = 0$. Thus, we obtain an infinite sequence of zeroes of *h*1.

Case 2 If $t_0 = -1$, then the previous argument does not hold. However, we can construct another zero of h_1 , $t'_0 \in (-1, 0)$ to which the previous argument will hold. Indeed, if $t_0 = -1$, Eq. [\(10\)](#page-14-1) implies $h_1((t_0 - 1)/4) = h_1(-1/2) = 0$. Let $t'_0 = -1/2$ and continue as in Case 1.

In either case, h_1 vanishes on a (countable) set with an accumulation point, and since h_1 h_1 is analytic it follows that $h_1 \equiv 0$, a contradiction, and Claim 1 holds.

Now, to prove Claim [2,](#page-13-1) we follow the proof of Lemma 4.2 of [\[10\]](#page-19-0). For a fixed $\omega \in X_4$, define $f_{\omega} : \mathbb{C} \to \mathbb{C}$ by

$$
f_{\omega}(z) = \langle e_z, S_{\omega} \mathbb{1} \rangle = \int e^{2\pi i z x} \overline{[S_{\omega} \mathbb{1}](x, y)} d(\mu_4 \times \lambda).
$$

Since the distribution $[S_{\omega}1](x, y) d(\mu_4 \times \lambda)$ is compactly supported, a standard convergence argument demonstrates that f_{ω} is entire. Likewise, $f_{\omega}^*(z) = f_{\omega}(\overline{z})$ is entire, and for *t* real,

$$
f_{\omega}(t) f_{\omega}^*(t) = (\langle e_t, S_{\omega} \mathbb{1} \rangle) \left(\overline{\langle e_t, S_{\omega} \mathbb{1} \rangle} \right) = |\langle e_t, S_{\omega} \mathbb{1} \rangle|^2.
$$

Thus,

$$
h_X(t) = \sum_{\omega \in X_4} f_{\omega}(t) f_{\omega}^*(t).
$$

For $n \in \mathbb{N}$, let $h_n(z) = \sum_{|\omega| \le n} f_\omega(z) f_\omega^*(z)$, which is entire. By Hölder's inequality,

$$
\sum_{\omega \in X_4} |f_{\omega}(z) f_{\omega}^*(z)| \le \left(\sum_{\omega \in X_4} |\langle e_z, S_{\omega} \mathbb{1} \rangle|^2\right)^{1/2} \left(\sum_{\omega \in X_4} |\langle e_{\overline{z}}, S_{\omega} \mathbb{1} \rangle|^2\right)^{1/2}
$$

$$
\le ||e_z|| ||e_{\overline{z}}|| \le e^{KIm(z)}
$$

for some constant *K*. Thus, the sequence $h_n(z)$ converges pointwise to a function $h(z)$, and are uniformly bounded on strips $Im(z) \leq C$. By the theorems of Montel and Vitali, the limit function *h* is entire, which coincides with h_X for real *t*, and Claim [2](#page-13-1) is proved.

Example 1 As mentioned in Sect. [2,](#page-5-0) in general, $\{S_{\omega}1\}$ need not be complete, and the exceptional point $\rho = -1$ in Theorem [2](#page-10-3) provides the example. In the case $\rho = -1$, the set (6) becomes

$$
\{d_ne^{2\pi inx}:n\in\mathbb{N}_0\}
$$

where the coefficients $d_n = 1$ if $n \in \Gamma_3$ and 0 otherwise. Here,

$$
\Gamma_3 = \left\{ \sum_{n=0}^{N} l_n 4^n : l_n \in \{0, 3\} \right\}
$$

and it is known [\[4\]](#page-18-1) that the sequence ${e^{2\pi i nx} : n \in \Gamma_3}$ is incomplete in $L^2(\mu_4)$. Thus, ${P_V S_{\omega} 1}$ is incomplete in *V*, so ${S_{\omega} 1}$ is incomplete in $L^2(\mu_4 \times \lambda)$.

