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Abstract We present conditions on the coefficients of a class of vector fields on the
torus which yield a characterization of global solvability as well as global hypoellip-
ticity, in other words, the existence and regularity of periodic solutions. Diophantine
conditions and connectedness of certain sublevel sets appear in a natural way in our
results.
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1 Introduction and Statement of the Results

For a positive integer m, let T
m � R

m/2πZ
m be the m-dimensional torus. We will

work on T
N+1, where the coordinates are denoted by (x, t) ∈ T

N × T
1, with x =

(x1, . . . , xN ) ∈ T
N .
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We are interested in the existence of solutions in C∞(TN+1) to first-order partial
differential equations given by Lu = f, where f ∈ C∞(TN+1) and L is a vector field
on T

N+1 of the type

L = ∂

∂t
+

N∑

j=1

(
a j + ib j

)
(t)

∂

∂x j
, (1.1)

where the coefficients a j and b j are real-valued smooth functions defined on T
1, for

j = 1, . . . , N .
We recall that the existence of local solutions to Lu = f is well-understood and is

in fact characterized by the well-knownNirenberg-Treves condition (P) (see [12,14]).
The problem is still interesting if we consider the existence of solutions on the

whole torus, a property which will be refered to as global solvability.
We say that L is globally solvable if the range of the operator

L : C∞(TN+1) → C∞(TN+1) is closed. Standard arguments of Functional Analy-
sis imply that LC∞(TN+1) = (ker t L)◦, where t L denotes the transpose operator
and (ker t L)◦ is the set of functions φ ∈ C∞(TN+1) such that μ(φ) = 0, for
all μ ∈ ker t L ⊂ D′(TN+1). It follows that L is globally solvable if and only if
LC∞(TN+1) = (ker t L)◦. We will use this characterization throughout this article.

It is well known that condition (P) is not necessary for global solvability (see [11],
and also [5]). On the other hand, it follows from [10] that the equation Lu = f has
a solution u ∈ C∞(TN+1) for every f ∈ C∞(TN+1) satisfying a finite number of
compatibility conditions, provided L satisfies both condition (P) and the following
geometric condition (in which � is the principal symbol of L and q is a complex-valued
function):

(GC) every characteristic point of L lies on a compact interval of a bicharacteristic
of 	(q�), on which q 
= 0, with no characteristic endpoint.

However, as shown in [5], our class of operators (in general) does not satisfy con-
ditions (P) and (GC) simultaneously. Hence, the global solvability of our class of
operators cannot be obtained by directly applying results from [10].

When our operator L does not satisfy condition (P), a necessary condition for
solvability is given by the connectedness of certain sublevel sets [see Theorem 1.1-
(II)]. This relation between solvability and connectedness of sublevel sets is due to
Treves and it has appeared for instance in [13].

The approach and motivations for this paper are related to those in references such
as [1–5,8,11,13].

Our results extend those in [5], where global solvability and global hypoellipticity
were characterized in the case where N = 2 and L had the special form

∂

∂t
+ ib1(t)

∂

∂x1
+ ib2(t)

∂

∂x2
.

We introduce the following useful notations:

a j0 = 1

2π

∫ 2π

0
a j (t)dt, for j = 1, . . . , N ,
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and

b j0 = 1

2π

∫ 2π

0
b j (t)dt, for j = 1, . . . , N .

Comparing with [5], the presence of the coefficient a j makes the problem more
difficult. For instance, it will be important to use some smooth cutoff functions in
order to apply the Laplace method for integrals. Also, we must take into account the
influence of the numbers a j0 on the Diophantine conditions. As we know, for instance,
from [1,2,5,8], global solvability and global hypoellipticity are related to Diophantine
conditions, which, in some cases, are linked with the notion of non-Liouville vector
(or number). We say that (γ1, γ2) ∈ R

2 \ Q
2 is a Liouville vector if there exist C > 0

and a sequence (pn, qn, jn) ∈ Z
2 × N so that jn ≥ 2, and

∣∣∣∣γ1 − pn
jn

∣∣∣∣ +
∣∣∣∣γ2 − qn

jn

∣∣∣∣ <
C

( jn)n
, for all n ∈ N.

Motivated by [5], for a pair of vectors (α, β) ∈ R
N × R

N we define the following
Diophantine conditions:

(DC1) there exist constants C > 0 and γ > 0 such that

|τ + 〈ξ, α + iβ〉| ≥ C(|ξ | + |τ |)−γ ,

for all (ξ, τ ) = (ξ1, . . . , ξN , τ ) ∈ Z
N+1 \ {0}.

(DC2) there exist constants C > 0 and γ > 0 such that

|τ + 〈ξ, α + iβ〉| ≥ C(|ξ | + |τ |)−γ ,

for all (ξ, τ ) ∈ Z
N+1 such that τ + 〈ξ, α + iβ〉 
= 0.

For instance, if λ is a Liouville number then the pair (λ, 0), (λ, 1) ∈ R
2 does not

satisfy (DC2).
Note that (DC1) implies (DC2), and for a pair (α, β) such that τ +〈ξ, α+ iβ〉 
= 0

for all (ξ, τ ) ∈ Z
N+1 \ {0}, (DC1) and (DC2) are equivalent.

The Diophantine condition (DC1) (respectively, (DC2)) is related to the notion of
nonresonant (respectively, resonant) condition that appears in [7].

When b1 
≡ 0 and b1 does not change sign, we will see (Example 3.5) that the
operator

∂

∂t
+ (a1(t) + iλb1(t))

∂

∂x1
+ ib1(t)

∂

∂x2
, λ ∈ R, (1.2)

is globally solvable if and only if (a10, 0, λb10, b10) ∈ R
2×R

2 satisfies (DC2), which
holds if and only if (a10, λ) is not a Liouville vector. Comparing with [5], where a1
vanishes identically, the operator (1.2) is globally solvable if and only if λ is not a
Liouville number. Recall that, in dimension 2, there is no influence of the real part of
the coefficient on the global solvability for the operator
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∂

∂t
+ (a1(t) + iλb1(t))

∂

∂x1
(with λb10 
= 0),

which is globally solvable if and only if b1 does not change sign (see [11, Theorem
3.2]).

Finally, we are ready to state our main results.
Define

α0 = (a10, . . . , aN0) , β0 = (b10, . . . , bN0) ,

α(t) = (a1(t), . . . , aN (t)) and β(t) = (b1(t), . . . , bN (t)), t ∈ T
1.

Theorem 1.1 Let L be given by (1.1).

(I) If b j ≡ 0 for every j, then L is globally solvable if and only if the pair (α0, 0)
satisfies (DC2).

(II) If b j0 = 0, for every j, and if b j 
≡ 0 for at least one j, then L is globally
solvable if and only if (a10, . . . , aN0) ∈ Z

N and all the sublevel sets

�ξ
r =

{
t ∈ T

1;
∫ t

0
〈ξ, β(τ)〉dτ < r

}
, r ∈ R and ξ ∈ Z

N ,

are connected.
(III) If b j0 
= 0 for some j, then L is globally solvable if and only if the following

properties are satisfied:
(III.1) dim span{b1, . . . , bN } = 1;
(III.2) the functions b j do not change sign;
(III.3) the pair (α0, β0) satisfies (DC2).

Remark 1.2 In (III.1) the span is taken on R; hence, condition (III.1) means that the
functions b j are real multiples of a smooth real-valued function b defined on T

1.