We can generalize the construction of Theorem [2](#page-10-3) as follows. We want to choose a matrix

$$
A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ h_{10} & h_{11} & h_{12} & h_{13} \\ h_{20} & h_{21} & h_{22} & h_{23} \\ h_{30} & h_{31} & h_{32} & h_{33} \end{pmatrix}
$$

such that $(1 -1 1 -1)^T$ is in the kernel of *H* and the matrix

$$
H = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ h_{10} & -h_{11} & h_{12} & -h_{13} \\ h_{20} & h_{21} & h_{22} & h_{23} \\ h_{30} & -h_{31} & h_{32} & -h_{33} \end{pmatrix}
$$

is unitary. We obtain a system of nonlinear equations in the 12 unknowns. To parametrize all solutions, we consider the following row vectors:

$$
\vec{v}_0 = \frac{1}{2} (1 \ 1 \ 1 \ 1) \qquad \qquad \vec{w}_0 = \frac{1}{2} (1 \ -1 \ 1 \ -1) \qquad (12)
$$

$$
\vec{v}_1 = \frac{1}{2} \left(1 - 1 - 1 \, 1 \right) \qquad \qquad \vec{w}_1 = \frac{1}{2} \left(1 \, 1 - 1 - 1 \right) \tag{13}
$$

$$
\vec{v}_2 = \frac{1}{2} \left(1 \ 1 \ -1 \ -1 \right) \qquad \qquad \vec{w}_2 = \frac{1}{2} \left(1 \ -1 \ -1 \ 1 \right) \tag{14}
$$

If we construct the matrix *A* so that the rows are linear combinations of $\{\vec{v}_0, \vec{v}_1, \vec{v}_2\}$, then *A* will satisfy the desired condition on the kernel. Note that if the *j*th row of *A* is $\alpha_{j0}\vec{v}_0 + \alpha_{j1}\vec{v}_1 + \alpha_{j2}\vec{v}_2$ for $j = 1, 3$, then the *j*th row of *H* is $\alpha_{j0}\vec{w}_0 + \alpha_{j1}\vec{w}_1 + \alpha_{j2}\vec{w}_2$, whereas if $j = 0, 2$, then the *j*th row of *H* is equal to the *j*th row of *A*.

Thus, we want to choose coefficients α_{jk} , $j = 0, 1, 2, 3, k = 1, 2, 3$ so that the matrix

$$
H = \begin{pmatrix} \alpha_{00}\vec{v}_{0} + \alpha_{01}\vec{v}_{1} + \alpha_{02}\vec{v}_{2} \\ \alpha_{10}\vec{w}_{0} + \alpha_{11}\vec{w}_{1} + \alpha_{12}\vec{w}_{2} \\ \alpha_{20}\vec{v}_{0} + \alpha_{21}\vec{v}_{1} + \alpha_{22}\vec{v}_{2} \\ \alpha_{30}\vec{w}_{0} + \alpha_{31}\vec{w}_{1} + \alpha_{32}\vec{w}_{2} \end{pmatrix}
$$
(15)

is unitary. To satisfy the requirement on the first row, we choose $\alpha_{00} = 1$ and $\alpha_{01} =$ $\alpha_{02} = 0$. Calculating the inner products of the rows of *H*, we obtain the following necessary and sufficient conditions:

$$
|\alpha_{j0}|^2 + |\alpha_{j1}|^2 + |\alpha_{j2}|^2 = 1
$$
 (16)

$$
\alpha_{00}\overline{\alpha_{20}} = 0\tag{17}
$$

$$
\alpha_{11}\overline{\alpha_{22}} + \alpha_{12}\overline{\alpha_{21}} = 0 \tag{18}
$$

$$
\alpha_{10}\overline{\alpha_{30}} + \alpha_{11}\overline{\alpha_{31}} + \alpha_{12}\overline{\alpha_{32}} = 0 \tag{19}
$$

$$
\alpha_{21}\overline{\alpha_{32}} + \alpha_{22}\overline{\alpha_{31}} = 0 \tag{20}
$$