We now point out an important remark about Theorem 1.1-case (II). Consider

∂

∂t
+ i

N∑

j=1

b j (t)
∂

∂x j
, (1.3)

where b j0 = 0, for all j, and at least one b j does not vanish identically. Of course,
(1.3) does not satisfy condition (P); however, a necessary condition for (1.3) to be
globally solvable is that each function T

1 � t → ξ1b1(t) + · · · + ξNbN (t) (ξ ∈ Z
N )

changes sign at most twice, which is weaker than condition (P).

Another question of our interest is the regularity of solutions μ ∈ D′(TN+1) to
Lμ = f, where L is given by (1.1) and f belongs to C∞(TN+1). This regularity
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will be described by the expression global hypoellipticity. We say that L is globally
hypoelliptic if μ ∈ D′(TN+1) and Lμ ∈ C∞(TN+1) imply that μ ∈ C∞(TN+1).

As in Theorem 1.1, Diophantine properties of the coefficients of L are linked to
hypoellipticity.

Theorem 1.3 Let L be given by (1.1). Then, L is globally hypoelliptic if and only if
the functions a j and b j satisfy the following properties:

(1) the functions b j do not change sign;
(2) dim span{b1, . . . , bN } ≤ 1;
(3) the pair (α0, β0) satisfies (DC1).

Note that, in contrast to Theorem 1.1, condition (P) is a necessary condition for
global hypoellipticity.

As a consequence of Theorem 1.3, the operator L given by (1.2) is globally hypoel-
liptic if and only if (a10, λ) ∈ R

2 \ Q
2 is not a Liouville vector.

When the coefficients of L are constant, Theorems 1.1 and 1.3 give us results which
are in agreement with those of Greenfield and Wallach in [8]. In fact, when

L = ∂

∂t
+

N∑

j=1

(
α j + iβ j

) ∂

∂x j
,

where α j and β j are real numbers, for j = 1, . . . , N , then it follows from simple
adaptations of the techniques used in [8] that L is globally solvable if and only if
the pair (α, β) satisfies (DC2), where α = (α1, . . . , α j ) and β = (β1, . . . , βN ).

Likewise, this constant coefficient vector field is globally hypoelliptic if and only if
the pair (α, β) satisfies (DC1).

We dedicate Sects. 2 and 3 to the proof of Theorem 1.1, and Sect. 4 to the proof of
Theorem 1.3.

2 Beginning of the Proof of Theorem 1.1: Cases (I) and (II)

First, recall that

L = ∂

∂t
+

N∑

j=1

(
a j + ib j

)
(t)

∂

∂x j

is globally solvable if and only if LC∞(TN+1) = (ker t L)◦, where t L denotes the
transpose operator of L , and (ker t L)◦ is the set of the functions φ ∈ C∞(TN+1) such
that μ(φ) = 0 for all μ ∈ ker t L .

As a first step in our proofs, we claim that there is no loss of generality in assuming
that the real part of our operator L has constant coefficients. Indeed, by using partial
Fourier series in the variables (x1, . . . , xN ), we may define the automorphism T :
C∞(TN+1) → C∞(TN+1) given by
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T̂ u(ξ, t) = û(ξ, t) exp

{
i
∫ t

0
〈ξ, α(τ) − α0〉dτ

}
, for all ξ ∈ Z

N , (2.1)

with inverse T−1 : C∞(TN+1) → C∞(TN+1) given by

T̂−1v(ξ, t) = v̂(ξ, t) exp

{
−i

∫ t

0
〈ξ, α(τ) − α0〉dτ

}
, for all ξ ∈ Z

N . (2.2)

The operator L is globally solvable if and only if the new operator T LT−1 is globally
solvable; the latter has the form

T LT−1 = ∂

∂t
+

N∑

j=1

(
a j0 + ib j (t)

) ∂

∂x j
, (2.3)

where now the real part of the coefficients is constant; moreover, it is easy to see that
a j0 can be replaced by zero if a j0 belongs to Z.

As a consequence, when b j ≡ 0 for all j, we may assume that L is the constant
coefficient operator

∂

∂t
+

N∑

j=1

a j0
∂

∂x j
;

hence, as in [8], we can prove that L is globally solvable if and only if (α0, 0) ∈
R

N × R
N satisfies (DC2), where α0 = (a10, . . . , aN0). This concludes the proof of

Theorem 1.1 in case (I).
For the remainder of this section, we will proceed with the proof of Theorem 1.1

by analyzing the situation (II), where b j0 = 0, for all j = 1, . . . , N , and at least one
function b j does not vanish identically. Propositions 2.1 and 2.2 show the necessity
of the conditions in (II), while Proposition 2.5 shows the sufficiency.

Proposition 2.1 Let L be given by the right-hand side of (2.3). Suppose that b j0 = 0,
for all j, and that at least one b j does not vanish identically. If (a10, . . . , aN0) /∈ Z

N ,

then L is not globally solvable.

Proof The hypotheses imply the existence ofm and � in {1, . . . , N } such that bm does
not vanish identically, bm0 = 0 and a�0 /∈ Z. Assume first that m = �. Without loss
of generality we may assume that m = � = 1. In this case, it follows from Theorem
3.2 of [11] that the vector field

L1 = ∂

∂t
+ (a10 + ib1(t))

∂

∂x1
,

viewed as a vector field on T
2, is not globally solvable. By using partial Fourier series

in the variables (x2, . . . , xN ),we can verify that the fact that L1 is not globally solvable
easily implies that L itself is not globally solvable.
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Now, assume that m 
= �. Again, there is no loss of generality in assuming that
m = 1 and � = 2; hence b1 does not vanish identically, b10 = 0, a10 ∈ Z, b2 vanishes
identically and a20 /∈ Z. As above, in order to prove that L is not globally solvable it
is enough to prove that

∂

∂t
+ (a10 + ib1(t))

∂

∂x1
+ a20

∂

∂x2

is not globally solvable. Recall that, since a10 ∈ Z, it is enough to prove that

L12
.= ∂

∂t
+ ib1(t)

∂

∂x1
+ a20

∂

∂x2

is not globally solvable.
We will construct a function f in (ker t L12)

◦ \ L12C∞(T3) by using partial Fourier
series in the variables (x1, x2).Note that, sincea20 /∈ Z, there is an increasing sequence
(kn)n∈N ⊂ Z such that kn ≥ n > 0 and a20kn /∈ Z, for all n ∈ N. We will construct
the function f of the form

f (x1, x2, t) =
∞∑

n=1

f̂ (kn, kn, t) e
ikn(x1+x2). (2.4)

The next step is to construct the sequence f̂ (kn, kn, ·) (the Fourier coefficients of
f ).
Define

H(s, t) =
∫ t

t−s
b1(τ )dτ, 0 ≤ s, t ≤ 2π,

and set

A = H(s0, t0) = max
0≤s,t≤2π

H(s, t).

Since b1 changes sign we have A > 0; also, we may assume that 0 < s0, t0, t0−s0 <

2π. Set σ0 = t0 − s0 and take a function φ ∈ C∞
c ((σ0 − δ, σ0 + δ)) which satisfies

0 ≤ φ(t) ≤ 1 and φ(t) ≡ 1 in a neighborhood of [σ0 − δ/2, σ0 + δ/2], where δ > 0
is small enough so that (σ0 − δ, σ0 + δ) ⊂ (0, t0).

We finally define f̂ (kn, kn, ·) ∈ C∞(T1) to be the 2π - periodic extension of

φ(t)eikna20(t0−t)e−kn A, t ∈ [0, 2π ],

for all n ∈ N.

Since A > 0, the sequence ( f̂ (kn, kn, ·))n∈N,which consists of smooth functions on
T
1, decays rapidly; hence, the function f given by (2.4) belongs to C∞(T3).Moreover,

our assumption kna20 /∈ Z implies that μ̂(−kn,−kn, ·) ≡ 0, for all μ ∈ ker t L12 and
n ∈ N. Hence f ∈ (ker t L12)

◦.
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Next, it will be shown that there is no u ∈ C∞(T3) such that L12u = f. Indeed,
suppose that u ∈ C∞(T3) is such that L12u = f. Then the partial Fourier series in the
variables (x1, x2) gives

d

dt
û( j, k, t) + (− jb1(t) + kia20) û( j, k, t) = f̂ ( j, k, t),

for all ( j, k) ∈ Z
2 and t ∈ T

1. In particular, for each n ∈ N we have

d

dt
û (kn, kn, t) + kn (−b1(t) + ia20) û (kn, kn, t) = f̂ (kn, kn, t) ,

which has a unique solution, since kna20 /∈ Z. This solution can be written as

û (kn, kn, t) =
(
1 − e−2π ikna20

)−1
∫ 2π

0
f̂ (kn, kn, t − s) e−iskna20ekn

∫ t
t−s b1(τ )dτds.

For t = t0, the definition of f̂ (kn, kn, ·) implies that

|û(kn, kn, t0)| = |1 − e−2π ikna20 |−1
∫

|s−s0|<δ

φ(t0 − s)e−kn(A−H(s,t0))ds

≥ 1

2

∫

|s−s0|<δ/2
e−kn(A−H(s,t0))ds.

Since A − H(s0, t0) = 0, s0 is a point of minimum of A − H(s, t0) ≥ 0. In
particular, s0 is either a zero of infinite order or a zero of even order. By proceeding as
in the proof of Proposition 3.3 in [5], we may apply the Laplace method for integrals
(see [6]) so that we obtain a constant C > 0, which does not depend on n, such that

|û(kn, kn, t0)| ≥ C(kn)
−1/2,

contradicting the fact that û(kn, kn, t0) decays rapidly.
Therefore, there is no u ∈ C∞(T3) such that L12u = f.
This completes the proof of Proposition 2.1. ��

Proposition 2.2 Under the assumptions of Proposition 2.1, but now supposing that
(a10, . . . , aN0) ∈ Z

N , the existence of a disconnected sublevel set �ξ
r implies that L

is not globally solvable.

Proof Recall that, since a j0 ∈ Z, for j = 1, . . . , N , we may assume that

L = ∂

∂t
+ i

N∑

j=1

b j (t)
∂

∂x j
. (2.5)

The proof will be by contradiction. Suppose that L is globally solvable. Due to Lemma
6.1.2 of [9], it is well known that the solvability of L implies an inequality involving the
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transpose operator. As in the proof of necessity in Proposition 2.1 of [5], a convenient
version of this lemma yields the existence of constants m ∈ N and C > 0 such that

∣∣∣∣
∫

TN+1
f v

∣∣∣∣ ≤ C ·
⎛

⎝
∑

|α|≤m

sup
TN+1

|∂α f |
⎞

⎠ ·
⎛

⎝
∑

|α|≤m

sup
TN+1

|∂α(t Lv)|
⎞

⎠ , (2.6)

for every f ∈ (ker t L)◦ and every v ∈ C∞(TN+1).

The proof is then reduced to the study of inequality (2.6). By making use of a
disconnected sublevel set �

ξ
r , we will construct sequences of functions, { fn} and

{vn}, which will produce a contradiction with (2.6).
Take a disconnected sublevel

�ξ ′
r =

{
t ∈ T

1;
∫ t

0
〈ξ ′, β(τ )〉dτ < r

}
, where β(τ) = (b1(τ ), . . . , bN (τ )).

As in [5,11], we can find a real number r0 < r such that

�ξ ′
r0 =

{
t ∈ T

1;
∫ t

0
〈ξ ′, β(τ )〉dτ < r0

}

has two connected components with disjoint closure. Also, we can construct functions
f0, v0 ∈ C∞(T1), satisfying the following conditions:

∫ 2π

0
f0(t)dt = 0, supp( f0) ∩ �ξ ′

r0 = ∅,

supp(v′
0) ⊂ �ξ ′

r0 ,

and

∫ 2π

0
f0(t)v0(t)dt > 0.

For n ∈ N, define the functions fn, vn : T
N+1 → C by

fn(x, t) = exp

{
−n

∫ t

0
〈ξ ′, β(τ )〉dτ

}
f0(t)e

−in〈ξ ′,x〉,

and

vn(x, t) = exp

{
n

∫ t

0
〈ξ ′, β(τ )〉dτ

}
v0(t)e

in〈ξ ′,x〉.

Since b j0 = 0, for all j, it follows that fn and vn belong to C∞(TN+1). Moreover,
we claim that fn ∈ (ker t L)◦. In fact, for each μ ∈ ker t L ⊂ D′(TN+1), by using
partial Fourier series in the variables (x1, . . . , xN ) we can write
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μ =
∑

ξ∈ZN

cξ exp

{∫ t

0
〈ξ, β(τ)〉dτ

}
ei〈ξ,x〉, with cξ ∈ C,

from which we obtain

〈μ, fn〉 = (2π)Ncn

∫ 2π

0
f0(t)dt = 0, for every n ∈ N,

where cn is a complex number. Thus fn ∈ (ker t L)◦, for all n ∈ N.

The inequality (2.6) for fn and vn yields

∣∣∣∣
∫

TN+1
fnvn

∣∣∣∣ ≤ C ·
⎛

⎝
∑

|α|≤m

sup
TN+1

|∂α fn|
⎞

⎠ ·
⎛

⎝
∑

|α|≤m

sup
TN+1

|∂α(t Lvn)|
⎞

⎠ , (2.7)

for every n ∈ N.

Notice that the left-hand side of the inequality (2.7) satisfies

∫

TN+1
fn(t)vn(t)dt = (2π)N

∫ 2π

0
f0(t)v0(t)dt > 0.

On the other hand, since (supp( f0)) ∩ �
ξ ′
r0 = ∅, there exists C1 > 0, which does

not depend on n, such that

∑

|α|≤m

sup
TN+1

|∂α fn| ≤ C1n
m sup

t∈T1\�ξ ′
r0

e−n
∫ t
0 〈ξ ′,β(τ )〉dτ ≤ C1n

me−nr0; (2.8)

also, since (supp(v′
0)) ⊂ �

ξ ′
r0 , there exists C2 > 0, which does not depend on n, such

that

∑

|α|≤m

sup
TN+1

|∂α(t Lvn)| =
∑

|α|≤m

sup
TN+1

|∂α[en
∫ t
0 〈ξ ′,β(τ )〉dτ v′

0(t)e
in〈ξ ′,x〉]|

≤ C2n
m sup

t∈supp(v′
0)

en
∫ t
0 〈ξ ′,β(τ )〉dτ

≤ C2n
m

(
sup

t∈supp(v′
0)

e
∫ t
0 〈ξ ′,β(τ )〉dτ

)n

= C2n
men

∫ t1
0 〈ξ ′,β(τ )〉dτ , (2.9)

where t1 is a maximum point of the function t �→ e
∫ t
0 〈ξ ′,β(τ )〉dτ restricted to

supp(v′
0) ⊂ �

ξ ′
r0 .
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We now set c
.=

∫ t1

0
〈ξ ′, β(τ )〉dτ −r0.Notice that c < 0 and that c does not depend

on n ∈ N. Moreover, from (2.8) and (2.9) we have

⎛

⎝
∑

|α|≤m

sup
TN+1

|∂α fn|
⎞

⎠ ·
⎛

⎝
∑

|α|≤m

sup
TN+1

|∂α(t Lvn)|
⎞

⎠ ≤ C1C2n
2menc, (2.10)

for all n ∈ N.