Proposition 2 *Fix* $\alpha_{00} = 1$ *. There exists a solution to the Eqs.* [\(16](#page-16-0)[–20\)](#page-16-1) *if and only if* $\alpha_{10}, \alpha_{30} \in \mathbb{C}$ with

$$
|\alpha_{10}|^2 + |\alpha_{30}|^2 = 1. \tag{21}
$$

Proof (\Leftarrow) If $|\alpha_{10}|^2 = 1$, then we choose $\alpha_{21} = \alpha_{31} = 1$ and all other coefficients to be 0 to obtain a solution to Eqs. [\(16–](#page-16-0)[20\)](#page-16-1). Likewise, if $|\alpha_{10}|^2 = 0$, then choose $\alpha_{11} = \alpha_{21} = 1$ and all other coefficients to be 0.

Now suppose that $0 < |\alpha_{10}| < 1$, and we choose $\lambda = \frac{-\overline{\alpha_{10}}\alpha_{30}}{1 - |\alpha_{10}|^2}$. Then choose α_{11} and α_{12} such that $|\alpha_{11}|^2 + |\alpha_{12}|^2 = 1 - |\alpha_{10}|^2$. Now let $\alpha_{31} = \lambda \alpha_{11}$ and $\alpha_{32} = \lambda \alpha_{12}$. We have

$$
\alpha_{10}\overline{\alpha_{30}} + \alpha_{11}\overline{\alpha_{31}} + \alpha_{12}\overline{\alpha_{32}} = \alpha_{10}\overline{\alpha_{30}} + \overline{\lambda}|\alpha_{11}|^2 + \overline{\lambda}|\alpha_{12}|^2
$$

= $\alpha_{10}\overline{\alpha_{30}} + \overline{\lambda}(1 - |\alpha_{10}|^2)$
= 0, (22)

so Eq. (19) is satisfied.

Equation [\(17\)](#page-16-3) forces $\alpha_{20} = 0$; choose α_{21} and α_{22} such that $|\alpha_{21}|^2 + |\alpha_{22}|^2 = 1$ and $\alpha_{11}\overline{\alpha_{21}} + \alpha_{12}\overline{\alpha_{22}} = 0$. Thus, Eqs. [\(18\)](#page-16-4) and [\(20\)](#page-16-1) are satisfied. Finally, regarding Eq. [\(16\)](#page-16-0), it is satisfied for $j = 0, 1, 2$ by construction. For $j = 3$, we calculate:

$$
|\alpha_{30}|^2 + |\alpha_{31}|^2 + |\alpha_{32}|^2 = |\alpha_{30}|^2 + |\lambda|^2 (|\alpha_{11}|^2 + |\alpha_{12}|^2)
$$

= $|\alpha_{30}|^2 + \frac{|\alpha_{10}|^2 |\alpha_{30}|^2}{(1 - |\alpha_{10}|^2)^2} (1 - |\alpha_{10}|^2)$
= $|\alpha_{30}|^2 (1 + \frac{|\alpha_{10}|^2}{1 - |\alpha_{10}|^2})$
= $\frac{|\alpha_{30}|^2}{1 - |\alpha_{10}|^2}$ (23)

as required.

(⇒) Suppose that we have a solution to Eqs. [\(16–](#page-16-0)[20\)](#page-16-1). If $|\alpha_{10}| = 1$, then we must have $\alpha_{11} = \alpha_{12} = 0$, and thus Eq. [\(19\)](#page-16-2) requires $\alpha_{30} = 0$, so Eq. [\(21\)](#page-16-5) holds.

Now suppose $|\alpha_{10}| < 1$. Since $\alpha_{20} = 0$, we must have that $|\alpha_{21}|^2 + |\alpha_{22}|^2 = 1$. Combining this with Eqs. (18) and (20) imply that the matrix

$$
\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{31} & \alpha_{32} \end{pmatrix}
$$

is singular. Thus, there exists a λ such that $\alpha_{31} = \lambda \alpha_{11}$ and $\alpha_{32} = \lambda \alpha_{12}$. Using the same computation as in Eq. [\(22\)](#page-16-6), we conclude that $\lambda = \frac{-\overline{\alpha_{10}}\alpha_{30}}{1 - |\alpha_{10}|^2}$; then Eq. [\(23\)](#page-16-7) implies (21) .

The coefficient matrix we obtain from this construction is

$$
H = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ \alpha_{10} + \alpha_{11} + \alpha_{12} & \alpha_{10} - \alpha_{11} + \alpha_{12} & \alpha_{10} - \alpha_{11} - \alpha_{12} & \alpha_{10} + \alpha_{11} - \alpha_{12} \\ \alpha_{21} + \alpha_{22} & -\alpha_{21} + \alpha_{22} & -\alpha_{21} - \alpha_{22} & \alpha_{21} - \alpha_{22} \\ \alpha_{30} + \lambda \alpha_{11} + \lambda \alpha_{12} & \alpha_{30} - \lambda \alpha_{11} + \lambda \alpha_{12} & \alpha_{30} - \lambda \alpha_{11} - \lambda \alpha_{12} & \alpha_{30} + \lambda \alpha_{11} - \lambda \alpha_{12} \end{pmatrix}
$$

where we are allowed to choose α_{11} , α_{12} , α_{21} and α_{22} subject to the normalization condition in Eq. [\(16\)](#page-16-0). However, those choices do not affect the construction, since if we apply Proposition [1](#page-9-0) and the calculation from Theorem [2,](#page-10-3) we obtain

$$
P_V S_{\omega} \mathbb{1} = (\alpha_{10})^{\ell_1(n)} \cdot (0)^{\ell_2(n)} \cdot (\alpha_{30})^{\ell_3(n)} e^{2\pi i n x}.
$$
 (24)

This will in fact be a Parseval frame for $L^2(\mu_4)$, provided $V \subset \mathcal{K}$, as in the proof of Theorem [2.](#page-10-3)

Theorem 3 *Suppose p*, $q \in \mathbb{C}$ *with* $|p|^2 + |q|^2 = 1$ *. Then* ${p^{\ell_1(n)} \cdot 0^{\ell_2(n)} \cdot q^{\ell_3(n)} e^{2\pi inx} : n \in \mathbb{N}_0}$

is a Parseval frame for $L^2(\mu_4)$ *, provided p* $\neq 0$ *.*

Proof Substitute $\alpha_{10} = p$ and $\alpha_{30} = q$ in Proposition [2](#page-16-8) and Eq. [\(24\)](#page-17-0). As noted, we only need to verify $V \subset \mathcal{K}$. We proceed as in the proof of Theorem [2;](#page-10-3) indeed, define *f*, *h_X*, m_i and g_i as previously. We obtain $b_0 = 1$, $b_1 = \overline{p}$, $b_2 = 0$, and $b_3 = \overline{q}$, so Eq. [\(8\)](#page-13-2) becomes

$$
h_X(t) = \cos^2\left(\frac{\pi t}{2}\right) h_X\left(\frac{t}{4}\right) + |\overline{p}|^2 \sin^2\left(\frac{\pi t}{2}\right) h_X\left(\frac{t-1}{4}\right)
$$

$$
+ |\overline{q}|^2 \sin^2\left(\frac{\pi t}{2}\right) h_X\left(\frac{t-3}{4}\right).
$$

From here, the same argument shows that $h_X \equiv 1$, and $V \subset K$.