Finally, from (2.7) and (2.10) we have

0 < (2π)N
∫ 2π

0
f0(s)v0(s)ds ≤ CC1C2n

2menc, for all n ∈ N,

which is a contradiction, since lim
n→∞ n2menc = 0.

The proof of Proposition 2.2 is complete. ��
Example 2.3 The operator

∂

∂t
+ ∂

∂x1
+ i cos(2t)

∂

∂x2

defined on T
3, is not globally solvable. Indeed, the sublevel set

{
t ∈ T

1;
∫ t

0
cos(2τ)dτ < 0

}

is disconnected.

Example 2.4 The operator

∂

∂t
+

(
sin3 t + i sin3(2t)

)(
∂

∂x1
+ ∂

∂x2

)

defined on T
3, is not globally solvable. Indeed, the sublevel set

{
t ∈ T

1;
∫ t

0
sin3(2τ)dτ <

1

2

}

is disconnected.

The next result shows that L is globally solvable under the conditions given in
(II)-Theorem 1.1. In fact, the correct choice of the point tξ in (2.14) will imply that we
can construct a continuous right inverse for L , namely, L−1 : Im(L) → C∞(TN+1),

given by means of formula (2.16).
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Proposition 2.5 Let L be the operator given by (2.3). Suppose that b j0 = 0, for all
j, and that at least one b j does not vanish identically. If (a10, . . . , aN0) ∈ Z

N and,

moreover, all the sublevel sets �
ξ
r are connected, then L is globally solvable.

Proof Given a function f ∈ (ker t L)◦,wewill find u ∈ C∞(TN+1) such that Lu = f.
As in the proof of Proposition 2.2, we may assume that L is given by (2.5). By using
partial Fourier series in the variables (x1, . . . , xN ), we are led to solve

d

dt
û(ξ, t) − 〈ξ, β(t)〉û(ξ, t) = f̂ (ξ, t), t ∈ T

1, ξ ∈ Z
N , (2.11)

where we recall that β(t) = (b1(t), . . . , bN (t)).
Our assumption b j0 = 0 (for all j = 1, . . . , N ) implies that, for each ξ ∈ Z

N , the
function

φξ (x, t) = exp

{
−

∫ t

0
〈ξ, β(τ)〉dτ

}
e−i〈ξ,x〉

belongs to C∞(TN+1). Moreover, t L(φξ ) = −L(φξ ) = 0; that is, φξ ∈ ker t L . Since
f ∈ (ker t L)◦ we have

∫ 2π

0
e− ∫ t

0 〈ξ,β(τ)〉dτ f̂ (ξ, t)dt = 0, for all ξ ∈ Z
N . (2.12)

It follows from (2.12) that, for an arbitrary tξ ∈ T
1, the function û(ξ, ·) defined by

û(ξ, t) = e
∫ t
0 〈ξ,β(τ)〉dτ

∫ t

tξ
e− ∫ s

0 〈ξ,β(τ)〉dτ f̂ (ξ, s)ds, (2.13)

with tξ ∈ T
1 to be chosen later, is well defined and belongs to C∞(T1). Simple

calculations show that û(ξ, ·) is a solution to (2.11) [in particular, there are infinitely
many solutions to (2.11)].

In order to obtain a sequence of solutions û(ξ, ·) which decays rapidly, we will
choose a convenient point tξ in (2.13). For each ξ ∈ Z

N , choose tξ ∈ T
1 such that

∫ tξ

0
〈ξ, β(τ)〉dτ = sup

t∈T1

{∫ t

0
〈ξ, β(τ)〉dτ

}
,

or equivalently

−
∫ tξ

0
〈ξ, β(τ)〉dτ = inf

t∈T1

{
−

∫ t

0
〈ξ, β(τ)〉dτ

}
. (2.14)
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For tξ satisfying (2.14), we claim that the sequence û(ξ, ·), given by (2.13), decays
rapidly. In fact, for fixed ξ ∈ Z

N and for fixed t ∈ T
1, define

rt
.= −

∫ t

0
〈ξ, β(τ)〉dτ

and

�t
.=

{
s ∈ T

1;−
∫ s

0
〈ξ, β(τ)〉dτ ≤ rt

}
.

It follows from our assumptions that �t is connected. Since t and tξ belong to �t ,

there is an arc �t entirely contained in �t and joining tξ to t. Hence

−
∫ s

0
〈ξ, β(τ)〉dτ ≤ −

∫ t

0
〈ξ, β(τ)〉dτ, for all s ∈ �t . (2.15)

Again, by using (2.12) we can write

û(ξ, t) =
∫

�t

exp

{∫ t

0
〈ξ, β(τ)〉dτ −

∫ s

0
〈ξ, β(τ)〉dτ

}
f̂ (ξ, s)ds. (2.16)

Finally, the conjunction of (2.16) with the estimate (2.15) implies that

|û(ξ, t)| ≤ 2π sup
t∈T1

| f̂ (ξ, t)|; (2.17)

hence, from the rapid decay of f̂ (ξ, ·), for every n ∈ Z+, we obtain a constant
C = C(n) > 0 such that

|û(ξ, t)| ≤ C

|ξ |n , for all t ∈ T
1.

By proceeding as above we can prove analogous estimates for all the derivatives
û(m)(ξ, ·), m ∈ N.

Therefore, û(ξ, ·) decays rapidly and

u(x, t) =
∑

ξ∈ZN

û(ξ, t)ei〈ξ,x〉

is a solution to Lu = f in C∞(TN+1).

This concludes the proof of Proposition 2.5. ��
Example 2.6 As mentioned in [5], the operator

∂

∂t
+ i cos(t)

∂

∂x1
+ i sin(t)

∂

∂x2
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is globally solvable. According to Propositions 2.1 and 2.5, by adding a real part in
the coefficient we may either maintain or lose solvability; for instance,

∂

∂t
+ (sin(t) + i cos(t))

∂

∂x1
+ (cos(t) + i sin(t))

∂

∂x2

is still globally solvable; on the other hand,

∂

∂t
+

(
sin2(t) + i cos(t)

) ∂

∂x1
+ i sin(t)

∂

∂x2

is not globally solvable, since (1/2π)
∫ 2π
0 sin2(t)dt = 1/2 (is not an integer number).

3 End of the Proof of Theorem 1.1: Case (III)

We proceed with the proof of Theorem 1.1 and we now deal with case (III), in which
b j0 
= 0 for at least one j ∈ {1, . . . , N }. Proposition 3.2 shows the necessity of
conditions (III.1)–(III.3), while Proposition 3.4 shows the sufficiency. First, we will
prove the following equivalence:

Lemma 3.1 For a pair of vectors α = (α1, . . . , αN ) and β = (β1, . . . , βN ) in R
N ,

the condition (DC2) is equivalent to the following Diophantine condition:
(DC3) there exist constants C > 0 and γ > 0 such that

|1 − e2π〈ξ,β−iα〉| ≥ C |ξ |−γ ,

for all ξ ∈ Z
N such that 〈ξ, β − iα〉 /∈ iZ.

Proof Suppose that (α, β) does not satisfy (DC3). Thus we can find a sequence
(ξ(n))n∈N ⊂ Z

N such that |ξ(n)| ≥ n, 〈ξ(n), β − iα〉 /∈ iZ, and

|1 − e2π〈ξ(n),β−iα〉| < |ξ(n)|−n, (3.1)

for all n ∈ N. In particular, |〈ξ(n), β〉| → 0, as n → ∞, which implies that

|1 − e2π〈ξ(n),β〉| ≥ e−12π |〈ξ(n), β〉|, (3.2)

for n ∈ N sufficiently large.
It follows from (3.1) that there is a sequence of integers (τn) such that τn +

〈ξ(n), α〉 → 0, as n → ∞ (in fact, it is enough, for each n ∈ N, to choose τn
to be either the greatest integer not exceeding −〈ξ(n), α〉 or the least integer greater
than −〈ξ(n), α〉). Hence, if n ∈ N is sufficiently large, we have

| sin(2π [τn + 〈ξ(n), α〉])| ≥ π |τn + 〈ξ(n), α〉|. (3.3)
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Inequalities (3.1), (3.2) and (3.3) imply that, for n ∈ N sufficiently large,

e−12π |〈ξ(n), β〉| ≤ |1 − e2π〈ξ(n),β〉| ≤ |1 − e2π〈ξ(n),β−iα〉| < |ξ(n)|−n

and

π |τn + 〈ξ(n), α〉| ≤ |sin(2π [τn + 〈ξ(n), α〉])|
≤ 2e2π〈ξ(n),β〉 |sin(2π [τn + 〈ξ(n), α〉])|
≤ 2|1 − e2π〈ξ(n),β−iα〉| < 2|ξ(n)|−n .

Finally, from these last inequalities we obtain

|τn + 〈ξ(n), α + iβ〉| ≤ |τn + 〈ξ(n), α〉| + |〈ξ(n), β〉| < |ξ(n)|−n 2

π
<

2n−n

π
,

for all n ∈ N sufficiently large, which implies that (α, β) does not satisfy (DC2).
Conversely, suppose that (α, β) does not satisfy (DC2). In particular, we can find

a sequence (ξ(n), τn) ∈ Z
N × Z such that |ξ(n)| ≥ n, τn + 〈ξ(n), α + iβ〉 
= 0,

〈ξ(n), β〉 ≤ 0 and

|τn + 〈ξ(n), α + iβ〉| < (|ξ(n)| + |τn|)−n < |ξ(n)|−n,

for every n ∈ N. For n ∈ N sufficiently large we have cos(2π〈ξ(n), α〉) 
= 0, and
since 〈ξ(n), β〉 ≤ 0, it follows that

|1 − e2π〈ξ(n),β−iα〉| ≤ |1 − e2π〈ξ(n),β〉 cos(2π〈ξ(n), α〉)| + | sin(2π〈ξ(n), α〉)|
≤ |1 − cos(2π〈ξ(n), α〉)| + |1 − e2π〈ξ(n),β〉|

+ | sin(2π〈ξ(n), α〉)|
≤ |1 − cos(2π [τn + 〈ξ(n), α〉])| + |1 − e2π〈ξ(n),β〉|

+ | sin(2π [τn + 〈ξ(n), α〉])|
≤ 4π |τn + 〈ξ(n), α〉| + 2π |〈ξ(n), β〉|
≤ 6π |τn + 〈ξ(n), α + iβ〉| < 6π |ξ(n)|−n < 6πn−n,

which implies that (α, β) does not satisfy (DC3). ��
We now prove the necessity of conditions (III.1)–(III.3) in Theorem 1.1.

Proposition 3.2 The operator L given by (2.3) is not globally solvable in the case
where b j0 
= 0, for some j = 1, . . . , N , and at least one of the following conditions
fails:

(III.1) dim span{b1, . . . , bN } = 1;
(III.2) the functions b j do not change sign;
(III.3) the pair (α0, β0) satisfies (DC2).
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Proof Under the general assumption that b j0 
= 0 for some j, the proof can be divided
into three parts.

First, suppose that (III.1) fails; that is, there exist m and � in {1, . . . , N } such that
bm0 
= 0, and bm(t) and b�(t) are R-linearly independent functions. There is no loss
of generality in assuming that m = 1 and � = 2. We claim that

L12 = ∂

∂t
+ (a10 + ib1(t))

∂

∂x1
+ (a20 + ib2(t))

∂

∂x2

is not globally solvable. The arguments to prove our claim are similar to that of
Proposition 2.1. We will sketch the proof.

Recall that Lemma 3.1 of [5] implies the existence of integers p and q such that

T
1 � t �→ ψ(t) = pb1(t) + qb2(t)

changes sign and ψ0
.= (2π)−1

∫ 2π
0 ψ(t)dt < 0. We now define

H(s, t) =
∫ t

t−s
ψ(τ)dτ, 0 ≤ s, t ≤ 2π,

and

A = H(s0, t0) = max
0≤s,t≤2π

H(s, t),

where, without loss of generality, we can assume that 0 < s0, t0, t0 − s0 < 2π. Set
σ0

.= t0 − s0 and let δ > 0 small enough so that (σ0 − δ, σ0 + δ) ⊂ (0, t0). Next, let
φ ∈ C∞

c ((σ0−δ, σ0+δ)) such that φ(t) ≡ 1 in a neighborhood of [σ0−δ/2, σ0+δ/2]
and 0 ≤ φ(t) ≤ 1, for all t ∈ T

1.

As in the proof of Proposition 2.1, by using partial Fourier series we may consider
a function f ∈ (ker t L12)

◦ \ L12C∞(T3), given by

f (x1, x2, t) =
∞∑

n=1

f̂ (np, nq, t)ein(px1+qx2),

where f̂ (np, nq, ·) is the function in C∞(T1) which is the 2π -periodic extension of

φ(t)ein(pa10+qa20)(t0−t)e−nA, t ∈ [0, 2π ],

for all n ∈ N.