5 Concluding Remarks

We remark here that the constructions given above for μ_4 does not work for μ_3 . Indeed, we have the following no-go result. To obtain the measure $\mu_3 \times \lambda$, we consider the

iterated function system:

$$
\Upsilon_0(x, y) = \left(\frac{x}{3}, \frac{y}{2}\right), \ \Upsilon_1(x, y) = \left(\frac{x+2}{3}, \frac{y}{2}\right),
$$

$$
\Upsilon_2(x, y) = \left(\frac{x}{3}, \frac{y+1}{2}\right), \Upsilon_3(x, y) = \left(\frac{x+2}{3}, \frac{y+1}{2}\right).
$$

Using the same choice of filters, the matrix $\mathcal{M}(x, y)$ reduces to

$$
H = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & e^{4\pi i/3} & a_{11} & a_{12} & e^{4\pi i/3} & a_{13} \\ a_{20} & e^{2\pi i/3} & a_{21} & a_{22} & e^{2\pi i/3} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} & e^{4\pi i/3} & a_{33} \end{pmatrix}
$$

which we require to be unitary. Additionally, we require the same conditions as for μ_4 , namely, the first row of *H* must have all entries $\frac{1}{2}$, and $a_{j0} + a_{j2} = a_{j1} + a_{j3}$. The inner product of the first two rows must be 0. Hence,

$$
\frac{1}{2}\left(a_{10} + e^{4\pi i/3}a_{11} + a_{12} + e^{4\pi i/3}a_{13}\right) = \frac{1}{2}\left(a_{10} + a_{12}\right)\left(1 + e^{4\pi i/3}\right) = 0.
$$

Consequently, $a_{10} + a_{12} = 0$. Likewise, $a_{20} + a_{22} = a_{30} + a_{32} = 0$. As a result,

$$
H\begin{pmatrix}1\\0\\1\\0\end{pmatrix} = \begin{pmatrix}a_{00} + a_{02}\\a_{10} + a_{12}\\a_{20} + a_{22}\\a_{30} + a_{32}\end{pmatrix} = \begin{pmatrix}1\\0\\0\\0\end{pmatrix}
$$

and so *H* cannot be unitary.

It may be possible to extend the construction for μ_4 to μ_3 by considering a representation of \mathcal{O}_n for some sufficiently large *n*, or by considering $\mu_3 \times \rho$ for some other fractal measure ρ rather than λ .

Acknowledgements We thank Dorin Dutkay for assisting with the proof of Claim [1](#page-11-1) in Theorem [2.](#page-10-3)

References

- 1. Aldroubi, A.: Portraits of frames. Proc. Am. Math. Soc. **123**(6), 1661–1668 (1995)
- 2. Dai, X.-R., He, X.-G., Lai, C.-K.: Spectral property of Cantor measures with consecutive digits. Adv. Math. **242**, 187–208 (2013)
- 3. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. **72**, 341–366 (1952)
- 4. Dutkay, D.E., Han, D., Sun, Q.: On the spectra of a Cantor measure. Adv. Math. **221**(1), 251–276 (2009)
- 5. Dutkay, D.E., Han, D., Weber, E.: Bessel sequences of exponentials on fractal measures. J. Funct. Anal. **261**(9), 2529–2539 (2011)
- 6. Dutkay, D.E., Han, D., Weber, E.: Continuous and discrete Fourier frames for fractal measures. Trans. Am. Math. Soc. **366**(3), 1213–1235 (2014)
- 7. Dutkay, D.E., Picioroaga, G., Song, M.-S.: Orthonormal bases generated by Cuntz algebras. J. Math. Anal. Appl. **409**(2), 1128–1139 (2014)
- 8. Han, D., Larson, D.R.: Frames, bases and group representations, Mem. Am. Math. Soc. **147** (2000), no. 697, x+94. MR 1686653 (2001a:47013)
- 9. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. **30**(5), 713–747 (1981)
- 10. Jorgensen, P.E.T., Pedersen, S.: Dense analytic subspaces in fractal *L*2-spaces. J. Anal. Math. **75**, 185–228 (1998)
- 11. Łaba, I., Wang, Y.: On spectral Cantor measures. J. Funct. Anal. **193**(2), 409–420 (2002)
- 12. Li, J.-L.: $μ_M, p$ -Orthogonality and compatible pair. J. Funct. Anal. **244**(2), 628–638 (2007)
- 13. Ortega-Cerdà, J., Seip, K.: Fourier frames, Ann. Math. **155**(3), 789–806 (2002)
- 14. Strichartz, R.S.: Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. **81**, 209–238 (2000)