By proceeding as in the proof of Proposition 2.1, we can verify that f belongs to
(ker t L12)

◦ \ L12C∞(T3), which implies that L is not globally solvable.
Now, assume that (III.1) satisfied and that (III.2) fails. In this case, there exists

m ∈ {1, . . . , N } such that bm0 
= 0 and bm(t) changes sign. Thus, it follows from
[11]-Theorem 3.2 that
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Lm = ∂

∂t
+ (am0 + ibm(t))

∂

∂xm

is not globally solvable, which implies that L is not globally solvable.
To complete the proof, we now assume that (III.1) and (III.2) are satisfied, but (III.3)

fails. In this last case, we can write the operator L as

L = ∂

∂t
+

N∑

j=0

(
a j0 + iλ j b(t)

) ∂

∂x j
, (3.4)

where b ∈ C∞(T1, R), b does not change sign, b0
.= (2π)−1

∫ 2π
0 b(t)dt 
= 0, and

λ
.= (λ1, . . . , λN ) ∈ R

N \ {0}.
Recall that α0 = (a10, . . . , aN0), β0 = (b10, . . . , bN0) = b0(λ1, . . . , λN ) = b0λ,

and β(t) = (b1(t), . . . , bN (t)) = b(t)(λ1, . . . , λN ) = b(t)λ. Since we are supposing
that (α0, β0) does not satisfy (DC2), Lemma 3.1 implies that (DC3) does not hold.
Thus, one of the following situations must occur:

(i) there exists a sequence (ξ(n))n∈N ⊂ Z
N such that |ξ(n + 1)| > |ξ(n)| ≥ n,

〈ξ(n), β0〉 > 0, and

|1 − exp {2π〈ξ(n), β0 − iα0〉} | < |ξ(n)|−n, for all n ∈ N, (3.5)

or
(ii) there exists a sequence (ξ(n))n∈N ⊂ Z

N such that |ξ(n + 1)| > |ξ(n)| ≥ n,

〈ξ(n), β0〉 = 0, 〈ξ(n), α0〉 /∈ Z, and

|1 − exp{−2π i〈ξ(n), α0〉}| < |ξ(n)|−n, for all n ∈ N. (3.6)

In order to finish this proof we must show that L given by (3.4) is not globally
solvable when either (i) or (ii) occurs.

Assume first that (i) occurs. For L given by (3.4) we will construct a function f
belonging to (ker t L)◦ \ LC∞(TN+1). By using partial Fourier series in the variables
(x1, . . . , xN ), we consider the function

f (x, t) =
∞∑

n=1

f̂ (ξ(n), t) ei〈ξ(n),x〉, (3.7)

with partial Fourier coefficients, f̂ (ξ(n), ·), given by the 2π -periodic extension of

|ξ(n)|−n/2ϕ(t)ei(π−t)〈ξ(n),α0〉, t ∈ [0, 2π ],

where ϕ(t) ∈ C∞
c ((π

2 − δ, π
2 + δ)), ϕ(t) ≡ 1 in a neighborhood of [π−δ

2 , π+δ
2 ],

0 ≤ ϕ(t) ≤ 1, and δ > 0 is small enough so that (π
2 − δ, π

2 + δ) ⊂ (0, π). The factor

|ξ(n)|−n/2 implies that f̂ (ξ(n), ·) decays rapidly. Hence f ∈ C∞(TN+1). Moreover,
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for all μ ∈ ker t L and for ξ ∈ Z
N satisfying 〈ξ, β0〉 
= 0, we have μ̂(ξ, ·) = 0. Thus

f ∈ (ker t L)◦.
We claim that f /∈ LC∞(TN+1). Indeed, suppose by contradiction that there

exists u ∈ C∞(TN+1) such that Lu = f. The partial Fourier series in the variables
(x1, . . . , xN ) gives

f̂ (ξ(n), t) = d

dt
û(ξ(n), t) + i〈ξ(n), α0 + iβ(t)〉û(ξ(n), t)

= d

dt
û(ξ(n), t) + i〈ξ(n), α0 + ib(t)λ〉û(ξ(n), t), (3.8)

for all n ∈ N and t ∈ T
1. Since 〈ξ(n), β0〉 > 0, Eq. (3.8) has a unique solution, which

can be written as

û(ξ(n), t)

=
(
1 − e2πcn

)−1
∫ 2π

0
f̂ (ξ(n), t − s) exp

{
〈ξ(n), λ〉

∫ t

t−s
b(τ )dτ

}
e−is〈ξ(n),α0〉ds,

where, to simplify notation, we have defined

cn
.= 〈ξ(n), β0 − iα0〉 = 〈ξ(n), b0λ − iα0〉 (n ∈ N).

The definition of the function f̂ (ξ(n), ·) implies that

|û(ξ(n), π)| ≥ |1 − e2πcn |−1|ξ(n)|−n/2
∫

|s−π/2|≤δ/2
e〈ξ(n),λ〉 ∫ π

π−s b(τ )dτds.

Recall that b does not change sign and that 〈ξ(n), λb0〉 > 0. Hence

〈ξ(n), λ〉
∫ π

π−s
b(τ )dτ ≥ 0, for all |s − π/2| ≤ δ/2.

Moreover, (3.5) implies that

|1 − e2πcn |−1 = |1 − exp{2π〈ξ(n), β0 − iα0〉}|−1 > |ξ(n)|n .

Summarizing, we obtain

|û(ξ(n), π)| ≥ |1 − e2πcn |−1|ξ(n)|−n/2δ > |ξ(n)|n|ξ(n)|−n/2δ ≥ nn/2δ,

which is a contradiction, since |û(ξ(n), π)| should decay rapidly.
Therefore, f given by (3.7) belongs to (ker t L)◦ \ LC∞(TN+1),which implies that

L is not globally solvable when (i) occurs.
To finish the proof we just mention that similar computations show that L is not

globally solvable when (ii) occurs. Indeed, under conditions (ii), the same f, given by
(3.7), belongs to (ker t L)◦ \ LC∞(TN+1).
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The proof of Proposition 3.2 is complete. ��
Example 3.3 By Proposition 3.2, for any functions a1, a2 ∈ C∞(T1, R), the operator

∂

∂t
+

(
a1(t) + i sin2(t)

) ∂

∂x1
+

(
a2(t) + i cos2(t)

) ∂

∂x2

is not globally solvable, since sin2(t) and cos2(t) areR-linearly independent functions.

We finish the proof of Theorem 1.1 by showing that conditions (III.1)–(III.3) are
sufficient for global solvability.

Proposition 3.4 Let L be given by (2.3) and suppose that b j0 
= 0, for some j =
1, . . . , N . Then L is globally solvable if the following conditions are verified:

(III.1) dim span{b1, . . . , bN } = 1;
(III.2) the functions b j do not change sign;
(III.3) the pair (α0, β0) satisfies (DC2).

Proof Given f ∈ (ker t L)◦, our goal is to seek u ∈ C∞(TN+1) solution of Lu = f.
Notice that our assumptions imply that L can be written as

∂

∂t
+

N∑

j=0

(
a j0 + iλ j b(t)

) ∂

∂x j
,

where b ∈ C∞(T1, R), b does not change sign, b0
.= (2π)−1

∫ 2π
0 b(t)dt 
= 0, and

λ
.= (λ1, . . . , λN ) ∈ R

N \ {0}.
Partial Fourier series in the variables (x1, . . . , xN ) leads us to solve the equations

d

dt
û(ξ, t) + i〈ξ, α0 + ib(t)λ〉û(ξ, t) = f̂ (ξ, t), t ∈ T

1, ξ ∈ Z
N , (3.9)

where we recall that α0 = (a10, . . . , aN0).

We now divide the task of finding solutions to (3.9) into three cases.
First: ξ ∈ Z

N is such that 〈ξ, b0λ〉 = 0 and 〈ξ, α0〉 ∈ Z.

In this case, the function φξ (x, t)
.= eit〈ξ,α0〉e−i〈ξ,x〉 belongs to ker t L , which

implies that

0 = 〈φξ , f 〉 = (2π)N
∫ 2π

0
f̂ (ξ, t)eit〈ξ,α0〉dt.

Hence, Eq. (3.9) has infinitely many solutions and we fix

û(ξ, t) =
∫ t

0
f̂ (ξ, s)ei(s−t)〈ξ,α0〉ds, t ∈ T

1, (3.10)
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as a solution of (3.9). Notice that

|û(ξ, t)| ≤
∫ t

0
| f̂ (ξ, s)|ds. (3.11)

Second: ξ ∈ Z
N is such that 〈ξ, b0λ〉 
= 0.

Now Eq. (3.9) has a unique solution in C∞(T1). It is worth pointing out that this
solution can be written in two different ways.

When 〈ξ, λ〉b0 < 0, we write

û(ξ, t) = (1 − e2πcξ )−1
∫ 2π

0
f̂ (ξ, t − s)e〈ξ,λ〉 ∫ t

t−s b(τ )dτ e−is〈ξ,α0〉ds, (3.12)

where cξ = 〈ξ, b0λ − iα0〉. Since b does not change sign and since 〈ξ, λ〉b0 < 0 we
have

〈ξ, λ〉
∫ t

t−s
b(τ )dτ ≤ 0, for all t, s ∈ [0, 2π ]. (3.13)

Recall now that the validity of (III.3) and Lemma 3.1 imply that (α0, b0λ) satisfies
(DC3). It follows from (3.13) and (DC3) that the solution given by (3.12) satisfies

|û(ξ, t)| ≤ 1

C
|ξ |γ

∫ 2π

0
| f̂ (ξ, t − s)|ds. (3.14)

On the other hand, when 〈ξ, λ〉b0 > 0 we write

û(ξ, t) = (e−2πcξ − 1)−1
∫ 2π

0
f̂ (ξ, t + s)e−〈ξ,λ〉 ∫ t+s

t b(τ )dτ eis〈ξ,α0〉ds. (3.15)

Since b does not change sign and, also, 〈ξ, λ〉b0 > 0, we have

〈ξ, λ〉
∫ t+s

t
b(τ )dτ ≥ 0, for all t, s ∈ [0, 2π ]. (3.16)

As before, (3.16) and (DC3) imply that the solution given by (3.15) satisfies

|û(ξ, t)| ≤ 1

C
|ξ |γ

∫ 2π

0
| f̂ (ξ, t + s)|ds. (3.17)

Third: ξ ∈ Z
N is such that 〈ξ, b0λ〉 = 0 and 〈ξ, α0〉 /∈ Z. Again Eq. (3.9) has a

unique solution in C∞(T1), which can be written as

û(ξ, t) = (1 − e−2π i〈ξ,α0〉)−1
∫ 2π

0
f̂ (ξ, t − s)e−is〈ξ,α0〉ds. (3.18)
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By using estimate (DC3) we obtain

|û(ξ, t)| ≤ 1

C
|ξ |γ

∫ 2π

0
| f̂ (ξ, t − s)|ds. (3.19)

Up to this point we have defined a sequence (û(ξ, ·))ξ∈ZN of solutions of the Eq.
(3.9). The proof will be concluded if we show that this sequence decays rapidly. Since
f̂ (ξ, ·) decays rapidly, it follows from (3.11), (3.14), (3.17) and (3.19) that, for each
n ∈ Z+ there exists C(n) > 0 such that

|û(ξ, t)| ≤ C(n)

|ξ |n , for all t ∈ T and ξ ∈ Z
N .

Similar estimates can be found for each derivative û(m)(ξ, ·), m ∈ Z+. Therefore,
(û(ξ, ·))ξ∈ZN decays rapidly, which completes the proof of Proposition 3.4. ��
Example 3.5 Consider

L = ∂

∂t
+ (a1(t) + iλb1(t))

∂

∂x1
+ ib1(t)

∂

∂x2
, b1 
≡ 0,

defined on T
3, where λ ∈ R, a1, b1 ∈ C∞(T1, R), and b1 does not change sign.

It follows from Propositions 3.2 and 3.4 that L is globally solvable if and only if
the pair (a10, 0), (λb10, b10) ∈ R

2 satisfies (DC2), which holds if and only if either
(a10, λ) ∈ Q

2 or (a10, λ) ∈ R
2 \ Q

2 is not a Liouville vector. In particular, if α is a
Liouville number (α ∈ R \ Q), then

L1 = ∂

∂t
+

(
α + i cos2 t

) ∂

∂x1
+ i cos2 t

∂

∂x2

is not globally solvable. On the other hand, there are α and λ Liouville numbers such
that the pair (α, λ) is not a Liouville vector (see [2, Example 4.9]), hence

L2 = ∂

∂t
+ (α + iλ cos2 t)

∂

∂x1
+ i cos2 t

∂

∂x2

is globally solvable.

4 Proof of Theorem 1.3

In this section we will deal with global hypoellipticity by proving Theorem 1.3. As in
the preceding section (in which we studied global solvability), by using an automor-
phism we may assume that L is given by (2.3), that is,

L = ∂

∂t
+

N∑

j=1

(a j0 + ib j (t))
∂

∂x j
. (4.1)
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We begin by proving the necessity of the conditions (1)-(3).
Suppose that b j changes sign, for some j ∈ {1, . . . , N }. Without loss of generality

we may assume that j = 1. It follows from Theorem 2.2 of [11] that there exists
ν ∈ D′(T2

(x1,t)
) \ C∞(T2

(x1,t)
) for which

f =̇
(

∂

∂t
+ (a10 + ib1(t))

∂

∂x1

)
ν

belongs to C∞(T2
(x1,t)

). Hence, by setting x ′ = (x2, . . . , xN ) it follows that ω
.=

ν ⊗ 1x ′ ∈ D′(TN+1) \ C∞(TN+1) and, also, Lω ∈ C∞(TN+1). Therefore, L is not
globally hypoelliptic.

Hence we have the right to restrict ourselves to the case where b j does not change
sign, for j = 1, . . . , N .

Suppose now that dim span{b1, . . . , bN } > 1. Then there exist functions bm and
b� which are R-linearly independent in C∞(T1, R). Since bm 
≡ 0 and bm does not
change sign, we have bm0 
= 0. Similarly, b�0 
= 0.Again, we may assume thatm = 1
and � = 2. Under these assumptions, recall that in the proof of Proposition 3.2 we
exhibited a smooth function f ∈ (ker t L)◦, for which the equation

L12u =
(

∂

∂t
+ (a10 + ib1(t))

∂

∂x1
+ (a20 + ib2(t))

∂

∂x2

)
u = f

does not have smooth solutions u in T
3. However, we claim that for such f we can

find a distribution solution, μ, for L12μ = f. Indeed, with the same notation used in
the proof of Proposition 3.2, we define

μ =
∞∑

n=1

μ̂(np, nq, t)ein(px1+qx2),

where

μ̂(np, nq, t) = (1 − e2πdn )−1
∫ 2π

0
f̂ (np, nq, t − s)enH(s,t)e−ins(pa10+qa20)ds

and dn
.= n(ψ0 − i(pa10 + qa20)) = n(pb10 + qb20) − in(pa10 + qa20). Recall that

f̂ (np, nq, ·) is the function belonging to C∞(T1) which is the 2π -periodic extension
of

φ(t)ein(pa10+qa20)(t0−t)e−nA, t ∈ [0, 2π ],

for all n ∈ N. Since ψ0 < 0 and 0 ≤ φ(t) ≤ 1, for each n ∈ N we have

| < μ̂(np, nq, t), θ(t) > | ≤ (2π)2‖θ‖∞|1 − e2πdn |−1 ≤ (2π)2‖θ‖∞(1 − e2πψ0)−1,
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for every θ ∈ C∞(T1). Hence μ ∈ D′(T3) \ C∞(T3) and L12μ = f ; consequently,
L12 is not globally hypoelliptic, which implies that L is not globally hypoelliptic.

Up to this point we have shown that the global hypoellipticity of L implies that
each b j does not change sign and that dim span{b1, . . . , bN } ≤ 1. Notice that, under
these assumptions the operator L can be written in the form

L = ∂

∂t
+

N∑

j=1

(a j0 + iλ j b(t))
∂

∂x j
,

where b ∈ C∞(T1, R), b does not change sign and λ = (λ1, . . . , λN ) ∈ R
N \ {0}.

In order to complete the proof of necessity in Theorem 1.3 we must verify that
(DC1) is also a necessary condition for the global hypoellipticity of L .

When b ≡ 0, the necessity of the condition (DC1) follows by applying the tech-
niques of [8].

Suppose now that b 
≡ 0. In particular, b0 
= 0. If now (DC1) does not hold, then
one of the following situations must occur:

(i) there exists a sequence (ξ(n), τn)n∈N ⊂ Z
N+1 such that |ξ(n)| + |τn| ≥ n,

〈ξ(n), b0λ〉 = 0, and τn = −〈ξ(n), α0〉 ∈ Z.

(ii) the pair (α0, b0λ) does not satisfy (DC2).

Suppose first that (i) occurs. Notice that |ξ(n)| is unbounded. By taking a subsequence
if necessary we can assume that |ξ(n)| is increasing. We now set

μ=̇
∞∑

n=1

e−i t〈ξ(n),α0〉ei〈ξ(n),x〉,

which belongs to D′(TN+1) \ C∞(TN+1) and satisfies Lμ = 0. Therefore, L is not
globally hypoelliptic.

Now, assume that (ii) occurs. We will proceed as in the proof of Proposition 3.2
(the part in which (III.1) and (III.2) are true, but (III.3) fails) in order to construct a
function f in C∞(TN+1) so that Lμ = f has a solution in D′(TN+1) \ C∞(TN+1).

Since (α0, β0) = (α0, b0λ) does not satisfy (DC2), Lemma 3.1 implies that (DC3)
does not hold; hence, either (3.5) or (3.6) occurs. When (3.5) occurs, we have, with
the same notations as in the proof of Proposition 3.2, |1 − e2πcn | ≤ |ξ(n)|−n (where
cn

.= 〈ξ(n), b0λ − iα0〉) and 〈ξ(n), b0λ〉 > 0. It follows that the sequence f̂ (ξ(n), ·)
given by the 2π -periodic extension of

(1 − e2πcn )e−〈ξ(n),2πb0λ〉ϕ(t)ei(π−t)〈ξ(n),α0〉, t ∈ [0, 2π ],

is rapidly decreasing (recall that ϕ(t) ∈ C∞
c ((π

2 − δ, π
2 + δ)), ϕ(t) ≡ 1 in a

neighborhood of [π−δ
2 , π+δ

2 ], 0 ≤ ϕ(t) ≤ 1, and δ > 0 is small enough so that
(π
2 − δ, π

2 + δ) ⊂ (0, π)). Thus we may define a function f ∈ C∞(TN+1) by
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f (x, t) =
∞∑

n=1

f̂ (ξ(n), t)ei〈ξ(n),x〉.

For this f, we define the distribution

μ =
∞∑

n=1

μ̂(ξ(n), t)ei〈ξ(n),x〉,

where

μ̂(ξ(n), t)

= (1 − e2πcn )−1
∫ 2π

0
f̂ (ξ(n), t − s)e−is〈ξ(n),α0〉e〈ξ(n),λ〉 ∫ t

t−s b(τ )dτds ∈ C∞(T1).

Notice that, since 〈ξ(n), b0λ〉 > 0 and since 〈ξ(n), b0λ〉 → 0 as n → ∞ (see (3.5)),
the definition of f̂ (ξ(n), ·) implies

|μ̂(ξ(n), π)| ≥ δe−〈ξ(n),2πb0λ〉 ≥ δ/2;

hence μ /∈ C∞(TN+1). On the other hand, for every θ ∈ C∞(T1) we have

|〈μ̂(ξ(n), t), θ(t)〉| ≤ (2π)2‖θ‖∞,

which implies that μ ∈ D′(TN+1) \ C∞(TN+1). A simple computation shows that
Lμ = f. Therefore, L is not globally hypoelliptic when (3.5) occurs.

Finally, suppose that (3.6) occurs. In this case, we consider the function f ∈
C∞(TN+1) given by

f (x, t) =
∞∑

n=1

f̂ (ξ(n), t)ei〈ξ(n),x〉,

where f̂ (ξ(n), ·) is the 2π -periodic extension of

(
1 − e−2π i〈ξ(n),α0〉

)
ϕ(t)ei(π−t)〈ξ(n),α0〉, t ∈ [0, 2π ].

Notice that f is well defined since the estimate |1− e−2π i〈ξ(n),α0〉| ≤ |ξ(n)|−n [see
(3.6)] implies that f̂ (ξ(n), ·) decays rapidly.

For such f, consider the distribution

μ =
∞∑

n=1

μ̂(ξ(n), t)ei〈ξ(n),x〉,
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where

μ̂(ξ(n), t) =
(
1 − e−2π〈ξ(n),α0〉

)−1
∫ 2π

0
f̂ (ξ(n), t − s)e−is〈ξ(n),α0〉ds ∈ C∞(T1).

As before, simple computations show that μ ∈ D′(TN+1) \ C∞(TN+1), and that
Lμ = f. Therefore, L is not globally hypoelliptic when (3.6) occurs.

The proof of necessity in Theorem 1.3 is complete.
We now move on to the proof of sufficiency. Assuming that (1)-(3) hold, let μ be

a distribution in D′(TN+1) and suppose that Lμ = f ∈ C∞(TN+1). Our goal is to
prove that μ ∈ C∞(TN+1).

By using partial Fourier series in the variables x = (x1, . . . , xN ) we can write

f (x, t) =
∑

ξ∈ZN

f̂ (ξ, t)ei〈ξ,x〉

and

μ =
∑

ξ∈ZN

μ̂(ξ, t)ei〈ξ,x〉,

where a priori μ̂(ξ, ·) belongs to D′(T1). The equation Lμ = f imply that, for each
ξ ∈ Z

N , μ̂(ξ, ·) is a solution of

d

dt
μ̂(ξ, t) + 〈ξ, iα0 − b(t)λ〉μ̂(ξ, t) = f̂ (ξ, t). (4.2)

Now, recall that (DC1) implies (DC2). Hence, Lemma 3.1 implies that (DC3) is
satisfied.Also, (DC1) implies thatwe simultaneously have 〈ξ, α0〉 ∈ Z and 〈ξ, b0λ〉 =
0 only for ξ = 0. Thus, by proceeding as in the proof of Proposition 3.4 we see that
μ̂(ξ, ·) is a smooth function on T

1, which is uniquely determined for all indices
ξ ∈ Z

N \ {0}. Moreover, since (DC3) holds we see that μ̂(ξ, ·) is rapidly decreasing.
Therefore, μ ∈ C∞(TN+1) and the proof of sufficiency in Theorem 1.3 is complete.
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